xref: /openbmc/linux/fs/udf/super.c (revision d522bb6a)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define VSD_FIRST_SECTOR_OFFSET		32768
77 #define VSD_MAX_SECTOR_OFFSET		0x800000
78 
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87 
88 enum { UDF_MAX_LINKS = 0xffff };
89 
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97 			    struct kernel_lb_addr *);
98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
99 			     struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105 
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108 	struct logicalVolIntegrityDesc *lvid;
109 	unsigned int partnum;
110 	unsigned int offset;
111 
112 	if (!UDF_SB(sb)->s_lvid_bh)
113 		return NULL;
114 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115 	partnum = le32_to_cpu(lvid->numOfPartitions);
116 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
117 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
118 	     (2 * sizeof(uint32_t)) < partnum) {
119 		udf_err(sb, "Logical volume integrity descriptor corrupted "
120 			"(numOfPartitions = %u)!\n", partnum);
121 		return NULL;
122 	}
123 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
124 	offset = partnum * 2 * sizeof(uint32_t);
125 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
126 }
127 
128 /* UDF filesystem type */
129 static struct dentry *udf_mount(struct file_system_type *fs_type,
130 		      int flags, const char *dev_name, void *data)
131 {
132 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
133 }
134 
135 static struct file_system_type udf_fstype = {
136 	.owner		= THIS_MODULE,
137 	.name		= "udf",
138 	.mount		= udf_mount,
139 	.kill_sb	= kill_block_super,
140 	.fs_flags	= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("udf");
143 
144 static struct kmem_cache *udf_inode_cachep;
145 
146 static struct inode *udf_alloc_inode(struct super_block *sb)
147 {
148 	struct udf_inode_info *ei;
149 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
150 	if (!ei)
151 		return NULL;
152 
153 	ei->i_unique = 0;
154 	ei->i_lenExtents = 0;
155 	ei->i_next_alloc_block = 0;
156 	ei->i_next_alloc_goal = 0;
157 	ei->i_strat4096 = 0;
158 	init_rwsem(&ei->i_data_sem);
159 	ei->cached_extent.lstart = -1;
160 	spin_lock_init(&ei->i_extent_cache_lock);
161 
162 	return &ei->vfs_inode;
163 }
164 
165 static void udf_i_callback(struct rcu_head *head)
166 {
167 	struct inode *inode = container_of(head, struct inode, i_rcu);
168 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170 
171 static void udf_destroy_inode(struct inode *inode)
172 {
173 	call_rcu(&inode->i_rcu, udf_i_callback);
174 }
175 
176 static void init_once(void *foo)
177 {
178 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179 
180 	ei->i_ext.i_data = NULL;
181 	inode_init_once(&ei->vfs_inode);
182 }
183 
184 static int __init init_inodecache(void)
185 {
186 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
187 					     sizeof(struct udf_inode_info),
188 					     0, (SLAB_RECLAIM_ACCOUNT |
189 						 SLAB_MEM_SPREAD |
190 						 SLAB_ACCOUNT),
191 					     init_once);
192 	if (!udf_inode_cachep)
193 		return -ENOMEM;
194 	return 0;
195 }
196 
197 static void destroy_inodecache(void)
198 {
199 	/*
200 	 * Make sure all delayed rcu free inodes are flushed before we
201 	 * destroy cache.
202 	 */
203 	rcu_barrier();
204 	kmem_cache_destroy(udf_inode_cachep);
205 }
206 
207 /* Superblock operations */
208 static const struct super_operations udf_sb_ops = {
209 	.alloc_inode	= udf_alloc_inode,
210 	.destroy_inode	= udf_destroy_inode,
211 	.write_inode	= udf_write_inode,
212 	.evict_inode	= udf_evict_inode,
213 	.put_super	= udf_put_super,
214 	.sync_fs	= udf_sync_fs,
215 	.statfs		= udf_statfs,
216 	.remount_fs	= udf_remount_fs,
217 	.show_options	= udf_show_options,
218 };
219 
220 struct udf_options {
221 	unsigned char novrs;
222 	unsigned int blocksize;
223 	unsigned int session;
224 	unsigned int lastblock;
225 	unsigned int anchor;
226 	unsigned int volume;
227 	unsigned short partition;
228 	unsigned int fileset;
229 	unsigned int rootdir;
230 	unsigned int flags;
231 	umode_t umask;
232 	kgid_t gid;
233 	kuid_t uid;
234 	umode_t fmode;
235 	umode_t dmode;
236 	struct nls_table *nls_map;
237 };
238 
239 static int __init init_udf_fs(void)
240 {
241 	int err;
242 
243 	err = init_inodecache();
244 	if (err)
245 		goto out1;
246 	err = register_filesystem(&udf_fstype);
247 	if (err)
248 		goto out;
249 
250 	return 0;
251 
252 out:
253 	destroy_inodecache();
254 
255 out1:
256 	return err;
257 }
258 
259 static void __exit exit_udf_fs(void)
260 {
261 	unregister_filesystem(&udf_fstype);
262 	destroy_inodecache();
263 }
264 
265 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
266 {
267 	struct udf_sb_info *sbi = UDF_SB(sb);
268 
269 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
270 	if (!sbi->s_partmaps) {
271 		sbi->s_partitions = 0;
272 		return -ENOMEM;
273 	}
274 
275 	sbi->s_partitions = count;
276 	return 0;
277 }
278 
279 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
280 {
281 	int i;
282 	int nr_groups = bitmap->s_nr_groups;
283 
284 	for (i = 0; i < nr_groups; i++)
285 		if (bitmap->s_block_bitmap[i])
286 			brelse(bitmap->s_block_bitmap[i]);
287 
288 	kvfree(bitmap);
289 }
290 
291 static void udf_free_partition(struct udf_part_map *map)
292 {
293 	int i;
294 	struct udf_meta_data *mdata;
295 
296 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
297 		iput(map->s_uspace.s_table);
298 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
299 		iput(map->s_fspace.s_table);
300 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
301 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
302 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
303 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
304 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
305 		for (i = 0; i < 4; i++)
306 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
307 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
308 		mdata = &map->s_type_specific.s_metadata;
309 		iput(mdata->s_metadata_fe);
310 		mdata->s_metadata_fe = NULL;
311 
312 		iput(mdata->s_mirror_fe);
313 		mdata->s_mirror_fe = NULL;
314 
315 		iput(mdata->s_bitmap_fe);
316 		mdata->s_bitmap_fe = NULL;
317 	}
318 }
319 
320 static void udf_sb_free_partitions(struct super_block *sb)
321 {
322 	struct udf_sb_info *sbi = UDF_SB(sb);
323 	int i;
324 
325 	if (!sbi->s_partmaps)
326 		return;
327 	for (i = 0; i < sbi->s_partitions; i++)
328 		udf_free_partition(&sbi->s_partmaps[i]);
329 	kfree(sbi->s_partmaps);
330 	sbi->s_partmaps = NULL;
331 }
332 
333 static int udf_show_options(struct seq_file *seq, struct dentry *root)
334 {
335 	struct super_block *sb = root->d_sb;
336 	struct udf_sb_info *sbi = UDF_SB(sb);
337 
338 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
339 		seq_puts(seq, ",nostrict");
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
341 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
343 		seq_puts(seq, ",unhide");
344 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
345 		seq_puts(seq, ",undelete");
346 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
347 		seq_puts(seq, ",noadinicb");
348 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
349 		seq_puts(seq, ",shortad");
350 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
351 		seq_puts(seq, ",uid=forget");
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
353 		seq_puts(seq, ",uid=ignore");
354 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
355 		seq_puts(seq, ",gid=forget");
356 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
357 		seq_puts(seq, ",gid=ignore");
358 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
359 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
360 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
361 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
362 	if (sbi->s_umask != 0)
363 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
364 	if (sbi->s_fmode != UDF_INVALID_MODE)
365 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
366 	if (sbi->s_dmode != UDF_INVALID_MODE)
367 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
368 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
369 		seq_printf(seq, ",session=%u", sbi->s_session);
370 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
371 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
372 	if (sbi->s_anchor != 0)
373 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
374 	/*
375 	 * volume, partition, fileset and rootdir seem to be ignored
376 	 * currently
377 	 */
378 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
379 		seq_puts(seq, ",utf8");
380 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
381 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
382 
383 	return 0;
384 }
385 
386 /*
387  * udf_parse_options
388  *
389  * PURPOSE
390  *	Parse mount options.
391  *
392  * DESCRIPTION
393  *	The following mount options are supported:
394  *
395  *	gid=		Set the default group.
396  *	umask=		Set the default umask.
397  *	mode=		Set the default file permissions.
398  *	dmode=		Set the default directory permissions.
399  *	uid=		Set the default user.
400  *	bs=		Set the block size.
401  *	unhide		Show otherwise hidden files.
402  *	undelete	Show deleted files in lists.
403  *	adinicb		Embed data in the inode (default)
404  *	noadinicb	Don't embed data in the inode
405  *	shortad		Use short ad's
406  *	longad		Use long ad's (default)
407  *	nostrict	Unset strict conformance
408  *	iocharset=	Set the NLS character set
409  *
410  *	The remaining are for debugging and disaster recovery:
411  *
412  *	novrs		Skip volume sequence recognition
413  *
414  *	The following expect a offset from 0.
415  *
416  *	session=	Set the CDROM session (default= last session)
417  *	anchor=		Override standard anchor location. (default= 256)
418  *	volume=		Override the VolumeDesc location. (unused)
419  *	partition=	Override the PartitionDesc location. (unused)
420  *	lastblock=	Set the last block of the filesystem/
421  *
422  *	The following expect a offset from the partition root.
423  *
424  *	fileset=	Override the fileset block location. (unused)
425  *	rootdir=	Override the root directory location. (unused)
426  *		WARNING: overriding the rootdir to a non-directory may
427  *		yield highly unpredictable results.
428  *
429  * PRE-CONDITIONS
430  *	options		Pointer to mount options string.
431  *	uopts		Pointer to mount options variable.
432  *
433  * POST-CONDITIONS
434  *	<return>	1	Mount options parsed okay.
435  *	<return>	0	Error parsing mount options.
436  *
437  * HISTORY
438  *	July 1, 1997 - Andrew E. Mileski
439  *	Written, tested, and released.
440  */
441 
442 enum {
443 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
444 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
445 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
446 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
447 	Opt_rootdir, Opt_utf8, Opt_iocharset,
448 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
449 	Opt_fmode, Opt_dmode
450 };
451 
452 static const match_table_t tokens = {
453 	{Opt_novrs,	"novrs"},
454 	{Opt_nostrict,	"nostrict"},
455 	{Opt_bs,	"bs=%u"},
456 	{Opt_unhide,	"unhide"},
457 	{Opt_undelete,	"undelete"},
458 	{Opt_noadinicb,	"noadinicb"},
459 	{Opt_adinicb,	"adinicb"},
460 	{Opt_shortad,	"shortad"},
461 	{Opt_longad,	"longad"},
462 	{Opt_uforget,	"uid=forget"},
463 	{Opt_uignore,	"uid=ignore"},
464 	{Opt_gforget,	"gid=forget"},
465 	{Opt_gignore,	"gid=ignore"},
466 	{Opt_gid,	"gid=%u"},
467 	{Opt_uid,	"uid=%u"},
468 	{Opt_umask,	"umask=%o"},
469 	{Opt_session,	"session=%u"},
470 	{Opt_lastblock,	"lastblock=%u"},
471 	{Opt_anchor,	"anchor=%u"},
472 	{Opt_volume,	"volume=%u"},
473 	{Opt_partition,	"partition=%u"},
474 	{Opt_fileset,	"fileset=%u"},
475 	{Opt_rootdir,	"rootdir=%u"},
476 	{Opt_utf8,	"utf8"},
477 	{Opt_iocharset,	"iocharset=%s"},
478 	{Opt_fmode,     "mode=%o"},
479 	{Opt_dmode,     "dmode=%o"},
480 	{Opt_err,	NULL}
481 };
482 
483 static int udf_parse_options(char *options, struct udf_options *uopt,
484 			     bool remount)
485 {
486 	char *p;
487 	int option;
488 
489 	uopt->novrs = 0;
490 	uopt->partition = 0xFFFF;
491 	uopt->session = 0xFFFFFFFF;
492 	uopt->lastblock = 0;
493 	uopt->anchor = 0;
494 	uopt->volume = 0xFFFFFFFF;
495 	uopt->rootdir = 0xFFFFFFFF;
496 	uopt->fileset = 0xFFFFFFFF;
497 	uopt->nls_map = NULL;
498 
499 	if (!options)
500 		return 1;
501 
502 	while ((p = strsep(&options, ",")) != NULL) {
503 		substring_t args[MAX_OPT_ARGS];
504 		int token;
505 		unsigned n;
506 		if (!*p)
507 			continue;
508 
509 		token = match_token(p, tokens, args);
510 		switch (token) {
511 		case Opt_novrs:
512 			uopt->novrs = 1;
513 			break;
514 		case Opt_bs:
515 			if (match_int(&args[0], &option))
516 				return 0;
517 			n = option;
518 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
519 				return 0;
520 			uopt->blocksize = n;
521 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
522 			break;
523 		case Opt_unhide:
524 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
525 			break;
526 		case Opt_undelete:
527 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
528 			break;
529 		case Opt_noadinicb:
530 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
531 			break;
532 		case Opt_adinicb:
533 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
534 			break;
535 		case Opt_shortad:
536 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
537 			break;
538 		case Opt_longad:
539 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
540 			break;
541 		case Opt_gid:
542 			if (match_int(args, &option))
543 				return 0;
544 			uopt->gid = make_kgid(current_user_ns(), option);
545 			if (!gid_valid(uopt->gid))
546 				return 0;
547 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
548 			break;
549 		case Opt_uid:
550 			if (match_int(args, &option))
551 				return 0;
552 			uopt->uid = make_kuid(current_user_ns(), option);
553 			if (!uid_valid(uopt->uid))
554 				return 0;
555 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
556 			break;
557 		case Opt_umask:
558 			if (match_octal(args, &option))
559 				return 0;
560 			uopt->umask = option;
561 			break;
562 		case Opt_nostrict:
563 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
564 			break;
565 		case Opt_session:
566 			if (match_int(args, &option))
567 				return 0;
568 			uopt->session = option;
569 			if (!remount)
570 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
571 			break;
572 		case Opt_lastblock:
573 			if (match_int(args, &option))
574 				return 0;
575 			uopt->lastblock = option;
576 			if (!remount)
577 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
578 			break;
579 		case Opt_anchor:
580 			if (match_int(args, &option))
581 				return 0;
582 			uopt->anchor = option;
583 			break;
584 		case Opt_volume:
585 			if (match_int(args, &option))
586 				return 0;
587 			uopt->volume = option;
588 			break;
589 		case Opt_partition:
590 			if (match_int(args, &option))
591 				return 0;
592 			uopt->partition = option;
593 			break;
594 		case Opt_fileset:
595 			if (match_int(args, &option))
596 				return 0;
597 			uopt->fileset = option;
598 			break;
599 		case Opt_rootdir:
600 			if (match_int(args, &option))
601 				return 0;
602 			uopt->rootdir = option;
603 			break;
604 		case Opt_utf8:
605 			uopt->flags |= (1 << UDF_FLAG_UTF8);
606 			break;
607 #ifdef CONFIG_UDF_NLS
608 		case Opt_iocharset:
609 			uopt->nls_map = load_nls(args[0].from);
610 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
611 			break;
612 #endif
613 		case Opt_uignore:
614 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
615 			break;
616 		case Opt_uforget:
617 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
618 			break;
619 		case Opt_gignore:
620 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
621 			break;
622 		case Opt_gforget:
623 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
624 			break;
625 		case Opt_fmode:
626 			if (match_octal(args, &option))
627 				return 0;
628 			uopt->fmode = option & 0777;
629 			break;
630 		case Opt_dmode:
631 			if (match_octal(args, &option))
632 				return 0;
633 			uopt->dmode = option & 0777;
634 			break;
635 		default:
636 			pr_err("bad mount option \"%s\" or missing value\n", p);
637 			return 0;
638 		}
639 	}
640 	return 1;
641 }
642 
643 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
644 {
645 	struct udf_options uopt;
646 	struct udf_sb_info *sbi = UDF_SB(sb);
647 	int error = 0;
648 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
649 
650 	sync_filesystem(sb);
651 	if (lvidiu) {
652 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
653 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
654 			return -EACCES;
655 	}
656 
657 	uopt.flags = sbi->s_flags;
658 	uopt.uid   = sbi->s_uid;
659 	uopt.gid   = sbi->s_gid;
660 	uopt.umask = sbi->s_umask;
661 	uopt.fmode = sbi->s_fmode;
662 	uopt.dmode = sbi->s_dmode;
663 
664 	if (!udf_parse_options(options, &uopt, true))
665 		return -EINVAL;
666 
667 	write_lock(&sbi->s_cred_lock);
668 	sbi->s_flags = uopt.flags;
669 	sbi->s_uid   = uopt.uid;
670 	sbi->s_gid   = uopt.gid;
671 	sbi->s_umask = uopt.umask;
672 	sbi->s_fmode = uopt.fmode;
673 	sbi->s_dmode = uopt.dmode;
674 	write_unlock(&sbi->s_cred_lock);
675 
676 	if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb))
677 		goto out_unlock;
678 
679 	if (*flags & MS_RDONLY)
680 		udf_close_lvid(sb);
681 	else
682 		udf_open_lvid(sb);
683 
684 out_unlock:
685 	return error;
686 }
687 
688 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
689 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
690 static loff_t udf_check_vsd(struct super_block *sb)
691 {
692 	struct volStructDesc *vsd = NULL;
693 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
694 	int sectorsize;
695 	struct buffer_head *bh = NULL;
696 	int nsr02 = 0;
697 	int nsr03 = 0;
698 	struct udf_sb_info *sbi;
699 
700 	sbi = UDF_SB(sb);
701 	if (sb->s_blocksize < sizeof(struct volStructDesc))
702 		sectorsize = sizeof(struct volStructDesc);
703 	else
704 		sectorsize = sb->s_blocksize;
705 
706 	sector += (sbi->s_session << sb->s_blocksize_bits);
707 
708 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
709 		  (unsigned int)(sector >> sb->s_blocksize_bits),
710 		  sb->s_blocksize);
711 	/* Process the sequence (if applicable). The hard limit on the sector
712 	 * offset is arbitrary, hopefully large enough so that all valid UDF
713 	 * filesystems will be recognised. There is no mention of an upper
714 	 * bound to the size of the volume recognition area in the standard.
715 	 *  The limit will prevent the code to read all the sectors of a
716 	 * specially crafted image (like a bluray disc full of CD001 sectors),
717 	 * potentially causing minutes or even hours of uninterruptible I/O
718 	 * activity. This actually happened with uninitialised SSD partitions
719 	 * (all 0xFF) before the check for the limit and all valid IDs were
720 	 * added */
721 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
722 	     sector += sectorsize) {
723 		/* Read a block */
724 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
725 		if (!bh)
726 			break;
727 
728 		/* Look for ISO  descriptors */
729 		vsd = (struct volStructDesc *)(bh->b_data +
730 					      (sector & (sb->s_blocksize - 1)));
731 
732 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
733 				    VSD_STD_ID_LEN)) {
734 			switch (vsd->structType) {
735 			case 0:
736 				udf_debug("ISO9660 Boot Record found\n");
737 				break;
738 			case 1:
739 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
740 				break;
741 			case 2:
742 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
743 				break;
744 			case 3:
745 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
746 				break;
747 			case 255:
748 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
749 				break;
750 			default:
751 				udf_debug("ISO9660 VRS (%u) found\n",
752 					  vsd->structType);
753 				break;
754 			}
755 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
756 				    VSD_STD_ID_LEN))
757 			; /* nothing */
758 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
759 				    VSD_STD_ID_LEN)) {
760 			brelse(bh);
761 			break;
762 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
763 				    VSD_STD_ID_LEN))
764 			nsr02 = sector;
765 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
766 				    VSD_STD_ID_LEN))
767 			nsr03 = sector;
768 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
769 				    VSD_STD_ID_LEN))
770 			; /* nothing */
771 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
772 				    VSD_STD_ID_LEN))
773 			; /* nothing */
774 		else {
775 			/* invalid id : end of volume recognition area */
776 			brelse(bh);
777 			break;
778 		}
779 		brelse(bh);
780 	}
781 
782 	if (nsr03)
783 		return nsr03;
784 	else if (nsr02)
785 		return nsr02;
786 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
787 			VSD_FIRST_SECTOR_OFFSET)
788 		return -1;
789 	else
790 		return 0;
791 }
792 
793 static int udf_find_fileset(struct super_block *sb,
794 			    struct kernel_lb_addr *fileset,
795 			    struct kernel_lb_addr *root)
796 {
797 	struct buffer_head *bh = NULL;
798 	long lastblock;
799 	uint16_t ident;
800 	struct udf_sb_info *sbi;
801 
802 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
803 	    fileset->partitionReferenceNum != 0xFFFF) {
804 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
805 
806 		if (!bh) {
807 			return 1;
808 		} else if (ident != TAG_IDENT_FSD) {
809 			brelse(bh);
810 			return 1;
811 		}
812 
813 	}
814 
815 	sbi = UDF_SB(sb);
816 	if (!bh) {
817 		/* Search backwards through the partitions */
818 		struct kernel_lb_addr newfileset;
819 
820 /* --> cvg: FIXME - is it reasonable? */
821 		return 1;
822 
823 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
824 		     (newfileset.partitionReferenceNum != 0xFFFF &&
825 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
826 		      fileset->partitionReferenceNum == 0xFFFF);
827 		     newfileset.partitionReferenceNum--) {
828 			lastblock = sbi->s_partmaps
829 					[newfileset.partitionReferenceNum]
830 						.s_partition_len;
831 			newfileset.logicalBlockNum = 0;
832 
833 			do {
834 				bh = udf_read_ptagged(sb, &newfileset, 0,
835 						      &ident);
836 				if (!bh) {
837 					newfileset.logicalBlockNum++;
838 					continue;
839 				}
840 
841 				switch (ident) {
842 				case TAG_IDENT_SBD:
843 				{
844 					struct spaceBitmapDesc *sp;
845 					sp = (struct spaceBitmapDesc *)
846 								bh->b_data;
847 					newfileset.logicalBlockNum += 1 +
848 						((le32_to_cpu(sp->numOfBytes) +
849 						  sizeof(struct spaceBitmapDesc)
850 						  - 1) >> sb->s_blocksize_bits);
851 					brelse(bh);
852 					break;
853 				}
854 				case TAG_IDENT_FSD:
855 					*fileset = newfileset;
856 					break;
857 				default:
858 					newfileset.logicalBlockNum++;
859 					brelse(bh);
860 					bh = NULL;
861 					break;
862 				}
863 			} while (newfileset.logicalBlockNum < lastblock &&
864 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
865 				 fileset->partitionReferenceNum == 0xFFFF);
866 		}
867 	}
868 
869 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
870 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
871 		udf_debug("Fileset at block=%d, partition=%d\n",
872 			  fileset->logicalBlockNum,
873 			  fileset->partitionReferenceNum);
874 
875 		sbi->s_partition = fileset->partitionReferenceNum;
876 		udf_load_fileset(sb, bh, root);
877 		brelse(bh);
878 		return 0;
879 	}
880 	return 1;
881 }
882 
883 /*
884  * Load primary Volume Descriptor Sequence
885  *
886  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
887  * should be tried.
888  */
889 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
890 {
891 	struct primaryVolDesc *pvoldesc;
892 	uint8_t *outstr;
893 	struct buffer_head *bh;
894 	uint16_t ident;
895 	int ret = -ENOMEM;
896 
897 	outstr = kmalloc(128, GFP_NOFS);
898 	if (!outstr)
899 		return -ENOMEM;
900 
901 	bh = udf_read_tagged(sb, block, block, &ident);
902 	if (!bh) {
903 		ret = -EAGAIN;
904 		goto out2;
905 	}
906 
907 	if (ident != TAG_IDENT_PVD) {
908 		ret = -EIO;
909 		goto out_bh;
910 	}
911 
912 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
913 
914 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
915 			      pvoldesc->recordingDateAndTime)) {
916 #ifdef UDFFS_DEBUG
917 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
918 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
919 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
920 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
921 #endif
922 	}
923 
924 	ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
925 	if (ret < 0)
926 		goto out_bh;
927 
928 	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
929 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
930 
931 	ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
932 	if (ret < 0)
933 		goto out_bh;
934 
935 	outstr[ret] = 0;
936 	udf_debug("volSetIdent[] = '%s'\n", outstr);
937 
938 	ret = 0;
939 out_bh:
940 	brelse(bh);
941 out2:
942 	kfree(outstr);
943 	return ret;
944 }
945 
946 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
947 					u32 meta_file_loc, u32 partition_ref)
948 {
949 	struct kernel_lb_addr addr;
950 	struct inode *metadata_fe;
951 
952 	addr.logicalBlockNum = meta_file_loc;
953 	addr.partitionReferenceNum = partition_ref;
954 
955 	metadata_fe = udf_iget_special(sb, &addr);
956 
957 	if (IS_ERR(metadata_fe)) {
958 		udf_warn(sb, "metadata inode efe not found\n");
959 		return metadata_fe;
960 	}
961 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
962 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
963 		iput(metadata_fe);
964 		return ERR_PTR(-EIO);
965 	}
966 
967 	return metadata_fe;
968 }
969 
970 static int udf_load_metadata_files(struct super_block *sb, int partition,
971 				   int type1_index)
972 {
973 	struct udf_sb_info *sbi = UDF_SB(sb);
974 	struct udf_part_map *map;
975 	struct udf_meta_data *mdata;
976 	struct kernel_lb_addr addr;
977 	struct inode *fe;
978 
979 	map = &sbi->s_partmaps[partition];
980 	mdata = &map->s_type_specific.s_metadata;
981 	mdata->s_phys_partition_ref = type1_index;
982 
983 	/* metadata address */
984 	udf_debug("Metadata file location: block = %d part = %d\n",
985 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
986 
987 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
988 					 mdata->s_phys_partition_ref);
989 	if (IS_ERR(fe)) {
990 		/* mirror file entry */
991 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
992 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
993 
994 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
995 						 mdata->s_phys_partition_ref);
996 
997 		if (IS_ERR(fe)) {
998 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
999 			return PTR_ERR(fe);
1000 		}
1001 		mdata->s_mirror_fe = fe;
1002 	} else
1003 		mdata->s_metadata_fe = fe;
1004 
1005 
1006 	/*
1007 	 * bitmap file entry
1008 	 * Note:
1009 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1010 	*/
1011 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1012 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1013 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1014 
1015 		udf_debug("Bitmap file location: block = %d part = %d\n",
1016 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1017 
1018 		fe = udf_iget_special(sb, &addr);
1019 		if (IS_ERR(fe)) {
1020 			if (sb_rdonly(sb))
1021 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1022 			else {
1023 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1024 				return PTR_ERR(fe);
1025 			}
1026 		} else
1027 			mdata->s_bitmap_fe = fe;
1028 	}
1029 
1030 	udf_debug("udf_load_metadata_files Ok\n");
1031 	return 0;
1032 }
1033 
1034 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1035 			     struct kernel_lb_addr *root)
1036 {
1037 	struct fileSetDesc *fset;
1038 
1039 	fset = (struct fileSetDesc *)bh->b_data;
1040 
1041 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1042 
1043 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1044 
1045 	udf_debug("Rootdir at block=%d, partition=%d\n",
1046 		  root->logicalBlockNum, root->partitionReferenceNum);
1047 }
1048 
1049 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1050 {
1051 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1052 	return DIV_ROUND_UP(map->s_partition_len +
1053 			    (sizeof(struct spaceBitmapDesc) << 3),
1054 			    sb->s_blocksize * 8);
1055 }
1056 
1057 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1058 {
1059 	struct udf_bitmap *bitmap;
1060 	int nr_groups;
1061 	int size;
1062 
1063 	nr_groups = udf_compute_nr_groups(sb, index);
1064 	size = sizeof(struct udf_bitmap) +
1065 		(sizeof(struct buffer_head *) * nr_groups);
1066 
1067 	if (size <= PAGE_SIZE)
1068 		bitmap = kzalloc(size, GFP_KERNEL);
1069 	else
1070 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1071 
1072 	if (!bitmap)
1073 		return NULL;
1074 
1075 	bitmap->s_nr_groups = nr_groups;
1076 	return bitmap;
1077 }
1078 
1079 static int udf_fill_partdesc_info(struct super_block *sb,
1080 		struct partitionDesc *p, int p_index)
1081 {
1082 	struct udf_part_map *map;
1083 	struct udf_sb_info *sbi = UDF_SB(sb);
1084 	struct partitionHeaderDesc *phd;
1085 
1086 	map = &sbi->s_partmaps[p_index];
1087 
1088 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1089 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1090 
1091 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1092 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1093 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1094 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1095 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1096 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1097 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1098 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1099 
1100 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1101 		  p_index, map->s_partition_type,
1102 		  map->s_partition_root, map->s_partition_len);
1103 
1104 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1105 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1106 		return 0;
1107 
1108 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109 	if (phd->unallocSpaceTable.extLength) {
1110 		struct kernel_lb_addr loc = {
1111 			.logicalBlockNum = le32_to_cpu(
1112 				phd->unallocSpaceTable.extPosition),
1113 			.partitionReferenceNum = p_index,
1114 		};
1115 		struct inode *inode;
1116 
1117 		inode = udf_iget_special(sb, &loc);
1118 		if (IS_ERR(inode)) {
1119 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120 				  p_index);
1121 			return PTR_ERR(inode);
1122 		}
1123 		map->s_uspace.s_table = inode;
1124 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1126 			  p_index, map->s_uspace.s_table->i_ino);
1127 	}
1128 
1129 	if (phd->unallocSpaceBitmap.extLength) {
1130 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131 		if (!bitmap)
1132 			return -ENOMEM;
1133 		map->s_uspace.s_bitmap = bitmap;
1134 		bitmap->s_extPosition = le32_to_cpu(
1135 				phd->unallocSpaceBitmap.extPosition);
1136 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1138 			  p_index, bitmap->s_extPosition);
1139 	}
1140 
1141 	if (phd->partitionIntegrityTable.extLength)
1142 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1143 
1144 	if (phd->freedSpaceTable.extLength) {
1145 		struct kernel_lb_addr loc = {
1146 			.logicalBlockNum = le32_to_cpu(
1147 				phd->freedSpaceTable.extPosition),
1148 			.partitionReferenceNum = p_index,
1149 		};
1150 		struct inode *inode;
1151 
1152 		inode = udf_iget_special(sb, &loc);
1153 		if (IS_ERR(inode)) {
1154 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1155 				  p_index);
1156 			return PTR_ERR(inode);
1157 		}
1158 		map->s_fspace.s_table = inode;
1159 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1160 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1161 			  p_index, map->s_fspace.s_table->i_ino);
1162 	}
1163 
1164 	if (phd->freedSpaceBitmap.extLength) {
1165 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1166 		if (!bitmap)
1167 			return -ENOMEM;
1168 		map->s_fspace.s_bitmap = bitmap;
1169 		bitmap->s_extPosition = le32_to_cpu(
1170 				phd->freedSpaceBitmap.extPosition);
1171 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1172 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1173 			  p_index, bitmap->s_extPosition);
1174 	}
1175 	return 0;
1176 }
1177 
1178 static void udf_find_vat_block(struct super_block *sb, int p_index,
1179 			       int type1_index, sector_t start_block)
1180 {
1181 	struct udf_sb_info *sbi = UDF_SB(sb);
1182 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1183 	sector_t vat_block;
1184 	struct kernel_lb_addr ino;
1185 	struct inode *inode;
1186 
1187 	/*
1188 	 * VAT file entry is in the last recorded block. Some broken disks have
1189 	 * it a few blocks before so try a bit harder...
1190 	 */
1191 	ino.partitionReferenceNum = type1_index;
1192 	for (vat_block = start_block;
1193 	     vat_block >= map->s_partition_root &&
1194 	     vat_block >= start_block - 3; vat_block--) {
1195 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1196 		inode = udf_iget_special(sb, &ino);
1197 		if (!IS_ERR(inode)) {
1198 			sbi->s_vat_inode = inode;
1199 			break;
1200 		}
1201 	}
1202 }
1203 
1204 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1205 {
1206 	struct udf_sb_info *sbi = UDF_SB(sb);
1207 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1208 	struct buffer_head *bh = NULL;
1209 	struct udf_inode_info *vati;
1210 	uint32_t pos;
1211 	struct virtualAllocationTable20 *vat20;
1212 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1213 			  sb->s_blocksize_bits;
1214 
1215 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1216 	if (!sbi->s_vat_inode &&
1217 	    sbi->s_last_block != blocks - 1) {
1218 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1219 			  (unsigned long)sbi->s_last_block,
1220 			  (unsigned long)blocks - 1);
1221 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1222 	}
1223 	if (!sbi->s_vat_inode)
1224 		return -EIO;
1225 
1226 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1227 		map->s_type_specific.s_virtual.s_start_offset = 0;
1228 		map->s_type_specific.s_virtual.s_num_entries =
1229 			(sbi->s_vat_inode->i_size - 36) >> 2;
1230 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1231 		vati = UDF_I(sbi->s_vat_inode);
1232 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1233 			pos = udf_block_map(sbi->s_vat_inode, 0);
1234 			bh = sb_bread(sb, pos);
1235 			if (!bh)
1236 				return -EIO;
1237 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1238 		} else {
1239 			vat20 = (struct virtualAllocationTable20 *)
1240 							vati->i_ext.i_data;
1241 		}
1242 
1243 		map->s_type_specific.s_virtual.s_start_offset =
1244 			le16_to_cpu(vat20->lengthHeader);
1245 		map->s_type_specific.s_virtual.s_num_entries =
1246 			(sbi->s_vat_inode->i_size -
1247 				map->s_type_specific.s_virtual.
1248 					s_start_offset) >> 2;
1249 		brelse(bh);
1250 	}
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Load partition descriptor block
1256  *
1257  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1258  * sequence.
1259  */
1260 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1261 {
1262 	struct buffer_head *bh;
1263 	struct partitionDesc *p;
1264 	struct udf_part_map *map;
1265 	struct udf_sb_info *sbi = UDF_SB(sb);
1266 	int i, type1_idx;
1267 	uint16_t partitionNumber;
1268 	uint16_t ident;
1269 	int ret;
1270 
1271 	bh = udf_read_tagged(sb, block, block, &ident);
1272 	if (!bh)
1273 		return -EAGAIN;
1274 	if (ident != TAG_IDENT_PD) {
1275 		ret = 0;
1276 		goto out_bh;
1277 	}
1278 
1279 	p = (struct partitionDesc *)bh->b_data;
1280 	partitionNumber = le16_to_cpu(p->partitionNumber);
1281 
1282 	/* First scan for TYPE1 and SPARABLE partitions */
1283 	for (i = 0; i < sbi->s_partitions; i++) {
1284 		map = &sbi->s_partmaps[i];
1285 		udf_debug("Searching map: (%d == %d)\n",
1286 			  map->s_partition_num, partitionNumber);
1287 		if (map->s_partition_num == partitionNumber &&
1288 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1289 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1290 			break;
1291 	}
1292 
1293 	if (i >= sbi->s_partitions) {
1294 		udf_debug("Partition (%d) not found in partition map\n",
1295 			  partitionNumber);
1296 		ret = 0;
1297 		goto out_bh;
1298 	}
1299 
1300 	ret = udf_fill_partdesc_info(sb, p, i);
1301 	if (ret < 0)
1302 		goto out_bh;
1303 
1304 	/*
1305 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1306 	 * PHYSICAL partitions are already set up
1307 	 */
1308 	type1_idx = i;
1309 #ifdef UDFFS_DEBUG
1310 	map = NULL; /* supress 'maybe used uninitialized' warning */
1311 #endif
1312 	for (i = 0; i < sbi->s_partitions; i++) {
1313 		map = &sbi->s_partmaps[i];
1314 
1315 		if (map->s_partition_num == partitionNumber &&
1316 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1317 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1318 		     map->s_partition_type == UDF_METADATA_MAP25))
1319 			break;
1320 	}
1321 
1322 	if (i >= sbi->s_partitions) {
1323 		ret = 0;
1324 		goto out_bh;
1325 	}
1326 
1327 	ret = udf_fill_partdesc_info(sb, p, i);
1328 	if (ret < 0)
1329 		goto out_bh;
1330 
1331 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1332 		ret = udf_load_metadata_files(sb, i, type1_idx);
1333 		if (ret < 0) {
1334 			udf_err(sb, "error loading MetaData partition map %d\n",
1335 				i);
1336 			goto out_bh;
1337 		}
1338 	} else {
1339 		/*
1340 		 * If we have a partition with virtual map, we don't handle
1341 		 * writing to it (we overwrite blocks instead of relocating
1342 		 * them).
1343 		 */
1344 		if (!sb_rdonly(sb)) {
1345 			ret = -EACCES;
1346 			goto out_bh;
1347 		}
1348 		ret = udf_load_vat(sb, i, type1_idx);
1349 		if (ret < 0)
1350 			goto out_bh;
1351 	}
1352 	ret = 0;
1353 out_bh:
1354 	/* In case loading failed, we handle cleanup in udf_fill_super */
1355 	brelse(bh);
1356 	return ret;
1357 }
1358 
1359 static int udf_load_sparable_map(struct super_block *sb,
1360 				 struct udf_part_map *map,
1361 				 struct sparablePartitionMap *spm)
1362 {
1363 	uint32_t loc;
1364 	uint16_t ident;
1365 	struct sparingTable *st;
1366 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1367 	int i;
1368 	struct buffer_head *bh;
1369 
1370 	map->s_partition_type = UDF_SPARABLE_MAP15;
1371 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1372 	if (!is_power_of_2(sdata->s_packet_len)) {
1373 		udf_err(sb, "error loading logical volume descriptor: "
1374 			"Invalid packet length %u\n",
1375 			(unsigned)sdata->s_packet_len);
1376 		return -EIO;
1377 	}
1378 	if (spm->numSparingTables > 4) {
1379 		udf_err(sb, "error loading logical volume descriptor: "
1380 			"Too many sparing tables (%d)\n",
1381 			(int)spm->numSparingTables);
1382 		return -EIO;
1383 	}
1384 
1385 	for (i = 0; i < spm->numSparingTables; i++) {
1386 		loc = le32_to_cpu(spm->locSparingTable[i]);
1387 		bh = udf_read_tagged(sb, loc, loc, &ident);
1388 		if (!bh)
1389 			continue;
1390 
1391 		st = (struct sparingTable *)bh->b_data;
1392 		if (ident != 0 ||
1393 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1394 			    strlen(UDF_ID_SPARING)) ||
1395 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1396 							sb->s_blocksize) {
1397 			brelse(bh);
1398 			continue;
1399 		}
1400 
1401 		sdata->s_spar_map[i] = bh;
1402 	}
1403 	map->s_partition_func = udf_get_pblock_spar15;
1404 	return 0;
1405 }
1406 
1407 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1408 			       struct kernel_lb_addr *fileset)
1409 {
1410 	struct logicalVolDesc *lvd;
1411 	int i, offset;
1412 	uint8_t type;
1413 	struct udf_sb_info *sbi = UDF_SB(sb);
1414 	struct genericPartitionMap *gpm;
1415 	uint16_t ident;
1416 	struct buffer_head *bh;
1417 	unsigned int table_len;
1418 	int ret;
1419 
1420 	bh = udf_read_tagged(sb, block, block, &ident);
1421 	if (!bh)
1422 		return -EAGAIN;
1423 	BUG_ON(ident != TAG_IDENT_LVD);
1424 	lvd = (struct logicalVolDesc *)bh->b_data;
1425 	table_len = le32_to_cpu(lvd->mapTableLength);
1426 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1427 		udf_err(sb, "error loading logical volume descriptor: "
1428 			"Partition table too long (%u > %lu)\n", table_len,
1429 			sb->s_blocksize - sizeof(*lvd));
1430 		ret = -EIO;
1431 		goto out_bh;
1432 	}
1433 
1434 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1435 	if (ret)
1436 		goto out_bh;
1437 
1438 	for (i = 0, offset = 0;
1439 	     i < sbi->s_partitions && offset < table_len;
1440 	     i++, offset += gpm->partitionMapLength) {
1441 		struct udf_part_map *map = &sbi->s_partmaps[i];
1442 		gpm = (struct genericPartitionMap *)
1443 				&(lvd->partitionMaps[offset]);
1444 		type = gpm->partitionMapType;
1445 		if (type == 1) {
1446 			struct genericPartitionMap1 *gpm1 =
1447 				(struct genericPartitionMap1 *)gpm;
1448 			map->s_partition_type = UDF_TYPE1_MAP15;
1449 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1450 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1451 			map->s_partition_func = NULL;
1452 		} else if (type == 2) {
1453 			struct udfPartitionMap2 *upm2 =
1454 						(struct udfPartitionMap2 *)gpm;
1455 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1456 						strlen(UDF_ID_VIRTUAL))) {
1457 				u16 suf =
1458 					le16_to_cpu(((__le16 *)upm2->partIdent.
1459 							identSuffix)[0]);
1460 				if (suf < 0x0200) {
1461 					map->s_partition_type =
1462 							UDF_VIRTUAL_MAP15;
1463 					map->s_partition_func =
1464 							udf_get_pblock_virt15;
1465 				} else {
1466 					map->s_partition_type =
1467 							UDF_VIRTUAL_MAP20;
1468 					map->s_partition_func =
1469 							udf_get_pblock_virt20;
1470 				}
1471 			} else if (!strncmp(upm2->partIdent.ident,
1472 						UDF_ID_SPARABLE,
1473 						strlen(UDF_ID_SPARABLE))) {
1474 				ret = udf_load_sparable_map(sb, map,
1475 					(struct sparablePartitionMap *)gpm);
1476 				if (ret < 0)
1477 					goto out_bh;
1478 			} else if (!strncmp(upm2->partIdent.ident,
1479 						UDF_ID_METADATA,
1480 						strlen(UDF_ID_METADATA))) {
1481 				struct udf_meta_data *mdata =
1482 					&map->s_type_specific.s_metadata;
1483 				struct metadataPartitionMap *mdm =
1484 						(struct metadataPartitionMap *)
1485 						&(lvd->partitionMaps[offset]);
1486 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1487 					  i, type, UDF_ID_METADATA);
1488 
1489 				map->s_partition_type = UDF_METADATA_MAP25;
1490 				map->s_partition_func = udf_get_pblock_meta25;
1491 
1492 				mdata->s_meta_file_loc   =
1493 					le32_to_cpu(mdm->metadataFileLoc);
1494 				mdata->s_mirror_file_loc =
1495 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1496 				mdata->s_bitmap_file_loc =
1497 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1498 				mdata->s_alloc_unit_size =
1499 					le32_to_cpu(mdm->allocUnitSize);
1500 				mdata->s_align_unit_size =
1501 					le16_to_cpu(mdm->alignUnitSize);
1502 				if (mdm->flags & 0x01)
1503 					mdata->s_flags |= MF_DUPLICATE_MD;
1504 
1505 				udf_debug("Metadata Ident suffix=0x%x\n",
1506 					  le16_to_cpu(*(__le16 *)
1507 						      mdm->partIdent.identSuffix));
1508 				udf_debug("Metadata part num=%d\n",
1509 					  le16_to_cpu(mdm->partitionNum));
1510 				udf_debug("Metadata part alloc unit size=%d\n",
1511 					  le32_to_cpu(mdm->allocUnitSize));
1512 				udf_debug("Metadata file loc=%d\n",
1513 					  le32_to_cpu(mdm->metadataFileLoc));
1514 				udf_debug("Mirror file loc=%d\n",
1515 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1516 				udf_debug("Bitmap file loc=%d\n",
1517 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1518 				udf_debug("Flags: %d %d\n",
1519 					  mdata->s_flags, mdm->flags);
1520 			} else {
1521 				udf_debug("Unknown ident: %s\n",
1522 					  upm2->partIdent.ident);
1523 				continue;
1524 			}
1525 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1526 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1527 		}
1528 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1529 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1530 	}
1531 
1532 	if (fileset) {
1533 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1534 
1535 		*fileset = lelb_to_cpu(la->extLocation);
1536 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1537 			  fileset->logicalBlockNum,
1538 			  fileset->partitionReferenceNum);
1539 	}
1540 	if (lvd->integritySeqExt.extLength)
1541 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1542 	ret = 0;
1543 out_bh:
1544 	brelse(bh);
1545 	return ret;
1546 }
1547 
1548 /*
1549  * Find the prevailing Logical Volume Integrity Descriptor.
1550  */
1551 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1552 {
1553 	struct buffer_head *bh, *final_bh;
1554 	uint16_t ident;
1555 	struct udf_sb_info *sbi = UDF_SB(sb);
1556 	struct logicalVolIntegrityDesc *lvid;
1557 	int indirections = 0;
1558 
1559 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1560 		final_bh = NULL;
1561 		while (loc.extLength > 0 &&
1562 			(bh = udf_read_tagged(sb, loc.extLocation,
1563 					loc.extLocation, &ident))) {
1564 			if (ident != TAG_IDENT_LVID) {
1565 				brelse(bh);
1566 				break;
1567 			}
1568 
1569 			brelse(final_bh);
1570 			final_bh = bh;
1571 
1572 			loc.extLength -= sb->s_blocksize;
1573 			loc.extLocation++;
1574 		}
1575 
1576 		if (!final_bh)
1577 			return;
1578 
1579 		brelse(sbi->s_lvid_bh);
1580 		sbi->s_lvid_bh = final_bh;
1581 
1582 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1583 		if (lvid->nextIntegrityExt.extLength == 0)
1584 			return;
1585 
1586 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1587 	}
1588 
1589 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1590 		UDF_MAX_LVID_NESTING);
1591 	brelse(sbi->s_lvid_bh);
1592 	sbi->s_lvid_bh = NULL;
1593 }
1594 
1595 
1596 /*
1597  * Process a main/reserve volume descriptor sequence.
1598  *   @block		First block of first extent of the sequence.
1599  *   @lastblock		Lastblock of first extent of the sequence.
1600  *   @fileset		There we store extent containing root fileset
1601  *
1602  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1603  * sequence
1604  */
1605 static noinline int udf_process_sequence(
1606 		struct super_block *sb,
1607 		sector_t block, sector_t lastblock,
1608 		struct kernel_lb_addr *fileset)
1609 {
1610 	struct buffer_head *bh = NULL;
1611 	struct udf_vds_record vds[VDS_POS_LENGTH];
1612 	struct udf_vds_record *curr;
1613 	struct generic_desc *gd;
1614 	struct volDescPtr *vdp;
1615 	bool done = false;
1616 	uint32_t vdsn;
1617 	uint16_t ident;
1618 	long next_s = 0, next_e = 0;
1619 	int ret;
1620 	unsigned int indirections = 0;
1621 
1622 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1623 
1624 	/*
1625 	 * Read the main descriptor sequence and find which descriptors
1626 	 * are in it.
1627 	 */
1628 	for (; (!done && block <= lastblock); block++) {
1629 
1630 		bh = udf_read_tagged(sb, block, block, &ident);
1631 		if (!bh) {
1632 			udf_err(sb,
1633 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1634 				(unsigned long long)block);
1635 			return -EAGAIN;
1636 		}
1637 
1638 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1639 		gd = (struct generic_desc *)bh->b_data;
1640 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1641 		switch (ident) {
1642 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1643 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1644 			if (vdsn >= curr->volDescSeqNum) {
1645 				curr->volDescSeqNum = vdsn;
1646 				curr->block = block;
1647 			}
1648 			break;
1649 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1650 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1651 			if (vdsn >= curr->volDescSeqNum) {
1652 				curr->volDescSeqNum = vdsn;
1653 				curr->block = block;
1654 
1655 				vdp = (struct volDescPtr *)bh->b_data;
1656 				next_s = le32_to_cpu(
1657 					vdp->nextVolDescSeqExt.extLocation);
1658 				next_e = le32_to_cpu(
1659 					vdp->nextVolDescSeqExt.extLength);
1660 				next_e = next_e >> sb->s_blocksize_bits;
1661 				next_e += next_s;
1662 			}
1663 			break;
1664 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1665 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1666 			if (vdsn >= curr->volDescSeqNum) {
1667 				curr->volDescSeqNum = vdsn;
1668 				curr->block = block;
1669 			}
1670 			break;
1671 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1672 			curr = &vds[VDS_POS_PARTITION_DESC];
1673 			if (!curr->block)
1674 				curr->block = block;
1675 			break;
1676 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1677 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1678 			if (vdsn >= curr->volDescSeqNum) {
1679 				curr->volDescSeqNum = vdsn;
1680 				curr->block = block;
1681 			}
1682 			break;
1683 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1684 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1685 			if (vdsn >= curr->volDescSeqNum) {
1686 				curr->volDescSeqNum = vdsn;
1687 				curr->block = block;
1688 			}
1689 			break;
1690 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1691 			if (++indirections > UDF_MAX_TD_NESTING) {
1692 				udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1693 				brelse(bh);
1694 				return -EIO;
1695 			}
1696 
1697 			vds[VDS_POS_TERMINATING_DESC].block = block;
1698 			if (next_e) {
1699 				block = next_s;
1700 				lastblock = next_e;
1701 				next_s = next_e = 0;
1702 			} else
1703 				done = true;
1704 			break;
1705 		}
1706 		brelse(bh);
1707 	}
1708 	/*
1709 	 * Now read interesting descriptors again and process them
1710 	 * in a suitable order
1711 	 */
1712 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1713 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1714 		return -EAGAIN;
1715 	}
1716 	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1717 	if (ret < 0)
1718 		return ret;
1719 
1720 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1721 		ret = udf_load_logicalvol(sb,
1722 					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1723 					  fileset);
1724 		if (ret < 0)
1725 			return ret;
1726 	}
1727 
1728 	if (vds[VDS_POS_PARTITION_DESC].block) {
1729 		/*
1730 		 * We rescan the whole descriptor sequence to find
1731 		 * partition descriptor blocks and process them.
1732 		 */
1733 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1734 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1735 		     block++) {
1736 			ret = udf_load_partdesc(sb, block);
1737 			if (ret < 0)
1738 				return ret;
1739 		}
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Load Volume Descriptor Sequence described by anchor in bh
1747  *
1748  * Returns <0 on error, 0 on success
1749  */
1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1751 			     struct kernel_lb_addr *fileset)
1752 {
1753 	struct anchorVolDescPtr *anchor;
1754 	sector_t main_s, main_e, reserve_s, reserve_e;
1755 	int ret;
1756 
1757 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1758 
1759 	/* Locate the main sequence */
1760 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1761 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1762 	main_e = main_e >> sb->s_blocksize_bits;
1763 	main_e += main_s;
1764 
1765 	/* Locate the reserve sequence */
1766 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1767 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1768 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1769 	reserve_e += reserve_s;
1770 
1771 	/* Process the main & reserve sequences */
1772 	/* responsible for finding the PartitionDesc(s) */
1773 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1774 	if (ret != -EAGAIN)
1775 		return ret;
1776 	udf_sb_free_partitions(sb);
1777 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1778 	if (ret < 0) {
1779 		udf_sb_free_partitions(sb);
1780 		/* No sequence was OK, return -EIO */
1781 		if (ret == -EAGAIN)
1782 			ret = -EIO;
1783 	}
1784 	return ret;
1785 }
1786 
1787 /*
1788  * Check whether there is an anchor block in the given block and
1789  * load Volume Descriptor Sequence if so.
1790  *
1791  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1792  * block
1793  */
1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1795 				  struct kernel_lb_addr *fileset)
1796 {
1797 	struct buffer_head *bh;
1798 	uint16_t ident;
1799 	int ret;
1800 
1801 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1802 	    udf_fixed_to_variable(block) >=
1803 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1804 		return -EAGAIN;
1805 
1806 	bh = udf_read_tagged(sb, block, block, &ident);
1807 	if (!bh)
1808 		return -EAGAIN;
1809 	if (ident != TAG_IDENT_AVDP) {
1810 		brelse(bh);
1811 		return -EAGAIN;
1812 	}
1813 	ret = udf_load_sequence(sb, bh, fileset);
1814 	brelse(bh);
1815 	return ret;
1816 }
1817 
1818 /*
1819  * Search for an anchor volume descriptor pointer.
1820  *
1821  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1822  * of anchors.
1823  */
1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1825 			    struct kernel_lb_addr *fileset)
1826 {
1827 	sector_t last[6];
1828 	int i;
1829 	struct udf_sb_info *sbi = UDF_SB(sb);
1830 	int last_count = 0;
1831 	int ret;
1832 
1833 	/* First try user provided anchor */
1834 	if (sbi->s_anchor) {
1835 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1836 		if (ret != -EAGAIN)
1837 			return ret;
1838 	}
1839 	/*
1840 	 * according to spec, anchor is in either:
1841 	 *     block 256
1842 	 *     lastblock-256
1843 	 *     lastblock
1844 	 *  however, if the disc isn't closed, it could be 512.
1845 	 */
1846 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1847 	if (ret != -EAGAIN)
1848 		return ret;
1849 	/*
1850 	 * The trouble is which block is the last one. Drives often misreport
1851 	 * this so we try various possibilities.
1852 	 */
1853 	last[last_count++] = *lastblock;
1854 	if (*lastblock >= 1)
1855 		last[last_count++] = *lastblock - 1;
1856 	last[last_count++] = *lastblock + 1;
1857 	if (*lastblock >= 2)
1858 		last[last_count++] = *lastblock - 2;
1859 	if (*lastblock >= 150)
1860 		last[last_count++] = *lastblock - 150;
1861 	if (*lastblock >= 152)
1862 		last[last_count++] = *lastblock - 152;
1863 
1864 	for (i = 0; i < last_count; i++) {
1865 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1866 				sb->s_blocksize_bits)
1867 			continue;
1868 		ret = udf_check_anchor_block(sb, last[i], fileset);
1869 		if (ret != -EAGAIN) {
1870 			if (!ret)
1871 				*lastblock = last[i];
1872 			return ret;
1873 		}
1874 		if (last[i] < 256)
1875 			continue;
1876 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1877 		if (ret != -EAGAIN) {
1878 			if (!ret)
1879 				*lastblock = last[i];
1880 			return ret;
1881 		}
1882 	}
1883 
1884 	/* Finally try block 512 in case media is open */
1885 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1886 }
1887 
1888 /*
1889  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1890  * area specified by it. The function expects sbi->s_lastblock to be the last
1891  * block on the media.
1892  *
1893  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1894  * was not found.
1895  */
1896 static int udf_find_anchor(struct super_block *sb,
1897 			   struct kernel_lb_addr *fileset)
1898 {
1899 	struct udf_sb_info *sbi = UDF_SB(sb);
1900 	sector_t lastblock = sbi->s_last_block;
1901 	int ret;
1902 
1903 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1904 	if (ret != -EAGAIN)
1905 		goto out;
1906 
1907 	/* No anchor found? Try VARCONV conversion of block numbers */
1908 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1909 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1910 	/* Firstly, we try to not convert number of the last block */
1911 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1912 	if (ret != -EAGAIN)
1913 		goto out;
1914 
1915 	lastblock = sbi->s_last_block;
1916 	/* Secondly, we try with converted number of the last block */
1917 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 	if (ret < 0) {
1919 		/* VARCONV didn't help. Clear it. */
1920 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1921 	}
1922 out:
1923 	if (ret == 0)
1924 		sbi->s_last_block = lastblock;
1925 	return ret;
1926 }
1927 
1928 /*
1929  * Check Volume Structure Descriptor, find Anchor block and load Volume
1930  * Descriptor Sequence.
1931  *
1932  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1933  * block was not found.
1934  */
1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1936 			int silent, struct kernel_lb_addr *fileset)
1937 {
1938 	struct udf_sb_info *sbi = UDF_SB(sb);
1939 	loff_t nsr_off;
1940 	int ret;
1941 
1942 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1943 		if (!silent)
1944 			udf_warn(sb, "Bad block size\n");
1945 		return -EINVAL;
1946 	}
1947 	sbi->s_last_block = uopt->lastblock;
1948 	if (!uopt->novrs) {
1949 		/* Check that it is NSR02 compliant */
1950 		nsr_off = udf_check_vsd(sb);
1951 		if (!nsr_off) {
1952 			if (!silent)
1953 				udf_warn(sb, "No VRS found\n");
1954 			return -EINVAL;
1955 		}
1956 		if (nsr_off == -1)
1957 			udf_debug("Failed to read sector at offset %d. "
1958 				  "Assuming open disc. Skipping validity "
1959 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1960 		if (!sbi->s_last_block)
1961 			sbi->s_last_block = udf_get_last_block(sb);
1962 	} else {
1963 		udf_debug("Validity check skipped because of novrs option\n");
1964 	}
1965 
1966 	/* Look for anchor block and load Volume Descriptor Sequence */
1967 	sbi->s_anchor = uopt->anchor;
1968 	ret = udf_find_anchor(sb, fileset);
1969 	if (ret < 0) {
1970 		if (!silent && ret == -EAGAIN)
1971 			udf_warn(sb, "No anchor found\n");
1972 		return ret;
1973 	}
1974 	return 0;
1975 }
1976 
1977 static void udf_open_lvid(struct super_block *sb)
1978 {
1979 	struct udf_sb_info *sbi = UDF_SB(sb);
1980 	struct buffer_head *bh = sbi->s_lvid_bh;
1981 	struct logicalVolIntegrityDesc *lvid;
1982 	struct logicalVolIntegrityDescImpUse *lvidiu;
1983 	struct timespec ts;
1984 
1985 	if (!bh)
1986 		return;
1987 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1988 	lvidiu = udf_sb_lvidiu(sb);
1989 	if (!lvidiu)
1990 		return;
1991 
1992 	mutex_lock(&sbi->s_alloc_mutex);
1993 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1994 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1995 	ktime_get_real_ts(&ts);
1996 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1997 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1998 
1999 	lvid->descTag.descCRC = cpu_to_le16(
2000 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2001 			le16_to_cpu(lvid->descTag.descCRCLength)));
2002 
2003 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2004 	mark_buffer_dirty(bh);
2005 	sbi->s_lvid_dirty = 0;
2006 	mutex_unlock(&sbi->s_alloc_mutex);
2007 	/* Make opening of filesystem visible on the media immediately */
2008 	sync_dirty_buffer(bh);
2009 }
2010 
2011 static void udf_close_lvid(struct super_block *sb)
2012 {
2013 	struct udf_sb_info *sbi = UDF_SB(sb);
2014 	struct buffer_head *bh = sbi->s_lvid_bh;
2015 	struct logicalVolIntegrityDesc *lvid;
2016 	struct logicalVolIntegrityDescImpUse *lvidiu;
2017 	struct timespec ts;
2018 
2019 	if (!bh)
2020 		return;
2021 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2022 	lvidiu = udf_sb_lvidiu(sb);
2023 	if (!lvidiu)
2024 		return;
2025 
2026 	mutex_lock(&sbi->s_alloc_mutex);
2027 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2028 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2029 	ktime_get_real_ts(&ts);
2030 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2031 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2032 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2033 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2034 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2035 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2036 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2037 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2038 
2039 	lvid->descTag.descCRC = cpu_to_le16(
2040 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2041 				le16_to_cpu(lvid->descTag.descCRCLength)));
2042 
2043 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2044 	/*
2045 	 * We set buffer uptodate unconditionally here to avoid spurious
2046 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2047 	 * the buffer as !uptodate
2048 	 */
2049 	set_buffer_uptodate(bh);
2050 	mark_buffer_dirty(bh);
2051 	sbi->s_lvid_dirty = 0;
2052 	mutex_unlock(&sbi->s_alloc_mutex);
2053 	/* Make closing of filesystem visible on the media immediately */
2054 	sync_dirty_buffer(bh);
2055 }
2056 
2057 u64 lvid_get_unique_id(struct super_block *sb)
2058 {
2059 	struct buffer_head *bh;
2060 	struct udf_sb_info *sbi = UDF_SB(sb);
2061 	struct logicalVolIntegrityDesc *lvid;
2062 	struct logicalVolHeaderDesc *lvhd;
2063 	u64 uniqueID;
2064 	u64 ret;
2065 
2066 	bh = sbi->s_lvid_bh;
2067 	if (!bh)
2068 		return 0;
2069 
2070 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2071 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2072 
2073 	mutex_lock(&sbi->s_alloc_mutex);
2074 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2075 	if (!(++uniqueID & 0xFFFFFFFF))
2076 		uniqueID += 16;
2077 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2078 	mutex_unlock(&sbi->s_alloc_mutex);
2079 	mark_buffer_dirty(bh);
2080 
2081 	return ret;
2082 }
2083 
2084 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2085 {
2086 	int ret = -EINVAL;
2087 	struct inode *inode = NULL;
2088 	struct udf_options uopt;
2089 	struct kernel_lb_addr rootdir, fileset;
2090 	struct udf_sb_info *sbi;
2091 	bool lvid_open = false;
2092 
2093 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2094 	uopt.uid = INVALID_UID;
2095 	uopt.gid = INVALID_GID;
2096 	uopt.umask = 0;
2097 	uopt.fmode = UDF_INVALID_MODE;
2098 	uopt.dmode = UDF_INVALID_MODE;
2099 
2100 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2101 	if (!sbi)
2102 		return -ENOMEM;
2103 
2104 	sb->s_fs_info = sbi;
2105 
2106 	mutex_init(&sbi->s_alloc_mutex);
2107 
2108 	if (!udf_parse_options((char *)options, &uopt, false))
2109 		goto parse_options_failure;
2110 
2111 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2112 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2113 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2114 		goto parse_options_failure;
2115 	}
2116 #ifdef CONFIG_UDF_NLS
2117 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2118 		uopt.nls_map = load_nls_default();
2119 		if (!uopt.nls_map)
2120 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2121 		else
2122 			udf_debug("Using default NLS map\n");
2123 	}
2124 #endif
2125 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2126 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2127 
2128 	fileset.logicalBlockNum = 0xFFFFFFFF;
2129 	fileset.partitionReferenceNum = 0xFFFF;
2130 
2131 	sbi->s_flags = uopt.flags;
2132 	sbi->s_uid = uopt.uid;
2133 	sbi->s_gid = uopt.gid;
2134 	sbi->s_umask = uopt.umask;
2135 	sbi->s_fmode = uopt.fmode;
2136 	sbi->s_dmode = uopt.dmode;
2137 	sbi->s_nls_map = uopt.nls_map;
2138 	rwlock_init(&sbi->s_cred_lock);
2139 
2140 	if (uopt.session == 0xFFFFFFFF)
2141 		sbi->s_session = udf_get_last_session(sb);
2142 	else
2143 		sbi->s_session = uopt.session;
2144 
2145 	udf_debug("Multi-session=%d\n", sbi->s_session);
2146 
2147 	/* Fill in the rest of the superblock */
2148 	sb->s_op = &udf_sb_ops;
2149 	sb->s_export_op = &udf_export_ops;
2150 
2151 	sb->s_magic = UDF_SUPER_MAGIC;
2152 	sb->s_time_gran = 1000;
2153 
2154 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2155 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2156 	} else {
2157 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2158 		while (uopt.blocksize <= 4096) {
2159 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 			if (ret < 0) {
2161 				if (!silent && ret != -EACCES) {
2162 					pr_notice("Scanning with blocksize %d failed\n",
2163 						  uopt.blocksize);
2164 				}
2165 				brelse(sbi->s_lvid_bh);
2166 				sbi->s_lvid_bh = NULL;
2167 				/*
2168 				 * EACCES is special - we want to propagate to
2169 				 * upper layers that we cannot handle RW mount.
2170 				 */
2171 				if (ret == -EACCES)
2172 					break;
2173 			} else
2174 				break;
2175 
2176 			uopt.blocksize <<= 1;
2177 		}
2178 	}
2179 	if (ret < 0) {
2180 		if (ret == -EAGAIN) {
2181 			udf_warn(sb, "No partition found (1)\n");
2182 			ret = -EINVAL;
2183 		}
2184 		goto error_out;
2185 	}
2186 
2187 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2188 
2189 	if (sbi->s_lvid_bh) {
2190 		struct logicalVolIntegrityDescImpUse *lvidiu =
2191 							udf_sb_lvidiu(sb);
2192 		uint16_t minUDFReadRev;
2193 		uint16_t minUDFWriteRev;
2194 
2195 		if (!lvidiu) {
2196 			ret = -EINVAL;
2197 			goto error_out;
2198 		}
2199 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2200 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2201 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2202 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2203 				minUDFReadRev,
2204 				UDF_MAX_READ_VERSION);
2205 			ret = -EINVAL;
2206 			goto error_out;
2207 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2208 			   !sb_rdonly(sb)) {
2209 			ret = -EACCES;
2210 			goto error_out;
2211 		}
2212 
2213 		sbi->s_udfrev = minUDFWriteRev;
2214 
2215 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2216 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2217 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2218 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2219 	}
2220 
2221 	if (!sbi->s_partitions) {
2222 		udf_warn(sb, "No partition found (2)\n");
2223 		ret = -EINVAL;
2224 		goto error_out;
2225 	}
2226 
2227 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2228 			UDF_PART_FLAG_READ_ONLY &&
2229 	    !sb_rdonly(sb)) {
2230 		ret = -EACCES;
2231 		goto error_out;
2232 	}
2233 
2234 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2235 		udf_warn(sb, "No fileset found\n");
2236 		ret = -EINVAL;
2237 		goto error_out;
2238 	}
2239 
2240 	if (!silent) {
2241 		struct timestamp ts;
2242 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2243 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2244 			 sbi->s_volume_ident,
2245 			 le16_to_cpu(ts.year), ts.month, ts.day,
2246 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2247 	}
2248 	if (!sb_rdonly(sb)) {
2249 		udf_open_lvid(sb);
2250 		lvid_open = true;
2251 	}
2252 
2253 	/* Assign the root inode */
2254 	/* assign inodes by physical block number */
2255 	/* perhaps it's not extensible enough, but for now ... */
2256 	inode = udf_iget(sb, &rootdir);
2257 	if (IS_ERR(inode)) {
2258 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2259 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2260 		ret = PTR_ERR(inode);
2261 		goto error_out;
2262 	}
2263 
2264 	/* Allocate a dentry for the root inode */
2265 	sb->s_root = d_make_root(inode);
2266 	if (!sb->s_root) {
2267 		udf_err(sb, "Couldn't allocate root dentry\n");
2268 		ret = -ENOMEM;
2269 		goto error_out;
2270 	}
2271 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2272 	sb->s_max_links = UDF_MAX_LINKS;
2273 	return 0;
2274 
2275 error_out:
2276 	iput(sbi->s_vat_inode);
2277 parse_options_failure:
2278 #ifdef CONFIG_UDF_NLS
2279 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2280 		unload_nls(sbi->s_nls_map);
2281 #endif
2282 	if (lvid_open)
2283 		udf_close_lvid(sb);
2284 	brelse(sbi->s_lvid_bh);
2285 	udf_sb_free_partitions(sb);
2286 	kfree(sbi);
2287 	sb->s_fs_info = NULL;
2288 
2289 	return ret;
2290 }
2291 
2292 void _udf_err(struct super_block *sb, const char *function,
2293 	      const char *fmt, ...)
2294 {
2295 	struct va_format vaf;
2296 	va_list args;
2297 
2298 	va_start(args, fmt);
2299 
2300 	vaf.fmt = fmt;
2301 	vaf.va = &args;
2302 
2303 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2304 
2305 	va_end(args);
2306 }
2307 
2308 void _udf_warn(struct super_block *sb, const char *function,
2309 	       const char *fmt, ...)
2310 {
2311 	struct va_format vaf;
2312 	va_list args;
2313 
2314 	va_start(args, fmt);
2315 
2316 	vaf.fmt = fmt;
2317 	vaf.va = &args;
2318 
2319 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2320 
2321 	va_end(args);
2322 }
2323 
2324 static void udf_put_super(struct super_block *sb)
2325 {
2326 	struct udf_sb_info *sbi;
2327 
2328 	sbi = UDF_SB(sb);
2329 
2330 	iput(sbi->s_vat_inode);
2331 #ifdef CONFIG_UDF_NLS
2332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2333 		unload_nls(sbi->s_nls_map);
2334 #endif
2335 	if (!sb_rdonly(sb))
2336 		udf_close_lvid(sb);
2337 	brelse(sbi->s_lvid_bh);
2338 	udf_sb_free_partitions(sb);
2339 	mutex_destroy(&sbi->s_alloc_mutex);
2340 	kfree(sb->s_fs_info);
2341 	sb->s_fs_info = NULL;
2342 }
2343 
2344 static int udf_sync_fs(struct super_block *sb, int wait)
2345 {
2346 	struct udf_sb_info *sbi = UDF_SB(sb);
2347 
2348 	mutex_lock(&sbi->s_alloc_mutex);
2349 	if (sbi->s_lvid_dirty) {
2350 		/*
2351 		 * Blockdevice will be synced later so we don't have to submit
2352 		 * the buffer for IO
2353 		 */
2354 		mark_buffer_dirty(sbi->s_lvid_bh);
2355 		sbi->s_lvid_dirty = 0;
2356 	}
2357 	mutex_unlock(&sbi->s_alloc_mutex);
2358 
2359 	return 0;
2360 }
2361 
2362 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2363 {
2364 	struct super_block *sb = dentry->d_sb;
2365 	struct udf_sb_info *sbi = UDF_SB(sb);
2366 	struct logicalVolIntegrityDescImpUse *lvidiu;
2367 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2368 
2369 	lvidiu = udf_sb_lvidiu(sb);
2370 	buf->f_type = UDF_SUPER_MAGIC;
2371 	buf->f_bsize = sb->s_blocksize;
2372 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2373 	buf->f_bfree = udf_count_free(sb);
2374 	buf->f_bavail = buf->f_bfree;
2375 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2377 			+ buf->f_bfree;
2378 	buf->f_ffree = buf->f_bfree;
2379 	buf->f_namelen = UDF_NAME_LEN;
2380 	buf->f_fsid.val[0] = (u32)id;
2381 	buf->f_fsid.val[1] = (u32)(id >> 32);
2382 
2383 	return 0;
2384 }
2385 
2386 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2387 					  struct udf_bitmap *bitmap)
2388 {
2389 	struct buffer_head *bh = NULL;
2390 	unsigned int accum = 0;
2391 	int index;
2392 	int block = 0, newblock;
2393 	struct kernel_lb_addr loc;
2394 	uint32_t bytes;
2395 	uint8_t *ptr;
2396 	uint16_t ident;
2397 	struct spaceBitmapDesc *bm;
2398 
2399 	loc.logicalBlockNum = bitmap->s_extPosition;
2400 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2401 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2402 
2403 	if (!bh) {
2404 		udf_err(sb, "udf_count_free failed\n");
2405 		goto out;
2406 	} else if (ident != TAG_IDENT_SBD) {
2407 		brelse(bh);
2408 		udf_err(sb, "udf_count_free failed\n");
2409 		goto out;
2410 	}
2411 
2412 	bm = (struct spaceBitmapDesc *)bh->b_data;
2413 	bytes = le32_to_cpu(bm->numOfBytes);
2414 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2415 	ptr = (uint8_t *)bh->b_data;
2416 
2417 	while (bytes > 0) {
2418 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2419 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2420 					cur_bytes * 8);
2421 		bytes -= cur_bytes;
2422 		if (bytes) {
2423 			brelse(bh);
2424 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2425 			bh = udf_tread(sb, newblock);
2426 			if (!bh) {
2427 				udf_debug("read failed\n");
2428 				goto out;
2429 			}
2430 			index = 0;
2431 			ptr = (uint8_t *)bh->b_data;
2432 		}
2433 	}
2434 	brelse(bh);
2435 out:
2436 	return accum;
2437 }
2438 
2439 static unsigned int udf_count_free_table(struct super_block *sb,
2440 					 struct inode *table)
2441 {
2442 	unsigned int accum = 0;
2443 	uint32_t elen;
2444 	struct kernel_lb_addr eloc;
2445 	int8_t etype;
2446 	struct extent_position epos;
2447 
2448 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2449 	epos.block = UDF_I(table)->i_location;
2450 	epos.offset = sizeof(struct unallocSpaceEntry);
2451 	epos.bh = NULL;
2452 
2453 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2454 		accum += (elen >> table->i_sb->s_blocksize_bits);
2455 
2456 	brelse(epos.bh);
2457 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2458 
2459 	return accum;
2460 }
2461 
2462 static unsigned int udf_count_free(struct super_block *sb)
2463 {
2464 	unsigned int accum = 0;
2465 	struct udf_sb_info *sbi;
2466 	struct udf_part_map *map;
2467 
2468 	sbi = UDF_SB(sb);
2469 	if (sbi->s_lvid_bh) {
2470 		struct logicalVolIntegrityDesc *lvid =
2471 			(struct logicalVolIntegrityDesc *)
2472 			sbi->s_lvid_bh->b_data;
2473 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2474 			accum = le32_to_cpu(
2475 					lvid->freeSpaceTable[sbi->s_partition]);
2476 			if (accum == 0xFFFFFFFF)
2477 				accum = 0;
2478 		}
2479 	}
2480 
2481 	if (accum)
2482 		return accum;
2483 
2484 	map = &sbi->s_partmaps[sbi->s_partition];
2485 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2486 		accum += udf_count_free_bitmap(sb,
2487 					       map->s_uspace.s_bitmap);
2488 	}
2489 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2490 		accum += udf_count_free_bitmap(sb,
2491 					       map->s_fspace.s_bitmap);
2492 	}
2493 	if (accum)
2494 		return accum;
2495 
2496 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2497 		accum += udf_count_free_table(sb,
2498 					      map->s_uspace.s_table);
2499 	}
2500 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2501 		accum += udf_count_free_table(sb,
2502 					      map->s_fspace.s_table);
2503 	}
2504 
2505 	return accum;
2506 }
2507 
2508 MODULE_AUTHOR("Ben Fennema");
2509 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2510 MODULE_LICENSE("GPL");
2511 module_init(init_udf_fs)
2512 module_exit(exit_udf_fs)
2513