1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static void udf_open_lvid(struct super_block *); 96 static void udf_close_lvid(struct super_block *); 97 static unsigned int udf_count_free(struct super_block *); 98 static int udf_statfs(struct dentry *, struct kstatfs *); 99 static int udf_show_options(struct seq_file *, struct dentry *); 100 101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 102 { 103 struct logicalVolIntegrityDesc *lvid; 104 unsigned int partnum; 105 unsigned int offset; 106 107 if (!UDF_SB(sb)->s_lvid_bh) 108 return NULL; 109 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 110 partnum = le32_to_cpu(lvid->numOfPartitions); 111 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 112 offsetof(struct logicalVolIntegrityDesc, impUse)) / 113 (2 * sizeof(uint32_t)) < partnum) { 114 udf_err(sb, "Logical volume integrity descriptor corrupted " 115 "(numOfPartitions = %u)!\n", partnum); 116 return NULL; 117 } 118 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 119 offset = partnum * 2 * sizeof(uint32_t); 120 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 121 } 122 123 /* UDF filesystem type */ 124 static struct dentry *udf_mount(struct file_system_type *fs_type, 125 int flags, const char *dev_name, void *data) 126 { 127 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 128 } 129 130 static struct file_system_type udf_fstype = { 131 .owner = THIS_MODULE, 132 .name = "udf", 133 .mount = udf_mount, 134 .kill_sb = kill_block_super, 135 .fs_flags = FS_REQUIRES_DEV, 136 }; 137 MODULE_ALIAS_FS("udf"); 138 139 static struct kmem_cache *udf_inode_cachep; 140 141 static struct inode *udf_alloc_inode(struct super_block *sb) 142 { 143 struct udf_inode_info *ei; 144 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 145 if (!ei) 146 return NULL; 147 148 ei->i_unique = 0; 149 ei->i_lenExtents = 0; 150 ei->i_lenStreams = 0; 151 ei->i_next_alloc_block = 0; 152 ei->i_next_alloc_goal = 0; 153 ei->i_strat4096 = 0; 154 ei->i_streamdir = 0; 155 init_rwsem(&ei->i_data_sem); 156 ei->cached_extent.lstart = -1; 157 spin_lock_init(&ei->i_extent_cache_lock); 158 159 return &ei->vfs_inode; 160 } 161 162 static void udf_free_in_core_inode(struct inode *inode) 163 { 164 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 165 } 166 167 static void init_once(void *foo) 168 { 169 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 170 171 ei->i_ext.i_data = NULL; 172 inode_init_once(&ei->vfs_inode); 173 } 174 175 static int __init init_inodecache(void) 176 { 177 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 178 sizeof(struct udf_inode_info), 179 0, (SLAB_RECLAIM_ACCOUNT | 180 SLAB_MEM_SPREAD | 181 SLAB_ACCOUNT), 182 init_once); 183 if (!udf_inode_cachep) 184 return -ENOMEM; 185 return 0; 186 } 187 188 static void destroy_inodecache(void) 189 { 190 /* 191 * Make sure all delayed rcu free inodes are flushed before we 192 * destroy cache. 193 */ 194 rcu_barrier(); 195 kmem_cache_destroy(udf_inode_cachep); 196 } 197 198 /* Superblock operations */ 199 static const struct super_operations udf_sb_ops = { 200 .alloc_inode = udf_alloc_inode, 201 .free_inode = udf_free_in_core_inode, 202 .write_inode = udf_write_inode, 203 .evict_inode = udf_evict_inode, 204 .put_super = udf_put_super, 205 .sync_fs = udf_sync_fs, 206 .statfs = udf_statfs, 207 .remount_fs = udf_remount_fs, 208 .show_options = udf_show_options, 209 }; 210 211 struct udf_options { 212 unsigned char novrs; 213 unsigned int blocksize; 214 unsigned int session; 215 unsigned int lastblock; 216 unsigned int anchor; 217 unsigned int flags; 218 umode_t umask; 219 kgid_t gid; 220 kuid_t uid; 221 umode_t fmode; 222 umode_t dmode; 223 struct nls_table *nls_map; 224 }; 225 226 static int __init init_udf_fs(void) 227 { 228 int err; 229 230 err = init_inodecache(); 231 if (err) 232 goto out1; 233 err = register_filesystem(&udf_fstype); 234 if (err) 235 goto out; 236 237 return 0; 238 239 out: 240 destroy_inodecache(); 241 242 out1: 243 return err; 244 } 245 246 static void __exit exit_udf_fs(void) 247 { 248 unregister_filesystem(&udf_fstype); 249 destroy_inodecache(); 250 } 251 252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 253 { 254 struct udf_sb_info *sbi = UDF_SB(sb); 255 256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 257 if (!sbi->s_partmaps) { 258 sbi->s_partitions = 0; 259 return -ENOMEM; 260 } 261 262 sbi->s_partitions = count; 263 return 0; 264 } 265 266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 267 { 268 int i; 269 int nr_groups = bitmap->s_nr_groups; 270 271 for (i = 0; i < nr_groups; i++) 272 brelse(bitmap->s_block_bitmap[i]); 273 274 kvfree(bitmap); 275 } 276 277 static void udf_free_partition(struct udf_part_map *map) 278 { 279 int i; 280 struct udf_meta_data *mdata; 281 282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 283 iput(map->s_uspace.s_table); 284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 285 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 286 if (map->s_partition_type == UDF_SPARABLE_MAP15) 287 for (i = 0; i < 4; i++) 288 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 289 else if (map->s_partition_type == UDF_METADATA_MAP25) { 290 mdata = &map->s_type_specific.s_metadata; 291 iput(mdata->s_metadata_fe); 292 mdata->s_metadata_fe = NULL; 293 294 iput(mdata->s_mirror_fe); 295 mdata->s_mirror_fe = NULL; 296 297 iput(mdata->s_bitmap_fe); 298 mdata->s_bitmap_fe = NULL; 299 } 300 } 301 302 static void udf_sb_free_partitions(struct super_block *sb) 303 { 304 struct udf_sb_info *sbi = UDF_SB(sb); 305 int i; 306 307 if (!sbi->s_partmaps) 308 return; 309 for (i = 0; i < sbi->s_partitions; i++) 310 udf_free_partition(&sbi->s_partmaps[i]); 311 kfree(sbi->s_partmaps); 312 sbi->s_partmaps = NULL; 313 } 314 315 static int udf_show_options(struct seq_file *seq, struct dentry *root) 316 { 317 struct super_block *sb = root->d_sb; 318 struct udf_sb_info *sbi = UDF_SB(sb); 319 320 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 321 seq_puts(seq, ",nostrict"); 322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 323 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 325 seq_puts(seq, ",unhide"); 326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 327 seq_puts(seq, ",undelete"); 328 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 329 seq_puts(seq, ",noadinicb"); 330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 331 seq_puts(seq, ",shortad"); 332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 333 seq_puts(seq, ",uid=forget"); 334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 335 seq_puts(seq, ",gid=forget"); 336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 337 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 339 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 340 if (sbi->s_umask != 0) 341 seq_printf(seq, ",umask=%ho", sbi->s_umask); 342 if (sbi->s_fmode != UDF_INVALID_MODE) 343 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 344 if (sbi->s_dmode != UDF_INVALID_MODE) 345 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 347 seq_printf(seq, ",session=%d", sbi->s_session); 348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 349 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 350 if (sbi->s_anchor != 0) 351 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 353 seq_puts(seq, ",utf8"); 354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 355 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 356 357 return 0; 358 } 359 360 /* 361 * udf_parse_options 362 * 363 * PURPOSE 364 * Parse mount options. 365 * 366 * DESCRIPTION 367 * The following mount options are supported: 368 * 369 * gid= Set the default group. 370 * umask= Set the default umask. 371 * mode= Set the default file permissions. 372 * dmode= Set the default directory permissions. 373 * uid= Set the default user. 374 * bs= Set the block size. 375 * unhide Show otherwise hidden files. 376 * undelete Show deleted files in lists. 377 * adinicb Embed data in the inode (default) 378 * noadinicb Don't embed data in the inode 379 * shortad Use short ad's 380 * longad Use long ad's (default) 381 * nostrict Unset strict conformance 382 * iocharset= Set the NLS character set 383 * 384 * The remaining are for debugging and disaster recovery: 385 * 386 * novrs Skip volume sequence recognition 387 * 388 * The following expect a offset from 0. 389 * 390 * session= Set the CDROM session (default= last session) 391 * anchor= Override standard anchor location. (default= 256) 392 * volume= Override the VolumeDesc location. (unused) 393 * partition= Override the PartitionDesc location. (unused) 394 * lastblock= Set the last block of the filesystem/ 395 * 396 * The following expect a offset from the partition root. 397 * 398 * fileset= Override the fileset block location. (unused) 399 * rootdir= Override the root directory location. (unused) 400 * WARNING: overriding the rootdir to a non-directory may 401 * yield highly unpredictable results. 402 * 403 * PRE-CONDITIONS 404 * options Pointer to mount options string. 405 * uopts Pointer to mount options variable. 406 * 407 * POST-CONDITIONS 408 * <return> 1 Mount options parsed okay. 409 * <return> 0 Error parsing mount options. 410 * 411 * HISTORY 412 * July 1, 1997 - Andrew E. Mileski 413 * Written, tested, and released. 414 */ 415 416 enum { 417 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 418 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 419 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 420 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 421 Opt_rootdir, Opt_utf8, Opt_iocharset, 422 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 423 Opt_fmode, Opt_dmode 424 }; 425 426 static const match_table_t tokens = { 427 {Opt_novrs, "novrs"}, 428 {Opt_nostrict, "nostrict"}, 429 {Opt_bs, "bs=%u"}, 430 {Opt_unhide, "unhide"}, 431 {Opt_undelete, "undelete"}, 432 {Opt_noadinicb, "noadinicb"}, 433 {Opt_adinicb, "adinicb"}, 434 {Opt_shortad, "shortad"}, 435 {Opt_longad, "longad"}, 436 {Opt_uforget, "uid=forget"}, 437 {Opt_uignore, "uid=ignore"}, 438 {Opt_gforget, "gid=forget"}, 439 {Opt_gignore, "gid=ignore"}, 440 {Opt_gid, "gid=%u"}, 441 {Opt_uid, "uid=%u"}, 442 {Opt_umask, "umask=%o"}, 443 {Opt_session, "session=%u"}, 444 {Opt_lastblock, "lastblock=%u"}, 445 {Opt_anchor, "anchor=%u"}, 446 {Opt_volume, "volume=%u"}, 447 {Opt_partition, "partition=%u"}, 448 {Opt_fileset, "fileset=%u"}, 449 {Opt_rootdir, "rootdir=%u"}, 450 {Opt_utf8, "utf8"}, 451 {Opt_iocharset, "iocharset=%s"}, 452 {Opt_fmode, "mode=%o"}, 453 {Opt_dmode, "dmode=%o"}, 454 {Opt_err, NULL} 455 }; 456 457 static int udf_parse_options(char *options, struct udf_options *uopt, 458 bool remount) 459 { 460 char *p; 461 int option; 462 463 uopt->novrs = 0; 464 uopt->session = 0xFFFFFFFF; 465 uopt->lastblock = 0; 466 uopt->anchor = 0; 467 468 if (!options) 469 return 1; 470 471 while ((p = strsep(&options, ",")) != NULL) { 472 substring_t args[MAX_OPT_ARGS]; 473 int token; 474 unsigned n; 475 if (!*p) 476 continue; 477 478 token = match_token(p, tokens, args); 479 switch (token) { 480 case Opt_novrs: 481 uopt->novrs = 1; 482 break; 483 case Opt_bs: 484 if (match_int(&args[0], &option)) 485 return 0; 486 n = option; 487 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 488 return 0; 489 uopt->blocksize = n; 490 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 491 break; 492 case Opt_unhide: 493 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 494 break; 495 case Opt_undelete: 496 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 497 break; 498 case Opt_noadinicb: 499 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 500 break; 501 case Opt_adinicb: 502 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 503 break; 504 case Opt_shortad: 505 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 506 break; 507 case Opt_longad: 508 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 509 break; 510 case Opt_gid: 511 if (match_int(args, &option)) 512 return 0; 513 uopt->gid = make_kgid(current_user_ns(), option); 514 if (!gid_valid(uopt->gid)) 515 return 0; 516 uopt->flags |= (1 << UDF_FLAG_GID_SET); 517 break; 518 case Opt_uid: 519 if (match_int(args, &option)) 520 return 0; 521 uopt->uid = make_kuid(current_user_ns(), option); 522 if (!uid_valid(uopt->uid)) 523 return 0; 524 uopt->flags |= (1 << UDF_FLAG_UID_SET); 525 break; 526 case Opt_umask: 527 if (match_octal(args, &option)) 528 return 0; 529 uopt->umask = option; 530 break; 531 case Opt_nostrict: 532 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 533 break; 534 case Opt_session: 535 if (match_int(args, &option)) 536 return 0; 537 uopt->session = option; 538 if (!remount) 539 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 540 break; 541 case Opt_lastblock: 542 if (match_int(args, &option)) 543 return 0; 544 uopt->lastblock = option; 545 if (!remount) 546 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 547 break; 548 case Opt_anchor: 549 if (match_int(args, &option)) 550 return 0; 551 uopt->anchor = option; 552 break; 553 case Opt_volume: 554 case Opt_partition: 555 case Opt_fileset: 556 case Opt_rootdir: 557 /* Ignored (never implemented properly) */ 558 break; 559 case Opt_utf8: 560 uopt->flags |= (1 << UDF_FLAG_UTF8); 561 break; 562 case Opt_iocharset: 563 if (!remount) { 564 if (uopt->nls_map) 565 unload_nls(uopt->nls_map); 566 /* 567 * load_nls() failure is handled later in 568 * udf_fill_super() after all options are 569 * parsed. 570 */ 571 uopt->nls_map = load_nls(args[0].from); 572 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 573 } 574 break; 575 case Opt_uforget: 576 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 577 break; 578 case Opt_uignore: 579 case Opt_gignore: 580 /* These options are superseeded by uid=<number> */ 581 break; 582 case Opt_gforget: 583 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 584 break; 585 case Opt_fmode: 586 if (match_octal(args, &option)) 587 return 0; 588 uopt->fmode = option & 0777; 589 break; 590 case Opt_dmode: 591 if (match_octal(args, &option)) 592 return 0; 593 uopt->dmode = option & 0777; 594 break; 595 default: 596 pr_err("bad mount option \"%s\" or missing value\n", p); 597 return 0; 598 } 599 } 600 return 1; 601 } 602 603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 604 { 605 struct udf_options uopt; 606 struct udf_sb_info *sbi = UDF_SB(sb); 607 int error = 0; 608 609 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 610 return -EACCES; 611 612 sync_filesystem(sb); 613 614 uopt.flags = sbi->s_flags; 615 uopt.uid = sbi->s_uid; 616 uopt.gid = sbi->s_gid; 617 uopt.umask = sbi->s_umask; 618 uopt.fmode = sbi->s_fmode; 619 uopt.dmode = sbi->s_dmode; 620 uopt.nls_map = NULL; 621 622 if (!udf_parse_options(options, &uopt, true)) 623 return -EINVAL; 624 625 write_lock(&sbi->s_cred_lock); 626 sbi->s_flags = uopt.flags; 627 sbi->s_uid = uopt.uid; 628 sbi->s_gid = uopt.gid; 629 sbi->s_umask = uopt.umask; 630 sbi->s_fmode = uopt.fmode; 631 sbi->s_dmode = uopt.dmode; 632 write_unlock(&sbi->s_cred_lock); 633 634 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 635 goto out_unlock; 636 637 if (*flags & SB_RDONLY) 638 udf_close_lvid(sb); 639 else 640 udf_open_lvid(sb); 641 642 out_unlock: 643 return error; 644 } 645 646 /* 647 * Check VSD descriptor. Returns -1 in case we are at the end of volume 648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 649 * we found one of NSR descriptors we are looking for. 650 */ 651 static int identify_vsd(const struct volStructDesc *vsd) 652 { 653 int ret = 0; 654 655 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 656 switch (vsd->structType) { 657 case 0: 658 udf_debug("ISO9660 Boot Record found\n"); 659 break; 660 case 1: 661 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 662 break; 663 case 2: 664 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 665 break; 666 case 3: 667 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 668 break; 669 case 255: 670 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 671 break; 672 default: 673 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 674 break; 675 } 676 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 677 ; /* ret = 0 */ 678 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 679 ret = 1; 680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 681 ret = 1; 682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 683 ; /* ret = 0 */ 684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 685 ; /* ret = 0 */ 686 else { 687 /* TEA01 or invalid id : end of volume recognition area */ 688 ret = -1; 689 } 690 691 return ret; 692 } 693 694 /* 695 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 697 * @return 1 if NSR02 or NSR03 found, 698 * -1 if first sector read error, 0 otherwise 699 */ 700 static int udf_check_vsd(struct super_block *sb) 701 { 702 struct volStructDesc *vsd = NULL; 703 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 704 int sectorsize; 705 struct buffer_head *bh = NULL; 706 int nsr = 0; 707 struct udf_sb_info *sbi; 708 709 sbi = UDF_SB(sb); 710 if (sb->s_blocksize < sizeof(struct volStructDesc)) 711 sectorsize = sizeof(struct volStructDesc); 712 else 713 sectorsize = sb->s_blocksize; 714 715 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits); 716 717 udf_debug("Starting at sector %u (%lu byte sectors)\n", 718 (unsigned int)(sector >> sb->s_blocksize_bits), 719 sb->s_blocksize); 720 /* Process the sequence (if applicable). The hard limit on the sector 721 * offset is arbitrary, hopefully large enough so that all valid UDF 722 * filesystems will be recognised. There is no mention of an upper 723 * bound to the size of the volume recognition area in the standard. 724 * The limit will prevent the code to read all the sectors of a 725 * specially crafted image (like a bluray disc full of CD001 sectors), 726 * potentially causing minutes or even hours of uninterruptible I/O 727 * activity. This actually happened with uninitialised SSD partitions 728 * (all 0xFF) before the check for the limit and all valid IDs were 729 * added */ 730 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 731 /* Read a block */ 732 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 733 if (!bh) 734 break; 735 736 vsd = (struct volStructDesc *)(bh->b_data + 737 (sector & (sb->s_blocksize - 1))); 738 nsr = identify_vsd(vsd); 739 /* Found NSR or end? */ 740 if (nsr) { 741 brelse(bh); 742 break; 743 } 744 /* 745 * Special handling for improperly formatted VRS (e.g., Win10) 746 * where components are separated by 2048 bytes even though 747 * sectors are 4K 748 */ 749 if (sb->s_blocksize == 4096) { 750 nsr = identify_vsd(vsd + 1); 751 /* Ignore unknown IDs... */ 752 if (nsr < 0) 753 nsr = 0; 754 } 755 brelse(bh); 756 } 757 758 if (nsr > 0) 759 return 1; 760 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 761 VSD_FIRST_SECTOR_OFFSET) 762 return -1; 763 else 764 return 0; 765 } 766 767 static int udf_verify_domain_identifier(struct super_block *sb, 768 struct regid *ident, char *dname) 769 { 770 struct domainEntityIDSuffix *suffix; 771 772 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 773 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 774 goto force_ro; 775 } 776 if (ident->flags & (1 << ENTITYID_FLAGS_DIRTY)) { 777 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 778 dname); 779 goto force_ro; 780 } 781 suffix = (struct domainEntityIDSuffix *)ident->identSuffix; 782 if (suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_HARDWRITEPROTECT) || 783 suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_SOFTWRITEPROTECT)) { 784 if (!sb_rdonly(sb)) { 785 udf_warn(sb, "Descriptor for %s marked write protected." 786 " Forcing read only mount.\n", dname); 787 } 788 goto force_ro; 789 } 790 return 0; 791 792 force_ro: 793 if (!sb_rdonly(sb)) 794 return -EACCES; 795 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 796 return 0; 797 } 798 799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 800 struct kernel_lb_addr *root) 801 { 802 int ret; 803 804 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 805 if (ret < 0) 806 return ret; 807 808 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 809 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 810 811 udf_debug("Rootdir at block=%u, partition=%u\n", 812 root->logicalBlockNum, root->partitionReferenceNum); 813 return 0; 814 } 815 816 static int udf_find_fileset(struct super_block *sb, 817 struct kernel_lb_addr *fileset, 818 struct kernel_lb_addr *root) 819 { 820 struct buffer_head *bh = NULL; 821 uint16_t ident; 822 int ret; 823 824 if (fileset->logicalBlockNum == 0xFFFFFFFF && 825 fileset->partitionReferenceNum == 0xFFFF) 826 return -EINVAL; 827 828 bh = udf_read_ptagged(sb, fileset, 0, &ident); 829 if (!bh) 830 return -EIO; 831 if (ident != TAG_IDENT_FSD) { 832 brelse(bh); 833 return -EINVAL; 834 } 835 836 udf_debug("Fileset at block=%u, partition=%u\n", 837 fileset->logicalBlockNum, fileset->partitionReferenceNum); 838 839 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 840 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 841 brelse(bh); 842 return ret; 843 } 844 845 /* 846 * Load primary Volume Descriptor Sequence 847 * 848 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 849 * should be tried. 850 */ 851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 852 { 853 struct primaryVolDesc *pvoldesc; 854 uint8_t *outstr; 855 struct buffer_head *bh; 856 uint16_t ident; 857 int ret = -ENOMEM; 858 struct timestamp *ts; 859 860 outstr = kmalloc(128, GFP_NOFS); 861 if (!outstr) 862 return -ENOMEM; 863 864 bh = udf_read_tagged(sb, block, block, &ident); 865 if (!bh) { 866 ret = -EAGAIN; 867 goto out2; 868 } 869 870 if (ident != TAG_IDENT_PVD) { 871 ret = -EIO; 872 goto out_bh; 873 } 874 875 pvoldesc = (struct primaryVolDesc *)bh->b_data; 876 877 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 878 pvoldesc->recordingDateAndTime); 879 ts = &pvoldesc->recordingDateAndTime; 880 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 881 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 882 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 883 884 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 885 if (ret < 0) { 886 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 887 pr_warn("incorrect volume identification, setting to " 888 "'InvalidName'\n"); 889 } else { 890 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 891 } 892 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 893 894 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 895 if (ret < 0) { 896 ret = 0; 897 goto out_bh; 898 } 899 outstr[ret] = 0; 900 udf_debug("volSetIdent[] = '%s'\n", outstr); 901 902 ret = 0; 903 out_bh: 904 brelse(bh); 905 out2: 906 kfree(outstr); 907 return ret; 908 } 909 910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 911 u32 meta_file_loc, u32 partition_ref) 912 { 913 struct kernel_lb_addr addr; 914 struct inode *metadata_fe; 915 916 addr.logicalBlockNum = meta_file_loc; 917 addr.partitionReferenceNum = partition_ref; 918 919 metadata_fe = udf_iget_special(sb, &addr); 920 921 if (IS_ERR(metadata_fe)) { 922 udf_warn(sb, "metadata inode efe not found\n"); 923 return metadata_fe; 924 } 925 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 926 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 927 iput(metadata_fe); 928 return ERR_PTR(-EIO); 929 } 930 931 return metadata_fe; 932 } 933 934 static int udf_load_metadata_files(struct super_block *sb, int partition, 935 int type1_index) 936 { 937 struct udf_sb_info *sbi = UDF_SB(sb); 938 struct udf_part_map *map; 939 struct udf_meta_data *mdata; 940 struct kernel_lb_addr addr; 941 struct inode *fe; 942 943 map = &sbi->s_partmaps[partition]; 944 mdata = &map->s_type_specific.s_metadata; 945 mdata->s_phys_partition_ref = type1_index; 946 947 /* metadata address */ 948 udf_debug("Metadata file location: block = %u part = %u\n", 949 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 950 951 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 952 mdata->s_phys_partition_ref); 953 if (IS_ERR(fe)) { 954 /* mirror file entry */ 955 udf_debug("Mirror metadata file location: block = %u part = %u\n", 956 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 957 958 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 959 mdata->s_phys_partition_ref); 960 961 if (IS_ERR(fe)) { 962 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 963 return PTR_ERR(fe); 964 } 965 mdata->s_mirror_fe = fe; 966 } else 967 mdata->s_metadata_fe = fe; 968 969 970 /* 971 * bitmap file entry 972 * Note: 973 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 974 */ 975 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 976 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 977 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 978 979 udf_debug("Bitmap file location: block = %u part = %u\n", 980 addr.logicalBlockNum, addr.partitionReferenceNum); 981 982 fe = udf_iget_special(sb, &addr); 983 if (IS_ERR(fe)) { 984 if (sb_rdonly(sb)) 985 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 986 else { 987 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 988 return PTR_ERR(fe); 989 } 990 } else 991 mdata->s_bitmap_fe = fe; 992 } 993 994 udf_debug("udf_load_metadata_files Ok\n"); 995 return 0; 996 } 997 998 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 999 { 1000 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1001 return DIV_ROUND_UP(map->s_partition_len + 1002 (sizeof(struct spaceBitmapDesc) << 3), 1003 sb->s_blocksize * 8); 1004 } 1005 1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1007 { 1008 struct udf_bitmap *bitmap; 1009 int nr_groups; 1010 int size; 1011 1012 nr_groups = udf_compute_nr_groups(sb, index); 1013 size = sizeof(struct udf_bitmap) + 1014 (sizeof(struct buffer_head *) * nr_groups); 1015 1016 if (size <= PAGE_SIZE) 1017 bitmap = kzalloc(size, GFP_KERNEL); 1018 else 1019 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1020 1021 if (!bitmap) 1022 return NULL; 1023 1024 bitmap->s_nr_groups = nr_groups; 1025 return bitmap; 1026 } 1027 1028 static int check_partition_desc(struct super_block *sb, 1029 struct partitionDesc *p, 1030 struct udf_part_map *map) 1031 { 1032 bool umap, utable, fmap, ftable; 1033 struct partitionHeaderDesc *phd; 1034 1035 switch (le32_to_cpu(p->accessType)) { 1036 case PD_ACCESS_TYPE_READ_ONLY: 1037 case PD_ACCESS_TYPE_WRITE_ONCE: 1038 case PD_ACCESS_TYPE_REWRITABLE: 1039 case PD_ACCESS_TYPE_NONE: 1040 goto force_ro; 1041 } 1042 1043 /* No Partition Header Descriptor? */ 1044 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1045 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1046 goto force_ro; 1047 1048 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1049 utable = phd->unallocSpaceTable.extLength; 1050 umap = phd->unallocSpaceBitmap.extLength; 1051 ftable = phd->freedSpaceTable.extLength; 1052 fmap = phd->freedSpaceBitmap.extLength; 1053 1054 /* No allocation info? */ 1055 if (!utable && !umap && !ftable && !fmap) 1056 goto force_ro; 1057 1058 /* We don't support blocks that require erasing before overwrite */ 1059 if (ftable || fmap) 1060 goto force_ro; 1061 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1062 if (utable && umap) 1063 goto force_ro; 1064 1065 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1066 map->s_partition_type == UDF_VIRTUAL_MAP20) 1067 goto force_ro; 1068 1069 return 0; 1070 force_ro: 1071 if (!sb_rdonly(sb)) 1072 return -EACCES; 1073 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1074 return 0; 1075 } 1076 1077 static int udf_fill_partdesc_info(struct super_block *sb, 1078 struct partitionDesc *p, int p_index) 1079 { 1080 struct udf_part_map *map; 1081 struct udf_sb_info *sbi = UDF_SB(sb); 1082 struct partitionHeaderDesc *phd; 1083 int err; 1084 1085 map = &sbi->s_partmaps[p_index]; 1086 1087 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1088 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1089 1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1091 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1093 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1094 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1095 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1097 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1098 1099 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1100 p_index, map->s_partition_type, 1101 map->s_partition_root, map->s_partition_len); 1102 1103 err = check_partition_desc(sb, p, map); 1104 if (err) 1105 return err; 1106 1107 /* 1108 * Skip loading allocation info it we cannot ever write to the fs. 1109 * This is a correctness thing as we may have decided to force ro mount 1110 * to avoid allocation info we don't support. 1111 */ 1112 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1113 return 0; 1114 1115 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1116 if (phd->unallocSpaceTable.extLength) { 1117 struct kernel_lb_addr loc = { 1118 .logicalBlockNum = le32_to_cpu( 1119 phd->unallocSpaceTable.extPosition), 1120 .partitionReferenceNum = p_index, 1121 }; 1122 struct inode *inode; 1123 1124 inode = udf_iget_special(sb, &loc); 1125 if (IS_ERR(inode)) { 1126 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1127 p_index); 1128 return PTR_ERR(inode); 1129 } 1130 map->s_uspace.s_table = inode; 1131 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1132 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1133 p_index, map->s_uspace.s_table->i_ino); 1134 } 1135 1136 if (phd->unallocSpaceBitmap.extLength) { 1137 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1138 if (!bitmap) 1139 return -ENOMEM; 1140 map->s_uspace.s_bitmap = bitmap; 1141 bitmap->s_extPosition = le32_to_cpu( 1142 phd->unallocSpaceBitmap.extPosition); 1143 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1144 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1145 p_index, bitmap->s_extPosition); 1146 } 1147 1148 return 0; 1149 } 1150 1151 static void udf_find_vat_block(struct super_block *sb, int p_index, 1152 int type1_index, sector_t start_block) 1153 { 1154 struct udf_sb_info *sbi = UDF_SB(sb); 1155 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1156 sector_t vat_block; 1157 struct kernel_lb_addr ino; 1158 struct inode *inode; 1159 1160 /* 1161 * VAT file entry is in the last recorded block. Some broken disks have 1162 * it a few blocks before so try a bit harder... 1163 */ 1164 ino.partitionReferenceNum = type1_index; 1165 for (vat_block = start_block; 1166 vat_block >= map->s_partition_root && 1167 vat_block >= start_block - 3; vat_block--) { 1168 ino.logicalBlockNum = vat_block - map->s_partition_root; 1169 inode = udf_iget_special(sb, &ino); 1170 if (!IS_ERR(inode)) { 1171 sbi->s_vat_inode = inode; 1172 break; 1173 } 1174 } 1175 } 1176 1177 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1178 { 1179 struct udf_sb_info *sbi = UDF_SB(sb); 1180 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1181 struct buffer_head *bh = NULL; 1182 struct udf_inode_info *vati; 1183 uint32_t pos; 1184 struct virtualAllocationTable20 *vat20; 1185 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1186 sb->s_blocksize_bits; 1187 1188 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1189 if (!sbi->s_vat_inode && 1190 sbi->s_last_block != blocks - 1) { 1191 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1192 (unsigned long)sbi->s_last_block, 1193 (unsigned long)blocks - 1); 1194 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1195 } 1196 if (!sbi->s_vat_inode) 1197 return -EIO; 1198 1199 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1200 map->s_type_specific.s_virtual.s_start_offset = 0; 1201 map->s_type_specific.s_virtual.s_num_entries = 1202 (sbi->s_vat_inode->i_size - 36) >> 2; 1203 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1204 vati = UDF_I(sbi->s_vat_inode); 1205 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1206 pos = udf_block_map(sbi->s_vat_inode, 0); 1207 bh = sb_bread(sb, pos); 1208 if (!bh) 1209 return -EIO; 1210 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1211 } else { 1212 vat20 = (struct virtualAllocationTable20 *) 1213 vati->i_ext.i_data; 1214 } 1215 1216 map->s_type_specific.s_virtual.s_start_offset = 1217 le16_to_cpu(vat20->lengthHeader); 1218 map->s_type_specific.s_virtual.s_num_entries = 1219 (sbi->s_vat_inode->i_size - 1220 map->s_type_specific.s_virtual. 1221 s_start_offset) >> 2; 1222 brelse(bh); 1223 } 1224 return 0; 1225 } 1226 1227 /* 1228 * Load partition descriptor block 1229 * 1230 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1231 * sequence. 1232 */ 1233 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1234 { 1235 struct buffer_head *bh; 1236 struct partitionDesc *p; 1237 struct udf_part_map *map; 1238 struct udf_sb_info *sbi = UDF_SB(sb); 1239 int i, type1_idx; 1240 uint16_t partitionNumber; 1241 uint16_t ident; 1242 int ret; 1243 1244 bh = udf_read_tagged(sb, block, block, &ident); 1245 if (!bh) 1246 return -EAGAIN; 1247 if (ident != TAG_IDENT_PD) { 1248 ret = 0; 1249 goto out_bh; 1250 } 1251 1252 p = (struct partitionDesc *)bh->b_data; 1253 partitionNumber = le16_to_cpu(p->partitionNumber); 1254 1255 /* First scan for TYPE1 and SPARABLE partitions */ 1256 for (i = 0; i < sbi->s_partitions; i++) { 1257 map = &sbi->s_partmaps[i]; 1258 udf_debug("Searching map: (%u == %u)\n", 1259 map->s_partition_num, partitionNumber); 1260 if (map->s_partition_num == partitionNumber && 1261 (map->s_partition_type == UDF_TYPE1_MAP15 || 1262 map->s_partition_type == UDF_SPARABLE_MAP15)) 1263 break; 1264 } 1265 1266 if (i >= sbi->s_partitions) { 1267 udf_debug("Partition (%u) not found in partition map\n", 1268 partitionNumber); 1269 ret = 0; 1270 goto out_bh; 1271 } 1272 1273 ret = udf_fill_partdesc_info(sb, p, i); 1274 if (ret < 0) 1275 goto out_bh; 1276 1277 /* 1278 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1279 * PHYSICAL partitions are already set up 1280 */ 1281 type1_idx = i; 1282 map = NULL; /* supress 'maybe used uninitialized' warning */ 1283 for (i = 0; i < sbi->s_partitions; i++) { 1284 map = &sbi->s_partmaps[i]; 1285 1286 if (map->s_partition_num == partitionNumber && 1287 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1288 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1289 map->s_partition_type == UDF_METADATA_MAP25)) 1290 break; 1291 } 1292 1293 if (i >= sbi->s_partitions) { 1294 ret = 0; 1295 goto out_bh; 1296 } 1297 1298 ret = udf_fill_partdesc_info(sb, p, i); 1299 if (ret < 0) 1300 goto out_bh; 1301 1302 if (map->s_partition_type == UDF_METADATA_MAP25) { 1303 ret = udf_load_metadata_files(sb, i, type1_idx); 1304 if (ret < 0) { 1305 udf_err(sb, "error loading MetaData partition map %d\n", 1306 i); 1307 goto out_bh; 1308 } 1309 } else { 1310 /* 1311 * If we have a partition with virtual map, we don't handle 1312 * writing to it (we overwrite blocks instead of relocating 1313 * them). 1314 */ 1315 if (!sb_rdonly(sb)) { 1316 ret = -EACCES; 1317 goto out_bh; 1318 } 1319 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1320 ret = udf_load_vat(sb, i, type1_idx); 1321 if (ret < 0) 1322 goto out_bh; 1323 } 1324 ret = 0; 1325 out_bh: 1326 /* In case loading failed, we handle cleanup in udf_fill_super */ 1327 brelse(bh); 1328 return ret; 1329 } 1330 1331 static int udf_load_sparable_map(struct super_block *sb, 1332 struct udf_part_map *map, 1333 struct sparablePartitionMap *spm) 1334 { 1335 uint32_t loc; 1336 uint16_t ident; 1337 struct sparingTable *st; 1338 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1339 int i; 1340 struct buffer_head *bh; 1341 1342 map->s_partition_type = UDF_SPARABLE_MAP15; 1343 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1344 if (!is_power_of_2(sdata->s_packet_len)) { 1345 udf_err(sb, "error loading logical volume descriptor: " 1346 "Invalid packet length %u\n", 1347 (unsigned)sdata->s_packet_len); 1348 return -EIO; 1349 } 1350 if (spm->numSparingTables > 4) { 1351 udf_err(sb, "error loading logical volume descriptor: " 1352 "Too many sparing tables (%d)\n", 1353 (int)spm->numSparingTables); 1354 return -EIO; 1355 } 1356 1357 for (i = 0; i < spm->numSparingTables; i++) { 1358 loc = le32_to_cpu(spm->locSparingTable[i]); 1359 bh = udf_read_tagged(sb, loc, loc, &ident); 1360 if (!bh) 1361 continue; 1362 1363 st = (struct sparingTable *)bh->b_data; 1364 if (ident != 0 || 1365 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1366 strlen(UDF_ID_SPARING)) || 1367 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1368 sb->s_blocksize) { 1369 brelse(bh); 1370 continue; 1371 } 1372 1373 sdata->s_spar_map[i] = bh; 1374 } 1375 map->s_partition_func = udf_get_pblock_spar15; 1376 return 0; 1377 } 1378 1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1380 struct kernel_lb_addr *fileset) 1381 { 1382 struct logicalVolDesc *lvd; 1383 int i, offset; 1384 uint8_t type; 1385 struct udf_sb_info *sbi = UDF_SB(sb); 1386 struct genericPartitionMap *gpm; 1387 uint16_t ident; 1388 struct buffer_head *bh; 1389 unsigned int table_len; 1390 int ret; 1391 1392 bh = udf_read_tagged(sb, block, block, &ident); 1393 if (!bh) 1394 return -EAGAIN; 1395 BUG_ON(ident != TAG_IDENT_LVD); 1396 lvd = (struct logicalVolDesc *)bh->b_data; 1397 table_len = le32_to_cpu(lvd->mapTableLength); 1398 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1399 udf_err(sb, "error loading logical volume descriptor: " 1400 "Partition table too long (%u > %lu)\n", table_len, 1401 sb->s_blocksize - sizeof(*lvd)); 1402 ret = -EIO; 1403 goto out_bh; 1404 } 1405 1406 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1407 "logical volume"); 1408 if (ret) 1409 goto out_bh; 1410 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1411 if (ret) 1412 goto out_bh; 1413 1414 for (i = 0, offset = 0; 1415 i < sbi->s_partitions && offset < table_len; 1416 i++, offset += gpm->partitionMapLength) { 1417 struct udf_part_map *map = &sbi->s_partmaps[i]; 1418 gpm = (struct genericPartitionMap *) 1419 &(lvd->partitionMaps[offset]); 1420 type = gpm->partitionMapType; 1421 if (type == 1) { 1422 struct genericPartitionMap1 *gpm1 = 1423 (struct genericPartitionMap1 *)gpm; 1424 map->s_partition_type = UDF_TYPE1_MAP15; 1425 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1426 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1427 map->s_partition_func = NULL; 1428 } else if (type == 2) { 1429 struct udfPartitionMap2 *upm2 = 1430 (struct udfPartitionMap2 *)gpm; 1431 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1432 strlen(UDF_ID_VIRTUAL))) { 1433 u16 suf = 1434 le16_to_cpu(((__le16 *)upm2->partIdent. 1435 identSuffix)[0]); 1436 if (suf < 0x0200) { 1437 map->s_partition_type = 1438 UDF_VIRTUAL_MAP15; 1439 map->s_partition_func = 1440 udf_get_pblock_virt15; 1441 } else { 1442 map->s_partition_type = 1443 UDF_VIRTUAL_MAP20; 1444 map->s_partition_func = 1445 udf_get_pblock_virt20; 1446 } 1447 } else if (!strncmp(upm2->partIdent.ident, 1448 UDF_ID_SPARABLE, 1449 strlen(UDF_ID_SPARABLE))) { 1450 ret = udf_load_sparable_map(sb, map, 1451 (struct sparablePartitionMap *)gpm); 1452 if (ret < 0) 1453 goto out_bh; 1454 } else if (!strncmp(upm2->partIdent.ident, 1455 UDF_ID_METADATA, 1456 strlen(UDF_ID_METADATA))) { 1457 struct udf_meta_data *mdata = 1458 &map->s_type_specific.s_metadata; 1459 struct metadataPartitionMap *mdm = 1460 (struct metadataPartitionMap *) 1461 &(lvd->partitionMaps[offset]); 1462 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1463 i, type, UDF_ID_METADATA); 1464 1465 map->s_partition_type = UDF_METADATA_MAP25; 1466 map->s_partition_func = udf_get_pblock_meta25; 1467 1468 mdata->s_meta_file_loc = 1469 le32_to_cpu(mdm->metadataFileLoc); 1470 mdata->s_mirror_file_loc = 1471 le32_to_cpu(mdm->metadataMirrorFileLoc); 1472 mdata->s_bitmap_file_loc = 1473 le32_to_cpu(mdm->metadataBitmapFileLoc); 1474 mdata->s_alloc_unit_size = 1475 le32_to_cpu(mdm->allocUnitSize); 1476 mdata->s_align_unit_size = 1477 le16_to_cpu(mdm->alignUnitSize); 1478 if (mdm->flags & 0x01) 1479 mdata->s_flags |= MF_DUPLICATE_MD; 1480 1481 udf_debug("Metadata Ident suffix=0x%x\n", 1482 le16_to_cpu(*(__le16 *) 1483 mdm->partIdent.identSuffix)); 1484 udf_debug("Metadata part num=%u\n", 1485 le16_to_cpu(mdm->partitionNum)); 1486 udf_debug("Metadata part alloc unit size=%u\n", 1487 le32_to_cpu(mdm->allocUnitSize)); 1488 udf_debug("Metadata file loc=%u\n", 1489 le32_to_cpu(mdm->metadataFileLoc)); 1490 udf_debug("Mirror file loc=%u\n", 1491 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1492 udf_debug("Bitmap file loc=%u\n", 1493 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1494 udf_debug("Flags: %d %u\n", 1495 mdata->s_flags, mdm->flags); 1496 } else { 1497 udf_debug("Unknown ident: %s\n", 1498 upm2->partIdent.ident); 1499 continue; 1500 } 1501 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1502 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1503 } 1504 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1505 i, map->s_partition_num, type, map->s_volumeseqnum); 1506 } 1507 1508 if (fileset) { 1509 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1510 1511 *fileset = lelb_to_cpu(la->extLocation); 1512 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1513 fileset->logicalBlockNum, 1514 fileset->partitionReferenceNum); 1515 } 1516 if (lvd->integritySeqExt.extLength) 1517 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1518 ret = 0; 1519 1520 if (!sbi->s_lvid_bh) { 1521 /* We can't generate unique IDs without a valid LVID */ 1522 if (sb_rdonly(sb)) { 1523 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1524 } else { 1525 udf_warn(sb, "Damaged or missing LVID, forcing " 1526 "readonly mount\n"); 1527 ret = -EACCES; 1528 } 1529 } 1530 out_bh: 1531 brelse(bh); 1532 return ret; 1533 } 1534 1535 /* 1536 * Find the prevailing Logical Volume Integrity Descriptor. 1537 */ 1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1539 { 1540 struct buffer_head *bh, *final_bh; 1541 uint16_t ident; 1542 struct udf_sb_info *sbi = UDF_SB(sb); 1543 struct logicalVolIntegrityDesc *lvid; 1544 int indirections = 0; 1545 1546 while (++indirections <= UDF_MAX_LVID_NESTING) { 1547 final_bh = NULL; 1548 while (loc.extLength > 0 && 1549 (bh = udf_read_tagged(sb, loc.extLocation, 1550 loc.extLocation, &ident))) { 1551 if (ident != TAG_IDENT_LVID) { 1552 brelse(bh); 1553 break; 1554 } 1555 1556 brelse(final_bh); 1557 final_bh = bh; 1558 1559 loc.extLength -= sb->s_blocksize; 1560 loc.extLocation++; 1561 } 1562 1563 if (!final_bh) 1564 return; 1565 1566 brelse(sbi->s_lvid_bh); 1567 sbi->s_lvid_bh = final_bh; 1568 1569 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1570 if (lvid->nextIntegrityExt.extLength == 0) 1571 return; 1572 1573 loc = leea_to_cpu(lvid->nextIntegrityExt); 1574 } 1575 1576 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1577 UDF_MAX_LVID_NESTING); 1578 brelse(sbi->s_lvid_bh); 1579 sbi->s_lvid_bh = NULL; 1580 } 1581 1582 /* 1583 * Step for reallocation of table of partition descriptor sequence numbers. 1584 * Must be power of 2. 1585 */ 1586 #define PART_DESC_ALLOC_STEP 32 1587 1588 struct part_desc_seq_scan_data { 1589 struct udf_vds_record rec; 1590 u32 partnum; 1591 }; 1592 1593 struct desc_seq_scan_data { 1594 struct udf_vds_record vds[VDS_POS_LENGTH]; 1595 unsigned int size_part_descs; 1596 unsigned int num_part_descs; 1597 struct part_desc_seq_scan_data *part_descs_loc; 1598 }; 1599 1600 static struct udf_vds_record *handle_partition_descriptor( 1601 struct buffer_head *bh, 1602 struct desc_seq_scan_data *data) 1603 { 1604 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1605 int partnum; 1606 int i; 1607 1608 partnum = le16_to_cpu(desc->partitionNumber); 1609 for (i = 0; i < data->num_part_descs; i++) 1610 if (partnum == data->part_descs_loc[i].partnum) 1611 return &(data->part_descs_loc[i].rec); 1612 if (data->num_part_descs >= data->size_part_descs) { 1613 struct part_desc_seq_scan_data *new_loc; 1614 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1615 1616 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1617 if (!new_loc) 1618 return ERR_PTR(-ENOMEM); 1619 memcpy(new_loc, data->part_descs_loc, 1620 data->size_part_descs * sizeof(*new_loc)); 1621 kfree(data->part_descs_loc); 1622 data->part_descs_loc = new_loc; 1623 data->size_part_descs = new_size; 1624 } 1625 return &(data->part_descs_loc[data->num_part_descs++].rec); 1626 } 1627 1628 1629 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1630 struct buffer_head *bh, struct desc_seq_scan_data *data) 1631 { 1632 switch (ident) { 1633 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1634 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1635 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1636 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1637 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1638 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1639 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1640 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1641 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1642 return handle_partition_descriptor(bh, data); 1643 } 1644 return NULL; 1645 } 1646 1647 /* 1648 * Process a main/reserve volume descriptor sequence. 1649 * @block First block of first extent of the sequence. 1650 * @lastblock Lastblock of first extent of the sequence. 1651 * @fileset There we store extent containing root fileset 1652 * 1653 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1654 * sequence 1655 */ 1656 static noinline int udf_process_sequence( 1657 struct super_block *sb, 1658 sector_t block, sector_t lastblock, 1659 struct kernel_lb_addr *fileset) 1660 { 1661 struct buffer_head *bh = NULL; 1662 struct udf_vds_record *curr; 1663 struct generic_desc *gd; 1664 struct volDescPtr *vdp; 1665 bool done = false; 1666 uint32_t vdsn; 1667 uint16_t ident; 1668 int ret; 1669 unsigned int indirections = 0; 1670 struct desc_seq_scan_data data; 1671 unsigned int i; 1672 1673 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1674 data.size_part_descs = PART_DESC_ALLOC_STEP; 1675 data.num_part_descs = 0; 1676 data.part_descs_loc = kcalloc(data.size_part_descs, 1677 sizeof(*data.part_descs_loc), 1678 GFP_KERNEL); 1679 if (!data.part_descs_loc) 1680 return -ENOMEM; 1681 1682 /* 1683 * Read the main descriptor sequence and find which descriptors 1684 * are in it. 1685 */ 1686 for (; (!done && block <= lastblock); block++) { 1687 bh = udf_read_tagged(sb, block, block, &ident); 1688 if (!bh) 1689 break; 1690 1691 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1692 gd = (struct generic_desc *)bh->b_data; 1693 vdsn = le32_to_cpu(gd->volDescSeqNum); 1694 switch (ident) { 1695 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1696 if (++indirections > UDF_MAX_TD_NESTING) { 1697 udf_err(sb, "too many Volume Descriptor " 1698 "Pointers (max %u supported)\n", 1699 UDF_MAX_TD_NESTING); 1700 brelse(bh); 1701 return -EIO; 1702 } 1703 1704 vdp = (struct volDescPtr *)bh->b_data; 1705 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1706 lastblock = le32_to_cpu( 1707 vdp->nextVolDescSeqExt.extLength) >> 1708 sb->s_blocksize_bits; 1709 lastblock += block - 1; 1710 /* For loop is going to increment 'block' again */ 1711 block--; 1712 break; 1713 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1714 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1715 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1716 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1717 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1718 curr = get_volume_descriptor_record(ident, bh, &data); 1719 if (IS_ERR(curr)) { 1720 brelse(bh); 1721 return PTR_ERR(curr); 1722 } 1723 /* Descriptor we don't care about? */ 1724 if (!curr) 1725 break; 1726 if (vdsn >= curr->volDescSeqNum) { 1727 curr->volDescSeqNum = vdsn; 1728 curr->block = block; 1729 } 1730 break; 1731 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1732 done = true; 1733 break; 1734 } 1735 brelse(bh); 1736 } 1737 /* 1738 * Now read interesting descriptors again and process them 1739 * in a suitable order 1740 */ 1741 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1742 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1743 return -EAGAIN; 1744 } 1745 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1746 if (ret < 0) 1747 return ret; 1748 1749 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1750 ret = udf_load_logicalvol(sb, 1751 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1752 fileset); 1753 if (ret < 0) 1754 return ret; 1755 } 1756 1757 /* Now handle prevailing Partition Descriptors */ 1758 for (i = 0; i < data.num_part_descs; i++) { 1759 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1760 if (ret < 0) 1761 return ret; 1762 } 1763 1764 return 0; 1765 } 1766 1767 /* 1768 * Load Volume Descriptor Sequence described by anchor in bh 1769 * 1770 * Returns <0 on error, 0 on success 1771 */ 1772 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1773 struct kernel_lb_addr *fileset) 1774 { 1775 struct anchorVolDescPtr *anchor; 1776 sector_t main_s, main_e, reserve_s, reserve_e; 1777 int ret; 1778 1779 anchor = (struct anchorVolDescPtr *)bh->b_data; 1780 1781 /* Locate the main sequence */ 1782 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1783 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1784 main_e = main_e >> sb->s_blocksize_bits; 1785 main_e += main_s - 1; 1786 1787 /* Locate the reserve sequence */ 1788 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1789 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1790 reserve_e = reserve_e >> sb->s_blocksize_bits; 1791 reserve_e += reserve_s - 1; 1792 1793 /* Process the main & reserve sequences */ 1794 /* responsible for finding the PartitionDesc(s) */ 1795 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1796 if (ret != -EAGAIN) 1797 return ret; 1798 udf_sb_free_partitions(sb); 1799 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1800 if (ret < 0) { 1801 udf_sb_free_partitions(sb); 1802 /* No sequence was OK, return -EIO */ 1803 if (ret == -EAGAIN) 1804 ret = -EIO; 1805 } 1806 return ret; 1807 } 1808 1809 /* 1810 * Check whether there is an anchor block in the given block and 1811 * load Volume Descriptor Sequence if so. 1812 * 1813 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1814 * block 1815 */ 1816 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1817 struct kernel_lb_addr *fileset) 1818 { 1819 struct buffer_head *bh; 1820 uint16_t ident; 1821 int ret; 1822 1823 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1824 udf_fixed_to_variable(block) >= 1825 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1826 return -EAGAIN; 1827 1828 bh = udf_read_tagged(sb, block, block, &ident); 1829 if (!bh) 1830 return -EAGAIN; 1831 if (ident != TAG_IDENT_AVDP) { 1832 brelse(bh); 1833 return -EAGAIN; 1834 } 1835 ret = udf_load_sequence(sb, bh, fileset); 1836 brelse(bh); 1837 return ret; 1838 } 1839 1840 /* 1841 * Search for an anchor volume descriptor pointer. 1842 * 1843 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1844 * of anchors. 1845 */ 1846 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1847 struct kernel_lb_addr *fileset) 1848 { 1849 sector_t last[6]; 1850 int i; 1851 struct udf_sb_info *sbi = UDF_SB(sb); 1852 int last_count = 0; 1853 int ret; 1854 1855 /* First try user provided anchor */ 1856 if (sbi->s_anchor) { 1857 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1858 if (ret != -EAGAIN) 1859 return ret; 1860 } 1861 /* 1862 * according to spec, anchor is in either: 1863 * block 256 1864 * lastblock-256 1865 * lastblock 1866 * however, if the disc isn't closed, it could be 512. 1867 */ 1868 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1869 if (ret != -EAGAIN) 1870 return ret; 1871 /* 1872 * The trouble is which block is the last one. Drives often misreport 1873 * this so we try various possibilities. 1874 */ 1875 last[last_count++] = *lastblock; 1876 if (*lastblock >= 1) 1877 last[last_count++] = *lastblock - 1; 1878 last[last_count++] = *lastblock + 1; 1879 if (*lastblock >= 2) 1880 last[last_count++] = *lastblock - 2; 1881 if (*lastblock >= 150) 1882 last[last_count++] = *lastblock - 150; 1883 if (*lastblock >= 152) 1884 last[last_count++] = *lastblock - 152; 1885 1886 for (i = 0; i < last_count; i++) { 1887 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1888 sb->s_blocksize_bits) 1889 continue; 1890 ret = udf_check_anchor_block(sb, last[i], fileset); 1891 if (ret != -EAGAIN) { 1892 if (!ret) 1893 *lastblock = last[i]; 1894 return ret; 1895 } 1896 if (last[i] < 256) 1897 continue; 1898 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1899 if (ret != -EAGAIN) { 1900 if (!ret) 1901 *lastblock = last[i]; 1902 return ret; 1903 } 1904 } 1905 1906 /* Finally try block 512 in case media is open */ 1907 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1908 } 1909 1910 /* 1911 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1912 * area specified by it. The function expects sbi->s_lastblock to be the last 1913 * block on the media. 1914 * 1915 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1916 * was not found. 1917 */ 1918 static int udf_find_anchor(struct super_block *sb, 1919 struct kernel_lb_addr *fileset) 1920 { 1921 struct udf_sb_info *sbi = UDF_SB(sb); 1922 sector_t lastblock = sbi->s_last_block; 1923 int ret; 1924 1925 ret = udf_scan_anchors(sb, &lastblock, fileset); 1926 if (ret != -EAGAIN) 1927 goto out; 1928 1929 /* No anchor found? Try VARCONV conversion of block numbers */ 1930 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1931 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1932 /* Firstly, we try to not convert number of the last block */ 1933 ret = udf_scan_anchors(sb, &lastblock, fileset); 1934 if (ret != -EAGAIN) 1935 goto out; 1936 1937 lastblock = sbi->s_last_block; 1938 /* Secondly, we try with converted number of the last block */ 1939 ret = udf_scan_anchors(sb, &lastblock, fileset); 1940 if (ret < 0) { 1941 /* VARCONV didn't help. Clear it. */ 1942 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1943 } 1944 out: 1945 if (ret == 0) 1946 sbi->s_last_block = lastblock; 1947 return ret; 1948 } 1949 1950 /* 1951 * Check Volume Structure Descriptor, find Anchor block and load Volume 1952 * Descriptor Sequence. 1953 * 1954 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1955 * block was not found. 1956 */ 1957 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1958 int silent, struct kernel_lb_addr *fileset) 1959 { 1960 struct udf_sb_info *sbi = UDF_SB(sb); 1961 int nsr = 0; 1962 int ret; 1963 1964 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1965 if (!silent) 1966 udf_warn(sb, "Bad block size\n"); 1967 return -EINVAL; 1968 } 1969 sbi->s_last_block = uopt->lastblock; 1970 if (!uopt->novrs) { 1971 /* Check that it is NSR02 compliant */ 1972 nsr = udf_check_vsd(sb); 1973 if (!nsr) { 1974 if (!silent) 1975 udf_warn(sb, "No VRS found\n"); 1976 return -EINVAL; 1977 } 1978 if (nsr == -1) 1979 udf_debug("Failed to read sector at offset %d. " 1980 "Assuming open disc. Skipping validity " 1981 "check\n", VSD_FIRST_SECTOR_OFFSET); 1982 if (!sbi->s_last_block) 1983 sbi->s_last_block = udf_get_last_block(sb); 1984 } else { 1985 udf_debug("Validity check skipped because of novrs option\n"); 1986 } 1987 1988 /* Look for anchor block and load Volume Descriptor Sequence */ 1989 sbi->s_anchor = uopt->anchor; 1990 ret = udf_find_anchor(sb, fileset); 1991 if (ret < 0) { 1992 if (!silent && ret == -EAGAIN) 1993 udf_warn(sb, "No anchor found\n"); 1994 return ret; 1995 } 1996 return 0; 1997 } 1998 1999 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 2000 { 2001 struct timespec64 ts; 2002 2003 ktime_get_real_ts64(&ts); 2004 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2005 lvid->descTag.descCRC = cpu_to_le16( 2006 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2007 le16_to_cpu(lvid->descTag.descCRCLength))); 2008 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2009 } 2010 2011 static void udf_open_lvid(struct super_block *sb) 2012 { 2013 struct udf_sb_info *sbi = UDF_SB(sb); 2014 struct buffer_head *bh = sbi->s_lvid_bh; 2015 struct logicalVolIntegrityDesc *lvid; 2016 struct logicalVolIntegrityDescImpUse *lvidiu; 2017 2018 if (!bh) 2019 return; 2020 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2021 lvidiu = udf_sb_lvidiu(sb); 2022 if (!lvidiu) 2023 return; 2024 2025 mutex_lock(&sbi->s_alloc_mutex); 2026 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2027 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2028 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2029 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2030 else 2031 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2032 2033 udf_finalize_lvid(lvid); 2034 mark_buffer_dirty(bh); 2035 sbi->s_lvid_dirty = 0; 2036 mutex_unlock(&sbi->s_alloc_mutex); 2037 /* Make opening of filesystem visible on the media immediately */ 2038 sync_dirty_buffer(bh); 2039 } 2040 2041 static void udf_close_lvid(struct super_block *sb) 2042 { 2043 struct udf_sb_info *sbi = UDF_SB(sb); 2044 struct buffer_head *bh = sbi->s_lvid_bh; 2045 struct logicalVolIntegrityDesc *lvid; 2046 struct logicalVolIntegrityDescImpUse *lvidiu; 2047 2048 if (!bh) 2049 return; 2050 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2051 lvidiu = udf_sb_lvidiu(sb); 2052 if (!lvidiu) 2053 return; 2054 2055 mutex_lock(&sbi->s_alloc_mutex); 2056 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2057 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2058 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2059 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2060 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2061 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2062 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2063 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2064 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2065 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2066 2067 /* 2068 * We set buffer uptodate unconditionally here to avoid spurious 2069 * warnings from mark_buffer_dirty() when previous EIO has marked 2070 * the buffer as !uptodate 2071 */ 2072 set_buffer_uptodate(bh); 2073 udf_finalize_lvid(lvid); 2074 mark_buffer_dirty(bh); 2075 sbi->s_lvid_dirty = 0; 2076 mutex_unlock(&sbi->s_alloc_mutex); 2077 /* Make closing of filesystem visible on the media immediately */ 2078 sync_dirty_buffer(bh); 2079 } 2080 2081 u64 lvid_get_unique_id(struct super_block *sb) 2082 { 2083 struct buffer_head *bh; 2084 struct udf_sb_info *sbi = UDF_SB(sb); 2085 struct logicalVolIntegrityDesc *lvid; 2086 struct logicalVolHeaderDesc *lvhd; 2087 u64 uniqueID; 2088 u64 ret; 2089 2090 bh = sbi->s_lvid_bh; 2091 if (!bh) 2092 return 0; 2093 2094 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2095 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2096 2097 mutex_lock(&sbi->s_alloc_mutex); 2098 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2099 if (!(++uniqueID & 0xFFFFFFFF)) 2100 uniqueID += 16; 2101 lvhd->uniqueID = cpu_to_le64(uniqueID); 2102 udf_updated_lvid(sb); 2103 mutex_unlock(&sbi->s_alloc_mutex); 2104 2105 return ret; 2106 } 2107 2108 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2109 { 2110 int ret = -EINVAL; 2111 struct inode *inode = NULL; 2112 struct udf_options uopt; 2113 struct kernel_lb_addr rootdir, fileset; 2114 struct udf_sb_info *sbi; 2115 bool lvid_open = false; 2116 2117 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2118 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2119 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2120 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2121 uopt.umask = 0; 2122 uopt.fmode = UDF_INVALID_MODE; 2123 uopt.dmode = UDF_INVALID_MODE; 2124 uopt.nls_map = NULL; 2125 2126 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2127 if (!sbi) 2128 return -ENOMEM; 2129 2130 sb->s_fs_info = sbi; 2131 2132 mutex_init(&sbi->s_alloc_mutex); 2133 2134 if (!udf_parse_options((char *)options, &uopt, false)) 2135 goto parse_options_failure; 2136 2137 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2138 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2139 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2140 goto parse_options_failure; 2141 } 2142 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2143 uopt.nls_map = load_nls_default(); 2144 if (!uopt.nls_map) 2145 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2146 else 2147 udf_debug("Using default NLS map\n"); 2148 } 2149 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2150 uopt.flags |= (1 << UDF_FLAG_UTF8); 2151 2152 fileset.logicalBlockNum = 0xFFFFFFFF; 2153 fileset.partitionReferenceNum = 0xFFFF; 2154 2155 sbi->s_flags = uopt.flags; 2156 sbi->s_uid = uopt.uid; 2157 sbi->s_gid = uopt.gid; 2158 sbi->s_umask = uopt.umask; 2159 sbi->s_fmode = uopt.fmode; 2160 sbi->s_dmode = uopt.dmode; 2161 sbi->s_nls_map = uopt.nls_map; 2162 rwlock_init(&sbi->s_cred_lock); 2163 2164 if (uopt.session == 0xFFFFFFFF) 2165 sbi->s_session = udf_get_last_session(sb); 2166 else 2167 sbi->s_session = uopt.session; 2168 2169 udf_debug("Multi-session=%d\n", sbi->s_session); 2170 2171 /* Fill in the rest of the superblock */ 2172 sb->s_op = &udf_sb_ops; 2173 sb->s_export_op = &udf_export_ops; 2174 2175 sb->s_magic = UDF_SUPER_MAGIC; 2176 sb->s_time_gran = 1000; 2177 2178 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2179 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2180 } else { 2181 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2182 while (uopt.blocksize <= 4096) { 2183 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2184 if (ret < 0) { 2185 if (!silent && ret != -EACCES) { 2186 pr_notice("Scanning with blocksize %u failed\n", 2187 uopt.blocksize); 2188 } 2189 brelse(sbi->s_lvid_bh); 2190 sbi->s_lvid_bh = NULL; 2191 /* 2192 * EACCES is special - we want to propagate to 2193 * upper layers that we cannot handle RW mount. 2194 */ 2195 if (ret == -EACCES) 2196 break; 2197 } else 2198 break; 2199 2200 uopt.blocksize <<= 1; 2201 } 2202 } 2203 if (ret < 0) { 2204 if (ret == -EAGAIN) { 2205 udf_warn(sb, "No partition found (1)\n"); 2206 ret = -EINVAL; 2207 } 2208 goto error_out; 2209 } 2210 2211 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2212 2213 if (sbi->s_lvid_bh) { 2214 struct logicalVolIntegrityDescImpUse *lvidiu = 2215 udf_sb_lvidiu(sb); 2216 uint16_t minUDFReadRev; 2217 uint16_t minUDFWriteRev; 2218 2219 if (!lvidiu) { 2220 ret = -EINVAL; 2221 goto error_out; 2222 } 2223 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2224 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2225 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2226 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2227 minUDFReadRev, 2228 UDF_MAX_READ_VERSION); 2229 ret = -EINVAL; 2230 goto error_out; 2231 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2232 if (!sb_rdonly(sb)) { 2233 ret = -EACCES; 2234 goto error_out; 2235 } 2236 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2237 } 2238 2239 sbi->s_udfrev = minUDFWriteRev; 2240 2241 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2242 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2243 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2244 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2245 } 2246 2247 if (!sbi->s_partitions) { 2248 udf_warn(sb, "No partition found (2)\n"); 2249 ret = -EINVAL; 2250 goto error_out; 2251 } 2252 2253 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2254 UDF_PART_FLAG_READ_ONLY) { 2255 if (!sb_rdonly(sb)) { 2256 ret = -EACCES; 2257 goto error_out; 2258 } 2259 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2260 } 2261 2262 ret = udf_find_fileset(sb, &fileset, &rootdir); 2263 if (ret < 0) { 2264 udf_warn(sb, "No fileset found\n"); 2265 goto error_out; 2266 } 2267 2268 if (!silent) { 2269 struct timestamp ts; 2270 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2271 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2272 sbi->s_volume_ident, 2273 le16_to_cpu(ts.year), ts.month, ts.day, 2274 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2275 } 2276 if (!sb_rdonly(sb)) { 2277 udf_open_lvid(sb); 2278 lvid_open = true; 2279 } 2280 2281 /* Assign the root inode */ 2282 /* assign inodes by physical block number */ 2283 /* perhaps it's not extensible enough, but for now ... */ 2284 inode = udf_iget(sb, &rootdir); 2285 if (IS_ERR(inode)) { 2286 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2287 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2288 ret = PTR_ERR(inode); 2289 goto error_out; 2290 } 2291 2292 /* Allocate a dentry for the root inode */ 2293 sb->s_root = d_make_root(inode); 2294 if (!sb->s_root) { 2295 udf_err(sb, "Couldn't allocate root dentry\n"); 2296 ret = -ENOMEM; 2297 goto error_out; 2298 } 2299 sb->s_maxbytes = MAX_LFS_FILESIZE; 2300 sb->s_max_links = UDF_MAX_LINKS; 2301 return 0; 2302 2303 error_out: 2304 iput(sbi->s_vat_inode); 2305 parse_options_failure: 2306 if (uopt.nls_map) 2307 unload_nls(uopt.nls_map); 2308 if (lvid_open) 2309 udf_close_lvid(sb); 2310 brelse(sbi->s_lvid_bh); 2311 udf_sb_free_partitions(sb); 2312 kfree(sbi); 2313 sb->s_fs_info = NULL; 2314 2315 return ret; 2316 } 2317 2318 void _udf_err(struct super_block *sb, const char *function, 2319 const char *fmt, ...) 2320 { 2321 struct va_format vaf; 2322 va_list args; 2323 2324 va_start(args, fmt); 2325 2326 vaf.fmt = fmt; 2327 vaf.va = &args; 2328 2329 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2330 2331 va_end(args); 2332 } 2333 2334 void _udf_warn(struct super_block *sb, const char *function, 2335 const char *fmt, ...) 2336 { 2337 struct va_format vaf; 2338 va_list args; 2339 2340 va_start(args, fmt); 2341 2342 vaf.fmt = fmt; 2343 vaf.va = &args; 2344 2345 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2346 2347 va_end(args); 2348 } 2349 2350 static void udf_put_super(struct super_block *sb) 2351 { 2352 struct udf_sb_info *sbi; 2353 2354 sbi = UDF_SB(sb); 2355 2356 iput(sbi->s_vat_inode); 2357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2358 unload_nls(sbi->s_nls_map); 2359 if (!sb_rdonly(sb)) 2360 udf_close_lvid(sb); 2361 brelse(sbi->s_lvid_bh); 2362 udf_sb_free_partitions(sb); 2363 mutex_destroy(&sbi->s_alloc_mutex); 2364 kfree(sb->s_fs_info); 2365 sb->s_fs_info = NULL; 2366 } 2367 2368 static int udf_sync_fs(struct super_block *sb, int wait) 2369 { 2370 struct udf_sb_info *sbi = UDF_SB(sb); 2371 2372 mutex_lock(&sbi->s_alloc_mutex); 2373 if (sbi->s_lvid_dirty) { 2374 struct buffer_head *bh = sbi->s_lvid_bh; 2375 struct logicalVolIntegrityDesc *lvid; 2376 2377 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2378 udf_finalize_lvid(lvid); 2379 2380 /* 2381 * Blockdevice will be synced later so we don't have to submit 2382 * the buffer for IO 2383 */ 2384 mark_buffer_dirty(bh); 2385 sbi->s_lvid_dirty = 0; 2386 } 2387 mutex_unlock(&sbi->s_alloc_mutex); 2388 2389 return 0; 2390 } 2391 2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2393 { 2394 struct super_block *sb = dentry->d_sb; 2395 struct udf_sb_info *sbi = UDF_SB(sb); 2396 struct logicalVolIntegrityDescImpUse *lvidiu; 2397 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2398 2399 lvidiu = udf_sb_lvidiu(sb); 2400 buf->f_type = UDF_SUPER_MAGIC; 2401 buf->f_bsize = sb->s_blocksize; 2402 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2403 buf->f_bfree = udf_count_free(sb); 2404 buf->f_bavail = buf->f_bfree; 2405 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2406 le32_to_cpu(lvidiu->numDirs)) : 0) 2407 + buf->f_bfree; 2408 buf->f_ffree = buf->f_bfree; 2409 buf->f_namelen = UDF_NAME_LEN; 2410 buf->f_fsid.val[0] = (u32)id; 2411 buf->f_fsid.val[1] = (u32)(id >> 32); 2412 2413 return 0; 2414 } 2415 2416 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2417 struct udf_bitmap *bitmap) 2418 { 2419 struct buffer_head *bh = NULL; 2420 unsigned int accum = 0; 2421 int index; 2422 udf_pblk_t block = 0, newblock; 2423 struct kernel_lb_addr loc; 2424 uint32_t bytes; 2425 uint8_t *ptr; 2426 uint16_t ident; 2427 struct spaceBitmapDesc *bm; 2428 2429 loc.logicalBlockNum = bitmap->s_extPosition; 2430 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2431 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2432 2433 if (!bh) { 2434 udf_err(sb, "udf_count_free failed\n"); 2435 goto out; 2436 } else if (ident != TAG_IDENT_SBD) { 2437 brelse(bh); 2438 udf_err(sb, "udf_count_free failed\n"); 2439 goto out; 2440 } 2441 2442 bm = (struct spaceBitmapDesc *)bh->b_data; 2443 bytes = le32_to_cpu(bm->numOfBytes); 2444 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2445 ptr = (uint8_t *)bh->b_data; 2446 2447 while (bytes > 0) { 2448 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2449 accum += bitmap_weight((const unsigned long *)(ptr + index), 2450 cur_bytes * 8); 2451 bytes -= cur_bytes; 2452 if (bytes) { 2453 brelse(bh); 2454 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2455 bh = udf_tread(sb, newblock); 2456 if (!bh) { 2457 udf_debug("read failed\n"); 2458 goto out; 2459 } 2460 index = 0; 2461 ptr = (uint8_t *)bh->b_data; 2462 } 2463 } 2464 brelse(bh); 2465 out: 2466 return accum; 2467 } 2468 2469 static unsigned int udf_count_free_table(struct super_block *sb, 2470 struct inode *table) 2471 { 2472 unsigned int accum = 0; 2473 uint32_t elen; 2474 struct kernel_lb_addr eloc; 2475 int8_t etype; 2476 struct extent_position epos; 2477 2478 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2479 epos.block = UDF_I(table)->i_location; 2480 epos.offset = sizeof(struct unallocSpaceEntry); 2481 epos.bh = NULL; 2482 2483 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2484 accum += (elen >> table->i_sb->s_blocksize_bits); 2485 2486 brelse(epos.bh); 2487 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2488 2489 return accum; 2490 } 2491 2492 static unsigned int udf_count_free(struct super_block *sb) 2493 { 2494 unsigned int accum = 0; 2495 struct udf_sb_info *sbi; 2496 struct udf_part_map *map; 2497 2498 sbi = UDF_SB(sb); 2499 if (sbi->s_lvid_bh) { 2500 struct logicalVolIntegrityDesc *lvid = 2501 (struct logicalVolIntegrityDesc *) 2502 sbi->s_lvid_bh->b_data; 2503 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2504 accum = le32_to_cpu( 2505 lvid->freeSpaceTable[sbi->s_partition]); 2506 if (accum == 0xFFFFFFFF) 2507 accum = 0; 2508 } 2509 } 2510 2511 if (accum) 2512 return accum; 2513 2514 map = &sbi->s_partmaps[sbi->s_partition]; 2515 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2516 accum += udf_count_free_bitmap(sb, 2517 map->s_uspace.s_bitmap); 2518 } 2519 if (accum) 2520 return accum; 2521 2522 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2523 accum += udf_count_free_table(sb, 2524 map->s_uspace.s_table); 2525 } 2526 return accum; 2527 } 2528 2529 MODULE_AUTHOR("Ben Fennema"); 2530 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2531 MODULE_LICENSE("GPL"); 2532 module_init(init_udf_fs) 2533 module_exit(exit_udf_fs) 2534