xref: /openbmc/linux/fs/udf/super.c (revision b6bec26c)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 	struct logicalVolIntegrityDesc *lvid =
100 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 	__u32 offset = number_of_partitions * 2 *
103 				sizeof(uint32_t)/sizeof(uint8_t);
104 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 		      int flags, const char *dev_name, void *data)
110 {
111 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115 	.owner		= THIS_MODULE,
116 	.name		= "udf",
117 	.mount		= udf_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 
122 static struct kmem_cache *udf_inode_cachep;
123 
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 	struct udf_inode_info *ei;
127 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 	if (!ei)
129 		return NULL;
130 
131 	ei->i_unique = 0;
132 	ei->i_lenExtents = 0;
133 	ei->i_next_alloc_block = 0;
134 	ei->i_next_alloc_goal = 0;
135 	ei->i_strat4096 = 0;
136 	init_rwsem(&ei->i_data_sem);
137 
138 	return &ei->vfs_inode;
139 }
140 
141 static void udf_i_callback(struct rcu_head *head)
142 {
143 	struct inode *inode = container_of(head, struct inode, i_rcu);
144 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146 
147 static void udf_destroy_inode(struct inode *inode)
148 {
149 	call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151 
152 static void init_once(void *foo)
153 {
154 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155 
156 	ei->i_ext.i_data = NULL;
157 	inode_init_once(&ei->vfs_inode);
158 }
159 
160 static int init_inodecache(void)
161 {
162 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 					     sizeof(struct udf_inode_info),
164 					     0, (SLAB_RECLAIM_ACCOUNT |
165 						 SLAB_MEM_SPREAD),
166 					     init_once);
167 	if (!udf_inode_cachep)
168 		return -ENOMEM;
169 	return 0;
170 }
171 
172 static void destroy_inodecache(void)
173 {
174 	/*
175 	 * Make sure all delayed rcu free inodes are flushed before we
176 	 * destroy cache.
177 	 */
178 	rcu_barrier();
179 	kmem_cache_destroy(udf_inode_cachep);
180 }
181 
182 /* Superblock operations */
183 static const struct super_operations udf_sb_ops = {
184 	.alloc_inode	= udf_alloc_inode,
185 	.destroy_inode	= udf_destroy_inode,
186 	.write_inode	= udf_write_inode,
187 	.evict_inode	= udf_evict_inode,
188 	.put_super	= udf_put_super,
189 	.sync_fs	= udf_sync_fs,
190 	.statfs		= udf_statfs,
191 	.remount_fs	= udf_remount_fs,
192 	.show_options	= udf_show_options,
193 };
194 
195 struct udf_options {
196 	unsigned char novrs;
197 	unsigned int blocksize;
198 	unsigned int session;
199 	unsigned int lastblock;
200 	unsigned int anchor;
201 	unsigned int volume;
202 	unsigned short partition;
203 	unsigned int fileset;
204 	unsigned int rootdir;
205 	unsigned int flags;
206 	umode_t umask;
207 	kgid_t gid;
208 	kuid_t uid;
209 	umode_t fmode;
210 	umode_t dmode;
211 	struct nls_table *nls_map;
212 };
213 
214 static int __init init_udf_fs(void)
215 {
216 	int err;
217 
218 	err = init_inodecache();
219 	if (err)
220 		goto out1;
221 	err = register_filesystem(&udf_fstype);
222 	if (err)
223 		goto out;
224 
225 	return 0;
226 
227 out:
228 	destroy_inodecache();
229 
230 out1:
231 	return err;
232 }
233 
234 static void __exit exit_udf_fs(void)
235 {
236 	unregister_filesystem(&udf_fstype);
237 	destroy_inodecache();
238 }
239 
240 module_init(init_udf_fs)
241 module_exit(exit_udf_fs)
242 
243 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
244 {
245 	struct udf_sb_info *sbi = UDF_SB(sb);
246 
247 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
248 				  GFP_KERNEL);
249 	if (!sbi->s_partmaps) {
250 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
251 			count);
252 		sbi->s_partitions = 0;
253 		return -ENOMEM;
254 	}
255 
256 	sbi->s_partitions = count;
257 	return 0;
258 }
259 
260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262 	int i;
263 	int nr_groups = bitmap->s_nr_groups;
264 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
265 						nr_groups);
266 
267 	for (i = 0; i < nr_groups; i++)
268 		if (bitmap->s_block_bitmap[i])
269 			brelse(bitmap->s_block_bitmap[i]);
270 
271 	if (size <= PAGE_SIZE)
272 		kfree(bitmap);
273 	else
274 		vfree(bitmap);
275 }
276 
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279 	int i;
280 	struct udf_meta_data *mdata;
281 
282 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 		iput(map->s_uspace.s_table);
284 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
285 		iput(map->s_fspace.s_table);
286 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
287 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
288 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
289 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
290 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
291 		for (i = 0; i < 4; i++)
292 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
293 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
294 		mdata = &map->s_type_specific.s_metadata;
295 		iput(mdata->s_metadata_fe);
296 		mdata->s_metadata_fe = NULL;
297 
298 		iput(mdata->s_mirror_fe);
299 		mdata->s_mirror_fe = NULL;
300 
301 		iput(mdata->s_bitmap_fe);
302 		mdata->s_bitmap_fe = NULL;
303 	}
304 }
305 
306 static void udf_sb_free_partitions(struct super_block *sb)
307 {
308 	struct udf_sb_info *sbi = UDF_SB(sb);
309 	int i;
310 	if (sbi->s_partmaps == NULL)
311 		return;
312 	for (i = 0; i < sbi->s_partitions; i++)
313 		udf_free_partition(&sbi->s_partmaps[i]);
314 	kfree(sbi->s_partmaps);
315 	sbi->s_partmaps = NULL;
316 }
317 
318 static int udf_show_options(struct seq_file *seq, struct dentry *root)
319 {
320 	struct super_block *sb = root->d_sb;
321 	struct udf_sb_info *sbi = UDF_SB(sb);
322 
323 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
324 		seq_puts(seq, ",nostrict");
325 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
326 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
327 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
328 		seq_puts(seq, ",unhide");
329 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
330 		seq_puts(seq, ",undelete");
331 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
332 		seq_puts(seq, ",noadinicb");
333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
334 		seq_puts(seq, ",shortad");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
336 		seq_puts(seq, ",uid=forget");
337 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
338 		seq_puts(seq, ",uid=ignore");
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
340 		seq_puts(seq, ",gid=forget");
341 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
342 		seq_puts(seq, ",gid=ignore");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
344 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
346 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
347 	if (sbi->s_umask != 0)
348 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
349 	if (sbi->s_fmode != UDF_INVALID_MODE)
350 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
351 	if (sbi->s_dmode != UDF_INVALID_MODE)
352 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
353 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
354 		seq_printf(seq, ",session=%u", sbi->s_session);
355 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
356 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
357 	if (sbi->s_anchor != 0)
358 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
359 	/*
360 	 * volume, partition, fileset and rootdir seem to be ignored
361 	 * currently
362 	 */
363 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
364 		seq_puts(seq, ",utf8");
365 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
366 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
367 
368 	return 0;
369 }
370 
371 /*
372  * udf_parse_options
373  *
374  * PURPOSE
375  *	Parse mount options.
376  *
377  * DESCRIPTION
378  *	The following mount options are supported:
379  *
380  *	gid=		Set the default group.
381  *	umask=		Set the default umask.
382  *	mode=		Set the default file permissions.
383  *	dmode=		Set the default directory permissions.
384  *	uid=		Set the default user.
385  *	bs=		Set the block size.
386  *	unhide		Show otherwise hidden files.
387  *	undelete	Show deleted files in lists.
388  *	adinicb		Embed data in the inode (default)
389  *	noadinicb	Don't embed data in the inode
390  *	shortad		Use short ad's
391  *	longad		Use long ad's (default)
392  *	nostrict	Unset strict conformance
393  *	iocharset=	Set the NLS character set
394  *
395  *	The remaining are for debugging and disaster recovery:
396  *
397  *	novrs		Skip volume sequence recognition
398  *
399  *	The following expect a offset from 0.
400  *
401  *	session=	Set the CDROM session (default= last session)
402  *	anchor=		Override standard anchor location. (default= 256)
403  *	volume=		Override the VolumeDesc location. (unused)
404  *	partition=	Override the PartitionDesc location. (unused)
405  *	lastblock=	Set the last block of the filesystem/
406  *
407  *	The following expect a offset from the partition root.
408  *
409  *	fileset=	Override the fileset block location. (unused)
410  *	rootdir=	Override the root directory location. (unused)
411  *		WARNING: overriding the rootdir to a non-directory may
412  *		yield highly unpredictable results.
413  *
414  * PRE-CONDITIONS
415  *	options		Pointer to mount options string.
416  *	uopts		Pointer to mount options variable.
417  *
418  * POST-CONDITIONS
419  *	<return>	1	Mount options parsed okay.
420  *	<return>	0	Error parsing mount options.
421  *
422  * HISTORY
423  *	July 1, 1997 - Andrew E. Mileski
424  *	Written, tested, and released.
425  */
426 
427 enum {
428 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
429 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
430 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
431 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
432 	Opt_rootdir, Opt_utf8, Opt_iocharset,
433 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
434 	Opt_fmode, Opt_dmode
435 };
436 
437 static const match_table_t tokens = {
438 	{Opt_novrs,	"novrs"},
439 	{Opt_nostrict,	"nostrict"},
440 	{Opt_bs,	"bs=%u"},
441 	{Opt_unhide,	"unhide"},
442 	{Opt_undelete,	"undelete"},
443 	{Opt_noadinicb,	"noadinicb"},
444 	{Opt_adinicb,	"adinicb"},
445 	{Opt_shortad,	"shortad"},
446 	{Opt_longad,	"longad"},
447 	{Opt_uforget,	"uid=forget"},
448 	{Opt_uignore,	"uid=ignore"},
449 	{Opt_gforget,	"gid=forget"},
450 	{Opt_gignore,	"gid=ignore"},
451 	{Opt_gid,	"gid=%u"},
452 	{Opt_uid,	"uid=%u"},
453 	{Opt_umask,	"umask=%o"},
454 	{Opt_session,	"session=%u"},
455 	{Opt_lastblock,	"lastblock=%u"},
456 	{Opt_anchor,	"anchor=%u"},
457 	{Opt_volume,	"volume=%u"},
458 	{Opt_partition,	"partition=%u"},
459 	{Opt_fileset,	"fileset=%u"},
460 	{Opt_rootdir,	"rootdir=%u"},
461 	{Opt_utf8,	"utf8"},
462 	{Opt_iocharset,	"iocharset=%s"},
463 	{Opt_fmode,     "mode=%o"},
464 	{Opt_dmode,     "dmode=%o"},
465 	{Opt_err,	NULL}
466 };
467 
468 static int udf_parse_options(char *options, struct udf_options *uopt,
469 			     bool remount)
470 {
471 	char *p;
472 	int option;
473 
474 	uopt->novrs = 0;
475 	uopt->partition = 0xFFFF;
476 	uopt->session = 0xFFFFFFFF;
477 	uopt->lastblock = 0;
478 	uopt->anchor = 0;
479 	uopt->volume = 0xFFFFFFFF;
480 	uopt->rootdir = 0xFFFFFFFF;
481 	uopt->fileset = 0xFFFFFFFF;
482 	uopt->nls_map = NULL;
483 
484 	if (!options)
485 		return 1;
486 
487 	while ((p = strsep(&options, ",")) != NULL) {
488 		substring_t args[MAX_OPT_ARGS];
489 		int token;
490 		if (!*p)
491 			continue;
492 
493 		token = match_token(p, tokens, args);
494 		switch (token) {
495 		case Opt_novrs:
496 			uopt->novrs = 1;
497 			break;
498 		case Opt_bs:
499 			if (match_int(&args[0], &option))
500 				return 0;
501 			uopt->blocksize = option;
502 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
503 			break;
504 		case Opt_unhide:
505 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
506 			break;
507 		case Opt_undelete:
508 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
509 			break;
510 		case Opt_noadinicb:
511 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
512 			break;
513 		case Opt_adinicb:
514 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
515 			break;
516 		case Opt_shortad:
517 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
518 			break;
519 		case Opt_longad:
520 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
521 			break;
522 		case Opt_gid:
523 			if (match_int(args, &option))
524 				return 0;
525 			uopt->gid = make_kgid(current_user_ns(), option);
526 			if (!gid_valid(uopt->gid))
527 				return 0;
528 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
529 			break;
530 		case Opt_uid:
531 			if (match_int(args, &option))
532 				return 0;
533 			uopt->uid = make_kuid(current_user_ns(), option);
534 			if (!uid_valid(uopt->uid))
535 				return 0;
536 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
537 			break;
538 		case Opt_umask:
539 			if (match_octal(args, &option))
540 				return 0;
541 			uopt->umask = option;
542 			break;
543 		case Opt_nostrict:
544 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
545 			break;
546 		case Opt_session:
547 			if (match_int(args, &option))
548 				return 0;
549 			uopt->session = option;
550 			if (!remount)
551 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
552 			break;
553 		case Opt_lastblock:
554 			if (match_int(args, &option))
555 				return 0;
556 			uopt->lastblock = option;
557 			if (!remount)
558 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
559 			break;
560 		case Opt_anchor:
561 			if (match_int(args, &option))
562 				return 0;
563 			uopt->anchor = option;
564 			break;
565 		case Opt_volume:
566 			if (match_int(args, &option))
567 				return 0;
568 			uopt->volume = option;
569 			break;
570 		case Opt_partition:
571 			if (match_int(args, &option))
572 				return 0;
573 			uopt->partition = option;
574 			break;
575 		case Opt_fileset:
576 			if (match_int(args, &option))
577 				return 0;
578 			uopt->fileset = option;
579 			break;
580 		case Opt_rootdir:
581 			if (match_int(args, &option))
582 				return 0;
583 			uopt->rootdir = option;
584 			break;
585 		case Opt_utf8:
586 			uopt->flags |= (1 << UDF_FLAG_UTF8);
587 			break;
588 #ifdef CONFIG_UDF_NLS
589 		case Opt_iocharset:
590 			uopt->nls_map = load_nls(args[0].from);
591 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
592 			break;
593 #endif
594 		case Opt_uignore:
595 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
596 			break;
597 		case Opt_uforget:
598 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
599 			break;
600 		case Opt_gignore:
601 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
602 			break;
603 		case Opt_gforget:
604 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
605 			break;
606 		case Opt_fmode:
607 			if (match_octal(args, &option))
608 				return 0;
609 			uopt->fmode = option & 0777;
610 			break;
611 		case Opt_dmode:
612 			if (match_octal(args, &option))
613 				return 0;
614 			uopt->dmode = option & 0777;
615 			break;
616 		default:
617 			pr_err("bad mount option \"%s\" or missing value\n", p);
618 			return 0;
619 		}
620 	}
621 	return 1;
622 }
623 
624 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
625 {
626 	struct udf_options uopt;
627 	struct udf_sb_info *sbi = UDF_SB(sb);
628 	int error = 0;
629 
630 	uopt.flags = sbi->s_flags;
631 	uopt.uid   = sbi->s_uid;
632 	uopt.gid   = sbi->s_gid;
633 	uopt.umask = sbi->s_umask;
634 	uopt.fmode = sbi->s_fmode;
635 	uopt.dmode = sbi->s_dmode;
636 
637 	if (!udf_parse_options(options, &uopt, true))
638 		return -EINVAL;
639 
640 	write_lock(&sbi->s_cred_lock);
641 	sbi->s_flags = uopt.flags;
642 	sbi->s_uid   = uopt.uid;
643 	sbi->s_gid   = uopt.gid;
644 	sbi->s_umask = uopt.umask;
645 	sbi->s_fmode = uopt.fmode;
646 	sbi->s_dmode = uopt.dmode;
647 	write_unlock(&sbi->s_cred_lock);
648 
649 	if (sbi->s_lvid_bh) {
650 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
651 		if (write_rev > UDF_MAX_WRITE_VERSION)
652 			*flags |= MS_RDONLY;
653 	}
654 
655 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
656 		goto out_unlock;
657 
658 	if (*flags & MS_RDONLY)
659 		udf_close_lvid(sb);
660 	else
661 		udf_open_lvid(sb);
662 
663 out_unlock:
664 	return error;
665 }
666 
667 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
668 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
669 static loff_t udf_check_vsd(struct super_block *sb)
670 {
671 	struct volStructDesc *vsd = NULL;
672 	loff_t sector = 32768;
673 	int sectorsize;
674 	struct buffer_head *bh = NULL;
675 	int nsr02 = 0;
676 	int nsr03 = 0;
677 	struct udf_sb_info *sbi;
678 
679 	sbi = UDF_SB(sb);
680 	if (sb->s_blocksize < sizeof(struct volStructDesc))
681 		sectorsize = sizeof(struct volStructDesc);
682 	else
683 		sectorsize = sb->s_blocksize;
684 
685 	sector += (sbi->s_session << sb->s_blocksize_bits);
686 
687 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
688 		  (unsigned int)(sector >> sb->s_blocksize_bits),
689 		  sb->s_blocksize);
690 	/* Process the sequence (if applicable) */
691 	for (; !nsr02 && !nsr03; sector += sectorsize) {
692 		/* Read a block */
693 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694 		if (!bh)
695 			break;
696 
697 		/* Look for ISO  descriptors */
698 		vsd = (struct volStructDesc *)(bh->b_data +
699 					      (sector & (sb->s_blocksize - 1)));
700 
701 		if (vsd->stdIdent[0] == 0) {
702 			brelse(bh);
703 			break;
704 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
705 				    VSD_STD_ID_LEN)) {
706 			switch (vsd->structType) {
707 			case 0:
708 				udf_debug("ISO9660 Boot Record found\n");
709 				break;
710 			case 1:
711 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
712 				break;
713 			case 2:
714 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
715 				break;
716 			case 3:
717 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
718 				break;
719 			case 255:
720 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
721 				break;
722 			default:
723 				udf_debug("ISO9660 VRS (%u) found\n",
724 					  vsd->structType);
725 				break;
726 			}
727 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
728 				    VSD_STD_ID_LEN))
729 			; /* nothing */
730 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
731 				    VSD_STD_ID_LEN)) {
732 			brelse(bh);
733 			break;
734 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
735 				    VSD_STD_ID_LEN))
736 			nsr02 = sector;
737 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
738 				    VSD_STD_ID_LEN))
739 			nsr03 = sector;
740 		brelse(bh);
741 	}
742 
743 	if (nsr03)
744 		return nsr03;
745 	else if (nsr02)
746 		return nsr02;
747 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
748 		return -1;
749 	else
750 		return 0;
751 }
752 
753 static int udf_find_fileset(struct super_block *sb,
754 			    struct kernel_lb_addr *fileset,
755 			    struct kernel_lb_addr *root)
756 {
757 	struct buffer_head *bh = NULL;
758 	long lastblock;
759 	uint16_t ident;
760 	struct udf_sb_info *sbi;
761 
762 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763 	    fileset->partitionReferenceNum != 0xFFFF) {
764 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
765 
766 		if (!bh) {
767 			return 1;
768 		} else if (ident != TAG_IDENT_FSD) {
769 			brelse(bh);
770 			return 1;
771 		}
772 
773 	}
774 
775 	sbi = UDF_SB(sb);
776 	if (!bh) {
777 		/* Search backwards through the partitions */
778 		struct kernel_lb_addr newfileset;
779 
780 /* --> cvg: FIXME - is it reasonable? */
781 		return 1;
782 
783 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
784 		     (newfileset.partitionReferenceNum != 0xFFFF &&
785 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
786 		      fileset->partitionReferenceNum == 0xFFFF);
787 		     newfileset.partitionReferenceNum--) {
788 			lastblock = sbi->s_partmaps
789 					[newfileset.partitionReferenceNum]
790 						.s_partition_len;
791 			newfileset.logicalBlockNum = 0;
792 
793 			do {
794 				bh = udf_read_ptagged(sb, &newfileset, 0,
795 						      &ident);
796 				if (!bh) {
797 					newfileset.logicalBlockNum++;
798 					continue;
799 				}
800 
801 				switch (ident) {
802 				case TAG_IDENT_SBD:
803 				{
804 					struct spaceBitmapDesc *sp;
805 					sp = (struct spaceBitmapDesc *)
806 								bh->b_data;
807 					newfileset.logicalBlockNum += 1 +
808 						((le32_to_cpu(sp->numOfBytes) +
809 						  sizeof(struct spaceBitmapDesc)
810 						  - 1) >> sb->s_blocksize_bits);
811 					brelse(bh);
812 					break;
813 				}
814 				case TAG_IDENT_FSD:
815 					*fileset = newfileset;
816 					break;
817 				default:
818 					newfileset.logicalBlockNum++;
819 					brelse(bh);
820 					bh = NULL;
821 					break;
822 				}
823 			} while (newfileset.logicalBlockNum < lastblock &&
824 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
825 				 fileset->partitionReferenceNum == 0xFFFF);
826 		}
827 	}
828 
829 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
830 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
831 		udf_debug("Fileset at block=%d, partition=%d\n",
832 			  fileset->logicalBlockNum,
833 			  fileset->partitionReferenceNum);
834 
835 		sbi->s_partition = fileset->partitionReferenceNum;
836 		udf_load_fileset(sb, bh, root);
837 		brelse(bh);
838 		return 0;
839 	}
840 	return 1;
841 }
842 
843 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
844 {
845 	struct primaryVolDesc *pvoldesc;
846 	struct ustr *instr, *outstr;
847 	struct buffer_head *bh;
848 	uint16_t ident;
849 	int ret = 1;
850 
851 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
852 	if (!instr)
853 		return 1;
854 
855 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
856 	if (!outstr)
857 		goto out1;
858 
859 	bh = udf_read_tagged(sb, block, block, &ident);
860 	if (!bh)
861 		goto out2;
862 
863 	BUG_ON(ident != TAG_IDENT_PVD);
864 
865 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
866 
867 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
868 			      pvoldesc->recordingDateAndTime)) {
869 #ifdef UDFFS_DEBUG
870 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
871 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
872 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
873 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
874 #endif
875 	}
876 
877 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
878 		if (udf_CS0toUTF8(outstr, instr)) {
879 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
880 				outstr->u_len > 31 ? 31 : outstr->u_len);
881 			udf_debug("volIdent[] = '%s'\n",
882 				  UDF_SB(sb)->s_volume_ident);
883 		}
884 
885 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
886 		if (udf_CS0toUTF8(outstr, instr))
887 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
888 
889 	brelse(bh);
890 	ret = 0;
891 out2:
892 	kfree(outstr);
893 out1:
894 	kfree(instr);
895 	return ret;
896 }
897 
898 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
899 					u32 meta_file_loc, u32 partition_num)
900 {
901 	struct kernel_lb_addr addr;
902 	struct inode *metadata_fe;
903 
904 	addr.logicalBlockNum = meta_file_loc;
905 	addr.partitionReferenceNum = partition_num;
906 
907 	metadata_fe = udf_iget(sb, &addr);
908 
909 	if (metadata_fe == NULL)
910 		udf_warn(sb, "metadata inode efe not found\n");
911 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
912 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
913 		iput(metadata_fe);
914 		metadata_fe = NULL;
915 	}
916 
917 	return metadata_fe;
918 }
919 
920 static int udf_load_metadata_files(struct super_block *sb, int partition)
921 {
922 	struct udf_sb_info *sbi = UDF_SB(sb);
923 	struct udf_part_map *map;
924 	struct udf_meta_data *mdata;
925 	struct kernel_lb_addr addr;
926 
927 	map = &sbi->s_partmaps[partition];
928 	mdata = &map->s_type_specific.s_metadata;
929 
930 	/* metadata address */
931 	udf_debug("Metadata file location: block = %d part = %d\n",
932 		  mdata->s_meta_file_loc, map->s_partition_num);
933 
934 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
935 		mdata->s_meta_file_loc, map->s_partition_num);
936 
937 	if (mdata->s_metadata_fe == NULL) {
938 		/* mirror file entry */
939 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
940 			  mdata->s_mirror_file_loc, map->s_partition_num);
941 
942 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
943 			mdata->s_mirror_file_loc, map->s_partition_num);
944 
945 		if (mdata->s_mirror_fe == NULL) {
946 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
947 			goto error_exit;
948 		}
949 	}
950 
951 	/*
952 	 * bitmap file entry
953 	 * Note:
954 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
955 	*/
956 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
957 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
958 		addr.partitionReferenceNum = map->s_partition_num;
959 
960 		udf_debug("Bitmap file location: block = %d part = %d\n",
961 			  addr.logicalBlockNum, addr.partitionReferenceNum);
962 
963 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
964 
965 		if (mdata->s_bitmap_fe == NULL) {
966 			if (sb->s_flags & MS_RDONLY)
967 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
968 			else {
969 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
970 				goto error_exit;
971 			}
972 		}
973 	}
974 
975 	udf_debug("udf_load_metadata_files Ok\n");
976 
977 	return 0;
978 
979 error_exit:
980 	return 1;
981 }
982 
983 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
984 			     struct kernel_lb_addr *root)
985 {
986 	struct fileSetDesc *fset;
987 
988 	fset = (struct fileSetDesc *)bh->b_data;
989 
990 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
991 
992 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
993 
994 	udf_debug("Rootdir at block=%d, partition=%d\n",
995 		  root->logicalBlockNum, root->partitionReferenceNum);
996 }
997 
998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001 	return DIV_ROUND_UP(map->s_partition_len +
1002 			    (sizeof(struct spaceBitmapDesc) << 3),
1003 			    sb->s_blocksize * 8);
1004 }
1005 
1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008 	struct udf_bitmap *bitmap;
1009 	int nr_groups;
1010 	int size;
1011 
1012 	nr_groups = udf_compute_nr_groups(sb, index);
1013 	size = sizeof(struct udf_bitmap) +
1014 		(sizeof(struct buffer_head *) * nr_groups);
1015 
1016 	if (size <= PAGE_SIZE)
1017 		bitmap = kzalloc(size, GFP_KERNEL);
1018 	else
1019 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1020 
1021 	if (bitmap == NULL)
1022 		return NULL;
1023 
1024 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1025 	bitmap->s_nr_groups = nr_groups;
1026 	return bitmap;
1027 }
1028 
1029 static int udf_fill_partdesc_info(struct super_block *sb,
1030 		struct partitionDesc *p, int p_index)
1031 {
1032 	struct udf_part_map *map;
1033 	struct udf_sb_info *sbi = UDF_SB(sb);
1034 	struct partitionHeaderDesc *phd;
1035 
1036 	map = &sbi->s_partmaps[p_index];
1037 
1038 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1039 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1040 
1041 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1042 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1043 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1044 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1045 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1046 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1047 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1048 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1049 
1050 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1051 		  p_index, map->s_partition_type,
1052 		  map->s_partition_root, map->s_partition_len);
1053 
1054 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1055 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1056 		return 0;
1057 
1058 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1059 	if (phd->unallocSpaceTable.extLength) {
1060 		struct kernel_lb_addr loc = {
1061 			.logicalBlockNum = le32_to_cpu(
1062 				phd->unallocSpaceTable.extPosition),
1063 			.partitionReferenceNum = p_index,
1064 		};
1065 
1066 		map->s_uspace.s_table = udf_iget(sb, &loc);
1067 		if (!map->s_uspace.s_table) {
1068 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1069 				  p_index);
1070 			return 1;
1071 		}
1072 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1073 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1074 			  p_index, map->s_uspace.s_table->i_ino);
1075 	}
1076 
1077 	if (phd->unallocSpaceBitmap.extLength) {
1078 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1079 		if (!bitmap)
1080 			return 1;
1081 		map->s_uspace.s_bitmap = bitmap;
1082 		bitmap->s_extLength = le32_to_cpu(
1083 				phd->unallocSpaceBitmap.extLength);
1084 		bitmap->s_extPosition = le32_to_cpu(
1085 				phd->unallocSpaceBitmap.extPosition);
1086 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1087 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1088 			  p_index, bitmap->s_extPosition);
1089 	}
1090 
1091 	if (phd->partitionIntegrityTable.extLength)
1092 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1093 
1094 	if (phd->freedSpaceTable.extLength) {
1095 		struct kernel_lb_addr loc = {
1096 			.logicalBlockNum = le32_to_cpu(
1097 				phd->freedSpaceTable.extPosition),
1098 			.partitionReferenceNum = p_index,
1099 		};
1100 
1101 		map->s_fspace.s_table = udf_iget(sb, &loc);
1102 		if (!map->s_fspace.s_table) {
1103 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1104 				  p_index);
1105 			return 1;
1106 		}
1107 
1108 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1109 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1110 			  p_index, map->s_fspace.s_table->i_ino);
1111 	}
1112 
1113 	if (phd->freedSpaceBitmap.extLength) {
1114 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1115 		if (!bitmap)
1116 			return 1;
1117 		map->s_fspace.s_bitmap = bitmap;
1118 		bitmap->s_extLength = le32_to_cpu(
1119 				phd->freedSpaceBitmap.extLength);
1120 		bitmap->s_extPosition = le32_to_cpu(
1121 				phd->freedSpaceBitmap.extPosition);
1122 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1123 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1124 			  p_index, bitmap->s_extPosition);
1125 	}
1126 	return 0;
1127 }
1128 
1129 static void udf_find_vat_block(struct super_block *sb, int p_index,
1130 			       int type1_index, sector_t start_block)
1131 {
1132 	struct udf_sb_info *sbi = UDF_SB(sb);
1133 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1134 	sector_t vat_block;
1135 	struct kernel_lb_addr ino;
1136 
1137 	/*
1138 	 * VAT file entry is in the last recorded block. Some broken disks have
1139 	 * it a few blocks before so try a bit harder...
1140 	 */
1141 	ino.partitionReferenceNum = type1_index;
1142 	for (vat_block = start_block;
1143 	     vat_block >= map->s_partition_root &&
1144 	     vat_block >= start_block - 3 &&
1145 	     !sbi->s_vat_inode; vat_block--) {
1146 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1147 		sbi->s_vat_inode = udf_iget(sb, &ino);
1148 	}
1149 }
1150 
1151 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1152 {
1153 	struct udf_sb_info *sbi = UDF_SB(sb);
1154 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155 	struct buffer_head *bh = NULL;
1156 	struct udf_inode_info *vati;
1157 	uint32_t pos;
1158 	struct virtualAllocationTable20 *vat20;
1159 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1160 
1161 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1162 	if (!sbi->s_vat_inode &&
1163 	    sbi->s_last_block != blocks - 1) {
1164 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1165 			  (unsigned long)sbi->s_last_block,
1166 			  (unsigned long)blocks - 1);
1167 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1168 	}
1169 	if (!sbi->s_vat_inode)
1170 		return 1;
1171 
1172 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1173 		map->s_type_specific.s_virtual.s_start_offset = 0;
1174 		map->s_type_specific.s_virtual.s_num_entries =
1175 			(sbi->s_vat_inode->i_size - 36) >> 2;
1176 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1177 		vati = UDF_I(sbi->s_vat_inode);
1178 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1179 			pos = udf_block_map(sbi->s_vat_inode, 0);
1180 			bh = sb_bread(sb, pos);
1181 			if (!bh)
1182 				return 1;
1183 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1184 		} else {
1185 			vat20 = (struct virtualAllocationTable20 *)
1186 							vati->i_ext.i_data;
1187 		}
1188 
1189 		map->s_type_specific.s_virtual.s_start_offset =
1190 			le16_to_cpu(vat20->lengthHeader);
1191 		map->s_type_specific.s_virtual.s_num_entries =
1192 			(sbi->s_vat_inode->i_size -
1193 				map->s_type_specific.s_virtual.
1194 					s_start_offset) >> 2;
1195 		brelse(bh);
1196 	}
1197 	return 0;
1198 }
1199 
1200 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1201 {
1202 	struct buffer_head *bh;
1203 	struct partitionDesc *p;
1204 	struct udf_part_map *map;
1205 	struct udf_sb_info *sbi = UDF_SB(sb);
1206 	int i, type1_idx;
1207 	uint16_t partitionNumber;
1208 	uint16_t ident;
1209 	int ret = 0;
1210 
1211 	bh = udf_read_tagged(sb, block, block, &ident);
1212 	if (!bh)
1213 		return 1;
1214 	if (ident != TAG_IDENT_PD)
1215 		goto out_bh;
1216 
1217 	p = (struct partitionDesc *)bh->b_data;
1218 	partitionNumber = le16_to_cpu(p->partitionNumber);
1219 
1220 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1221 	for (i = 0; i < sbi->s_partitions; i++) {
1222 		map = &sbi->s_partmaps[i];
1223 		udf_debug("Searching map: (%d == %d)\n",
1224 			  map->s_partition_num, partitionNumber);
1225 		if (map->s_partition_num == partitionNumber &&
1226 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1227 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1228 			break;
1229 	}
1230 
1231 	if (i >= sbi->s_partitions) {
1232 		udf_debug("Partition (%d) not found in partition map\n",
1233 			  partitionNumber);
1234 		goto out_bh;
1235 	}
1236 
1237 	ret = udf_fill_partdesc_info(sb, p, i);
1238 
1239 	/*
1240 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1241 	 * PHYSICAL partitions are already set up
1242 	 */
1243 	type1_idx = i;
1244 	for (i = 0; i < sbi->s_partitions; i++) {
1245 		map = &sbi->s_partmaps[i];
1246 
1247 		if (map->s_partition_num == partitionNumber &&
1248 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1249 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1250 		     map->s_partition_type == UDF_METADATA_MAP25))
1251 			break;
1252 	}
1253 
1254 	if (i >= sbi->s_partitions)
1255 		goto out_bh;
1256 
1257 	ret = udf_fill_partdesc_info(sb, p, i);
1258 	if (ret)
1259 		goto out_bh;
1260 
1261 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1262 		ret = udf_load_metadata_files(sb, i);
1263 		if (ret) {
1264 			udf_err(sb, "error loading MetaData partition map %d\n",
1265 				i);
1266 			goto out_bh;
1267 		}
1268 	} else {
1269 		ret = udf_load_vat(sb, i, type1_idx);
1270 		if (ret)
1271 			goto out_bh;
1272 		/*
1273 		 * Mark filesystem read-only if we have a partition with
1274 		 * virtual map since we don't handle writing to it (we
1275 		 * overwrite blocks instead of relocating them).
1276 		 */
1277 		sb->s_flags |= MS_RDONLY;
1278 		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1279 	}
1280 out_bh:
1281 	/* In case loading failed, we handle cleanup in udf_fill_super */
1282 	brelse(bh);
1283 	return ret;
1284 }
1285 
1286 static int udf_load_sparable_map(struct super_block *sb,
1287 				 struct udf_part_map *map,
1288 				 struct sparablePartitionMap *spm)
1289 {
1290 	uint32_t loc;
1291 	uint16_t ident;
1292 	struct sparingTable *st;
1293 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1294 	int i;
1295 	struct buffer_head *bh;
1296 
1297 	map->s_partition_type = UDF_SPARABLE_MAP15;
1298 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1299 	if (!is_power_of_2(sdata->s_packet_len)) {
1300 		udf_err(sb, "error loading logical volume descriptor: "
1301 			"Invalid packet length %u\n",
1302 			(unsigned)sdata->s_packet_len);
1303 		return -EIO;
1304 	}
1305 	if (spm->numSparingTables > 4) {
1306 		udf_err(sb, "error loading logical volume descriptor: "
1307 			"Too many sparing tables (%d)\n",
1308 			(int)spm->numSparingTables);
1309 		return -EIO;
1310 	}
1311 
1312 	for (i = 0; i < spm->numSparingTables; i++) {
1313 		loc = le32_to_cpu(spm->locSparingTable[i]);
1314 		bh = udf_read_tagged(sb, loc, loc, &ident);
1315 		if (!bh)
1316 			continue;
1317 
1318 		st = (struct sparingTable *)bh->b_data;
1319 		if (ident != 0 ||
1320 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1321 			    strlen(UDF_ID_SPARING)) ||
1322 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1323 							sb->s_blocksize) {
1324 			brelse(bh);
1325 			continue;
1326 		}
1327 
1328 		sdata->s_spar_map[i] = bh;
1329 	}
1330 	map->s_partition_func = udf_get_pblock_spar15;
1331 	return 0;
1332 }
1333 
1334 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1335 			       struct kernel_lb_addr *fileset)
1336 {
1337 	struct logicalVolDesc *lvd;
1338 	int i, offset;
1339 	uint8_t type;
1340 	struct udf_sb_info *sbi = UDF_SB(sb);
1341 	struct genericPartitionMap *gpm;
1342 	uint16_t ident;
1343 	struct buffer_head *bh;
1344 	unsigned int table_len;
1345 	int ret = 0;
1346 
1347 	bh = udf_read_tagged(sb, block, block, &ident);
1348 	if (!bh)
1349 		return 1;
1350 	BUG_ON(ident != TAG_IDENT_LVD);
1351 	lvd = (struct logicalVolDesc *)bh->b_data;
1352 	table_len = le32_to_cpu(lvd->mapTableLength);
1353 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1354 		udf_err(sb, "error loading logical volume descriptor: "
1355 			"Partition table too long (%u > %lu)\n", table_len,
1356 			sb->s_blocksize - sizeof(*lvd));
1357 		ret = 1;
1358 		goto out_bh;
1359 	}
1360 
1361 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1362 	if (ret)
1363 		goto out_bh;
1364 
1365 	for (i = 0, offset = 0;
1366 	     i < sbi->s_partitions && offset < table_len;
1367 	     i++, offset += gpm->partitionMapLength) {
1368 		struct udf_part_map *map = &sbi->s_partmaps[i];
1369 		gpm = (struct genericPartitionMap *)
1370 				&(lvd->partitionMaps[offset]);
1371 		type = gpm->partitionMapType;
1372 		if (type == 1) {
1373 			struct genericPartitionMap1 *gpm1 =
1374 				(struct genericPartitionMap1 *)gpm;
1375 			map->s_partition_type = UDF_TYPE1_MAP15;
1376 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1377 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1378 			map->s_partition_func = NULL;
1379 		} else if (type == 2) {
1380 			struct udfPartitionMap2 *upm2 =
1381 						(struct udfPartitionMap2 *)gpm;
1382 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1383 						strlen(UDF_ID_VIRTUAL))) {
1384 				u16 suf =
1385 					le16_to_cpu(((__le16 *)upm2->partIdent.
1386 							identSuffix)[0]);
1387 				if (suf < 0x0200) {
1388 					map->s_partition_type =
1389 							UDF_VIRTUAL_MAP15;
1390 					map->s_partition_func =
1391 							udf_get_pblock_virt15;
1392 				} else {
1393 					map->s_partition_type =
1394 							UDF_VIRTUAL_MAP20;
1395 					map->s_partition_func =
1396 							udf_get_pblock_virt20;
1397 				}
1398 			} else if (!strncmp(upm2->partIdent.ident,
1399 						UDF_ID_SPARABLE,
1400 						strlen(UDF_ID_SPARABLE))) {
1401 				if (udf_load_sparable_map(sb, map,
1402 				    (struct sparablePartitionMap *)gpm) < 0) {
1403 					ret = 1;
1404 					goto out_bh;
1405 				}
1406 			} else if (!strncmp(upm2->partIdent.ident,
1407 						UDF_ID_METADATA,
1408 						strlen(UDF_ID_METADATA))) {
1409 				struct udf_meta_data *mdata =
1410 					&map->s_type_specific.s_metadata;
1411 				struct metadataPartitionMap *mdm =
1412 						(struct metadataPartitionMap *)
1413 						&(lvd->partitionMaps[offset]);
1414 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1415 					  i, type, UDF_ID_METADATA);
1416 
1417 				map->s_partition_type = UDF_METADATA_MAP25;
1418 				map->s_partition_func = udf_get_pblock_meta25;
1419 
1420 				mdata->s_meta_file_loc   =
1421 					le32_to_cpu(mdm->metadataFileLoc);
1422 				mdata->s_mirror_file_loc =
1423 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1424 				mdata->s_bitmap_file_loc =
1425 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1426 				mdata->s_alloc_unit_size =
1427 					le32_to_cpu(mdm->allocUnitSize);
1428 				mdata->s_align_unit_size =
1429 					le16_to_cpu(mdm->alignUnitSize);
1430 				if (mdm->flags & 0x01)
1431 					mdata->s_flags |= MF_DUPLICATE_MD;
1432 
1433 				udf_debug("Metadata Ident suffix=0x%x\n",
1434 					  le16_to_cpu(*(__le16 *)
1435 						      mdm->partIdent.identSuffix));
1436 				udf_debug("Metadata part num=%d\n",
1437 					  le16_to_cpu(mdm->partitionNum));
1438 				udf_debug("Metadata part alloc unit size=%d\n",
1439 					  le32_to_cpu(mdm->allocUnitSize));
1440 				udf_debug("Metadata file loc=%d\n",
1441 					  le32_to_cpu(mdm->metadataFileLoc));
1442 				udf_debug("Mirror file loc=%d\n",
1443 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1444 				udf_debug("Bitmap file loc=%d\n",
1445 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1446 				udf_debug("Flags: %d %d\n",
1447 					  mdata->s_flags, mdm->flags);
1448 			} else {
1449 				udf_debug("Unknown ident: %s\n",
1450 					  upm2->partIdent.ident);
1451 				continue;
1452 			}
1453 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1454 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1455 		}
1456 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1457 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1458 	}
1459 
1460 	if (fileset) {
1461 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1462 
1463 		*fileset = lelb_to_cpu(la->extLocation);
1464 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1465 			  fileset->logicalBlockNum,
1466 			  fileset->partitionReferenceNum);
1467 	}
1468 	if (lvd->integritySeqExt.extLength)
1469 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1470 
1471 out_bh:
1472 	brelse(bh);
1473 	return ret;
1474 }
1475 
1476 /*
1477  * udf_load_logicalvolint
1478  *
1479  */
1480 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1481 {
1482 	struct buffer_head *bh = NULL;
1483 	uint16_t ident;
1484 	struct udf_sb_info *sbi = UDF_SB(sb);
1485 	struct logicalVolIntegrityDesc *lvid;
1486 
1487 	while (loc.extLength > 0 &&
1488 	       (bh = udf_read_tagged(sb, loc.extLocation,
1489 				     loc.extLocation, &ident)) &&
1490 	       ident == TAG_IDENT_LVID) {
1491 		sbi->s_lvid_bh = bh;
1492 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1493 
1494 		if (lvid->nextIntegrityExt.extLength)
1495 			udf_load_logicalvolint(sb,
1496 				leea_to_cpu(lvid->nextIntegrityExt));
1497 
1498 		if (sbi->s_lvid_bh != bh)
1499 			brelse(bh);
1500 		loc.extLength -= sb->s_blocksize;
1501 		loc.extLocation++;
1502 	}
1503 	if (sbi->s_lvid_bh != bh)
1504 		brelse(bh);
1505 }
1506 
1507 /*
1508  * udf_process_sequence
1509  *
1510  * PURPOSE
1511  *	Process a main/reserve volume descriptor sequence.
1512  *
1513  * PRE-CONDITIONS
1514  *	sb			Pointer to _locked_ superblock.
1515  *	block			First block of first extent of the sequence.
1516  *	lastblock		Lastblock of first extent of the sequence.
1517  *
1518  * HISTORY
1519  *	July 1, 1997 - Andrew E. Mileski
1520  *	Written, tested, and released.
1521  */
1522 static noinline int udf_process_sequence(struct super_block *sb, long block,
1523 				long lastblock, struct kernel_lb_addr *fileset)
1524 {
1525 	struct buffer_head *bh = NULL;
1526 	struct udf_vds_record vds[VDS_POS_LENGTH];
1527 	struct udf_vds_record *curr;
1528 	struct generic_desc *gd;
1529 	struct volDescPtr *vdp;
1530 	int done = 0;
1531 	uint32_t vdsn;
1532 	uint16_t ident;
1533 	long next_s = 0, next_e = 0;
1534 
1535 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1536 
1537 	/*
1538 	 * Read the main descriptor sequence and find which descriptors
1539 	 * are in it.
1540 	 */
1541 	for (; (!done && block <= lastblock); block++) {
1542 
1543 		bh = udf_read_tagged(sb, block, block, &ident);
1544 		if (!bh) {
1545 			udf_err(sb,
1546 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1547 				(unsigned long long)block);
1548 			return 1;
1549 		}
1550 
1551 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1552 		gd = (struct generic_desc *)bh->b_data;
1553 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1554 		switch (ident) {
1555 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1556 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1557 			if (vdsn >= curr->volDescSeqNum) {
1558 				curr->volDescSeqNum = vdsn;
1559 				curr->block = block;
1560 			}
1561 			break;
1562 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1563 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1564 			if (vdsn >= curr->volDescSeqNum) {
1565 				curr->volDescSeqNum = vdsn;
1566 				curr->block = block;
1567 
1568 				vdp = (struct volDescPtr *)bh->b_data;
1569 				next_s = le32_to_cpu(
1570 					vdp->nextVolDescSeqExt.extLocation);
1571 				next_e = le32_to_cpu(
1572 					vdp->nextVolDescSeqExt.extLength);
1573 				next_e = next_e >> sb->s_blocksize_bits;
1574 				next_e += next_s;
1575 			}
1576 			break;
1577 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1578 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1579 			if (vdsn >= curr->volDescSeqNum) {
1580 				curr->volDescSeqNum = vdsn;
1581 				curr->block = block;
1582 			}
1583 			break;
1584 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1585 			curr = &vds[VDS_POS_PARTITION_DESC];
1586 			if (!curr->block)
1587 				curr->block = block;
1588 			break;
1589 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1590 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1591 			if (vdsn >= curr->volDescSeqNum) {
1592 				curr->volDescSeqNum = vdsn;
1593 				curr->block = block;
1594 			}
1595 			break;
1596 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1597 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1598 			if (vdsn >= curr->volDescSeqNum) {
1599 				curr->volDescSeqNum = vdsn;
1600 				curr->block = block;
1601 			}
1602 			break;
1603 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1604 			vds[VDS_POS_TERMINATING_DESC].block = block;
1605 			if (next_e) {
1606 				block = next_s;
1607 				lastblock = next_e;
1608 				next_s = next_e = 0;
1609 			} else
1610 				done = 1;
1611 			break;
1612 		}
1613 		brelse(bh);
1614 	}
1615 	/*
1616 	 * Now read interesting descriptors again and process them
1617 	 * in a suitable order
1618 	 */
1619 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1620 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1621 		return 1;
1622 	}
1623 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1624 		return 1;
1625 
1626 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1627 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1628 		return 1;
1629 
1630 	if (vds[VDS_POS_PARTITION_DESC].block) {
1631 		/*
1632 		 * We rescan the whole descriptor sequence to find
1633 		 * partition descriptor blocks and process them.
1634 		 */
1635 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1636 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1637 		     block++)
1638 			if (udf_load_partdesc(sb, block))
1639 				return 1;
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1646 			     struct kernel_lb_addr *fileset)
1647 {
1648 	struct anchorVolDescPtr *anchor;
1649 	long main_s, main_e, reserve_s, reserve_e;
1650 
1651 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1652 
1653 	/* Locate the main sequence */
1654 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1655 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1656 	main_e = main_e >> sb->s_blocksize_bits;
1657 	main_e += main_s;
1658 
1659 	/* Locate the reserve sequence */
1660 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1661 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1662 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1663 	reserve_e += reserve_s;
1664 
1665 	/* Process the main & reserve sequences */
1666 	/* responsible for finding the PartitionDesc(s) */
1667 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1668 		return 1;
1669 	udf_sb_free_partitions(sb);
1670 	if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1671 		return 1;
1672 	udf_sb_free_partitions(sb);
1673 	return 0;
1674 }
1675 
1676 /*
1677  * Check whether there is an anchor block in the given block and
1678  * load Volume Descriptor Sequence if so.
1679  */
1680 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1681 				  struct kernel_lb_addr *fileset)
1682 {
1683 	struct buffer_head *bh;
1684 	uint16_t ident;
1685 	int ret;
1686 
1687 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1688 	    udf_fixed_to_variable(block) >=
1689 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1690 		return 0;
1691 
1692 	bh = udf_read_tagged(sb, block, block, &ident);
1693 	if (!bh)
1694 		return 0;
1695 	if (ident != TAG_IDENT_AVDP) {
1696 		brelse(bh);
1697 		return 0;
1698 	}
1699 	ret = udf_load_sequence(sb, bh, fileset);
1700 	brelse(bh);
1701 	return ret;
1702 }
1703 
1704 /* Search for an anchor volume descriptor pointer */
1705 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1706 				 struct kernel_lb_addr *fileset)
1707 {
1708 	sector_t last[6];
1709 	int i;
1710 	struct udf_sb_info *sbi = UDF_SB(sb);
1711 	int last_count = 0;
1712 
1713 	/* First try user provided anchor */
1714 	if (sbi->s_anchor) {
1715 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1716 			return lastblock;
1717 	}
1718 	/*
1719 	 * according to spec, anchor is in either:
1720 	 *     block 256
1721 	 *     lastblock-256
1722 	 *     lastblock
1723 	 *  however, if the disc isn't closed, it could be 512.
1724 	 */
1725 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1726 		return lastblock;
1727 	/*
1728 	 * The trouble is which block is the last one. Drives often misreport
1729 	 * this so we try various possibilities.
1730 	 */
1731 	last[last_count++] = lastblock;
1732 	if (lastblock >= 1)
1733 		last[last_count++] = lastblock - 1;
1734 	last[last_count++] = lastblock + 1;
1735 	if (lastblock >= 2)
1736 		last[last_count++] = lastblock - 2;
1737 	if (lastblock >= 150)
1738 		last[last_count++] = lastblock - 150;
1739 	if (lastblock >= 152)
1740 		last[last_count++] = lastblock - 152;
1741 
1742 	for (i = 0; i < last_count; i++) {
1743 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1744 				sb->s_blocksize_bits)
1745 			continue;
1746 		if (udf_check_anchor_block(sb, last[i], fileset))
1747 			return last[i];
1748 		if (last[i] < 256)
1749 			continue;
1750 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1751 			return last[i];
1752 	}
1753 
1754 	/* Finally try block 512 in case media is open */
1755 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1756 		return last[0];
1757 	return 0;
1758 }
1759 
1760 /*
1761  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1762  * area specified by it. The function expects sbi->s_lastblock to be the last
1763  * block on the media.
1764  *
1765  * Return 1 if ok, 0 if not found.
1766  *
1767  */
1768 static int udf_find_anchor(struct super_block *sb,
1769 			   struct kernel_lb_addr *fileset)
1770 {
1771 	sector_t lastblock;
1772 	struct udf_sb_info *sbi = UDF_SB(sb);
1773 
1774 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1775 	if (lastblock)
1776 		goto out;
1777 
1778 	/* No anchor found? Try VARCONV conversion of block numbers */
1779 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1780 	/* Firstly, we try to not convert number of the last block */
1781 	lastblock = udf_scan_anchors(sb,
1782 				udf_variable_to_fixed(sbi->s_last_block),
1783 				fileset);
1784 	if (lastblock)
1785 		goto out;
1786 
1787 	/* Secondly, we try with converted number of the last block */
1788 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1789 	if (!lastblock) {
1790 		/* VARCONV didn't help. Clear it. */
1791 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1792 		return 0;
1793 	}
1794 out:
1795 	sbi->s_last_block = lastblock;
1796 	return 1;
1797 }
1798 
1799 /*
1800  * Check Volume Structure Descriptor, find Anchor block and load Volume
1801  * Descriptor Sequence
1802  */
1803 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1804 			int silent, struct kernel_lb_addr *fileset)
1805 {
1806 	struct udf_sb_info *sbi = UDF_SB(sb);
1807 	loff_t nsr_off;
1808 
1809 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1810 		if (!silent)
1811 			udf_warn(sb, "Bad block size\n");
1812 		return 0;
1813 	}
1814 	sbi->s_last_block = uopt->lastblock;
1815 	if (!uopt->novrs) {
1816 		/* Check that it is NSR02 compliant */
1817 		nsr_off = udf_check_vsd(sb);
1818 		if (!nsr_off) {
1819 			if (!silent)
1820 				udf_warn(sb, "No VRS found\n");
1821 			return 0;
1822 		}
1823 		if (nsr_off == -1)
1824 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1825 		if (!sbi->s_last_block)
1826 			sbi->s_last_block = udf_get_last_block(sb);
1827 	} else {
1828 		udf_debug("Validity check skipped because of novrs option\n");
1829 	}
1830 
1831 	/* Look for anchor block and load Volume Descriptor Sequence */
1832 	sbi->s_anchor = uopt->anchor;
1833 	if (!udf_find_anchor(sb, fileset)) {
1834 		if (!silent)
1835 			udf_warn(sb, "No anchor found\n");
1836 		return 0;
1837 	}
1838 	return 1;
1839 }
1840 
1841 static void udf_open_lvid(struct super_block *sb)
1842 {
1843 	struct udf_sb_info *sbi = UDF_SB(sb);
1844 	struct buffer_head *bh = sbi->s_lvid_bh;
1845 	struct logicalVolIntegrityDesc *lvid;
1846 	struct logicalVolIntegrityDescImpUse *lvidiu;
1847 
1848 	if (!bh)
1849 		return;
1850 
1851 	mutex_lock(&sbi->s_alloc_mutex);
1852 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1853 	lvidiu = udf_sb_lvidiu(sbi);
1854 
1855 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1856 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1857 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1858 				CURRENT_TIME);
1859 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1860 
1861 	lvid->descTag.descCRC = cpu_to_le16(
1862 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1863 			le16_to_cpu(lvid->descTag.descCRCLength)));
1864 
1865 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1866 	mark_buffer_dirty(bh);
1867 	sbi->s_lvid_dirty = 0;
1868 	mutex_unlock(&sbi->s_alloc_mutex);
1869 }
1870 
1871 static void udf_close_lvid(struct super_block *sb)
1872 {
1873 	struct udf_sb_info *sbi = UDF_SB(sb);
1874 	struct buffer_head *bh = sbi->s_lvid_bh;
1875 	struct logicalVolIntegrityDesc *lvid;
1876 	struct logicalVolIntegrityDescImpUse *lvidiu;
1877 
1878 	if (!bh)
1879 		return;
1880 
1881 	mutex_lock(&sbi->s_alloc_mutex);
1882 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1883 	lvidiu = udf_sb_lvidiu(sbi);
1884 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1885 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1886 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1887 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1888 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1889 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1890 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1891 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1892 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1893 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1894 
1895 	lvid->descTag.descCRC = cpu_to_le16(
1896 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1897 				le16_to_cpu(lvid->descTag.descCRCLength)));
1898 
1899 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1900 	/*
1901 	 * We set buffer uptodate unconditionally here to avoid spurious
1902 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1903 	 * the buffer as !uptodate
1904 	 */
1905 	set_buffer_uptodate(bh);
1906 	mark_buffer_dirty(bh);
1907 	sbi->s_lvid_dirty = 0;
1908 	mutex_unlock(&sbi->s_alloc_mutex);
1909 }
1910 
1911 u64 lvid_get_unique_id(struct super_block *sb)
1912 {
1913 	struct buffer_head *bh;
1914 	struct udf_sb_info *sbi = UDF_SB(sb);
1915 	struct logicalVolIntegrityDesc *lvid;
1916 	struct logicalVolHeaderDesc *lvhd;
1917 	u64 uniqueID;
1918 	u64 ret;
1919 
1920 	bh = sbi->s_lvid_bh;
1921 	if (!bh)
1922 		return 0;
1923 
1924 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1925 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1926 
1927 	mutex_lock(&sbi->s_alloc_mutex);
1928 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1929 	if (!(++uniqueID & 0xFFFFFFFF))
1930 		uniqueID += 16;
1931 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1932 	mutex_unlock(&sbi->s_alloc_mutex);
1933 	mark_buffer_dirty(bh);
1934 
1935 	return ret;
1936 }
1937 
1938 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1939 {
1940 	int ret;
1941 	struct inode *inode = NULL;
1942 	struct udf_options uopt;
1943 	struct kernel_lb_addr rootdir, fileset;
1944 	struct udf_sb_info *sbi;
1945 
1946 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1947 	uopt.uid = INVALID_UID;
1948 	uopt.gid = INVALID_GID;
1949 	uopt.umask = 0;
1950 	uopt.fmode = UDF_INVALID_MODE;
1951 	uopt.dmode = UDF_INVALID_MODE;
1952 
1953 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1954 	if (!sbi)
1955 		return -ENOMEM;
1956 
1957 	sb->s_fs_info = sbi;
1958 
1959 	mutex_init(&sbi->s_alloc_mutex);
1960 
1961 	if (!udf_parse_options((char *)options, &uopt, false))
1962 		goto error_out;
1963 
1964 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1965 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1966 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1967 		goto error_out;
1968 	}
1969 #ifdef CONFIG_UDF_NLS
1970 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1971 		uopt.nls_map = load_nls_default();
1972 		if (!uopt.nls_map)
1973 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1974 		else
1975 			udf_debug("Using default NLS map\n");
1976 	}
1977 #endif
1978 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1979 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1980 
1981 	fileset.logicalBlockNum = 0xFFFFFFFF;
1982 	fileset.partitionReferenceNum = 0xFFFF;
1983 
1984 	sbi->s_flags = uopt.flags;
1985 	sbi->s_uid = uopt.uid;
1986 	sbi->s_gid = uopt.gid;
1987 	sbi->s_umask = uopt.umask;
1988 	sbi->s_fmode = uopt.fmode;
1989 	sbi->s_dmode = uopt.dmode;
1990 	sbi->s_nls_map = uopt.nls_map;
1991 	rwlock_init(&sbi->s_cred_lock);
1992 
1993 	if (uopt.session == 0xFFFFFFFF)
1994 		sbi->s_session = udf_get_last_session(sb);
1995 	else
1996 		sbi->s_session = uopt.session;
1997 
1998 	udf_debug("Multi-session=%d\n", sbi->s_session);
1999 
2000 	/* Fill in the rest of the superblock */
2001 	sb->s_op = &udf_sb_ops;
2002 	sb->s_export_op = &udf_export_ops;
2003 
2004 	sb->s_magic = UDF_SUPER_MAGIC;
2005 	sb->s_time_gran = 1000;
2006 
2007 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2008 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2009 	} else {
2010 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2011 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2012 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2013 			if (!silent)
2014 				pr_notice("Rescanning with blocksize %d\n",
2015 					  UDF_DEFAULT_BLOCKSIZE);
2016 			brelse(sbi->s_lvid_bh);
2017 			sbi->s_lvid_bh = NULL;
2018 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2019 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2020 		}
2021 	}
2022 	if (!ret) {
2023 		udf_warn(sb, "No partition found (1)\n");
2024 		goto error_out;
2025 	}
2026 
2027 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2028 
2029 	if (sbi->s_lvid_bh) {
2030 		struct logicalVolIntegrityDescImpUse *lvidiu =
2031 							udf_sb_lvidiu(sbi);
2032 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2033 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2034 		/* uint16_t maxUDFWriteRev =
2035 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2036 
2037 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2038 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2039 				le16_to_cpu(lvidiu->minUDFReadRev),
2040 				UDF_MAX_READ_VERSION);
2041 			goto error_out;
2042 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2043 			sb->s_flags |= MS_RDONLY;
2044 
2045 		sbi->s_udfrev = minUDFWriteRev;
2046 
2047 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2048 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2049 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2050 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2051 	}
2052 
2053 	if (!sbi->s_partitions) {
2054 		udf_warn(sb, "No partition found (2)\n");
2055 		goto error_out;
2056 	}
2057 
2058 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2059 			UDF_PART_FLAG_READ_ONLY) {
2060 		pr_notice("Partition marked readonly; forcing readonly mount\n");
2061 		sb->s_flags |= MS_RDONLY;
2062 	}
2063 
2064 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2065 		udf_warn(sb, "No fileset found\n");
2066 		goto error_out;
2067 	}
2068 
2069 	if (!silent) {
2070 		struct timestamp ts;
2071 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2072 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2073 			 sbi->s_volume_ident,
2074 			 le16_to_cpu(ts.year), ts.month, ts.day,
2075 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2076 	}
2077 	if (!(sb->s_flags & MS_RDONLY))
2078 		udf_open_lvid(sb);
2079 
2080 	/* Assign the root inode */
2081 	/* assign inodes by physical block number */
2082 	/* perhaps it's not extensible enough, but for now ... */
2083 	inode = udf_iget(sb, &rootdir);
2084 	if (!inode) {
2085 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2086 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2087 		goto error_out;
2088 	}
2089 
2090 	/* Allocate a dentry for the root inode */
2091 	sb->s_root = d_make_root(inode);
2092 	if (!sb->s_root) {
2093 		udf_err(sb, "Couldn't allocate root dentry\n");
2094 		goto error_out;
2095 	}
2096 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2097 	sb->s_max_links = UDF_MAX_LINKS;
2098 	return 0;
2099 
2100 error_out:
2101 	if (sbi->s_vat_inode)
2102 		iput(sbi->s_vat_inode);
2103 #ifdef CONFIG_UDF_NLS
2104 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2105 		unload_nls(sbi->s_nls_map);
2106 #endif
2107 	if (!(sb->s_flags & MS_RDONLY))
2108 		udf_close_lvid(sb);
2109 	brelse(sbi->s_lvid_bh);
2110 	udf_sb_free_partitions(sb);
2111 	kfree(sbi);
2112 	sb->s_fs_info = NULL;
2113 
2114 	return -EINVAL;
2115 }
2116 
2117 void _udf_err(struct super_block *sb, const char *function,
2118 	      const char *fmt, ...)
2119 {
2120 	struct va_format vaf;
2121 	va_list args;
2122 
2123 	va_start(args, fmt);
2124 
2125 	vaf.fmt = fmt;
2126 	vaf.va = &args;
2127 
2128 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2129 
2130 	va_end(args);
2131 }
2132 
2133 void _udf_warn(struct super_block *sb, const char *function,
2134 	       const char *fmt, ...)
2135 {
2136 	struct va_format vaf;
2137 	va_list args;
2138 
2139 	va_start(args, fmt);
2140 
2141 	vaf.fmt = fmt;
2142 	vaf.va = &args;
2143 
2144 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2145 
2146 	va_end(args);
2147 }
2148 
2149 static void udf_put_super(struct super_block *sb)
2150 {
2151 	struct udf_sb_info *sbi;
2152 
2153 	sbi = UDF_SB(sb);
2154 
2155 	if (sbi->s_vat_inode)
2156 		iput(sbi->s_vat_inode);
2157 #ifdef CONFIG_UDF_NLS
2158 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2159 		unload_nls(sbi->s_nls_map);
2160 #endif
2161 	if (!(sb->s_flags & MS_RDONLY))
2162 		udf_close_lvid(sb);
2163 	brelse(sbi->s_lvid_bh);
2164 	udf_sb_free_partitions(sb);
2165 	kfree(sb->s_fs_info);
2166 	sb->s_fs_info = NULL;
2167 }
2168 
2169 static int udf_sync_fs(struct super_block *sb, int wait)
2170 {
2171 	struct udf_sb_info *sbi = UDF_SB(sb);
2172 
2173 	mutex_lock(&sbi->s_alloc_mutex);
2174 	if (sbi->s_lvid_dirty) {
2175 		/*
2176 		 * Blockdevice will be synced later so we don't have to submit
2177 		 * the buffer for IO
2178 		 */
2179 		mark_buffer_dirty(sbi->s_lvid_bh);
2180 		sbi->s_lvid_dirty = 0;
2181 	}
2182 	mutex_unlock(&sbi->s_alloc_mutex);
2183 
2184 	return 0;
2185 }
2186 
2187 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2188 {
2189 	struct super_block *sb = dentry->d_sb;
2190 	struct udf_sb_info *sbi = UDF_SB(sb);
2191 	struct logicalVolIntegrityDescImpUse *lvidiu;
2192 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2193 
2194 	if (sbi->s_lvid_bh != NULL)
2195 		lvidiu = udf_sb_lvidiu(sbi);
2196 	else
2197 		lvidiu = NULL;
2198 
2199 	buf->f_type = UDF_SUPER_MAGIC;
2200 	buf->f_bsize = sb->s_blocksize;
2201 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2202 	buf->f_bfree = udf_count_free(sb);
2203 	buf->f_bavail = buf->f_bfree;
2204 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2205 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2206 			+ buf->f_bfree;
2207 	buf->f_ffree = buf->f_bfree;
2208 	buf->f_namelen = UDF_NAME_LEN - 2;
2209 	buf->f_fsid.val[0] = (u32)id;
2210 	buf->f_fsid.val[1] = (u32)(id >> 32);
2211 
2212 	return 0;
2213 }
2214 
2215 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2216 					  struct udf_bitmap *bitmap)
2217 {
2218 	struct buffer_head *bh = NULL;
2219 	unsigned int accum = 0;
2220 	int index;
2221 	int block = 0, newblock;
2222 	struct kernel_lb_addr loc;
2223 	uint32_t bytes;
2224 	uint8_t *ptr;
2225 	uint16_t ident;
2226 	struct spaceBitmapDesc *bm;
2227 
2228 	loc.logicalBlockNum = bitmap->s_extPosition;
2229 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2230 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2231 
2232 	if (!bh) {
2233 		udf_err(sb, "udf_count_free failed\n");
2234 		goto out;
2235 	} else if (ident != TAG_IDENT_SBD) {
2236 		brelse(bh);
2237 		udf_err(sb, "udf_count_free failed\n");
2238 		goto out;
2239 	}
2240 
2241 	bm = (struct spaceBitmapDesc *)bh->b_data;
2242 	bytes = le32_to_cpu(bm->numOfBytes);
2243 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2244 	ptr = (uint8_t *)bh->b_data;
2245 
2246 	while (bytes > 0) {
2247 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2248 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2249 					cur_bytes * 8);
2250 		bytes -= cur_bytes;
2251 		if (bytes) {
2252 			brelse(bh);
2253 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2254 			bh = udf_tread(sb, newblock);
2255 			if (!bh) {
2256 				udf_debug("read failed\n");
2257 				goto out;
2258 			}
2259 			index = 0;
2260 			ptr = (uint8_t *)bh->b_data;
2261 		}
2262 	}
2263 	brelse(bh);
2264 out:
2265 	return accum;
2266 }
2267 
2268 static unsigned int udf_count_free_table(struct super_block *sb,
2269 					 struct inode *table)
2270 {
2271 	unsigned int accum = 0;
2272 	uint32_t elen;
2273 	struct kernel_lb_addr eloc;
2274 	int8_t etype;
2275 	struct extent_position epos;
2276 
2277 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2278 	epos.block = UDF_I(table)->i_location;
2279 	epos.offset = sizeof(struct unallocSpaceEntry);
2280 	epos.bh = NULL;
2281 
2282 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2283 		accum += (elen >> table->i_sb->s_blocksize_bits);
2284 
2285 	brelse(epos.bh);
2286 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2287 
2288 	return accum;
2289 }
2290 
2291 static unsigned int udf_count_free(struct super_block *sb)
2292 {
2293 	unsigned int accum = 0;
2294 	struct udf_sb_info *sbi;
2295 	struct udf_part_map *map;
2296 
2297 	sbi = UDF_SB(sb);
2298 	if (sbi->s_lvid_bh) {
2299 		struct logicalVolIntegrityDesc *lvid =
2300 			(struct logicalVolIntegrityDesc *)
2301 			sbi->s_lvid_bh->b_data;
2302 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2303 			accum = le32_to_cpu(
2304 					lvid->freeSpaceTable[sbi->s_partition]);
2305 			if (accum == 0xFFFFFFFF)
2306 				accum = 0;
2307 		}
2308 	}
2309 
2310 	if (accum)
2311 		return accum;
2312 
2313 	map = &sbi->s_partmaps[sbi->s_partition];
2314 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2315 		accum += udf_count_free_bitmap(sb,
2316 					       map->s_uspace.s_bitmap);
2317 	}
2318 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2319 		accum += udf_count_free_bitmap(sb,
2320 					       map->s_fspace.s_bitmap);
2321 	}
2322 	if (accum)
2323 		return accum;
2324 
2325 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2326 		accum += udf_count_free_table(sb,
2327 					      map->s_uspace.s_table);
2328 	}
2329 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2330 		accum += udf_count_free_table(sb,
2331 					      map->s_fspace.s_table);
2332 	}
2333 
2334 	return accum;
2335 }
2336