1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 enum { UDF_MAX_LINKS = 0xffff }; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct dentry *); 96 97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 98 { 99 struct logicalVolIntegrityDesc *lvid = 100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 102 __u32 offset = number_of_partitions * 2 * 103 sizeof(uint32_t)/sizeof(uint8_t); 104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 105 } 106 107 /* UDF filesystem type */ 108 static struct dentry *udf_mount(struct file_system_type *fs_type, 109 int flags, const char *dev_name, void *data) 110 { 111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 112 } 113 114 static struct file_system_type udf_fstype = { 115 .owner = THIS_MODULE, 116 .name = "udf", 117 .mount = udf_mount, 118 .kill_sb = kill_block_super, 119 .fs_flags = FS_REQUIRES_DEV, 120 }; 121 122 static struct kmem_cache *udf_inode_cachep; 123 124 static struct inode *udf_alloc_inode(struct super_block *sb) 125 { 126 struct udf_inode_info *ei; 127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 128 if (!ei) 129 return NULL; 130 131 ei->i_unique = 0; 132 ei->i_lenExtents = 0; 133 ei->i_next_alloc_block = 0; 134 ei->i_next_alloc_goal = 0; 135 ei->i_strat4096 = 0; 136 init_rwsem(&ei->i_data_sem); 137 138 return &ei->vfs_inode; 139 } 140 141 static void udf_i_callback(struct rcu_head *head) 142 { 143 struct inode *inode = container_of(head, struct inode, i_rcu); 144 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 145 } 146 147 static void udf_destroy_inode(struct inode *inode) 148 { 149 call_rcu(&inode->i_rcu, udf_i_callback); 150 } 151 152 static void init_once(void *foo) 153 { 154 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 155 156 ei->i_ext.i_data = NULL; 157 inode_init_once(&ei->vfs_inode); 158 } 159 160 static int init_inodecache(void) 161 { 162 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 163 sizeof(struct udf_inode_info), 164 0, (SLAB_RECLAIM_ACCOUNT | 165 SLAB_MEM_SPREAD), 166 init_once); 167 if (!udf_inode_cachep) 168 return -ENOMEM; 169 return 0; 170 } 171 172 static void destroy_inodecache(void) 173 { 174 /* 175 * Make sure all delayed rcu free inodes are flushed before we 176 * destroy cache. 177 */ 178 rcu_barrier(); 179 kmem_cache_destroy(udf_inode_cachep); 180 } 181 182 /* Superblock operations */ 183 static const struct super_operations udf_sb_ops = { 184 .alloc_inode = udf_alloc_inode, 185 .destroy_inode = udf_destroy_inode, 186 .write_inode = udf_write_inode, 187 .evict_inode = udf_evict_inode, 188 .put_super = udf_put_super, 189 .sync_fs = udf_sync_fs, 190 .statfs = udf_statfs, 191 .remount_fs = udf_remount_fs, 192 .show_options = udf_show_options, 193 }; 194 195 struct udf_options { 196 unsigned char novrs; 197 unsigned int blocksize; 198 unsigned int session; 199 unsigned int lastblock; 200 unsigned int anchor; 201 unsigned int volume; 202 unsigned short partition; 203 unsigned int fileset; 204 unsigned int rootdir; 205 unsigned int flags; 206 umode_t umask; 207 kgid_t gid; 208 kuid_t uid; 209 umode_t fmode; 210 umode_t dmode; 211 struct nls_table *nls_map; 212 }; 213 214 static int __init init_udf_fs(void) 215 { 216 int err; 217 218 err = init_inodecache(); 219 if (err) 220 goto out1; 221 err = register_filesystem(&udf_fstype); 222 if (err) 223 goto out; 224 225 return 0; 226 227 out: 228 destroy_inodecache(); 229 230 out1: 231 return err; 232 } 233 234 static void __exit exit_udf_fs(void) 235 { 236 unregister_filesystem(&udf_fstype); 237 destroy_inodecache(); 238 } 239 240 module_init(init_udf_fs) 241 module_exit(exit_udf_fs) 242 243 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 244 { 245 struct udf_sb_info *sbi = UDF_SB(sb); 246 247 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 248 GFP_KERNEL); 249 if (!sbi->s_partmaps) { 250 udf_err(sb, "Unable to allocate space for %d partition maps\n", 251 count); 252 sbi->s_partitions = 0; 253 return -ENOMEM; 254 } 255 256 sbi->s_partitions = count; 257 return 0; 258 } 259 260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 261 { 262 int i; 263 int nr_groups = bitmap->s_nr_groups; 264 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 265 nr_groups); 266 267 for (i = 0; i < nr_groups; i++) 268 if (bitmap->s_block_bitmap[i]) 269 brelse(bitmap->s_block_bitmap[i]); 270 271 if (size <= PAGE_SIZE) 272 kfree(bitmap); 273 else 274 vfree(bitmap); 275 } 276 277 static void udf_free_partition(struct udf_part_map *map) 278 { 279 int i; 280 struct udf_meta_data *mdata; 281 282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 283 iput(map->s_uspace.s_table); 284 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 285 iput(map->s_fspace.s_table); 286 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 287 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 288 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 289 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 290 if (map->s_partition_type == UDF_SPARABLE_MAP15) 291 for (i = 0; i < 4; i++) 292 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 293 else if (map->s_partition_type == UDF_METADATA_MAP25) { 294 mdata = &map->s_type_specific.s_metadata; 295 iput(mdata->s_metadata_fe); 296 mdata->s_metadata_fe = NULL; 297 298 iput(mdata->s_mirror_fe); 299 mdata->s_mirror_fe = NULL; 300 301 iput(mdata->s_bitmap_fe); 302 mdata->s_bitmap_fe = NULL; 303 } 304 } 305 306 static void udf_sb_free_partitions(struct super_block *sb) 307 { 308 struct udf_sb_info *sbi = UDF_SB(sb); 309 int i; 310 if (sbi->s_partmaps == NULL) 311 return; 312 for (i = 0; i < sbi->s_partitions; i++) 313 udf_free_partition(&sbi->s_partmaps[i]); 314 kfree(sbi->s_partmaps); 315 sbi->s_partmaps = NULL; 316 } 317 318 static int udf_show_options(struct seq_file *seq, struct dentry *root) 319 { 320 struct super_block *sb = root->d_sb; 321 struct udf_sb_info *sbi = UDF_SB(sb); 322 323 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 324 seq_puts(seq, ",nostrict"); 325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 326 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 328 seq_puts(seq, ",unhide"); 329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 330 seq_puts(seq, ",undelete"); 331 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 332 seq_puts(seq, ",noadinicb"); 333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 334 seq_puts(seq, ",shortad"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 336 seq_puts(seq, ",uid=forget"); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 338 seq_puts(seq, ",uid=ignore"); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 340 seq_puts(seq, ",gid=forget"); 341 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 342 seq_puts(seq, ",gid=ignore"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 344 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 346 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 347 if (sbi->s_umask != 0) 348 seq_printf(seq, ",umask=%ho", sbi->s_umask); 349 if (sbi->s_fmode != UDF_INVALID_MODE) 350 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 351 if (sbi->s_dmode != UDF_INVALID_MODE) 352 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 354 seq_printf(seq, ",session=%u", sbi->s_session); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 356 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 357 if (sbi->s_anchor != 0) 358 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 359 /* 360 * volume, partition, fileset and rootdir seem to be ignored 361 * currently 362 */ 363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 364 seq_puts(seq, ",utf8"); 365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 366 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 367 368 return 0; 369 } 370 371 /* 372 * udf_parse_options 373 * 374 * PURPOSE 375 * Parse mount options. 376 * 377 * DESCRIPTION 378 * The following mount options are supported: 379 * 380 * gid= Set the default group. 381 * umask= Set the default umask. 382 * mode= Set the default file permissions. 383 * dmode= Set the default directory permissions. 384 * uid= Set the default user. 385 * bs= Set the block size. 386 * unhide Show otherwise hidden files. 387 * undelete Show deleted files in lists. 388 * adinicb Embed data in the inode (default) 389 * noadinicb Don't embed data in the inode 390 * shortad Use short ad's 391 * longad Use long ad's (default) 392 * nostrict Unset strict conformance 393 * iocharset= Set the NLS character set 394 * 395 * The remaining are for debugging and disaster recovery: 396 * 397 * novrs Skip volume sequence recognition 398 * 399 * The following expect a offset from 0. 400 * 401 * session= Set the CDROM session (default= last session) 402 * anchor= Override standard anchor location. (default= 256) 403 * volume= Override the VolumeDesc location. (unused) 404 * partition= Override the PartitionDesc location. (unused) 405 * lastblock= Set the last block of the filesystem/ 406 * 407 * The following expect a offset from the partition root. 408 * 409 * fileset= Override the fileset block location. (unused) 410 * rootdir= Override the root directory location. (unused) 411 * WARNING: overriding the rootdir to a non-directory may 412 * yield highly unpredictable results. 413 * 414 * PRE-CONDITIONS 415 * options Pointer to mount options string. 416 * uopts Pointer to mount options variable. 417 * 418 * POST-CONDITIONS 419 * <return> 1 Mount options parsed okay. 420 * <return> 0 Error parsing mount options. 421 * 422 * HISTORY 423 * July 1, 1997 - Andrew E. Mileski 424 * Written, tested, and released. 425 */ 426 427 enum { 428 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 429 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 430 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 431 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 432 Opt_rootdir, Opt_utf8, Opt_iocharset, 433 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 434 Opt_fmode, Opt_dmode 435 }; 436 437 static const match_table_t tokens = { 438 {Opt_novrs, "novrs"}, 439 {Opt_nostrict, "nostrict"}, 440 {Opt_bs, "bs=%u"}, 441 {Opt_unhide, "unhide"}, 442 {Opt_undelete, "undelete"}, 443 {Opt_noadinicb, "noadinicb"}, 444 {Opt_adinicb, "adinicb"}, 445 {Opt_shortad, "shortad"}, 446 {Opt_longad, "longad"}, 447 {Opt_uforget, "uid=forget"}, 448 {Opt_uignore, "uid=ignore"}, 449 {Opt_gforget, "gid=forget"}, 450 {Opt_gignore, "gid=ignore"}, 451 {Opt_gid, "gid=%u"}, 452 {Opt_uid, "uid=%u"}, 453 {Opt_umask, "umask=%o"}, 454 {Opt_session, "session=%u"}, 455 {Opt_lastblock, "lastblock=%u"}, 456 {Opt_anchor, "anchor=%u"}, 457 {Opt_volume, "volume=%u"}, 458 {Opt_partition, "partition=%u"}, 459 {Opt_fileset, "fileset=%u"}, 460 {Opt_rootdir, "rootdir=%u"}, 461 {Opt_utf8, "utf8"}, 462 {Opt_iocharset, "iocharset=%s"}, 463 {Opt_fmode, "mode=%o"}, 464 {Opt_dmode, "dmode=%o"}, 465 {Opt_err, NULL} 466 }; 467 468 static int udf_parse_options(char *options, struct udf_options *uopt, 469 bool remount) 470 { 471 char *p; 472 int option; 473 474 uopt->novrs = 0; 475 uopt->partition = 0xFFFF; 476 uopt->session = 0xFFFFFFFF; 477 uopt->lastblock = 0; 478 uopt->anchor = 0; 479 uopt->volume = 0xFFFFFFFF; 480 uopt->rootdir = 0xFFFFFFFF; 481 uopt->fileset = 0xFFFFFFFF; 482 uopt->nls_map = NULL; 483 484 if (!options) 485 return 1; 486 487 while ((p = strsep(&options, ",")) != NULL) { 488 substring_t args[MAX_OPT_ARGS]; 489 int token; 490 if (!*p) 491 continue; 492 493 token = match_token(p, tokens, args); 494 switch (token) { 495 case Opt_novrs: 496 uopt->novrs = 1; 497 break; 498 case Opt_bs: 499 if (match_int(&args[0], &option)) 500 return 0; 501 uopt->blocksize = option; 502 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 503 break; 504 case Opt_unhide: 505 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 506 break; 507 case Opt_undelete: 508 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 509 break; 510 case Opt_noadinicb: 511 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 512 break; 513 case Opt_adinicb: 514 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 515 break; 516 case Opt_shortad: 517 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 518 break; 519 case Opt_longad: 520 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 521 break; 522 case Opt_gid: 523 if (match_int(args, &option)) 524 return 0; 525 uopt->gid = make_kgid(current_user_ns(), option); 526 if (!gid_valid(uopt->gid)) 527 return 0; 528 uopt->flags |= (1 << UDF_FLAG_GID_SET); 529 break; 530 case Opt_uid: 531 if (match_int(args, &option)) 532 return 0; 533 uopt->uid = make_kuid(current_user_ns(), option); 534 if (!uid_valid(uopt->uid)) 535 return 0; 536 uopt->flags |= (1 << UDF_FLAG_UID_SET); 537 break; 538 case Opt_umask: 539 if (match_octal(args, &option)) 540 return 0; 541 uopt->umask = option; 542 break; 543 case Opt_nostrict: 544 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 545 break; 546 case Opt_session: 547 if (match_int(args, &option)) 548 return 0; 549 uopt->session = option; 550 if (!remount) 551 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 552 break; 553 case Opt_lastblock: 554 if (match_int(args, &option)) 555 return 0; 556 uopt->lastblock = option; 557 if (!remount) 558 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 559 break; 560 case Opt_anchor: 561 if (match_int(args, &option)) 562 return 0; 563 uopt->anchor = option; 564 break; 565 case Opt_volume: 566 if (match_int(args, &option)) 567 return 0; 568 uopt->volume = option; 569 break; 570 case Opt_partition: 571 if (match_int(args, &option)) 572 return 0; 573 uopt->partition = option; 574 break; 575 case Opt_fileset: 576 if (match_int(args, &option)) 577 return 0; 578 uopt->fileset = option; 579 break; 580 case Opt_rootdir: 581 if (match_int(args, &option)) 582 return 0; 583 uopt->rootdir = option; 584 break; 585 case Opt_utf8: 586 uopt->flags |= (1 << UDF_FLAG_UTF8); 587 break; 588 #ifdef CONFIG_UDF_NLS 589 case Opt_iocharset: 590 uopt->nls_map = load_nls(args[0].from); 591 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 592 break; 593 #endif 594 case Opt_uignore: 595 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 596 break; 597 case Opt_uforget: 598 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 599 break; 600 case Opt_gignore: 601 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 602 break; 603 case Opt_gforget: 604 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 605 break; 606 case Opt_fmode: 607 if (match_octal(args, &option)) 608 return 0; 609 uopt->fmode = option & 0777; 610 break; 611 case Opt_dmode: 612 if (match_octal(args, &option)) 613 return 0; 614 uopt->dmode = option & 0777; 615 break; 616 default: 617 pr_err("bad mount option \"%s\" or missing value\n", p); 618 return 0; 619 } 620 } 621 return 1; 622 } 623 624 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 625 { 626 struct udf_options uopt; 627 struct udf_sb_info *sbi = UDF_SB(sb); 628 int error = 0; 629 630 uopt.flags = sbi->s_flags; 631 uopt.uid = sbi->s_uid; 632 uopt.gid = sbi->s_gid; 633 uopt.umask = sbi->s_umask; 634 uopt.fmode = sbi->s_fmode; 635 uopt.dmode = sbi->s_dmode; 636 637 if (!udf_parse_options(options, &uopt, true)) 638 return -EINVAL; 639 640 write_lock(&sbi->s_cred_lock); 641 sbi->s_flags = uopt.flags; 642 sbi->s_uid = uopt.uid; 643 sbi->s_gid = uopt.gid; 644 sbi->s_umask = uopt.umask; 645 sbi->s_fmode = uopt.fmode; 646 sbi->s_dmode = uopt.dmode; 647 write_unlock(&sbi->s_cred_lock); 648 649 if (sbi->s_lvid_bh) { 650 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 651 if (write_rev > UDF_MAX_WRITE_VERSION) 652 *flags |= MS_RDONLY; 653 } 654 655 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 656 goto out_unlock; 657 658 if (*flags & MS_RDONLY) 659 udf_close_lvid(sb); 660 else 661 udf_open_lvid(sb); 662 663 out_unlock: 664 return error; 665 } 666 667 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 668 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 669 static loff_t udf_check_vsd(struct super_block *sb) 670 { 671 struct volStructDesc *vsd = NULL; 672 loff_t sector = 32768; 673 int sectorsize; 674 struct buffer_head *bh = NULL; 675 int nsr02 = 0; 676 int nsr03 = 0; 677 struct udf_sb_info *sbi; 678 679 sbi = UDF_SB(sb); 680 if (sb->s_blocksize < sizeof(struct volStructDesc)) 681 sectorsize = sizeof(struct volStructDesc); 682 else 683 sectorsize = sb->s_blocksize; 684 685 sector += (sbi->s_session << sb->s_blocksize_bits); 686 687 udf_debug("Starting at sector %u (%ld byte sectors)\n", 688 (unsigned int)(sector >> sb->s_blocksize_bits), 689 sb->s_blocksize); 690 /* Process the sequence (if applicable) */ 691 for (; !nsr02 && !nsr03; sector += sectorsize) { 692 /* Read a block */ 693 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 694 if (!bh) 695 break; 696 697 /* Look for ISO descriptors */ 698 vsd = (struct volStructDesc *)(bh->b_data + 699 (sector & (sb->s_blocksize - 1))); 700 701 if (vsd->stdIdent[0] == 0) { 702 brelse(bh); 703 break; 704 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 705 VSD_STD_ID_LEN)) { 706 switch (vsd->structType) { 707 case 0: 708 udf_debug("ISO9660 Boot Record found\n"); 709 break; 710 case 1: 711 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 712 break; 713 case 2: 714 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 715 break; 716 case 3: 717 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 718 break; 719 case 255: 720 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 721 break; 722 default: 723 udf_debug("ISO9660 VRS (%u) found\n", 724 vsd->structType); 725 break; 726 } 727 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 728 VSD_STD_ID_LEN)) 729 ; /* nothing */ 730 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 731 VSD_STD_ID_LEN)) { 732 brelse(bh); 733 break; 734 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 735 VSD_STD_ID_LEN)) 736 nsr02 = sector; 737 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 738 VSD_STD_ID_LEN)) 739 nsr03 = sector; 740 brelse(bh); 741 } 742 743 if (nsr03) 744 return nsr03; 745 else if (nsr02) 746 return nsr02; 747 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 748 return -1; 749 else 750 return 0; 751 } 752 753 static int udf_find_fileset(struct super_block *sb, 754 struct kernel_lb_addr *fileset, 755 struct kernel_lb_addr *root) 756 { 757 struct buffer_head *bh = NULL; 758 long lastblock; 759 uint16_t ident; 760 struct udf_sb_info *sbi; 761 762 if (fileset->logicalBlockNum != 0xFFFFFFFF || 763 fileset->partitionReferenceNum != 0xFFFF) { 764 bh = udf_read_ptagged(sb, fileset, 0, &ident); 765 766 if (!bh) { 767 return 1; 768 } else if (ident != TAG_IDENT_FSD) { 769 brelse(bh); 770 return 1; 771 } 772 773 } 774 775 sbi = UDF_SB(sb); 776 if (!bh) { 777 /* Search backwards through the partitions */ 778 struct kernel_lb_addr newfileset; 779 780 /* --> cvg: FIXME - is it reasonable? */ 781 return 1; 782 783 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 784 (newfileset.partitionReferenceNum != 0xFFFF && 785 fileset->logicalBlockNum == 0xFFFFFFFF && 786 fileset->partitionReferenceNum == 0xFFFF); 787 newfileset.partitionReferenceNum--) { 788 lastblock = sbi->s_partmaps 789 [newfileset.partitionReferenceNum] 790 .s_partition_len; 791 newfileset.logicalBlockNum = 0; 792 793 do { 794 bh = udf_read_ptagged(sb, &newfileset, 0, 795 &ident); 796 if (!bh) { 797 newfileset.logicalBlockNum++; 798 continue; 799 } 800 801 switch (ident) { 802 case TAG_IDENT_SBD: 803 { 804 struct spaceBitmapDesc *sp; 805 sp = (struct spaceBitmapDesc *) 806 bh->b_data; 807 newfileset.logicalBlockNum += 1 + 808 ((le32_to_cpu(sp->numOfBytes) + 809 sizeof(struct spaceBitmapDesc) 810 - 1) >> sb->s_blocksize_bits); 811 brelse(bh); 812 break; 813 } 814 case TAG_IDENT_FSD: 815 *fileset = newfileset; 816 break; 817 default: 818 newfileset.logicalBlockNum++; 819 brelse(bh); 820 bh = NULL; 821 break; 822 } 823 } while (newfileset.logicalBlockNum < lastblock && 824 fileset->logicalBlockNum == 0xFFFFFFFF && 825 fileset->partitionReferenceNum == 0xFFFF); 826 } 827 } 828 829 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 830 fileset->partitionReferenceNum != 0xFFFF) && bh) { 831 udf_debug("Fileset at block=%d, partition=%d\n", 832 fileset->logicalBlockNum, 833 fileset->partitionReferenceNum); 834 835 sbi->s_partition = fileset->partitionReferenceNum; 836 udf_load_fileset(sb, bh, root); 837 brelse(bh); 838 return 0; 839 } 840 return 1; 841 } 842 843 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 844 { 845 struct primaryVolDesc *pvoldesc; 846 struct ustr *instr, *outstr; 847 struct buffer_head *bh; 848 uint16_t ident; 849 int ret = 1; 850 851 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 852 if (!instr) 853 return 1; 854 855 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 856 if (!outstr) 857 goto out1; 858 859 bh = udf_read_tagged(sb, block, block, &ident); 860 if (!bh) 861 goto out2; 862 863 BUG_ON(ident != TAG_IDENT_PVD); 864 865 pvoldesc = (struct primaryVolDesc *)bh->b_data; 866 867 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 868 pvoldesc->recordingDateAndTime)) { 869 #ifdef UDFFS_DEBUG 870 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 871 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 872 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 873 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 874 #endif 875 } 876 877 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 878 if (udf_CS0toUTF8(outstr, instr)) { 879 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 880 outstr->u_len > 31 ? 31 : outstr->u_len); 881 udf_debug("volIdent[] = '%s'\n", 882 UDF_SB(sb)->s_volume_ident); 883 } 884 885 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 886 if (udf_CS0toUTF8(outstr, instr)) 887 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 888 889 brelse(bh); 890 ret = 0; 891 out2: 892 kfree(outstr); 893 out1: 894 kfree(instr); 895 return ret; 896 } 897 898 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 899 u32 meta_file_loc, u32 partition_num) 900 { 901 struct kernel_lb_addr addr; 902 struct inode *metadata_fe; 903 904 addr.logicalBlockNum = meta_file_loc; 905 addr.partitionReferenceNum = partition_num; 906 907 metadata_fe = udf_iget(sb, &addr); 908 909 if (metadata_fe == NULL) 910 udf_warn(sb, "metadata inode efe not found\n"); 911 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 912 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 913 iput(metadata_fe); 914 metadata_fe = NULL; 915 } 916 917 return metadata_fe; 918 } 919 920 static int udf_load_metadata_files(struct super_block *sb, int partition) 921 { 922 struct udf_sb_info *sbi = UDF_SB(sb); 923 struct udf_part_map *map; 924 struct udf_meta_data *mdata; 925 struct kernel_lb_addr addr; 926 927 map = &sbi->s_partmaps[partition]; 928 mdata = &map->s_type_specific.s_metadata; 929 930 /* metadata address */ 931 udf_debug("Metadata file location: block = %d part = %d\n", 932 mdata->s_meta_file_loc, map->s_partition_num); 933 934 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 935 mdata->s_meta_file_loc, map->s_partition_num); 936 937 if (mdata->s_metadata_fe == NULL) { 938 /* mirror file entry */ 939 udf_debug("Mirror metadata file location: block = %d part = %d\n", 940 mdata->s_mirror_file_loc, map->s_partition_num); 941 942 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 943 mdata->s_mirror_file_loc, map->s_partition_num); 944 945 if (mdata->s_mirror_fe == NULL) { 946 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 947 goto error_exit; 948 } 949 } 950 951 /* 952 * bitmap file entry 953 * Note: 954 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 955 */ 956 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 957 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 958 addr.partitionReferenceNum = map->s_partition_num; 959 960 udf_debug("Bitmap file location: block = %d part = %d\n", 961 addr.logicalBlockNum, addr.partitionReferenceNum); 962 963 mdata->s_bitmap_fe = udf_iget(sb, &addr); 964 965 if (mdata->s_bitmap_fe == NULL) { 966 if (sb->s_flags & MS_RDONLY) 967 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 968 else { 969 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 970 goto error_exit; 971 } 972 } 973 } 974 975 udf_debug("udf_load_metadata_files Ok\n"); 976 977 return 0; 978 979 error_exit: 980 return 1; 981 } 982 983 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 984 struct kernel_lb_addr *root) 985 { 986 struct fileSetDesc *fset; 987 988 fset = (struct fileSetDesc *)bh->b_data; 989 990 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 991 992 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 993 994 udf_debug("Rootdir at block=%d, partition=%d\n", 995 root->logicalBlockNum, root->partitionReferenceNum); 996 } 997 998 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 999 { 1000 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1001 return DIV_ROUND_UP(map->s_partition_len + 1002 (sizeof(struct spaceBitmapDesc) << 3), 1003 sb->s_blocksize * 8); 1004 } 1005 1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1007 { 1008 struct udf_bitmap *bitmap; 1009 int nr_groups; 1010 int size; 1011 1012 nr_groups = udf_compute_nr_groups(sb, index); 1013 size = sizeof(struct udf_bitmap) + 1014 (sizeof(struct buffer_head *) * nr_groups); 1015 1016 if (size <= PAGE_SIZE) 1017 bitmap = kzalloc(size, GFP_KERNEL); 1018 else 1019 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1020 1021 if (bitmap == NULL) 1022 return NULL; 1023 1024 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 1025 bitmap->s_nr_groups = nr_groups; 1026 return bitmap; 1027 } 1028 1029 static int udf_fill_partdesc_info(struct super_block *sb, 1030 struct partitionDesc *p, int p_index) 1031 { 1032 struct udf_part_map *map; 1033 struct udf_sb_info *sbi = UDF_SB(sb); 1034 struct partitionHeaderDesc *phd; 1035 1036 map = &sbi->s_partmaps[p_index]; 1037 1038 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1039 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1040 1041 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1042 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1043 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1044 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1045 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1046 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1047 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1048 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1049 1050 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1051 p_index, map->s_partition_type, 1052 map->s_partition_root, map->s_partition_len); 1053 1054 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1055 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1056 return 0; 1057 1058 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1059 if (phd->unallocSpaceTable.extLength) { 1060 struct kernel_lb_addr loc = { 1061 .logicalBlockNum = le32_to_cpu( 1062 phd->unallocSpaceTable.extPosition), 1063 .partitionReferenceNum = p_index, 1064 }; 1065 1066 map->s_uspace.s_table = udf_iget(sb, &loc); 1067 if (!map->s_uspace.s_table) { 1068 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1069 p_index); 1070 return 1; 1071 } 1072 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1073 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1074 p_index, map->s_uspace.s_table->i_ino); 1075 } 1076 1077 if (phd->unallocSpaceBitmap.extLength) { 1078 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1079 if (!bitmap) 1080 return 1; 1081 map->s_uspace.s_bitmap = bitmap; 1082 bitmap->s_extLength = le32_to_cpu( 1083 phd->unallocSpaceBitmap.extLength); 1084 bitmap->s_extPosition = le32_to_cpu( 1085 phd->unallocSpaceBitmap.extPosition); 1086 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1087 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1088 p_index, bitmap->s_extPosition); 1089 } 1090 1091 if (phd->partitionIntegrityTable.extLength) 1092 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1093 1094 if (phd->freedSpaceTable.extLength) { 1095 struct kernel_lb_addr loc = { 1096 .logicalBlockNum = le32_to_cpu( 1097 phd->freedSpaceTable.extPosition), 1098 .partitionReferenceNum = p_index, 1099 }; 1100 1101 map->s_fspace.s_table = udf_iget(sb, &loc); 1102 if (!map->s_fspace.s_table) { 1103 udf_debug("cannot load freedSpaceTable (part %d)\n", 1104 p_index); 1105 return 1; 1106 } 1107 1108 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1109 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1110 p_index, map->s_fspace.s_table->i_ino); 1111 } 1112 1113 if (phd->freedSpaceBitmap.extLength) { 1114 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1115 if (!bitmap) 1116 return 1; 1117 map->s_fspace.s_bitmap = bitmap; 1118 bitmap->s_extLength = le32_to_cpu( 1119 phd->freedSpaceBitmap.extLength); 1120 bitmap->s_extPosition = le32_to_cpu( 1121 phd->freedSpaceBitmap.extPosition); 1122 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1123 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1124 p_index, bitmap->s_extPosition); 1125 } 1126 return 0; 1127 } 1128 1129 static void udf_find_vat_block(struct super_block *sb, int p_index, 1130 int type1_index, sector_t start_block) 1131 { 1132 struct udf_sb_info *sbi = UDF_SB(sb); 1133 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1134 sector_t vat_block; 1135 struct kernel_lb_addr ino; 1136 1137 /* 1138 * VAT file entry is in the last recorded block. Some broken disks have 1139 * it a few blocks before so try a bit harder... 1140 */ 1141 ino.partitionReferenceNum = type1_index; 1142 for (vat_block = start_block; 1143 vat_block >= map->s_partition_root && 1144 vat_block >= start_block - 3 && 1145 !sbi->s_vat_inode; vat_block--) { 1146 ino.logicalBlockNum = vat_block - map->s_partition_root; 1147 sbi->s_vat_inode = udf_iget(sb, &ino); 1148 } 1149 } 1150 1151 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1152 { 1153 struct udf_sb_info *sbi = UDF_SB(sb); 1154 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1155 struct buffer_head *bh = NULL; 1156 struct udf_inode_info *vati; 1157 uint32_t pos; 1158 struct virtualAllocationTable20 *vat20; 1159 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1160 1161 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1162 if (!sbi->s_vat_inode && 1163 sbi->s_last_block != blocks - 1) { 1164 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1165 (unsigned long)sbi->s_last_block, 1166 (unsigned long)blocks - 1); 1167 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1168 } 1169 if (!sbi->s_vat_inode) 1170 return 1; 1171 1172 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1173 map->s_type_specific.s_virtual.s_start_offset = 0; 1174 map->s_type_specific.s_virtual.s_num_entries = 1175 (sbi->s_vat_inode->i_size - 36) >> 2; 1176 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1177 vati = UDF_I(sbi->s_vat_inode); 1178 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1179 pos = udf_block_map(sbi->s_vat_inode, 0); 1180 bh = sb_bread(sb, pos); 1181 if (!bh) 1182 return 1; 1183 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1184 } else { 1185 vat20 = (struct virtualAllocationTable20 *) 1186 vati->i_ext.i_data; 1187 } 1188 1189 map->s_type_specific.s_virtual.s_start_offset = 1190 le16_to_cpu(vat20->lengthHeader); 1191 map->s_type_specific.s_virtual.s_num_entries = 1192 (sbi->s_vat_inode->i_size - 1193 map->s_type_specific.s_virtual. 1194 s_start_offset) >> 2; 1195 brelse(bh); 1196 } 1197 return 0; 1198 } 1199 1200 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1201 { 1202 struct buffer_head *bh; 1203 struct partitionDesc *p; 1204 struct udf_part_map *map; 1205 struct udf_sb_info *sbi = UDF_SB(sb); 1206 int i, type1_idx; 1207 uint16_t partitionNumber; 1208 uint16_t ident; 1209 int ret = 0; 1210 1211 bh = udf_read_tagged(sb, block, block, &ident); 1212 if (!bh) 1213 return 1; 1214 if (ident != TAG_IDENT_PD) 1215 goto out_bh; 1216 1217 p = (struct partitionDesc *)bh->b_data; 1218 partitionNumber = le16_to_cpu(p->partitionNumber); 1219 1220 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1221 for (i = 0; i < sbi->s_partitions; i++) { 1222 map = &sbi->s_partmaps[i]; 1223 udf_debug("Searching map: (%d == %d)\n", 1224 map->s_partition_num, partitionNumber); 1225 if (map->s_partition_num == partitionNumber && 1226 (map->s_partition_type == UDF_TYPE1_MAP15 || 1227 map->s_partition_type == UDF_SPARABLE_MAP15)) 1228 break; 1229 } 1230 1231 if (i >= sbi->s_partitions) { 1232 udf_debug("Partition (%d) not found in partition map\n", 1233 partitionNumber); 1234 goto out_bh; 1235 } 1236 1237 ret = udf_fill_partdesc_info(sb, p, i); 1238 1239 /* 1240 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1241 * PHYSICAL partitions are already set up 1242 */ 1243 type1_idx = i; 1244 for (i = 0; i < sbi->s_partitions; i++) { 1245 map = &sbi->s_partmaps[i]; 1246 1247 if (map->s_partition_num == partitionNumber && 1248 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1249 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1250 map->s_partition_type == UDF_METADATA_MAP25)) 1251 break; 1252 } 1253 1254 if (i >= sbi->s_partitions) 1255 goto out_bh; 1256 1257 ret = udf_fill_partdesc_info(sb, p, i); 1258 if (ret) 1259 goto out_bh; 1260 1261 if (map->s_partition_type == UDF_METADATA_MAP25) { 1262 ret = udf_load_metadata_files(sb, i); 1263 if (ret) { 1264 udf_err(sb, "error loading MetaData partition map %d\n", 1265 i); 1266 goto out_bh; 1267 } 1268 } else { 1269 ret = udf_load_vat(sb, i, type1_idx); 1270 if (ret) 1271 goto out_bh; 1272 /* 1273 * Mark filesystem read-only if we have a partition with 1274 * virtual map since we don't handle writing to it (we 1275 * overwrite blocks instead of relocating them). 1276 */ 1277 sb->s_flags |= MS_RDONLY; 1278 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); 1279 } 1280 out_bh: 1281 /* In case loading failed, we handle cleanup in udf_fill_super */ 1282 brelse(bh); 1283 return ret; 1284 } 1285 1286 static int udf_load_sparable_map(struct super_block *sb, 1287 struct udf_part_map *map, 1288 struct sparablePartitionMap *spm) 1289 { 1290 uint32_t loc; 1291 uint16_t ident; 1292 struct sparingTable *st; 1293 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1294 int i; 1295 struct buffer_head *bh; 1296 1297 map->s_partition_type = UDF_SPARABLE_MAP15; 1298 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1299 if (!is_power_of_2(sdata->s_packet_len)) { 1300 udf_err(sb, "error loading logical volume descriptor: " 1301 "Invalid packet length %u\n", 1302 (unsigned)sdata->s_packet_len); 1303 return -EIO; 1304 } 1305 if (spm->numSparingTables > 4) { 1306 udf_err(sb, "error loading logical volume descriptor: " 1307 "Too many sparing tables (%d)\n", 1308 (int)spm->numSparingTables); 1309 return -EIO; 1310 } 1311 1312 for (i = 0; i < spm->numSparingTables; i++) { 1313 loc = le32_to_cpu(spm->locSparingTable[i]); 1314 bh = udf_read_tagged(sb, loc, loc, &ident); 1315 if (!bh) 1316 continue; 1317 1318 st = (struct sparingTable *)bh->b_data; 1319 if (ident != 0 || 1320 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1321 strlen(UDF_ID_SPARING)) || 1322 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1323 sb->s_blocksize) { 1324 brelse(bh); 1325 continue; 1326 } 1327 1328 sdata->s_spar_map[i] = bh; 1329 } 1330 map->s_partition_func = udf_get_pblock_spar15; 1331 return 0; 1332 } 1333 1334 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1335 struct kernel_lb_addr *fileset) 1336 { 1337 struct logicalVolDesc *lvd; 1338 int i, offset; 1339 uint8_t type; 1340 struct udf_sb_info *sbi = UDF_SB(sb); 1341 struct genericPartitionMap *gpm; 1342 uint16_t ident; 1343 struct buffer_head *bh; 1344 unsigned int table_len; 1345 int ret = 0; 1346 1347 bh = udf_read_tagged(sb, block, block, &ident); 1348 if (!bh) 1349 return 1; 1350 BUG_ON(ident != TAG_IDENT_LVD); 1351 lvd = (struct logicalVolDesc *)bh->b_data; 1352 table_len = le32_to_cpu(lvd->mapTableLength); 1353 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1354 udf_err(sb, "error loading logical volume descriptor: " 1355 "Partition table too long (%u > %lu)\n", table_len, 1356 sb->s_blocksize - sizeof(*lvd)); 1357 ret = 1; 1358 goto out_bh; 1359 } 1360 1361 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1362 if (ret) 1363 goto out_bh; 1364 1365 for (i = 0, offset = 0; 1366 i < sbi->s_partitions && offset < table_len; 1367 i++, offset += gpm->partitionMapLength) { 1368 struct udf_part_map *map = &sbi->s_partmaps[i]; 1369 gpm = (struct genericPartitionMap *) 1370 &(lvd->partitionMaps[offset]); 1371 type = gpm->partitionMapType; 1372 if (type == 1) { 1373 struct genericPartitionMap1 *gpm1 = 1374 (struct genericPartitionMap1 *)gpm; 1375 map->s_partition_type = UDF_TYPE1_MAP15; 1376 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1377 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1378 map->s_partition_func = NULL; 1379 } else if (type == 2) { 1380 struct udfPartitionMap2 *upm2 = 1381 (struct udfPartitionMap2 *)gpm; 1382 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1383 strlen(UDF_ID_VIRTUAL))) { 1384 u16 suf = 1385 le16_to_cpu(((__le16 *)upm2->partIdent. 1386 identSuffix)[0]); 1387 if (suf < 0x0200) { 1388 map->s_partition_type = 1389 UDF_VIRTUAL_MAP15; 1390 map->s_partition_func = 1391 udf_get_pblock_virt15; 1392 } else { 1393 map->s_partition_type = 1394 UDF_VIRTUAL_MAP20; 1395 map->s_partition_func = 1396 udf_get_pblock_virt20; 1397 } 1398 } else if (!strncmp(upm2->partIdent.ident, 1399 UDF_ID_SPARABLE, 1400 strlen(UDF_ID_SPARABLE))) { 1401 if (udf_load_sparable_map(sb, map, 1402 (struct sparablePartitionMap *)gpm) < 0) { 1403 ret = 1; 1404 goto out_bh; 1405 } 1406 } else if (!strncmp(upm2->partIdent.ident, 1407 UDF_ID_METADATA, 1408 strlen(UDF_ID_METADATA))) { 1409 struct udf_meta_data *mdata = 1410 &map->s_type_specific.s_metadata; 1411 struct metadataPartitionMap *mdm = 1412 (struct metadataPartitionMap *) 1413 &(lvd->partitionMaps[offset]); 1414 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1415 i, type, UDF_ID_METADATA); 1416 1417 map->s_partition_type = UDF_METADATA_MAP25; 1418 map->s_partition_func = udf_get_pblock_meta25; 1419 1420 mdata->s_meta_file_loc = 1421 le32_to_cpu(mdm->metadataFileLoc); 1422 mdata->s_mirror_file_loc = 1423 le32_to_cpu(mdm->metadataMirrorFileLoc); 1424 mdata->s_bitmap_file_loc = 1425 le32_to_cpu(mdm->metadataBitmapFileLoc); 1426 mdata->s_alloc_unit_size = 1427 le32_to_cpu(mdm->allocUnitSize); 1428 mdata->s_align_unit_size = 1429 le16_to_cpu(mdm->alignUnitSize); 1430 if (mdm->flags & 0x01) 1431 mdata->s_flags |= MF_DUPLICATE_MD; 1432 1433 udf_debug("Metadata Ident suffix=0x%x\n", 1434 le16_to_cpu(*(__le16 *) 1435 mdm->partIdent.identSuffix)); 1436 udf_debug("Metadata part num=%d\n", 1437 le16_to_cpu(mdm->partitionNum)); 1438 udf_debug("Metadata part alloc unit size=%d\n", 1439 le32_to_cpu(mdm->allocUnitSize)); 1440 udf_debug("Metadata file loc=%d\n", 1441 le32_to_cpu(mdm->metadataFileLoc)); 1442 udf_debug("Mirror file loc=%d\n", 1443 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1444 udf_debug("Bitmap file loc=%d\n", 1445 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1446 udf_debug("Flags: %d %d\n", 1447 mdata->s_flags, mdm->flags); 1448 } else { 1449 udf_debug("Unknown ident: %s\n", 1450 upm2->partIdent.ident); 1451 continue; 1452 } 1453 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1454 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1455 } 1456 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1457 i, map->s_partition_num, type, map->s_volumeseqnum); 1458 } 1459 1460 if (fileset) { 1461 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1462 1463 *fileset = lelb_to_cpu(la->extLocation); 1464 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1465 fileset->logicalBlockNum, 1466 fileset->partitionReferenceNum); 1467 } 1468 if (lvd->integritySeqExt.extLength) 1469 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1470 1471 out_bh: 1472 brelse(bh); 1473 return ret; 1474 } 1475 1476 /* 1477 * udf_load_logicalvolint 1478 * 1479 */ 1480 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1481 { 1482 struct buffer_head *bh = NULL; 1483 uint16_t ident; 1484 struct udf_sb_info *sbi = UDF_SB(sb); 1485 struct logicalVolIntegrityDesc *lvid; 1486 1487 while (loc.extLength > 0 && 1488 (bh = udf_read_tagged(sb, loc.extLocation, 1489 loc.extLocation, &ident)) && 1490 ident == TAG_IDENT_LVID) { 1491 sbi->s_lvid_bh = bh; 1492 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1493 1494 if (lvid->nextIntegrityExt.extLength) 1495 udf_load_logicalvolint(sb, 1496 leea_to_cpu(lvid->nextIntegrityExt)); 1497 1498 if (sbi->s_lvid_bh != bh) 1499 brelse(bh); 1500 loc.extLength -= sb->s_blocksize; 1501 loc.extLocation++; 1502 } 1503 if (sbi->s_lvid_bh != bh) 1504 brelse(bh); 1505 } 1506 1507 /* 1508 * udf_process_sequence 1509 * 1510 * PURPOSE 1511 * Process a main/reserve volume descriptor sequence. 1512 * 1513 * PRE-CONDITIONS 1514 * sb Pointer to _locked_ superblock. 1515 * block First block of first extent of the sequence. 1516 * lastblock Lastblock of first extent of the sequence. 1517 * 1518 * HISTORY 1519 * July 1, 1997 - Andrew E. Mileski 1520 * Written, tested, and released. 1521 */ 1522 static noinline int udf_process_sequence(struct super_block *sb, long block, 1523 long lastblock, struct kernel_lb_addr *fileset) 1524 { 1525 struct buffer_head *bh = NULL; 1526 struct udf_vds_record vds[VDS_POS_LENGTH]; 1527 struct udf_vds_record *curr; 1528 struct generic_desc *gd; 1529 struct volDescPtr *vdp; 1530 int done = 0; 1531 uint32_t vdsn; 1532 uint16_t ident; 1533 long next_s = 0, next_e = 0; 1534 1535 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1536 1537 /* 1538 * Read the main descriptor sequence and find which descriptors 1539 * are in it. 1540 */ 1541 for (; (!done && block <= lastblock); block++) { 1542 1543 bh = udf_read_tagged(sb, block, block, &ident); 1544 if (!bh) { 1545 udf_err(sb, 1546 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1547 (unsigned long long)block); 1548 return 1; 1549 } 1550 1551 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1552 gd = (struct generic_desc *)bh->b_data; 1553 vdsn = le32_to_cpu(gd->volDescSeqNum); 1554 switch (ident) { 1555 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1556 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1557 if (vdsn >= curr->volDescSeqNum) { 1558 curr->volDescSeqNum = vdsn; 1559 curr->block = block; 1560 } 1561 break; 1562 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1563 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1564 if (vdsn >= curr->volDescSeqNum) { 1565 curr->volDescSeqNum = vdsn; 1566 curr->block = block; 1567 1568 vdp = (struct volDescPtr *)bh->b_data; 1569 next_s = le32_to_cpu( 1570 vdp->nextVolDescSeqExt.extLocation); 1571 next_e = le32_to_cpu( 1572 vdp->nextVolDescSeqExt.extLength); 1573 next_e = next_e >> sb->s_blocksize_bits; 1574 next_e += next_s; 1575 } 1576 break; 1577 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1578 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1579 if (vdsn >= curr->volDescSeqNum) { 1580 curr->volDescSeqNum = vdsn; 1581 curr->block = block; 1582 } 1583 break; 1584 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1585 curr = &vds[VDS_POS_PARTITION_DESC]; 1586 if (!curr->block) 1587 curr->block = block; 1588 break; 1589 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1590 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1591 if (vdsn >= curr->volDescSeqNum) { 1592 curr->volDescSeqNum = vdsn; 1593 curr->block = block; 1594 } 1595 break; 1596 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1597 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1598 if (vdsn >= curr->volDescSeqNum) { 1599 curr->volDescSeqNum = vdsn; 1600 curr->block = block; 1601 } 1602 break; 1603 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1604 vds[VDS_POS_TERMINATING_DESC].block = block; 1605 if (next_e) { 1606 block = next_s; 1607 lastblock = next_e; 1608 next_s = next_e = 0; 1609 } else 1610 done = 1; 1611 break; 1612 } 1613 brelse(bh); 1614 } 1615 /* 1616 * Now read interesting descriptors again and process them 1617 * in a suitable order 1618 */ 1619 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1620 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1621 return 1; 1622 } 1623 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1624 return 1; 1625 1626 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1627 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1628 return 1; 1629 1630 if (vds[VDS_POS_PARTITION_DESC].block) { 1631 /* 1632 * We rescan the whole descriptor sequence to find 1633 * partition descriptor blocks and process them. 1634 */ 1635 for (block = vds[VDS_POS_PARTITION_DESC].block; 1636 block < vds[VDS_POS_TERMINATING_DESC].block; 1637 block++) 1638 if (udf_load_partdesc(sb, block)) 1639 return 1; 1640 } 1641 1642 return 0; 1643 } 1644 1645 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1646 struct kernel_lb_addr *fileset) 1647 { 1648 struct anchorVolDescPtr *anchor; 1649 long main_s, main_e, reserve_s, reserve_e; 1650 1651 anchor = (struct anchorVolDescPtr *)bh->b_data; 1652 1653 /* Locate the main sequence */ 1654 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1655 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1656 main_e = main_e >> sb->s_blocksize_bits; 1657 main_e += main_s; 1658 1659 /* Locate the reserve sequence */ 1660 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1661 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1662 reserve_e = reserve_e >> sb->s_blocksize_bits; 1663 reserve_e += reserve_s; 1664 1665 /* Process the main & reserve sequences */ 1666 /* responsible for finding the PartitionDesc(s) */ 1667 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1668 return 1; 1669 udf_sb_free_partitions(sb); 1670 if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset)) 1671 return 1; 1672 udf_sb_free_partitions(sb); 1673 return 0; 1674 } 1675 1676 /* 1677 * Check whether there is an anchor block in the given block and 1678 * load Volume Descriptor Sequence if so. 1679 */ 1680 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1681 struct kernel_lb_addr *fileset) 1682 { 1683 struct buffer_head *bh; 1684 uint16_t ident; 1685 int ret; 1686 1687 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1688 udf_fixed_to_variable(block) >= 1689 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1690 return 0; 1691 1692 bh = udf_read_tagged(sb, block, block, &ident); 1693 if (!bh) 1694 return 0; 1695 if (ident != TAG_IDENT_AVDP) { 1696 brelse(bh); 1697 return 0; 1698 } 1699 ret = udf_load_sequence(sb, bh, fileset); 1700 brelse(bh); 1701 return ret; 1702 } 1703 1704 /* Search for an anchor volume descriptor pointer */ 1705 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1706 struct kernel_lb_addr *fileset) 1707 { 1708 sector_t last[6]; 1709 int i; 1710 struct udf_sb_info *sbi = UDF_SB(sb); 1711 int last_count = 0; 1712 1713 /* First try user provided anchor */ 1714 if (sbi->s_anchor) { 1715 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1716 return lastblock; 1717 } 1718 /* 1719 * according to spec, anchor is in either: 1720 * block 256 1721 * lastblock-256 1722 * lastblock 1723 * however, if the disc isn't closed, it could be 512. 1724 */ 1725 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1726 return lastblock; 1727 /* 1728 * The trouble is which block is the last one. Drives often misreport 1729 * this so we try various possibilities. 1730 */ 1731 last[last_count++] = lastblock; 1732 if (lastblock >= 1) 1733 last[last_count++] = lastblock - 1; 1734 last[last_count++] = lastblock + 1; 1735 if (lastblock >= 2) 1736 last[last_count++] = lastblock - 2; 1737 if (lastblock >= 150) 1738 last[last_count++] = lastblock - 150; 1739 if (lastblock >= 152) 1740 last[last_count++] = lastblock - 152; 1741 1742 for (i = 0; i < last_count; i++) { 1743 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1744 sb->s_blocksize_bits) 1745 continue; 1746 if (udf_check_anchor_block(sb, last[i], fileset)) 1747 return last[i]; 1748 if (last[i] < 256) 1749 continue; 1750 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1751 return last[i]; 1752 } 1753 1754 /* Finally try block 512 in case media is open */ 1755 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1756 return last[0]; 1757 return 0; 1758 } 1759 1760 /* 1761 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1762 * area specified by it. The function expects sbi->s_lastblock to be the last 1763 * block on the media. 1764 * 1765 * Return 1 if ok, 0 if not found. 1766 * 1767 */ 1768 static int udf_find_anchor(struct super_block *sb, 1769 struct kernel_lb_addr *fileset) 1770 { 1771 sector_t lastblock; 1772 struct udf_sb_info *sbi = UDF_SB(sb); 1773 1774 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1775 if (lastblock) 1776 goto out; 1777 1778 /* No anchor found? Try VARCONV conversion of block numbers */ 1779 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1780 /* Firstly, we try to not convert number of the last block */ 1781 lastblock = udf_scan_anchors(sb, 1782 udf_variable_to_fixed(sbi->s_last_block), 1783 fileset); 1784 if (lastblock) 1785 goto out; 1786 1787 /* Secondly, we try with converted number of the last block */ 1788 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1789 if (!lastblock) { 1790 /* VARCONV didn't help. Clear it. */ 1791 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1792 return 0; 1793 } 1794 out: 1795 sbi->s_last_block = lastblock; 1796 return 1; 1797 } 1798 1799 /* 1800 * Check Volume Structure Descriptor, find Anchor block and load Volume 1801 * Descriptor Sequence 1802 */ 1803 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1804 int silent, struct kernel_lb_addr *fileset) 1805 { 1806 struct udf_sb_info *sbi = UDF_SB(sb); 1807 loff_t nsr_off; 1808 1809 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1810 if (!silent) 1811 udf_warn(sb, "Bad block size\n"); 1812 return 0; 1813 } 1814 sbi->s_last_block = uopt->lastblock; 1815 if (!uopt->novrs) { 1816 /* Check that it is NSR02 compliant */ 1817 nsr_off = udf_check_vsd(sb); 1818 if (!nsr_off) { 1819 if (!silent) 1820 udf_warn(sb, "No VRS found\n"); 1821 return 0; 1822 } 1823 if (nsr_off == -1) 1824 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1825 if (!sbi->s_last_block) 1826 sbi->s_last_block = udf_get_last_block(sb); 1827 } else { 1828 udf_debug("Validity check skipped because of novrs option\n"); 1829 } 1830 1831 /* Look for anchor block and load Volume Descriptor Sequence */ 1832 sbi->s_anchor = uopt->anchor; 1833 if (!udf_find_anchor(sb, fileset)) { 1834 if (!silent) 1835 udf_warn(sb, "No anchor found\n"); 1836 return 0; 1837 } 1838 return 1; 1839 } 1840 1841 static void udf_open_lvid(struct super_block *sb) 1842 { 1843 struct udf_sb_info *sbi = UDF_SB(sb); 1844 struct buffer_head *bh = sbi->s_lvid_bh; 1845 struct logicalVolIntegrityDesc *lvid; 1846 struct logicalVolIntegrityDescImpUse *lvidiu; 1847 1848 if (!bh) 1849 return; 1850 1851 mutex_lock(&sbi->s_alloc_mutex); 1852 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1853 lvidiu = udf_sb_lvidiu(sbi); 1854 1855 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1856 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1857 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1858 CURRENT_TIME); 1859 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1860 1861 lvid->descTag.descCRC = cpu_to_le16( 1862 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1863 le16_to_cpu(lvid->descTag.descCRCLength))); 1864 1865 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1866 mark_buffer_dirty(bh); 1867 sbi->s_lvid_dirty = 0; 1868 mutex_unlock(&sbi->s_alloc_mutex); 1869 } 1870 1871 static void udf_close_lvid(struct super_block *sb) 1872 { 1873 struct udf_sb_info *sbi = UDF_SB(sb); 1874 struct buffer_head *bh = sbi->s_lvid_bh; 1875 struct logicalVolIntegrityDesc *lvid; 1876 struct logicalVolIntegrityDescImpUse *lvidiu; 1877 1878 if (!bh) 1879 return; 1880 1881 mutex_lock(&sbi->s_alloc_mutex); 1882 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1883 lvidiu = udf_sb_lvidiu(sbi); 1884 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1885 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1886 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1887 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1888 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1889 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1890 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1891 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1892 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1893 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1894 1895 lvid->descTag.descCRC = cpu_to_le16( 1896 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1897 le16_to_cpu(lvid->descTag.descCRCLength))); 1898 1899 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1900 /* 1901 * We set buffer uptodate unconditionally here to avoid spurious 1902 * warnings from mark_buffer_dirty() when previous EIO has marked 1903 * the buffer as !uptodate 1904 */ 1905 set_buffer_uptodate(bh); 1906 mark_buffer_dirty(bh); 1907 sbi->s_lvid_dirty = 0; 1908 mutex_unlock(&sbi->s_alloc_mutex); 1909 } 1910 1911 u64 lvid_get_unique_id(struct super_block *sb) 1912 { 1913 struct buffer_head *bh; 1914 struct udf_sb_info *sbi = UDF_SB(sb); 1915 struct logicalVolIntegrityDesc *lvid; 1916 struct logicalVolHeaderDesc *lvhd; 1917 u64 uniqueID; 1918 u64 ret; 1919 1920 bh = sbi->s_lvid_bh; 1921 if (!bh) 1922 return 0; 1923 1924 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1925 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1926 1927 mutex_lock(&sbi->s_alloc_mutex); 1928 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1929 if (!(++uniqueID & 0xFFFFFFFF)) 1930 uniqueID += 16; 1931 lvhd->uniqueID = cpu_to_le64(uniqueID); 1932 mutex_unlock(&sbi->s_alloc_mutex); 1933 mark_buffer_dirty(bh); 1934 1935 return ret; 1936 } 1937 1938 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1939 { 1940 int ret; 1941 struct inode *inode = NULL; 1942 struct udf_options uopt; 1943 struct kernel_lb_addr rootdir, fileset; 1944 struct udf_sb_info *sbi; 1945 1946 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1947 uopt.uid = INVALID_UID; 1948 uopt.gid = INVALID_GID; 1949 uopt.umask = 0; 1950 uopt.fmode = UDF_INVALID_MODE; 1951 uopt.dmode = UDF_INVALID_MODE; 1952 1953 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1954 if (!sbi) 1955 return -ENOMEM; 1956 1957 sb->s_fs_info = sbi; 1958 1959 mutex_init(&sbi->s_alloc_mutex); 1960 1961 if (!udf_parse_options((char *)options, &uopt, false)) 1962 goto error_out; 1963 1964 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1965 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1966 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 1967 goto error_out; 1968 } 1969 #ifdef CONFIG_UDF_NLS 1970 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1971 uopt.nls_map = load_nls_default(); 1972 if (!uopt.nls_map) 1973 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1974 else 1975 udf_debug("Using default NLS map\n"); 1976 } 1977 #endif 1978 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1979 uopt.flags |= (1 << UDF_FLAG_UTF8); 1980 1981 fileset.logicalBlockNum = 0xFFFFFFFF; 1982 fileset.partitionReferenceNum = 0xFFFF; 1983 1984 sbi->s_flags = uopt.flags; 1985 sbi->s_uid = uopt.uid; 1986 sbi->s_gid = uopt.gid; 1987 sbi->s_umask = uopt.umask; 1988 sbi->s_fmode = uopt.fmode; 1989 sbi->s_dmode = uopt.dmode; 1990 sbi->s_nls_map = uopt.nls_map; 1991 rwlock_init(&sbi->s_cred_lock); 1992 1993 if (uopt.session == 0xFFFFFFFF) 1994 sbi->s_session = udf_get_last_session(sb); 1995 else 1996 sbi->s_session = uopt.session; 1997 1998 udf_debug("Multi-session=%d\n", sbi->s_session); 1999 2000 /* Fill in the rest of the superblock */ 2001 sb->s_op = &udf_sb_ops; 2002 sb->s_export_op = &udf_export_ops; 2003 2004 sb->s_magic = UDF_SUPER_MAGIC; 2005 sb->s_time_gran = 1000; 2006 2007 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2008 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2009 } else { 2010 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2011 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2012 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2013 if (!silent) 2014 pr_notice("Rescanning with blocksize %d\n", 2015 UDF_DEFAULT_BLOCKSIZE); 2016 brelse(sbi->s_lvid_bh); 2017 sbi->s_lvid_bh = NULL; 2018 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2019 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2020 } 2021 } 2022 if (!ret) { 2023 udf_warn(sb, "No partition found (1)\n"); 2024 goto error_out; 2025 } 2026 2027 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2028 2029 if (sbi->s_lvid_bh) { 2030 struct logicalVolIntegrityDescImpUse *lvidiu = 2031 udf_sb_lvidiu(sbi); 2032 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2033 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2034 /* uint16_t maxUDFWriteRev = 2035 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 2036 2037 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2038 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2039 le16_to_cpu(lvidiu->minUDFReadRev), 2040 UDF_MAX_READ_VERSION); 2041 goto error_out; 2042 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 2043 sb->s_flags |= MS_RDONLY; 2044 2045 sbi->s_udfrev = minUDFWriteRev; 2046 2047 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2048 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2049 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2050 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2051 } 2052 2053 if (!sbi->s_partitions) { 2054 udf_warn(sb, "No partition found (2)\n"); 2055 goto error_out; 2056 } 2057 2058 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2059 UDF_PART_FLAG_READ_ONLY) { 2060 pr_notice("Partition marked readonly; forcing readonly mount\n"); 2061 sb->s_flags |= MS_RDONLY; 2062 } 2063 2064 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2065 udf_warn(sb, "No fileset found\n"); 2066 goto error_out; 2067 } 2068 2069 if (!silent) { 2070 struct timestamp ts; 2071 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2072 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2073 sbi->s_volume_ident, 2074 le16_to_cpu(ts.year), ts.month, ts.day, 2075 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2076 } 2077 if (!(sb->s_flags & MS_RDONLY)) 2078 udf_open_lvid(sb); 2079 2080 /* Assign the root inode */ 2081 /* assign inodes by physical block number */ 2082 /* perhaps it's not extensible enough, but for now ... */ 2083 inode = udf_iget(sb, &rootdir); 2084 if (!inode) { 2085 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2086 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2087 goto error_out; 2088 } 2089 2090 /* Allocate a dentry for the root inode */ 2091 sb->s_root = d_make_root(inode); 2092 if (!sb->s_root) { 2093 udf_err(sb, "Couldn't allocate root dentry\n"); 2094 goto error_out; 2095 } 2096 sb->s_maxbytes = MAX_LFS_FILESIZE; 2097 sb->s_max_links = UDF_MAX_LINKS; 2098 return 0; 2099 2100 error_out: 2101 if (sbi->s_vat_inode) 2102 iput(sbi->s_vat_inode); 2103 #ifdef CONFIG_UDF_NLS 2104 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2105 unload_nls(sbi->s_nls_map); 2106 #endif 2107 if (!(sb->s_flags & MS_RDONLY)) 2108 udf_close_lvid(sb); 2109 brelse(sbi->s_lvid_bh); 2110 udf_sb_free_partitions(sb); 2111 kfree(sbi); 2112 sb->s_fs_info = NULL; 2113 2114 return -EINVAL; 2115 } 2116 2117 void _udf_err(struct super_block *sb, const char *function, 2118 const char *fmt, ...) 2119 { 2120 struct va_format vaf; 2121 va_list args; 2122 2123 va_start(args, fmt); 2124 2125 vaf.fmt = fmt; 2126 vaf.va = &args; 2127 2128 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2129 2130 va_end(args); 2131 } 2132 2133 void _udf_warn(struct super_block *sb, const char *function, 2134 const char *fmt, ...) 2135 { 2136 struct va_format vaf; 2137 va_list args; 2138 2139 va_start(args, fmt); 2140 2141 vaf.fmt = fmt; 2142 vaf.va = &args; 2143 2144 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2145 2146 va_end(args); 2147 } 2148 2149 static void udf_put_super(struct super_block *sb) 2150 { 2151 struct udf_sb_info *sbi; 2152 2153 sbi = UDF_SB(sb); 2154 2155 if (sbi->s_vat_inode) 2156 iput(sbi->s_vat_inode); 2157 #ifdef CONFIG_UDF_NLS 2158 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2159 unload_nls(sbi->s_nls_map); 2160 #endif 2161 if (!(sb->s_flags & MS_RDONLY)) 2162 udf_close_lvid(sb); 2163 brelse(sbi->s_lvid_bh); 2164 udf_sb_free_partitions(sb); 2165 kfree(sb->s_fs_info); 2166 sb->s_fs_info = NULL; 2167 } 2168 2169 static int udf_sync_fs(struct super_block *sb, int wait) 2170 { 2171 struct udf_sb_info *sbi = UDF_SB(sb); 2172 2173 mutex_lock(&sbi->s_alloc_mutex); 2174 if (sbi->s_lvid_dirty) { 2175 /* 2176 * Blockdevice will be synced later so we don't have to submit 2177 * the buffer for IO 2178 */ 2179 mark_buffer_dirty(sbi->s_lvid_bh); 2180 sbi->s_lvid_dirty = 0; 2181 } 2182 mutex_unlock(&sbi->s_alloc_mutex); 2183 2184 return 0; 2185 } 2186 2187 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2188 { 2189 struct super_block *sb = dentry->d_sb; 2190 struct udf_sb_info *sbi = UDF_SB(sb); 2191 struct logicalVolIntegrityDescImpUse *lvidiu; 2192 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2193 2194 if (sbi->s_lvid_bh != NULL) 2195 lvidiu = udf_sb_lvidiu(sbi); 2196 else 2197 lvidiu = NULL; 2198 2199 buf->f_type = UDF_SUPER_MAGIC; 2200 buf->f_bsize = sb->s_blocksize; 2201 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2202 buf->f_bfree = udf_count_free(sb); 2203 buf->f_bavail = buf->f_bfree; 2204 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2205 le32_to_cpu(lvidiu->numDirs)) : 0) 2206 + buf->f_bfree; 2207 buf->f_ffree = buf->f_bfree; 2208 buf->f_namelen = UDF_NAME_LEN - 2; 2209 buf->f_fsid.val[0] = (u32)id; 2210 buf->f_fsid.val[1] = (u32)(id >> 32); 2211 2212 return 0; 2213 } 2214 2215 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2216 struct udf_bitmap *bitmap) 2217 { 2218 struct buffer_head *bh = NULL; 2219 unsigned int accum = 0; 2220 int index; 2221 int block = 0, newblock; 2222 struct kernel_lb_addr loc; 2223 uint32_t bytes; 2224 uint8_t *ptr; 2225 uint16_t ident; 2226 struct spaceBitmapDesc *bm; 2227 2228 loc.logicalBlockNum = bitmap->s_extPosition; 2229 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2230 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2231 2232 if (!bh) { 2233 udf_err(sb, "udf_count_free failed\n"); 2234 goto out; 2235 } else if (ident != TAG_IDENT_SBD) { 2236 brelse(bh); 2237 udf_err(sb, "udf_count_free failed\n"); 2238 goto out; 2239 } 2240 2241 bm = (struct spaceBitmapDesc *)bh->b_data; 2242 bytes = le32_to_cpu(bm->numOfBytes); 2243 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2244 ptr = (uint8_t *)bh->b_data; 2245 2246 while (bytes > 0) { 2247 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2248 accum += bitmap_weight((const unsigned long *)(ptr + index), 2249 cur_bytes * 8); 2250 bytes -= cur_bytes; 2251 if (bytes) { 2252 brelse(bh); 2253 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2254 bh = udf_tread(sb, newblock); 2255 if (!bh) { 2256 udf_debug("read failed\n"); 2257 goto out; 2258 } 2259 index = 0; 2260 ptr = (uint8_t *)bh->b_data; 2261 } 2262 } 2263 brelse(bh); 2264 out: 2265 return accum; 2266 } 2267 2268 static unsigned int udf_count_free_table(struct super_block *sb, 2269 struct inode *table) 2270 { 2271 unsigned int accum = 0; 2272 uint32_t elen; 2273 struct kernel_lb_addr eloc; 2274 int8_t etype; 2275 struct extent_position epos; 2276 2277 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2278 epos.block = UDF_I(table)->i_location; 2279 epos.offset = sizeof(struct unallocSpaceEntry); 2280 epos.bh = NULL; 2281 2282 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2283 accum += (elen >> table->i_sb->s_blocksize_bits); 2284 2285 brelse(epos.bh); 2286 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2287 2288 return accum; 2289 } 2290 2291 static unsigned int udf_count_free(struct super_block *sb) 2292 { 2293 unsigned int accum = 0; 2294 struct udf_sb_info *sbi; 2295 struct udf_part_map *map; 2296 2297 sbi = UDF_SB(sb); 2298 if (sbi->s_lvid_bh) { 2299 struct logicalVolIntegrityDesc *lvid = 2300 (struct logicalVolIntegrityDesc *) 2301 sbi->s_lvid_bh->b_data; 2302 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2303 accum = le32_to_cpu( 2304 lvid->freeSpaceTable[sbi->s_partition]); 2305 if (accum == 0xFFFFFFFF) 2306 accum = 0; 2307 } 2308 } 2309 2310 if (accum) 2311 return accum; 2312 2313 map = &sbi->s_partmaps[sbi->s_partition]; 2314 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2315 accum += udf_count_free_bitmap(sb, 2316 map->s_uspace.s_bitmap); 2317 } 2318 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2319 accum += udf_count_free_bitmap(sb, 2320 map->s_fspace.s_bitmap); 2321 } 2322 if (accum) 2323 return accum; 2324 2325 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2326 accum += udf_count_free_table(sb, 2327 map->s_uspace.s_table); 2328 } 2329 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2330 accum += udf_count_free_table(sb, 2331 map->s_fspace.s_table); 2332 } 2333 2334 return accum; 2335 } 2336