xref: /openbmc/linux/fs/udf/super.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 			    struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 			     struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104 
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 	struct logicalVolIntegrityDesc *lvid;
108 	unsigned int partnum;
109 	unsigned int offset;
110 
111 	if (!UDF_SB(sb)->s_lvid_bh)
112 		return NULL;
113 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 	partnum = le32_to_cpu(lvid->numOfPartitions);
115 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 	     (2 * sizeof(uint32_t)) < partnum) {
118 		udf_err(sb, "Logical volume integrity descriptor corrupted "
119 			"(numOfPartitions = %u)!\n", partnum);
120 		return NULL;
121 	}
122 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
123 	offset = partnum * 2 * sizeof(uint32_t);
124 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126 
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 		      int flags, const char *dev_name, void *data)
130 {
131 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133 
134 static struct file_system_type udf_fstype = {
135 	.owner		= THIS_MODULE,
136 	.name		= "udf",
137 	.mount		= udf_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142 
143 static struct kmem_cache *udf_inode_cachep;
144 
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147 	struct udf_inode_info *ei;
148 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 	if (!ei)
150 		return NULL;
151 
152 	ei->i_unique = 0;
153 	ei->i_lenExtents = 0;
154 	ei->i_next_alloc_block = 0;
155 	ei->i_next_alloc_goal = 0;
156 	ei->i_strat4096 = 0;
157 	init_rwsem(&ei->i_data_sem);
158 	ei->cached_extent.lstart = -1;
159 	spin_lock_init(&ei->i_extent_cache_lock);
160 
161 	return &ei->vfs_inode;
162 }
163 
164 static void udf_i_callback(struct rcu_head *head)
165 {
166 	struct inode *inode = container_of(head, struct inode, i_rcu);
167 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169 
170 static void udf_destroy_inode(struct inode *inode)
171 {
172 	call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174 
175 static void init_once(void *foo)
176 {
177 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178 
179 	ei->i_ext.i_data = NULL;
180 	inode_init_once(&ei->vfs_inode);
181 }
182 
183 static int __init init_inodecache(void)
184 {
185 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 					     sizeof(struct udf_inode_info),
187 					     0, (SLAB_RECLAIM_ACCOUNT |
188 						 SLAB_MEM_SPREAD |
189 						 SLAB_ACCOUNT),
190 					     init_once);
191 	if (!udf_inode_cachep)
192 		return -ENOMEM;
193 	return 0;
194 }
195 
196 static void destroy_inodecache(void)
197 {
198 	/*
199 	 * Make sure all delayed rcu free inodes are flushed before we
200 	 * destroy cache.
201 	 */
202 	rcu_barrier();
203 	kmem_cache_destroy(udf_inode_cachep);
204 }
205 
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 	.alloc_inode	= udf_alloc_inode,
209 	.destroy_inode	= udf_destroy_inode,
210 	.write_inode	= udf_write_inode,
211 	.evict_inode	= udf_evict_inode,
212 	.put_super	= udf_put_super,
213 	.sync_fs	= udf_sync_fs,
214 	.statfs		= udf_statfs,
215 	.remount_fs	= udf_remount_fs,
216 	.show_options	= udf_show_options,
217 };
218 
219 struct udf_options {
220 	unsigned char novrs;
221 	unsigned int blocksize;
222 	unsigned int session;
223 	unsigned int lastblock;
224 	unsigned int anchor;
225 	unsigned int flags;
226 	umode_t umask;
227 	kgid_t gid;
228 	kuid_t uid;
229 	umode_t fmode;
230 	umode_t dmode;
231 	struct nls_table *nls_map;
232 };
233 
234 static int __init init_udf_fs(void)
235 {
236 	int err;
237 
238 	err = init_inodecache();
239 	if (err)
240 		goto out1;
241 	err = register_filesystem(&udf_fstype);
242 	if (err)
243 		goto out;
244 
245 	return 0;
246 
247 out:
248 	destroy_inodecache();
249 
250 out1:
251 	return err;
252 }
253 
254 static void __exit exit_udf_fs(void)
255 {
256 	unregister_filesystem(&udf_fstype);
257 	destroy_inodecache();
258 }
259 
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 	struct udf_sb_info *sbi = UDF_SB(sb);
263 
264 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 	if (!sbi->s_partmaps) {
266 		sbi->s_partitions = 0;
267 		return -ENOMEM;
268 	}
269 
270 	sbi->s_partitions = count;
271 	return 0;
272 }
273 
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276 	int i;
277 	int nr_groups = bitmap->s_nr_groups;
278 
279 	for (i = 0; i < nr_groups; i++)
280 		if (bitmap->s_block_bitmap[i])
281 			brelse(bitmap->s_block_bitmap[i]);
282 
283 	kvfree(bitmap);
284 }
285 
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288 	int i;
289 	struct udf_meta_data *mdata;
290 
291 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 		iput(map->s_uspace.s_table);
293 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 		iput(map->s_fspace.s_table);
295 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 		for (i = 0; i < 4; i++)
301 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 		mdata = &map->s_type_specific.s_metadata;
304 		iput(mdata->s_metadata_fe);
305 		mdata->s_metadata_fe = NULL;
306 
307 		iput(mdata->s_mirror_fe);
308 		mdata->s_mirror_fe = NULL;
309 
310 		iput(mdata->s_bitmap_fe);
311 		mdata->s_bitmap_fe = NULL;
312 	}
313 }
314 
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317 	struct udf_sb_info *sbi = UDF_SB(sb);
318 	int i;
319 
320 	if (!sbi->s_partmaps)
321 		return;
322 	for (i = 0; i < sbi->s_partitions; i++)
323 		udf_free_partition(&sbi->s_partmaps[i]);
324 	kfree(sbi->s_partmaps);
325 	sbi->s_partmaps = NULL;
326 }
327 
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330 	struct super_block *sb = root->d_sb;
331 	struct udf_sb_info *sbi = UDF_SB(sb);
332 
333 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 		seq_puts(seq, ",nostrict");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 		seq_puts(seq, ",unhide");
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 		seq_puts(seq, ",undelete");
341 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 		seq_puts(seq, ",noadinicb");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 		seq_puts(seq, ",shortad");
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 		seq_puts(seq, ",uid=forget");
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 		seq_puts(seq, ",gid=forget");
349 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 	if (sbi->s_umask != 0)
354 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 	if (sbi->s_fmode != UDF_INVALID_MODE)
356 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 	if (sbi->s_dmode != UDF_INVALID_MODE)
358 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 		seq_printf(seq, ",session=%d", sbi->s_session);
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 	if (sbi->s_anchor != 0)
364 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 		seq_puts(seq, ",utf8");
367 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369 
370 	return 0;
371 }
372 
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *	Parse mount options.
378  *
379  * DESCRIPTION
380  *	The following mount options are supported:
381  *
382  *	gid=		Set the default group.
383  *	umask=		Set the default umask.
384  *	mode=		Set the default file permissions.
385  *	dmode=		Set the default directory permissions.
386  *	uid=		Set the default user.
387  *	bs=		Set the block size.
388  *	unhide		Show otherwise hidden files.
389  *	undelete	Show deleted files in lists.
390  *	adinicb		Embed data in the inode (default)
391  *	noadinicb	Don't embed data in the inode
392  *	shortad		Use short ad's
393  *	longad		Use long ad's (default)
394  *	nostrict	Unset strict conformance
395  *	iocharset=	Set the NLS character set
396  *
397  *	The remaining are for debugging and disaster recovery:
398  *
399  *	novrs		Skip volume sequence recognition
400  *
401  *	The following expect a offset from 0.
402  *
403  *	session=	Set the CDROM session (default= last session)
404  *	anchor=		Override standard anchor location. (default= 256)
405  *	volume=		Override the VolumeDesc location. (unused)
406  *	partition=	Override the PartitionDesc location. (unused)
407  *	lastblock=	Set the last block of the filesystem/
408  *
409  *	The following expect a offset from the partition root.
410  *
411  *	fileset=	Override the fileset block location. (unused)
412  *	rootdir=	Override the root directory location. (unused)
413  *		WARNING: overriding the rootdir to a non-directory may
414  *		yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *	options		Pointer to mount options string.
418  *	uopts		Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *	<return>	1	Mount options parsed okay.
422  *	<return>	0	Error parsing mount options.
423  *
424  * HISTORY
425  *	July 1, 1997 - Andrew E. Mileski
426  *	Written, tested, and released.
427  */
428 
429 enum {
430 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 	Opt_rootdir, Opt_utf8, Opt_iocharset,
435 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 	Opt_fmode, Opt_dmode
437 };
438 
439 static const match_table_t tokens = {
440 	{Opt_novrs,	"novrs"},
441 	{Opt_nostrict,	"nostrict"},
442 	{Opt_bs,	"bs=%u"},
443 	{Opt_unhide,	"unhide"},
444 	{Opt_undelete,	"undelete"},
445 	{Opt_noadinicb,	"noadinicb"},
446 	{Opt_adinicb,	"adinicb"},
447 	{Opt_shortad,	"shortad"},
448 	{Opt_longad,	"longad"},
449 	{Opt_uforget,	"uid=forget"},
450 	{Opt_uignore,	"uid=ignore"},
451 	{Opt_gforget,	"gid=forget"},
452 	{Opt_gignore,	"gid=ignore"},
453 	{Opt_gid,	"gid=%u"},
454 	{Opt_uid,	"uid=%u"},
455 	{Opt_umask,	"umask=%o"},
456 	{Opt_session,	"session=%u"},
457 	{Opt_lastblock,	"lastblock=%u"},
458 	{Opt_anchor,	"anchor=%u"},
459 	{Opt_volume,	"volume=%u"},
460 	{Opt_partition,	"partition=%u"},
461 	{Opt_fileset,	"fileset=%u"},
462 	{Opt_rootdir,	"rootdir=%u"},
463 	{Opt_utf8,	"utf8"},
464 	{Opt_iocharset,	"iocharset=%s"},
465 	{Opt_fmode,     "mode=%o"},
466 	{Opt_dmode,     "dmode=%o"},
467 	{Opt_err,	NULL}
468 };
469 
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471 			     bool remount)
472 {
473 	char *p;
474 	int option;
475 
476 	uopt->novrs = 0;
477 	uopt->session = 0xFFFFFFFF;
478 	uopt->lastblock = 0;
479 	uopt->anchor = 0;
480 
481 	if (!options)
482 		return 1;
483 
484 	while ((p = strsep(&options, ",")) != NULL) {
485 		substring_t args[MAX_OPT_ARGS];
486 		int token;
487 		unsigned n;
488 		if (!*p)
489 			continue;
490 
491 		token = match_token(p, tokens, args);
492 		switch (token) {
493 		case Opt_novrs:
494 			uopt->novrs = 1;
495 			break;
496 		case Opt_bs:
497 			if (match_int(&args[0], &option))
498 				return 0;
499 			n = option;
500 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501 				return 0;
502 			uopt->blocksize = n;
503 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504 			break;
505 		case Opt_unhide:
506 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507 			break;
508 		case Opt_undelete:
509 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510 			break;
511 		case Opt_noadinicb:
512 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513 			break;
514 		case Opt_adinicb:
515 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516 			break;
517 		case Opt_shortad:
518 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519 			break;
520 		case Opt_longad:
521 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522 			break;
523 		case Opt_gid:
524 			if (match_int(args, &option))
525 				return 0;
526 			uopt->gid = make_kgid(current_user_ns(), option);
527 			if (!gid_valid(uopt->gid))
528 				return 0;
529 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
530 			break;
531 		case Opt_uid:
532 			if (match_int(args, &option))
533 				return 0;
534 			uopt->uid = make_kuid(current_user_ns(), option);
535 			if (!uid_valid(uopt->uid))
536 				return 0;
537 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
538 			break;
539 		case Opt_umask:
540 			if (match_octal(args, &option))
541 				return 0;
542 			uopt->umask = option;
543 			break;
544 		case Opt_nostrict:
545 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546 			break;
547 		case Opt_session:
548 			if (match_int(args, &option))
549 				return 0;
550 			uopt->session = option;
551 			if (!remount)
552 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553 			break;
554 		case Opt_lastblock:
555 			if (match_int(args, &option))
556 				return 0;
557 			uopt->lastblock = option;
558 			if (!remount)
559 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560 			break;
561 		case Opt_anchor:
562 			if (match_int(args, &option))
563 				return 0;
564 			uopt->anchor = option;
565 			break;
566 		case Opt_volume:
567 		case Opt_partition:
568 		case Opt_fileset:
569 		case Opt_rootdir:
570 			/* Ignored (never implemented properly) */
571 			break;
572 		case Opt_utf8:
573 			uopt->flags |= (1 << UDF_FLAG_UTF8);
574 			break;
575 #ifdef CONFIG_UDF_NLS
576 		case Opt_iocharset:
577 			if (!remount) {
578 				if (uopt->nls_map)
579 					unload_nls(uopt->nls_map);
580 				uopt->nls_map = load_nls(args[0].from);
581 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
582 			}
583 			break;
584 #endif
585 		case Opt_uforget:
586 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
587 			break;
588 		case Opt_uignore:
589 		case Opt_gignore:
590 			/* These options are superseeded by uid=<number> */
591 			break;
592 		case Opt_gforget:
593 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
594 			break;
595 		case Opt_fmode:
596 			if (match_octal(args, &option))
597 				return 0;
598 			uopt->fmode = option & 0777;
599 			break;
600 		case Opt_dmode:
601 			if (match_octal(args, &option))
602 				return 0;
603 			uopt->dmode = option & 0777;
604 			break;
605 		default:
606 			pr_err("bad mount option \"%s\" or missing value\n", p);
607 			return 0;
608 		}
609 	}
610 	return 1;
611 }
612 
613 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
614 {
615 	struct udf_options uopt;
616 	struct udf_sb_info *sbi = UDF_SB(sb);
617 	int error = 0;
618 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
619 
620 	sync_filesystem(sb);
621 	if (lvidiu) {
622 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
623 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
624 			return -EACCES;
625 	}
626 
627 	uopt.flags = sbi->s_flags;
628 	uopt.uid   = sbi->s_uid;
629 	uopt.gid   = sbi->s_gid;
630 	uopt.umask = sbi->s_umask;
631 	uopt.fmode = sbi->s_fmode;
632 	uopt.dmode = sbi->s_dmode;
633 	uopt.nls_map = NULL;
634 
635 	if (!udf_parse_options(options, &uopt, true))
636 		return -EINVAL;
637 
638 	write_lock(&sbi->s_cred_lock);
639 	sbi->s_flags = uopt.flags;
640 	sbi->s_uid   = uopt.uid;
641 	sbi->s_gid   = uopt.gid;
642 	sbi->s_umask = uopt.umask;
643 	sbi->s_fmode = uopt.fmode;
644 	sbi->s_dmode = uopt.dmode;
645 	write_unlock(&sbi->s_cred_lock);
646 
647 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
648 		goto out_unlock;
649 
650 	if (*flags & SB_RDONLY)
651 		udf_close_lvid(sb);
652 	else
653 		udf_open_lvid(sb);
654 
655 out_unlock:
656 	return error;
657 }
658 
659 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
660 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
661 static loff_t udf_check_vsd(struct super_block *sb)
662 {
663 	struct volStructDesc *vsd = NULL;
664 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
665 	int sectorsize;
666 	struct buffer_head *bh = NULL;
667 	int nsr02 = 0;
668 	int nsr03 = 0;
669 	struct udf_sb_info *sbi;
670 
671 	sbi = UDF_SB(sb);
672 	if (sb->s_blocksize < sizeof(struct volStructDesc))
673 		sectorsize = sizeof(struct volStructDesc);
674 	else
675 		sectorsize = sb->s_blocksize;
676 
677 	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
678 
679 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
680 		  (unsigned int)(sector >> sb->s_blocksize_bits),
681 		  sb->s_blocksize);
682 	/* Process the sequence (if applicable). The hard limit on the sector
683 	 * offset is arbitrary, hopefully large enough so that all valid UDF
684 	 * filesystems will be recognised. There is no mention of an upper
685 	 * bound to the size of the volume recognition area in the standard.
686 	 *  The limit will prevent the code to read all the sectors of a
687 	 * specially crafted image (like a bluray disc full of CD001 sectors),
688 	 * potentially causing minutes or even hours of uninterruptible I/O
689 	 * activity. This actually happened with uninitialised SSD partitions
690 	 * (all 0xFF) before the check for the limit and all valid IDs were
691 	 * added */
692 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
693 	     sector += sectorsize) {
694 		/* Read a block */
695 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
696 		if (!bh)
697 			break;
698 
699 		/* Look for ISO  descriptors */
700 		vsd = (struct volStructDesc *)(bh->b_data +
701 					      (sector & (sb->s_blocksize - 1)));
702 
703 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
704 				    VSD_STD_ID_LEN)) {
705 			switch (vsd->structType) {
706 			case 0:
707 				udf_debug("ISO9660 Boot Record found\n");
708 				break;
709 			case 1:
710 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
711 				break;
712 			case 2:
713 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
714 				break;
715 			case 3:
716 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
717 				break;
718 			case 255:
719 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
720 				break;
721 			default:
722 				udf_debug("ISO9660 VRS (%u) found\n",
723 					  vsd->structType);
724 				break;
725 			}
726 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
727 				    VSD_STD_ID_LEN))
728 			; /* nothing */
729 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
730 				    VSD_STD_ID_LEN)) {
731 			brelse(bh);
732 			break;
733 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
734 				    VSD_STD_ID_LEN))
735 			nsr02 = sector;
736 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
737 				    VSD_STD_ID_LEN))
738 			nsr03 = sector;
739 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
740 				    VSD_STD_ID_LEN))
741 			; /* nothing */
742 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
743 				    VSD_STD_ID_LEN))
744 			; /* nothing */
745 		else {
746 			/* invalid id : end of volume recognition area */
747 			brelse(bh);
748 			break;
749 		}
750 		brelse(bh);
751 	}
752 
753 	if (nsr03)
754 		return nsr03;
755 	else if (nsr02)
756 		return nsr02;
757 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
758 			VSD_FIRST_SECTOR_OFFSET)
759 		return -1;
760 	else
761 		return 0;
762 }
763 
764 static int udf_find_fileset(struct super_block *sb,
765 			    struct kernel_lb_addr *fileset,
766 			    struct kernel_lb_addr *root)
767 {
768 	struct buffer_head *bh = NULL;
769 	long lastblock;
770 	uint16_t ident;
771 	struct udf_sb_info *sbi;
772 
773 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
774 	    fileset->partitionReferenceNum != 0xFFFF) {
775 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
776 
777 		if (!bh) {
778 			return 1;
779 		} else if (ident != TAG_IDENT_FSD) {
780 			brelse(bh);
781 			return 1;
782 		}
783 
784 	}
785 
786 	sbi = UDF_SB(sb);
787 	if (!bh) {
788 		/* Search backwards through the partitions */
789 		struct kernel_lb_addr newfileset;
790 
791 /* --> cvg: FIXME - is it reasonable? */
792 		return 1;
793 
794 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
795 		     (newfileset.partitionReferenceNum != 0xFFFF &&
796 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
797 		      fileset->partitionReferenceNum == 0xFFFF);
798 		     newfileset.partitionReferenceNum--) {
799 			lastblock = sbi->s_partmaps
800 					[newfileset.partitionReferenceNum]
801 						.s_partition_len;
802 			newfileset.logicalBlockNum = 0;
803 
804 			do {
805 				bh = udf_read_ptagged(sb, &newfileset, 0,
806 						      &ident);
807 				if (!bh) {
808 					newfileset.logicalBlockNum++;
809 					continue;
810 				}
811 
812 				switch (ident) {
813 				case TAG_IDENT_SBD:
814 				{
815 					struct spaceBitmapDesc *sp;
816 					sp = (struct spaceBitmapDesc *)
817 								bh->b_data;
818 					newfileset.logicalBlockNum += 1 +
819 						((le32_to_cpu(sp->numOfBytes) +
820 						  sizeof(struct spaceBitmapDesc)
821 						  - 1) >> sb->s_blocksize_bits);
822 					brelse(bh);
823 					break;
824 				}
825 				case TAG_IDENT_FSD:
826 					*fileset = newfileset;
827 					break;
828 				default:
829 					newfileset.logicalBlockNum++;
830 					brelse(bh);
831 					bh = NULL;
832 					break;
833 				}
834 			} while (newfileset.logicalBlockNum < lastblock &&
835 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
836 				 fileset->partitionReferenceNum == 0xFFFF);
837 		}
838 	}
839 
840 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
841 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
842 		udf_debug("Fileset at block=%u, partition=%u\n",
843 			  fileset->logicalBlockNum,
844 			  fileset->partitionReferenceNum);
845 
846 		sbi->s_partition = fileset->partitionReferenceNum;
847 		udf_load_fileset(sb, bh, root);
848 		brelse(bh);
849 		return 0;
850 	}
851 	return 1;
852 }
853 
854 /*
855  * Load primary Volume Descriptor Sequence
856  *
857  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
858  * should be tried.
859  */
860 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
861 {
862 	struct primaryVolDesc *pvoldesc;
863 	uint8_t *outstr;
864 	struct buffer_head *bh;
865 	uint16_t ident;
866 	int ret = -ENOMEM;
867 
868 	outstr = kmalloc(128, GFP_NOFS);
869 	if (!outstr)
870 		return -ENOMEM;
871 
872 	bh = udf_read_tagged(sb, block, block, &ident);
873 	if (!bh) {
874 		ret = -EAGAIN;
875 		goto out2;
876 	}
877 
878 	if (ident != TAG_IDENT_PVD) {
879 		ret = -EIO;
880 		goto out_bh;
881 	}
882 
883 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
884 
885 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
886 			      pvoldesc->recordingDateAndTime)) {
887 #ifdef UDFFS_DEBUG
888 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
889 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
890 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
891 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
892 #endif
893 	}
894 
895 	ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
896 	if (ret < 0)
897 		goto out_bh;
898 
899 	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
900 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
901 
902 	ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
903 	if (ret < 0)
904 		goto out_bh;
905 
906 	outstr[ret] = 0;
907 	udf_debug("volSetIdent[] = '%s'\n", outstr);
908 
909 	ret = 0;
910 out_bh:
911 	brelse(bh);
912 out2:
913 	kfree(outstr);
914 	return ret;
915 }
916 
917 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
918 					u32 meta_file_loc, u32 partition_ref)
919 {
920 	struct kernel_lb_addr addr;
921 	struct inode *metadata_fe;
922 
923 	addr.logicalBlockNum = meta_file_loc;
924 	addr.partitionReferenceNum = partition_ref;
925 
926 	metadata_fe = udf_iget_special(sb, &addr);
927 
928 	if (IS_ERR(metadata_fe)) {
929 		udf_warn(sb, "metadata inode efe not found\n");
930 		return metadata_fe;
931 	}
932 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
933 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
934 		iput(metadata_fe);
935 		return ERR_PTR(-EIO);
936 	}
937 
938 	return metadata_fe;
939 }
940 
941 static int udf_load_metadata_files(struct super_block *sb, int partition,
942 				   int type1_index)
943 {
944 	struct udf_sb_info *sbi = UDF_SB(sb);
945 	struct udf_part_map *map;
946 	struct udf_meta_data *mdata;
947 	struct kernel_lb_addr addr;
948 	struct inode *fe;
949 
950 	map = &sbi->s_partmaps[partition];
951 	mdata = &map->s_type_specific.s_metadata;
952 	mdata->s_phys_partition_ref = type1_index;
953 
954 	/* metadata address */
955 	udf_debug("Metadata file location: block = %u part = %u\n",
956 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
957 
958 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
959 					 mdata->s_phys_partition_ref);
960 	if (IS_ERR(fe)) {
961 		/* mirror file entry */
962 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
963 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
964 
965 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
966 						 mdata->s_phys_partition_ref);
967 
968 		if (IS_ERR(fe)) {
969 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
970 			return PTR_ERR(fe);
971 		}
972 		mdata->s_mirror_fe = fe;
973 	} else
974 		mdata->s_metadata_fe = fe;
975 
976 
977 	/*
978 	 * bitmap file entry
979 	 * Note:
980 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
981 	*/
982 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
983 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
984 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
985 
986 		udf_debug("Bitmap file location: block = %u part = %u\n",
987 			  addr.logicalBlockNum, addr.partitionReferenceNum);
988 
989 		fe = udf_iget_special(sb, &addr);
990 		if (IS_ERR(fe)) {
991 			if (sb_rdonly(sb))
992 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
993 			else {
994 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995 				return PTR_ERR(fe);
996 			}
997 		} else
998 			mdata->s_bitmap_fe = fe;
999 	}
1000 
1001 	udf_debug("udf_load_metadata_files Ok\n");
1002 	return 0;
1003 }
1004 
1005 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1006 			     struct kernel_lb_addr *root)
1007 {
1008 	struct fileSetDesc *fset;
1009 
1010 	fset = (struct fileSetDesc *)bh->b_data;
1011 
1012 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1013 
1014 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1015 
1016 	udf_debug("Rootdir at block=%u, partition=%u\n",
1017 		  root->logicalBlockNum, root->partitionReferenceNum);
1018 }
1019 
1020 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1021 {
1022 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1023 	return DIV_ROUND_UP(map->s_partition_len +
1024 			    (sizeof(struct spaceBitmapDesc) << 3),
1025 			    sb->s_blocksize * 8);
1026 }
1027 
1028 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1029 {
1030 	struct udf_bitmap *bitmap;
1031 	int nr_groups;
1032 	int size;
1033 
1034 	nr_groups = udf_compute_nr_groups(sb, index);
1035 	size = sizeof(struct udf_bitmap) +
1036 		(sizeof(struct buffer_head *) * nr_groups);
1037 
1038 	if (size <= PAGE_SIZE)
1039 		bitmap = kzalloc(size, GFP_KERNEL);
1040 	else
1041 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1042 
1043 	if (!bitmap)
1044 		return NULL;
1045 
1046 	bitmap->s_nr_groups = nr_groups;
1047 	return bitmap;
1048 }
1049 
1050 static int udf_fill_partdesc_info(struct super_block *sb,
1051 		struct partitionDesc *p, int p_index)
1052 {
1053 	struct udf_part_map *map;
1054 	struct udf_sb_info *sbi = UDF_SB(sb);
1055 	struct partitionHeaderDesc *phd;
1056 
1057 	map = &sbi->s_partmaps[p_index];
1058 
1059 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1060 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1061 
1062 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1063 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1064 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1065 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1066 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1067 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1068 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1069 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1070 
1071 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1072 		  p_index, map->s_partition_type,
1073 		  map->s_partition_root, map->s_partition_len);
1074 
1075 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1076 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1077 		return 0;
1078 
1079 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1080 	if (phd->unallocSpaceTable.extLength) {
1081 		struct kernel_lb_addr loc = {
1082 			.logicalBlockNum = le32_to_cpu(
1083 				phd->unallocSpaceTable.extPosition),
1084 			.partitionReferenceNum = p_index,
1085 		};
1086 		struct inode *inode;
1087 
1088 		inode = udf_iget_special(sb, &loc);
1089 		if (IS_ERR(inode)) {
1090 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1091 				  p_index);
1092 			return PTR_ERR(inode);
1093 		}
1094 		map->s_uspace.s_table = inode;
1095 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1096 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1097 			  p_index, map->s_uspace.s_table->i_ino);
1098 	}
1099 
1100 	if (phd->unallocSpaceBitmap.extLength) {
1101 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1102 		if (!bitmap)
1103 			return -ENOMEM;
1104 		map->s_uspace.s_bitmap = bitmap;
1105 		bitmap->s_extPosition = le32_to_cpu(
1106 				phd->unallocSpaceBitmap.extPosition);
1107 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1108 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1109 			  p_index, bitmap->s_extPosition);
1110 	}
1111 
1112 	if (phd->partitionIntegrityTable.extLength)
1113 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1114 
1115 	if (phd->freedSpaceTable.extLength) {
1116 		struct kernel_lb_addr loc = {
1117 			.logicalBlockNum = le32_to_cpu(
1118 				phd->freedSpaceTable.extPosition),
1119 			.partitionReferenceNum = p_index,
1120 		};
1121 		struct inode *inode;
1122 
1123 		inode = udf_iget_special(sb, &loc);
1124 		if (IS_ERR(inode)) {
1125 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1126 				  p_index);
1127 			return PTR_ERR(inode);
1128 		}
1129 		map->s_fspace.s_table = inode;
1130 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1131 		udf_debug("freedSpaceTable (part %d) @ %lu\n",
1132 			  p_index, map->s_fspace.s_table->i_ino);
1133 	}
1134 
1135 	if (phd->freedSpaceBitmap.extLength) {
1136 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 		if (!bitmap)
1138 			return -ENOMEM;
1139 		map->s_fspace.s_bitmap = bitmap;
1140 		bitmap->s_extPosition = le32_to_cpu(
1141 				phd->freedSpaceBitmap.extPosition);
1142 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1143 		udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1144 			  p_index, bitmap->s_extPosition);
1145 	}
1146 	return 0;
1147 }
1148 
1149 static void udf_find_vat_block(struct super_block *sb, int p_index,
1150 			       int type1_index, sector_t start_block)
1151 {
1152 	struct udf_sb_info *sbi = UDF_SB(sb);
1153 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1154 	sector_t vat_block;
1155 	struct kernel_lb_addr ino;
1156 	struct inode *inode;
1157 
1158 	/*
1159 	 * VAT file entry is in the last recorded block. Some broken disks have
1160 	 * it a few blocks before so try a bit harder...
1161 	 */
1162 	ino.partitionReferenceNum = type1_index;
1163 	for (vat_block = start_block;
1164 	     vat_block >= map->s_partition_root &&
1165 	     vat_block >= start_block - 3; vat_block--) {
1166 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1167 		inode = udf_iget_special(sb, &ino);
1168 		if (!IS_ERR(inode)) {
1169 			sbi->s_vat_inode = inode;
1170 			break;
1171 		}
1172 	}
1173 }
1174 
1175 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1176 {
1177 	struct udf_sb_info *sbi = UDF_SB(sb);
1178 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179 	struct buffer_head *bh = NULL;
1180 	struct udf_inode_info *vati;
1181 	uint32_t pos;
1182 	struct virtualAllocationTable20 *vat20;
1183 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1184 			  sb->s_blocksize_bits;
1185 
1186 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1187 	if (!sbi->s_vat_inode &&
1188 	    sbi->s_last_block != blocks - 1) {
1189 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1190 			  (unsigned long)sbi->s_last_block,
1191 			  (unsigned long)blocks - 1);
1192 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1193 	}
1194 	if (!sbi->s_vat_inode)
1195 		return -EIO;
1196 
1197 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1198 		map->s_type_specific.s_virtual.s_start_offset = 0;
1199 		map->s_type_specific.s_virtual.s_num_entries =
1200 			(sbi->s_vat_inode->i_size - 36) >> 2;
1201 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1202 		vati = UDF_I(sbi->s_vat_inode);
1203 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1204 			pos = udf_block_map(sbi->s_vat_inode, 0);
1205 			bh = sb_bread(sb, pos);
1206 			if (!bh)
1207 				return -EIO;
1208 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1209 		} else {
1210 			vat20 = (struct virtualAllocationTable20 *)
1211 							vati->i_ext.i_data;
1212 		}
1213 
1214 		map->s_type_specific.s_virtual.s_start_offset =
1215 			le16_to_cpu(vat20->lengthHeader);
1216 		map->s_type_specific.s_virtual.s_num_entries =
1217 			(sbi->s_vat_inode->i_size -
1218 				map->s_type_specific.s_virtual.
1219 					s_start_offset) >> 2;
1220 		brelse(bh);
1221 	}
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Load partition descriptor block
1227  *
1228  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1229  * sequence.
1230  */
1231 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1232 {
1233 	struct buffer_head *bh;
1234 	struct partitionDesc *p;
1235 	struct udf_part_map *map;
1236 	struct udf_sb_info *sbi = UDF_SB(sb);
1237 	int i, type1_idx;
1238 	uint16_t partitionNumber;
1239 	uint16_t ident;
1240 	int ret;
1241 
1242 	bh = udf_read_tagged(sb, block, block, &ident);
1243 	if (!bh)
1244 		return -EAGAIN;
1245 	if (ident != TAG_IDENT_PD) {
1246 		ret = 0;
1247 		goto out_bh;
1248 	}
1249 
1250 	p = (struct partitionDesc *)bh->b_data;
1251 	partitionNumber = le16_to_cpu(p->partitionNumber);
1252 
1253 	/* First scan for TYPE1 and SPARABLE partitions */
1254 	for (i = 0; i < sbi->s_partitions; i++) {
1255 		map = &sbi->s_partmaps[i];
1256 		udf_debug("Searching map: (%u == %u)\n",
1257 			  map->s_partition_num, partitionNumber);
1258 		if (map->s_partition_num == partitionNumber &&
1259 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1260 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1261 			break;
1262 	}
1263 
1264 	if (i >= sbi->s_partitions) {
1265 		udf_debug("Partition (%u) not found in partition map\n",
1266 			  partitionNumber);
1267 		ret = 0;
1268 		goto out_bh;
1269 	}
1270 
1271 	ret = udf_fill_partdesc_info(sb, p, i);
1272 	if (ret < 0)
1273 		goto out_bh;
1274 
1275 	/*
1276 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1277 	 * PHYSICAL partitions are already set up
1278 	 */
1279 	type1_idx = i;
1280 #ifdef UDFFS_DEBUG
1281 	map = NULL; /* supress 'maybe used uninitialized' warning */
1282 #endif
1283 	for (i = 0; i < sbi->s_partitions; i++) {
1284 		map = &sbi->s_partmaps[i];
1285 
1286 		if (map->s_partition_num == partitionNumber &&
1287 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289 		     map->s_partition_type == UDF_METADATA_MAP25))
1290 			break;
1291 	}
1292 
1293 	if (i >= sbi->s_partitions) {
1294 		ret = 0;
1295 		goto out_bh;
1296 	}
1297 
1298 	ret = udf_fill_partdesc_info(sb, p, i);
1299 	if (ret < 0)
1300 		goto out_bh;
1301 
1302 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1303 		ret = udf_load_metadata_files(sb, i, type1_idx);
1304 		if (ret < 0) {
1305 			udf_err(sb, "error loading MetaData partition map %d\n",
1306 				i);
1307 			goto out_bh;
1308 		}
1309 	} else {
1310 		/*
1311 		 * If we have a partition with virtual map, we don't handle
1312 		 * writing to it (we overwrite blocks instead of relocating
1313 		 * them).
1314 		 */
1315 		if (!sb_rdonly(sb)) {
1316 			ret = -EACCES;
1317 			goto out_bh;
1318 		}
1319 		ret = udf_load_vat(sb, i, type1_idx);
1320 		if (ret < 0)
1321 			goto out_bh;
1322 	}
1323 	ret = 0;
1324 out_bh:
1325 	/* In case loading failed, we handle cleanup in udf_fill_super */
1326 	brelse(bh);
1327 	return ret;
1328 }
1329 
1330 static int udf_load_sparable_map(struct super_block *sb,
1331 				 struct udf_part_map *map,
1332 				 struct sparablePartitionMap *spm)
1333 {
1334 	uint32_t loc;
1335 	uint16_t ident;
1336 	struct sparingTable *st;
1337 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1338 	int i;
1339 	struct buffer_head *bh;
1340 
1341 	map->s_partition_type = UDF_SPARABLE_MAP15;
1342 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1343 	if (!is_power_of_2(sdata->s_packet_len)) {
1344 		udf_err(sb, "error loading logical volume descriptor: "
1345 			"Invalid packet length %u\n",
1346 			(unsigned)sdata->s_packet_len);
1347 		return -EIO;
1348 	}
1349 	if (spm->numSparingTables > 4) {
1350 		udf_err(sb, "error loading logical volume descriptor: "
1351 			"Too many sparing tables (%d)\n",
1352 			(int)spm->numSparingTables);
1353 		return -EIO;
1354 	}
1355 
1356 	for (i = 0; i < spm->numSparingTables; i++) {
1357 		loc = le32_to_cpu(spm->locSparingTable[i]);
1358 		bh = udf_read_tagged(sb, loc, loc, &ident);
1359 		if (!bh)
1360 			continue;
1361 
1362 		st = (struct sparingTable *)bh->b_data;
1363 		if (ident != 0 ||
1364 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365 			    strlen(UDF_ID_SPARING)) ||
1366 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367 							sb->s_blocksize) {
1368 			brelse(bh);
1369 			continue;
1370 		}
1371 
1372 		sdata->s_spar_map[i] = bh;
1373 	}
1374 	map->s_partition_func = udf_get_pblock_spar15;
1375 	return 0;
1376 }
1377 
1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379 			       struct kernel_lb_addr *fileset)
1380 {
1381 	struct logicalVolDesc *lvd;
1382 	int i, offset;
1383 	uint8_t type;
1384 	struct udf_sb_info *sbi = UDF_SB(sb);
1385 	struct genericPartitionMap *gpm;
1386 	uint16_t ident;
1387 	struct buffer_head *bh;
1388 	unsigned int table_len;
1389 	int ret;
1390 
1391 	bh = udf_read_tagged(sb, block, block, &ident);
1392 	if (!bh)
1393 		return -EAGAIN;
1394 	BUG_ON(ident != TAG_IDENT_LVD);
1395 	lvd = (struct logicalVolDesc *)bh->b_data;
1396 	table_len = le32_to_cpu(lvd->mapTableLength);
1397 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398 		udf_err(sb, "error loading logical volume descriptor: "
1399 			"Partition table too long (%u > %lu)\n", table_len,
1400 			sb->s_blocksize - sizeof(*lvd));
1401 		ret = -EIO;
1402 		goto out_bh;
1403 	}
1404 
1405 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1406 	if (ret)
1407 		goto out_bh;
1408 
1409 	for (i = 0, offset = 0;
1410 	     i < sbi->s_partitions && offset < table_len;
1411 	     i++, offset += gpm->partitionMapLength) {
1412 		struct udf_part_map *map = &sbi->s_partmaps[i];
1413 		gpm = (struct genericPartitionMap *)
1414 				&(lvd->partitionMaps[offset]);
1415 		type = gpm->partitionMapType;
1416 		if (type == 1) {
1417 			struct genericPartitionMap1 *gpm1 =
1418 				(struct genericPartitionMap1 *)gpm;
1419 			map->s_partition_type = UDF_TYPE1_MAP15;
1420 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1421 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1422 			map->s_partition_func = NULL;
1423 		} else if (type == 2) {
1424 			struct udfPartitionMap2 *upm2 =
1425 						(struct udfPartitionMap2 *)gpm;
1426 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1427 						strlen(UDF_ID_VIRTUAL))) {
1428 				u16 suf =
1429 					le16_to_cpu(((__le16 *)upm2->partIdent.
1430 							identSuffix)[0]);
1431 				if (suf < 0x0200) {
1432 					map->s_partition_type =
1433 							UDF_VIRTUAL_MAP15;
1434 					map->s_partition_func =
1435 							udf_get_pblock_virt15;
1436 				} else {
1437 					map->s_partition_type =
1438 							UDF_VIRTUAL_MAP20;
1439 					map->s_partition_func =
1440 							udf_get_pblock_virt20;
1441 				}
1442 			} else if (!strncmp(upm2->partIdent.ident,
1443 						UDF_ID_SPARABLE,
1444 						strlen(UDF_ID_SPARABLE))) {
1445 				ret = udf_load_sparable_map(sb, map,
1446 					(struct sparablePartitionMap *)gpm);
1447 				if (ret < 0)
1448 					goto out_bh;
1449 			} else if (!strncmp(upm2->partIdent.ident,
1450 						UDF_ID_METADATA,
1451 						strlen(UDF_ID_METADATA))) {
1452 				struct udf_meta_data *mdata =
1453 					&map->s_type_specific.s_metadata;
1454 				struct metadataPartitionMap *mdm =
1455 						(struct metadataPartitionMap *)
1456 						&(lvd->partitionMaps[offset]);
1457 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1458 					  i, type, UDF_ID_METADATA);
1459 
1460 				map->s_partition_type = UDF_METADATA_MAP25;
1461 				map->s_partition_func = udf_get_pblock_meta25;
1462 
1463 				mdata->s_meta_file_loc   =
1464 					le32_to_cpu(mdm->metadataFileLoc);
1465 				mdata->s_mirror_file_loc =
1466 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1467 				mdata->s_bitmap_file_loc =
1468 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1469 				mdata->s_alloc_unit_size =
1470 					le32_to_cpu(mdm->allocUnitSize);
1471 				mdata->s_align_unit_size =
1472 					le16_to_cpu(mdm->alignUnitSize);
1473 				if (mdm->flags & 0x01)
1474 					mdata->s_flags |= MF_DUPLICATE_MD;
1475 
1476 				udf_debug("Metadata Ident suffix=0x%x\n",
1477 					  le16_to_cpu(*(__le16 *)
1478 						      mdm->partIdent.identSuffix));
1479 				udf_debug("Metadata part num=%u\n",
1480 					  le16_to_cpu(mdm->partitionNum));
1481 				udf_debug("Metadata part alloc unit size=%u\n",
1482 					  le32_to_cpu(mdm->allocUnitSize));
1483 				udf_debug("Metadata file loc=%u\n",
1484 					  le32_to_cpu(mdm->metadataFileLoc));
1485 				udf_debug("Mirror file loc=%u\n",
1486 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1487 				udf_debug("Bitmap file loc=%u\n",
1488 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1489 				udf_debug("Flags: %d %u\n",
1490 					  mdata->s_flags, mdm->flags);
1491 			} else {
1492 				udf_debug("Unknown ident: %s\n",
1493 					  upm2->partIdent.ident);
1494 				continue;
1495 			}
1496 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1497 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1498 		}
1499 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1500 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1501 	}
1502 
1503 	if (fileset) {
1504 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1505 
1506 		*fileset = lelb_to_cpu(la->extLocation);
1507 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1508 			  fileset->logicalBlockNum,
1509 			  fileset->partitionReferenceNum);
1510 	}
1511 	if (lvd->integritySeqExt.extLength)
1512 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1513 	ret = 0;
1514 out_bh:
1515 	brelse(bh);
1516 	return ret;
1517 }
1518 
1519 /*
1520  * Find the prevailing Logical Volume Integrity Descriptor.
1521  */
1522 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1523 {
1524 	struct buffer_head *bh, *final_bh;
1525 	uint16_t ident;
1526 	struct udf_sb_info *sbi = UDF_SB(sb);
1527 	struct logicalVolIntegrityDesc *lvid;
1528 	int indirections = 0;
1529 
1530 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1531 		final_bh = NULL;
1532 		while (loc.extLength > 0 &&
1533 			(bh = udf_read_tagged(sb, loc.extLocation,
1534 					loc.extLocation, &ident))) {
1535 			if (ident != TAG_IDENT_LVID) {
1536 				brelse(bh);
1537 				break;
1538 			}
1539 
1540 			brelse(final_bh);
1541 			final_bh = bh;
1542 
1543 			loc.extLength -= sb->s_blocksize;
1544 			loc.extLocation++;
1545 		}
1546 
1547 		if (!final_bh)
1548 			return;
1549 
1550 		brelse(sbi->s_lvid_bh);
1551 		sbi->s_lvid_bh = final_bh;
1552 
1553 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1554 		if (lvid->nextIntegrityExt.extLength == 0)
1555 			return;
1556 
1557 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1558 	}
1559 
1560 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1561 		UDF_MAX_LVID_NESTING);
1562 	brelse(sbi->s_lvid_bh);
1563 	sbi->s_lvid_bh = NULL;
1564 }
1565 
1566 /*
1567  * Step for reallocation of table of partition descriptor sequence numbers.
1568  * Must be power of 2.
1569  */
1570 #define PART_DESC_ALLOC_STEP 32
1571 
1572 struct desc_seq_scan_data {
1573 	struct udf_vds_record vds[VDS_POS_LENGTH];
1574 	unsigned int size_part_descs;
1575 	struct udf_vds_record *part_descs_loc;
1576 };
1577 
1578 static struct udf_vds_record *handle_partition_descriptor(
1579 				struct buffer_head *bh,
1580 				struct desc_seq_scan_data *data)
1581 {
1582 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1583 	int partnum;
1584 
1585 	partnum = le16_to_cpu(desc->partitionNumber);
1586 	if (partnum >= data->size_part_descs) {
1587 		struct udf_vds_record *new_loc;
1588 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1589 
1590 		new_loc = kzalloc(sizeof(*new_loc) * new_size, GFP_KERNEL);
1591 		if (!new_loc)
1592 			return ERR_PTR(-ENOMEM);
1593 		memcpy(new_loc, data->part_descs_loc,
1594 		       data->size_part_descs * sizeof(*new_loc));
1595 		kfree(data->part_descs_loc);
1596 		data->part_descs_loc = new_loc;
1597 		data->size_part_descs = new_size;
1598 	}
1599 	return &(data->part_descs_loc[partnum]);
1600 }
1601 
1602 
1603 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1604 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1605 {
1606 	switch (ident) {
1607 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1608 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1609 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1610 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1611 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1612 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1613 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1614 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1615 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1616 		return handle_partition_descriptor(bh, data);
1617 	}
1618 	return NULL;
1619 }
1620 
1621 /*
1622  * Process a main/reserve volume descriptor sequence.
1623  *   @block		First block of first extent of the sequence.
1624  *   @lastblock		Lastblock of first extent of the sequence.
1625  *   @fileset		There we store extent containing root fileset
1626  *
1627  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1628  * sequence
1629  */
1630 static noinline int udf_process_sequence(
1631 		struct super_block *sb,
1632 		sector_t block, sector_t lastblock,
1633 		struct kernel_lb_addr *fileset)
1634 {
1635 	struct buffer_head *bh = NULL;
1636 	struct udf_vds_record *curr;
1637 	struct generic_desc *gd;
1638 	struct volDescPtr *vdp;
1639 	bool done = false;
1640 	uint32_t vdsn;
1641 	uint16_t ident;
1642 	int ret;
1643 	unsigned int indirections = 0;
1644 	struct desc_seq_scan_data data;
1645 	unsigned int i;
1646 
1647 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1648 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1649 	data.part_descs_loc = kzalloc(sizeof(*data.part_descs_loc) *
1650 					data.size_part_descs, GFP_KERNEL);
1651 	if (!data.part_descs_loc)
1652 		return -ENOMEM;
1653 
1654 	/*
1655 	 * Read the main descriptor sequence and find which descriptors
1656 	 * are in it.
1657 	 */
1658 	for (; (!done && block <= lastblock); block++) {
1659 
1660 		bh = udf_read_tagged(sb, block, block, &ident);
1661 		if (!bh)
1662 			break;
1663 
1664 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1665 		gd = (struct generic_desc *)bh->b_data;
1666 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1667 		switch (ident) {
1668 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1669 			if (++indirections > UDF_MAX_TD_NESTING) {
1670 				udf_err(sb, "too many Volume Descriptor "
1671 					"Pointers (max %u supported)\n",
1672 					UDF_MAX_TD_NESTING);
1673 				brelse(bh);
1674 				return -EIO;
1675 			}
1676 
1677 			vdp = (struct volDescPtr *)bh->b_data;
1678 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1679 			lastblock = le32_to_cpu(
1680 				vdp->nextVolDescSeqExt.extLength) >>
1681 				sb->s_blocksize_bits;
1682 			lastblock += block - 1;
1683 			/* For loop is going to increment 'block' again */
1684 			block--;
1685 			break;
1686 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1687 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1688 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1689 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1691 			curr = get_volume_descriptor_record(ident, bh, &data);
1692 			if (IS_ERR(curr)) {
1693 				brelse(bh);
1694 				return PTR_ERR(curr);
1695 			}
1696 			/* Descriptor we don't care about? */
1697 			if (!curr)
1698 				break;
1699 			if (vdsn >= curr->volDescSeqNum) {
1700 				curr->volDescSeqNum = vdsn;
1701 				curr->block = block;
1702 			}
1703 			break;
1704 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1705 			done = true;
1706 			break;
1707 		}
1708 		brelse(bh);
1709 	}
1710 	/*
1711 	 * Now read interesting descriptors again and process them
1712 	 * in a suitable order
1713 	 */
1714 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1715 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1716 		return -EAGAIN;
1717 	}
1718 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1719 	if (ret < 0)
1720 		return ret;
1721 
1722 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1723 		ret = udf_load_logicalvol(sb,
1724 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1725 				fileset);
1726 		if (ret < 0)
1727 			return ret;
1728 	}
1729 
1730 	/* Now handle prevailing Partition Descriptors */
1731 	for (i = 0; i < data.size_part_descs; i++) {
1732 		if (data.part_descs_loc[i].block) {
1733 			ret = udf_load_partdesc(sb,
1734 						data.part_descs_loc[i].block);
1735 			if (ret < 0)
1736 				return ret;
1737 		}
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * Load Volume Descriptor Sequence described by anchor in bh
1745  *
1746  * Returns <0 on error, 0 on success
1747  */
1748 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1749 			     struct kernel_lb_addr *fileset)
1750 {
1751 	struct anchorVolDescPtr *anchor;
1752 	sector_t main_s, main_e, reserve_s, reserve_e;
1753 	int ret;
1754 
1755 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1756 
1757 	/* Locate the main sequence */
1758 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1759 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1760 	main_e = main_e >> sb->s_blocksize_bits;
1761 	main_e += main_s - 1;
1762 
1763 	/* Locate the reserve sequence */
1764 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1765 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1766 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1767 	reserve_e += reserve_s - 1;
1768 
1769 	/* Process the main & reserve sequences */
1770 	/* responsible for finding the PartitionDesc(s) */
1771 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1772 	if (ret != -EAGAIN)
1773 		return ret;
1774 	udf_sb_free_partitions(sb);
1775 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1776 	if (ret < 0) {
1777 		udf_sb_free_partitions(sb);
1778 		/* No sequence was OK, return -EIO */
1779 		if (ret == -EAGAIN)
1780 			ret = -EIO;
1781 	}
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Check whether there is an anchor block in the given block and
1787  * load Volume Descriptor Sequence if so.
1788  *
1789  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1790  * block
1791  */
1792 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1793 				  struct kernel_lb_addr *fileset)
1794 {
1795 	struct buffer_head *bh;
1796 	uint16_t ident;
1797 	int ret;
1798 
1799 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1800 	    udf_fixed_to_variable(block) >=
1801 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1802 		return -EAGAIN;
1803 
1804 	bh = udf_read_tagged(sb, block, block, &ident);
1805 	if (!bh)
1806 		return -EAGAIN;
1807 	if (ident != TAG_IDENT_AVDP) {
1808 		brelse(bh);
1809 		return -EAGAIN;
1810 	}
1811 	ret = udf_load_sequence(sb, bh, fileset);
1812 	brelse(bh);
1813 	return ret;
1814 }
1815 
1816 /*
1817  * Search for an anchor volume descriptor pointer.
1818  *
1819  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1820  * of anchors.
1821  */
1822 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1823 			    struct kernel_lb_addr *fileset)
1824 {
1825 	sector_t last[6];
1826 	int i;
1827 	struct udf_sb_info *sbi = UDF_SB(sb);
1828 	int last_count = 0;
1829 	int ret;
1830 
1831 	/* First try user provided anchor */
1832 	if (sbi->s_anchor) {
1833 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1834 		if (ret != -EAGAIN)
1835 			return ret;
1836 	}
1837 	/*
1838 	 * according to spec, anchor is in either:
1839 	 *     block 256
1840 	 *     lastblock-256
1841 	 *     lastblock
1842 	 *  however, if the disc isn't closed, it could be 512.
1843 	 */
1844 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1845 	if (ret != -EAGAIN)
1846 		return ret;
1847 	/*
1848 	 * The trouble is which block is the last one. Drives often misreport
1849 	 * this so we try various possibilities.
1850 	 */
1851 	last[last_count++] = *lastblock;
1852 	if (*lastblock >= 1)
1853 		last[last_count++] = *lastblock - 1;
1854 	last[last_count++] = *lastblock + 1;
1855 	if (*lastblock >= 2)
1856 		last[last_count++] = *lastblock - 2;
1857 	if (*lastblock >= 150)
1858 		last[last_count++] = *lastblock - 150;
1859 	if (*lastblock >= 152)
1860 		last[last_count++] = *lastblock - 152;
1861 
1862 	for (i = 0; i < last_count; i++) {
1863 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1864 				sb->s_blocksize_bits)
1865 			continue;
1866 		ret = udf_check_anchor_block(sb, last[i], fileset);
1867 		if (ret != -EAGAIN) {
1868 			if (!ret)
1869 				*lastblock = last[i];
1870 			return ret;
1871 		}
1872 		if (last[i] < 256)
1873 			continue;
1874 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1875 		if (ret != -EAGAIN) {
1876 			if (!ret)
1877 				*lastblock = last[i];
1878 			return ret;
1879 		}
1880 	}
1881 
1882 	/* Finally try block 512 in case media is open */
1883 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1884 }
1885 
1886 /*
1887  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1888  * area specified by it. The function expects sbi->s_lastblock to be the last
1889  * block on the media.
1890  *
1891  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1892  * was not found.
1893  */
1894 static int udf_find_anchor(struct super_block *sb,
1895 			   struct kernel_lb_addr *fileset)
1896 {
1897 	struct udf_sb_info *sbi = UDF_SB(sb);
1898 	sector_t lastblock = sbi->s_last_block;
1899 	int ret;
1900 
1901 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1902 	if (ret != -EAGAIN)
1903 		goto out;
1904 
1905 	/* No anchor found? Try VARCONV conversion of block numbers */
1906 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1907 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1908 	/* Firstly, we try to not convert number of the last block */
1909 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1910 	if (ret != -EAGAIN)
1911 		goto out;
1912 
1913 	lastblock = sbi->s_last_block;
1914 	/* Secondly, we try with converted number of the last block */
1915 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1916 	if (ret < 0) {
1917 		/* VARCONV didn't help. Clear it. */
1918 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1919 	}
1920 out:
1921 	if (ret == 0)
1922 		sbi->s_last_block = lastblock;
1923 	return ret;
1924 }
1925 
1926 /*
1927  * Check Volume Structure Descriptor, find Anchor block and load Volume
1928  * Descriptor Sequence.
1929  *
1930  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1931  * block was not found.
1932  */
1933 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1934 			int silent, struct kernel_lb_addr *fileset)
1935 {
1936 	struct udf_sb_info *sbi = UDF_SB(sb);
1937 	loff_t nsr_off;
1938 	int ret;
1939 
1940 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1941 		if (!silent)
1942 			udf_warn(sb, "Bad block size\n");
1943 		return -EINVAL;
1944 	}
1945 	sbi->s_last_block = uopt->lastblock;
1946 	if (!uopt->novrs) {
1947 		/* Check that it is NSR02 compliant */
1948 		nsr_off = udf_check_vsd(sb);
1949 		if (!nsr_off) {
1950 			if (!silent)
1951 				udf_warn(sb, "No VRS found\n");
1952 			return -EINVAL;
1953 		}
1954 		if (nsr_off == -1)
1955 			udf_debug("Failed to read sector at offset %d. "
1956 				  "Assuming open disc. Skipping validity "
1957 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1958 		if (!sbi->s_last_block)
1959 			sbi->s_last_block = udf_get_last_block(sb);
1960 	} else {
1961 		udf_debug("Validity check skipped because of novrs option\n");
1962 	}
1963 
1964 	/* Look for anchor block and load Volume Descriptor Sequence */
1965 	sbi->s_anchor = uopt->anchor;
1966 	ret = udf_find_anchor(sb, fileset);
1967 	if (ret < 0) {
1968 		if (!silent && ret == -EAGAIN)
1969 			udf_warn(sb, "No anchor found\n");
1970 		return ret;
1971 	}
1972 	return 0;
1973 }
1974 
1975 static void udf_open_lvid(struct super_block *sb)
1976 {
1977 	struct udf_sb_info *sbi = UDF_SB(sb);
1978 	struct buffer_head *bh = sbi->s_lvid_bh;
1979 	struct logicalVolIntegrityDesc *lvid;
1980 	struct logicalVolIntegrityDescImpUse *lvidiu;
1981 	struct timespec ts;
1982 
1983 	if (!bh)
1984 		return;
1985 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1986 	lvidiu = udf_sb_lvidiu(sb);
1987 	if (!lvidiu)
1988 		return;
1989 
1990 	mutex_lock(&sbi->s_alloc_mutex);
1991 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1992 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1993 	ktime_get_real_ts(&ts);
1994 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1995 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1996 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1997 	else
1998 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1999 
2000 	lvid->descTag.descCRC = cpu_to_le16(
2001 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2002 			le16_to_cpu(lvid->descTag.descCRCLength)));
2003 
2004 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2005 	mark_buffer_dirty(bh);
2006 	sbi->s_lvid_dirty = 0;
2007 	mutex_unlock(&sbi->s_alloc_mutex);
2008 	/* Make opening of filesystem visible on the media immediately */
2009 	sync_dirty_buffer(bh);
2010 }
2011 
2012 static void udf_close_lvid(struct super_block *sb)
2013 {
2014 	struct udf_sb_info *sbi = UDF_SB(sb);
2015 	struct buffer_head *bh = sbi->s_lvid_bh;
2016 	struct logicalVolIntegrityDesc *lvid;
2017 	struct logicalVolIntegrityDescImpUse *lvidiu;
2018 	struct timespec ts;
2019 
2020 	if (!bh)
2021 		return;
2022 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2023 	lvidiu = udf_sb_lvidiu(sb);
2024 	if (!lvidiu)
2025 		return;
2026 
2027 	mutex_lock(&sbi->s_alloc_mutex);
2028 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2029 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2030 	ktime_get_real_ts(&ts);
2031 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2032 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2033 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2034 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2035 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2036 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2037 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2038 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2039 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2040 
2041 	lvid->descTag.descCRC = cpu_to_le16(
2042 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2043 				le16_to_cpu(lvid->descTag.descCRCLength)));
2044 
2045 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2046 	/*
2047 	 * We set buffer uptodate unconditionally here to avoid spurious
2048 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2049 	 * the buffer as !uptodate
2050 	 */
2051 	set_buffer_uptodate(bh);
2052 	mark_buffer_dirty(bh);
2053 	sbi->s_lvid_dirty = 0;
2054 	mutex_unlock(&sbi->s_alloc_mutex);
2055 	/* Make closing of filesystem visible on the media immediately */
2056 	sync_dirty_buffer(bh);
2057 }
2058 
2059 u64 lvid_get_unique_id(struct super_block *sb)
2060 {
2061 	struct buffer_head *bh;
2062 	struct udf_sb_info *sbi = UDF_SB(sb);
2063 	struct logicalVolIntegrityDesc *lvid;
2064 	struct logicalVolHeaderDesc *lvhd;
2065 	u64 uniqueID;
2066 	u64 ret;
2067 
2068 	bh = sbi->s_lvid_bh;
2069 	if (!bh)
2070 		return 0;
2071 
2072 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2073 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2074 
2075 	mutex_lock(&sbi->s_alloc_mutex);
2076 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2077 	if (!(++uniqueID & 0xFFFFFFFF))
2078 		uniqueID += 16;
2079 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2080 	mutex_unlock(&sbi->s_alloc_mutex);
2081 	mark_buffer_dirty(bh);
2082 
2083 	return ret;
2084 }
2085 
2086 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2087 {
2088 	int ret = -EINVAL;
2089 	struct inode *inode = NULL;
2090 	struct udf_options uopt;
2091 	struct kernel_lb_addr rootdir, fileset;
2092 	struct udf_sb_info *sbi;
2093 	bool lvid_open = false;
2094 
2095 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2096 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2097 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2098 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2099 	uopt.umask = 0;
2100 	uopt.fmode = UDF_INVALID_MODE;
2101 	uopt.dmode = UDF_INVALID_MODE;
2102 	uopt.nls_map = NULL;
2103 
2104 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2105 	if (!sbi)
2106 		return -ENOMEM;
2107 
2108 	sb->s_fs_info = sbi;
2109 
2110 	mutex_init(&sbi->s_alloc_mutex);
2111 
2112 	if (!udf_parse_options((char *)options, &uopt, false))
2113 		goto parse_options_failure;
2114 
2115 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2116 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2117 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2118 		goto parse_options_failure;
2119 	}
2120 #ifdef CONFIG_UDF_NLS
2121 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2122 		uopt.nls_map = load_nls_default();
2123 		if (!uopt.nls_map)
2124 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2125 		else
2126 			udf_debug("Using default NLS map\n");
2127 	}
2128 #endif
2129 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2131 
2132 	fileset.logicalBlockNum = 0xFFFFFFFF;
2133 	fileset.partitionReferenceNum = 0xFFFF;
2134 
2135 	sbi->s_flags = uopt.flags;
2136 	sbi->s_uid = uopt.uid;
2137 	sbi->s_gid = uopt.gid;
2138 	sbi->s_umask = uopt.umask;
2139 	sbi->s_fmode = uopt.fmode;
2140 	sbi->s_dmode = uopt.dmode;
2141 	sbi->s_nls_map = uopt.nls_map;
2142 	rwlock_init(&sbi->s_cred_lock);
2143 
2144 	if (uopt.session == 0xFFFFFFFF)
2145 		sbi->s_session = udf_get_last_session(sb);
2146 	else
2147 		sbi->s_session = uopt.session;
2148 
2149 	udf_debug("Multi-session=%d\n", sbi->s_session);
2150 
2151 	/* Fill in the rest of the superblock */
2152 	sb->s_op = &udf_sb_ops;
2153 	sb->s_export_op = &udf_export_ops;
2154 
2155 	sb->s_magic = UDF_SUPER_MAGIC;
2156 	sb->s_time_gran = 1000;
2157 
2158 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 	} else {
2161 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162 		while (uopt.blocksize <= 4096) {
2163 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 			if (ret < 0) {
2165 				if (!silent && ret != -EACCES) {
2166 					pr_notice("Scanning with blocksize %u failed\n",
2167 						  uopt.blocksize);
2168 				}
2169 				brelse(sbi->s_lvid_bh);
2170 				sbi->s_lvid_bh = NULL;
2171 				/*
2172 				 * EACCES is special - we want to propagate to
2173 				 * upper layers that we cannot handle RW mount.
2174 				 */
2175 				if (ret == -EACCES)
2176 					break;
2177 			} else
2178 				break;
2179 
2180 			uopt.blocksize <<= 1;
2181 		}
2182 	}
2183 	if (ret < 0) {
2184 		if (ret == -EAGAIN) {
2185 			udf_warn(sb, "No partition found (1)\n");
2186 			ret = -EINVAL;
2187 		}
2188 		goto error_out;
2189 	}
2190 
2191 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2192 
2193 	if (sbi->s_lvid_bh) {
2194 		struct logicalVolIntegrityDescImpUse *lvidiu =
2195 							udf_sb_lvidiu(sb);
2196 		uint16_t minUDFReadRev;
2197 		uint16_t minUDFWriteRev;
2198 
2199 		if (!lvidiu) {
2200 			ret = -EINVAL;
2201 			goto error_out;
2202 		}
2203 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207 				minUDFReadRev,
2208 				UDF_MAX_READ_VERSION);
2209 			ret = -EINVAL;
2210 			goto error_out;
2211 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212 			   !sb_rdonly(sb)) {
2213 			ret = -EACCES;
2214 			goto error_out;
2215 		}
2216 
2217 		sbi->s_udfrev = minUDFWriteRev;
2218 
2219 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223 	}
2224 
2225 	if (!sbi->s_partitions) {
2226 		udf_warn(sb, "No partition found (2)\n");
2227 		ret = -EINVAL;
2228 		goto error_out;
2229 	}
2230 
2231 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232 			UDF_PART_FLAG_READ_ONLY &&
2233 	    !sb_rdonly(sb)) {
2234 		ret = -EACCES;
2235 		goto error_out;
2236 	}
2237 
2238 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239 		udf_warn(sb, "No fileset found\n");
2240 		ret = -EINVAL;
2241 		goto error_out;
2242 	}
2243 
2244 	if (!silent) {
2245 		struct timestamp ts;
2246 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248 			 sbi->s_volume_ident,
2249 			 le16_to_cpu(ts.year), ts.month, ts.day,
2250 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251 	}
2252 	if (!sb_rdonly(sb)) {
2253 		udf_open_lvid(sb);
2254 		lvid_open = true;
2255 	}
2256 
2257 	/* Assign the root inode */
2258 	/* assign inodes by physical block number */
2259 	/* perhaps it's not extensible enough, but for now ... */
2260 	inode = udf_iget(sb, &rootdir);
2261 	if (IS_ERR(inode)) {
2262 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2263 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264 		ret = PTR_ERR(inode);
2265 		goto error_out;
2266 	}
2267 
2268 	/* Allocate a dentry for the root inode */
2269 	sb->s_root = d_make_root(inode);
2270 	if (!sb->s_root) {
2271 		udf_err(sb, "Couldn't allocate root dentry\n");
2272 		ret = -ENOMEM;
2273 		goto error_out;
2274 	}
2275 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2276 	sb->s_max_links = UDF_MAX_LINKS;
2277 	return 0;
2278 
2279 error_out:
2280 	iput(sbi->s_vat_inode);
2281 parse_options_failure:
2282 #ifdef CONFIG_UDF_NLS
2283 	if (uopt.nls_map)
2284 		unload_nls(uopt.nls_map);
2285 #endif
2286 	if (lvid_open)
2287 		udf_close_lvid(sb);
2288 	brelse(sbi->s_lvid_bh);
2289 	udf_sb_free_partitions(sb);
2290 	kfree(sbi);
2291 	sb->s_fs_info = NULL;
2292 
2293 	return ret;
2294 }
2295 
2296 void _udf_err(struct super_block *sb, const char *function,
2297 	      const char *fmt, ...)
2298 {
2299 	struct va_format vaf;
2300 	va_list args;
2301 
2302 	va_start(args, fmt);
2303 
2304 	vaf.fmt = fmt;
2305 	vaf.va = &args;
2306 
2307 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2308 
2309 	va_end(args);
2310 }
2311 
2312 void _udf_warn(struct super_block *sb, const char *function,
2313 	       const char *fmt, ...)
2314 {
2315 	struct va_format vaf;
2316 	va_list args;
2317 
2318 	va_start(args, fmt);
2319 
2320 	vaf.fmt = fmt;
2321 	vaf.va = &args;
2322 
2323 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2324 
2325 	va_end(args);
2326 }
2327 
2328 static void udf_put_super(struct super_block *sb)
2329 {
2330 	struct udf_sb_info *sbi;
2331 
2332 	sbi = UDF_SB(sb);
2333 
2334 	iput(sbi->s_vat_inode);
2335 #ifdef CONFIG_UDF_NLS
2336 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2337 		unload_nls(sbi->s_nls_map);
2338 #endif
2339 	if (!sb_rdonly(sb))
2340 		udf_close_lvid(sb);
2341 	brelse(sbi->s_lvid_bh);
2342 	udf_sb_free_partitions(sb);
2343 	mutex_destroy(&sbi->s_alloc_mutex);
2344 	kfree(sb->s_fs_info);
2345 	sb->s_fs_info = NULL;
2346 }
2347 
2348 static int udf_sync_fs(struct super_block *sb, int wait)
2349 {
2350 	struct udf_sb_info *sbi = UDF_SB(sb);
2351 
2352 	mutex_lock(&sbi->s_alloc_mutex);
2353 	if (sbi->s_lvid_dirty) {
2354 		/*
2355 		 * Blockdevice will be synced later so we don't have to submit
2356 		 * the buffer for IO
2357 		 */
2358 		mark_buffer_dirty(sbi->s_lvid_bh);
2359 		sbi->s_lvid_dirty = 0;
2360 	}
2361 	mutex_unlock(&sbi->s_alloc_mutex);
2362 
2363 	return 0;
2364 }
2365 
2366 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2367 {
2368 	struct super_block *sb = dentry->d_sb;
2369 	struct udf_sb_info *sbi = UDF_SB(sb);
2370 	struct logicalVolIntegrityDescImpUse *lvidiu;
2371 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2372 
2373 	lvidiu = udf_sb_lvidiu(sb);
2374 	buf->f_type = UDF_SUPER_MAGIC;
2375 	buf->f_bsize = sb->s_blocksize;
2376 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2377 	buf->f_bfree = udf_count_free(sb);
2378 	buf->f_bavail = buf->f_bfree;
2379 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2380 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2381 			+ buf->f_bfree;
2382 	buf->f_ffree = buf->f_bfree;
2383 	buf->f_namelen = UDF_NAME_LEN;
2384 	buf->f_fsid.val[0] = (u32)id;
2385 	buf->f_fsid.val[1] = (u32)(id >> 32);
2386 
2387 	return 0;
2388 }
2389 
2390 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2391 					  struct udf_bitmap *bitmap)
2392 {
2393 	struct buffer_head *bh = NULL;
2394 	unsigned int accum = 0;
2395 	int index;
2396 	udf_pblk_t block = 0, newblock;
2397 	struct kernel_lb_addr loc;
2398 	uint32_t bytes;
2399 	uint8_t *ptr;
2400 	uint16_t ident;
2401 	struct spaceBitmapDesc *bm;
2402 
2403 	loc.logicalBlockNum = bitmap->s_extPosition;
2404 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2405 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2406 
2407 	if (!bh) {
2408 		udf_err(sb, "udf_count_free failed\n");
2409 		goto out;
2410 	} else if (ident != TAG_IDENT_SBD) {
2411 		brelse(bh);
2412 		udf_err(sb, "udf_count_free failed\n");
2413 		goto out;
2414 	}
2415 
2416 	bm = (struct spaceBitmapDesc *)bh->b_data;
2417 	bytes = le32_to_cpu(bm->numOfBytes);
2418 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2419 	ptr = (uint8_t *)bh->b_data;
2420 
2421 	while (bytes > 0) {
2422 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2423 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2424 					cur_bytes * 8);
2425 		bytes -= cur_bytes;
2426 		if (bytes) {
2427 			brelse(bh);
2428 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2429 			bh = udf_tread(sb, newblock);
2430 			if (!bh) {
2431 				udf_debug("read failed\n");
2432 				goto out;
2433 			}
2434 			index = 0;
2435 			ptr = (uint8_t *)bh->b_data;
2436 		}
2437 	}
2438 	brelse(bh);
2439 out:
2440 	return accum;
2441 }
2442 
2443 static unsigned int udf_count_free_table(struct super_block *sb,
2444 					 struct inode *table)
2445 {
2446 	unsigned int accum = 0;
2447 	uint32_t elen;
2448 	struct kernel_lb_addr eloc;
2449 	int8_t etype;
2450 	struct extent_position epos;
2451 
2452 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2453 	epos.block = UDF_I(table)->i_location;
2454 	epos.offset = sizeof(struct unallocSpaceEntry);
2455 	epos.bh = NULL;
2456 
2457 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2458 		accum += (elen >> table->i_sb->s_blocksize_bits);
2459 
2460 	brelse(epos.bh);
2461 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2462 
2463 	return accum;
2464 }
2465 
2466 static unsigned int udf_count_free(struct super_block *sb)
2467 {
2468 	unsigned int accum = 0;
2469 	struct udf_sb_info *sbi;
2470 	struct udf_part_map *map;
2471 
2472 	sbi = UDF_SB(sb);
2473 	if (sbi->s_lvid_bh) {
2474 		struct logicalVolIntegrityDesc *lvid =
2475 			(struct logicalVolIntegrityDesc *)
2476 			sbi->s_lvid_bh->b_data;
2477 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2478 			accum = le32_to_cpu(
2479 					lvid->freeSpaceTable[sbi->s_partition]);
2480 			if (accum == 0xFFFFFFFF)
2481 				accum = 0;
2482 		}
2483 	}
2484 
2485 	if (accum)
2486 		return accum;
2487 
2488 	map = &sbi->s_partmaps[sbi->s_partition];
2489 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2490 		accum += udf_count_free_bitmap(sb,
2491 					       map->s_uspace.s_bitmap);
2492 	}
2493 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2494 		accum += udf_count_free_bitmap(sb,
2495 					       map->s_fspace.s_bitmap);
2496 	}
2497 	if (accum)
2498 		return accum;
2499 
2500 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2501 		accum += udf_count_free_table(sb,
2502 					      map->s_uspace.s_table);
2503 	}
2504 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2505 		accum += udf_count_free_table(sb,
2506 					      map->s_fspace.s_table);
2507 	}
2508 
2509 	return accum;
2510 }
2511 
2512 MODULE_AUTHOR("Ben Fennema");
2513 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2514 MODULE_LICENSE("GPL");
2515 module_init(init_udf_fs)
2516 module_exit(exit_udf_fs)
2517