xref: /openbmc/linux/fs/udf/super.c (revision ae6385af)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67 
68 enum {
69 	VDS_POS_PRIMARY_VOL_DESC,
70 	VDS_POS_UNALLOC_SPACE_DESC,
71 	VDS_POS_LOGICAL_VOL_DESC,
72 	VDS_POS_IMP_USE_VOL_DESC,
73 	VDS_POS_LENGTH
74 };
75 
76 #define VSD_FIRST_SECTOR_OFFSET		32768
77 #define VSD_MAX_SECTOR_OFFSET		0x800000
78 
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87 
88 enum { UDF_MAX_LINKS = 0xffff };
89 /*
90  * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
91  * more but because the file space is described by a linked list of extents,
92  * each of which can have at most 1GB, the creation and handling of extents
93  * gets unusably slow beyond certain point...
94  */
95 #define UDF_MAX_FILESIZE (1ULL << 42)
96 
97 /* These are the "meat" - everything else is stuffing */
98 static int udf_fill_super(struct super_block *, void *, int);
99 static void udf_put_super(struct super_block *);
100 static int udf_sync_fs(struct super_block *, int);
101 static int udf_remount_fs(struct super_block *, int *, char *);
102 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
103 static void udf_open_lvid(struct super_block *);
104 static void udf_close_lvid(struct super_block *);
105 static unsigned int udf_count_free(struct super_block *);
106 static int udf_statfs(struct dentry *, struct kstatfs *);
107 static int udf_show_options(struct seq_file *, struct dentry *);
108 
109 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110 {
111 	struct logicalVolIntegrityDesc *lvid;
112 	unsigned int partnum;
113 	unsigned int offset;
114 
115 	if (!UDF_SB(sb)->s_lvid_bh)
116 		return NULL;
117 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118 	partnum = le32_to_cpu(lvid->numOfPartitions);
119 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
120 	offset = partnum * 2 * sizeof(uint32_t);
121 	return (struct logicalVolIntegrityDescImpUse *)
122 					(((uint8_t *)(lvid + 1)) + offset);
123 }
124 
125 /* UDF filesystem type */
126 static struct dentry *udf_mount(struct file_system_type *fs_type,
127 		      int flags, const char *dev_name, void *data)
128 {
129 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
130 }
131 
132 static struct file_system_type udf_fstype = {
133 	.owner		= THIS_MODULE,
134 	.name		= "udf",
135 	.mount		= udf_mount,
136 	.kill_sb	= kill_block_super,
137 	.fs_flags	= FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("udf");
140 
141 static struct kmem_cache *udf_inode_cachep;
142 
143 static struct inode *udf_alloc_inode(struct super_block *sb)
144 {
145 	struct udf_inode_info *ei;
146 	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
147 	if (!ei)
148 		return NULL;
149 
150 	ei->i_unique = 0;
151 	ei->i_lenExtents = 0;
152 	ei->i_lenStreams = 0;
153 	ei->i_next_alloc_block = 0;
154 	ei->i_next_alloc_goal = 0;
155 	ei->i_strat4096 = 0;
156 	ei->i_streamdir = 0;
157 	ei->i_hidden = 0;
158 	init_rwsem(&ei->i_data_sem);
159 	ei->cached_extent.lstart = -1;
160 	spin_lock_init(&ei->i_extent_cache_lock);
161 	inode_set_iversion(&ei->vfs_inode, 1);
162 
163 	return &ei->vfs_inode;
164 }
165 
166 static void udf_free_in_core_inode(struct inode *inode)
167 {
168 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170 
171 static void init_once(void *foo)
172 {
173 	struct udf_inode_info *ei = foo;
174 
175 	ei->i_data = NULL;
176 	inode_init_once(&ei->vfs_inode);
177 }
178 
179 static int __init init_inodecache(void)
180 {
181 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
182 					     sizeof(struct udf_inode_info),
183 					     0, (SLAB_RECLAIM_ACCOUNT |
184 						 SLAB_MEM_SPREAD |
185 						 SLAB_ACCOUNT),
186 					     init_once);
187 	if (!udf_inode_cachep)
188 		return -ENOMEM;
189 	return 0;
190 }
191 
192 static void destroy_inodecache(void)
193 {
194 	/*
195 	 * Make sure all delayed rcu free inodes are flushed before we
196 	 * destroy cache.
197 	 */
198 	rcu_barrier();
199 	kmem_cache_destroy(udf_inode_cachep);
200 }
201 
202 /* Superblock operations */
203 static const struct super_operations udf_sb_ops = {
204 	.alloc_inode	= udf_alloc_inode,
205 	.free_inode	= udf_free_in_core_inode,
206 	.write_inode	= udf_write_inode,
207 	.evict_inode	= udf_evict_inode,
208 	.put_super	= udf_put_super,
209 	.sync_fs	= udf_sync_fs,
210 	.statfs		= udf_statfs,
211 	.remount_fs	= udf_remount_fs,
212 	.show_options	= udf_show_options,
213 };
214 
215 struct udf_options {
216 	unsigned char novrs;
217 	unsigned int blocksize;
218 	unsigned int session;
219 	unsigned int lastblock;
220 	unsigned int anchor;
221 	unsigned int flags;
222 	umode_t umask;
223 	kgid_t gid;
224 	kuid_t uid;
225 	umode_t fmode;
226 	umode_t dmode;
227 	struct nls_table *nls_map;
228 };
229 
230 static int __init init_udf_fs(void)
231 {
232 	int err;
233 
234 	err = init_inodecache();
235 	if (err)
236 		goto out1;
237 	err = register_filesystem(&udf_fstype);
238 	if (err)
239 		goto out;
240 
241 	return 0;
242 
243 out:
244 	destroy_inodecache();
245 
246 out1:
247 	return err;
248 }
249 
250 static void __exit exit_udf_fs(void)
251 {
252 	unregister_filesystem(&udf_fstype);
253 	destroy_inodecache();
254 }
255 
256 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
257 {
258 	struct udf_sb_info *sbi = UDF_SB(sb);
259 
260 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
261 	if (!sbi->s_partmaps) {
262 		sbi->s_partitions = 0;
263 		return -ENOMEM;
264 	}
265 
266 	sbi->s_partitions = count;
267 	return 0;
268 }
269 
270 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
271 {
272 	int i;
273 	int nr_groups = bitmap->s_nr_groups;
274 
275 	for (i = 0; i < nr_groups; i++)
276 		brelse(bitmap->s_block_bitmap[i]);
277 
278 	kvfree(bitmap);
279 }
280 
281 static void udf_free_partition(struct udf_part_map *map)
282 {
283 	int i;
284 	struct udf_meta_data *mdata;
285 
286 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
287 		iput(map->s_uspace.s_table);
288 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
289 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
290 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
291 		for (i = 0; i < 4; i++)
292 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
293 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
294 		mdata = &map->s_type_specific.s_metadata;
295 		iput(mdata->s_metadata_fe);
296 		mdata->s_metadata_fe = NULL;
297 
298 		iput(mdata->s_mirror_fe);
299 		mdata->s_mirror_fe = NULL;
300 
301 		iput(mdata->s_bitmap_fe);
302 		mdata->s_bitmap_fe = NULL;
303 	}
304 }
305 
306 static void udf_sb_free_partitions(struct super_block *sb)
307 {
308 	struct udf_sb_info *sbi = UDF_SB(sb);
309 	int i;
310 
311 	if (!sbi->s_partmaps)
312 		return;
313 	for (i = 0; i < sbi->s_partitions; i++)
314 		udf_free_partition(&sbi->s_partmaps[i]);
315 	kfree(sbi->s_partmaps);
316 	sbi->s_partmaps = NULL;
317 }
318 
319 static int udf_show_options(struct seq_file *seq, struct dentry *root)
320 {
321 	struct super_block *sb = root->d_sb;
322 	struct udf_sb_info *sbi = UDF_SB(sb);
323 
324 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
325 		seq_puts(seq, ",nostrict");
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
327 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
328 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
329 		seq_puts(seq, ",unhide");
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
331 		seq_puts(seq, ",undelete");
332 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
333 		seq_puts(seq, ",noadinicb");
334 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
335 		seq_puts(seq, ",shortad");
336 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
337 		seq_puts(seq, ",uid=forget");
338 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
339 		seq_puts(seq, ",gid=forget");
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
341 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
343 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
344 	if (sbi->s_umask != 0)
345 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
346 	if (sbi->s_fmode != UDF_INVALID_MODE)
347 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
348 	if (sbi->s_dmode != UDF_INVALID_MODE)
349 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
350 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
351 		seq_printf(seq, ",session=%d", sbi->s_session);
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
353 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
354 	if (sbi->s_anchor != 0)
355 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
356 	if (sbi->s_nls_map)
357 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
358 	else
359 		seq_puts(seq, ",iocharset=utf8");
360 
361 	return 0;
362 }
363 
364 /*
365  * udf_parse_options
366  *
367  * PURPOSE
368  *	Parse mount options.
369  *
370  * DESCRIPTION
371  *	The following mount options are supported:
372  *
373  *	gid=		Set the default group.
374  *	umask=		Set the default umask.
375  *	mode=		Set the default file permissions.
376  *	dmode=		Set the default directory permissions.
377  *	uid=		Set the default user.
378  *	bs=		Set the block size.
379  *	unhide		Show otherwise hidden files.
380  *	undelete	Show deleted files in lists.
381  *	adinicb		Embed data in the inode (default)
382  *	noadinicb	Don't embed data in the inode
383  *	shortad		Use short ad's
384  *	longad		Use long ad's (default)
385  *	nostrict	Unset strict conformance
386  *	iocharset=	Set the NLS character set
387  *
388  *	The remaining are for debugging and disaster recovery:
389  *
390  *	novrs		Skip volume sequence recognition
391  *
392  *	The following expect a offset from 0.
393  *
394  *	session=	Set the CDROM session (default= last session)
395  *	anchor=		Override standard anchor location. (default= 256)
396  *	volume=		Override the VolumeDesc location. (unused)
397  *	partition=	Override the PartitionDesc location. (unused)
398  *	lastblock=	Set the last block of the filesystem/
399  *
400  *	The following expect a offset from the partition root.
401  *
402  *	fileset=	Override the fileset block location. (unused)
403  *	rootdir=	Override the root directory location. (unused)
404  *		WARNING: overriding the rootdir to a non-directory may
405  *		yield highly unpredictable results.
406  *
407  * PRE-CONDITIONS
408  *	options		Pointer to mount options string.
409  *	uopts		Pointer to mount options variable.
410  *
411  * POST-CONDITIONS
412  *	<return>	1	Mount options parsed okay.
413  *	<return>	0	Error parsing mount options.
414  *
415  * HISTORY
416  *	July 1, 1997 - Andrew E. Mileski
417  *	Written, tested, and released.
418  */
419 
420 enum {
421 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
422 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
423 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
424 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
425 	Opt_rootdir, Opt_utf8, Opt_iocharset,
426 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
427 	Opt_fmode, Opt_dmode
428 };
429 
430 static const match_table_t tokens = {
431 	{Opt_novrs,	"novrs"},
432 	{Opt_nostrict,	"nostrict"},
433 	{Opt_bs,	"bs=%u"},
434 	{Opt_unhide,	"unhide"},
435 	{Opt_undelete,	"undelete"},
436 	{Opt_noadinicb,	"noadinicb"},
437 	{Opt_adinicb,	"adinicb"},
438 	{Opt_shortad,	"shortad"},
439 	{Opt_longad,	"longad"},
440 	{Opt_uforget,	"uid=forget"},
441 	{Opt_uignore,	"uid=ignore"},
442 	{Opt_gforget,	"gid=forget"},
443 	{Opt_gignore,	"gid=ignore"},
444 	{Opt_gid,	"gid=%u"},
445 	{Opt_uid,	"uid=%u"},
446 	{Opt_umask,	"umask=%o"},
447 	{Opt_session,	"session=%u"},
448 	{Opt_lastblock,	"lastblock=%u"},
449 	{Opt_anchor,	"anchor=%u"},
450 	{Opt_volume,	"volume=%u"},
451 	{Opt_partition,	"partition=%u"},
452 	{Opt_fileset,	"fileset=%u"},
453 	{Opt_rootdir,	"rootdir=%u"},
454 	{Opt_utf8,	"utf8"},
455 	{Opt_iocharset,	"iocharset=%s"},
456 	{Opt_fmode,     "mode=%o"},
457 	{Opt_dmode,     "dmode=%o"},
458 	{Opt_err,	NULL}
459 };
460 
461 static int udf_parse_options(char *options, struct udf_options *uopt,
462 			     bool remount)
463 {
464 	char *p;
465 	int option;
466 	unsigned int uv;
467 
468 	uopt->novrs = 0;
469 	uopt->session = 0xFFFFFFFF;
470 	uopt->lastblock = 0;
471 	uopt->anchor = 0;
472 
473 	if (!options)
474 		return 1;
475 
476 	while ((p = strsep(&options, ",")) != NULL) {
477 		substring_t args[MAX_OPT_ARGS];
478 		int token;
479 		unsigned n;
480 		if (!*p)
481 			continue;
482 
483 		token = match_token(p, tokens, args);
484 		switch (token) {
485 		case Opt_novrs:
486 			uopt->novrs = 1;
487 			break;
488 		case Opt_bs:
489 			if (match_int(&args[0], &option))
490 				return 0;
491 			n = option;
492 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
493 				return 0;
494 			uopt->blocksize = n;
495 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
496 			break;
497 		case Opt_unhide:
498 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
499 			break;
500 		case Opt_undelete:
501 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
502 			break;
503 		case Opt_noadinicb:
504 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
505 			break;
506 		case Opt_adinicb:
507 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
508 			break;
509 		case Opt_shortad:
510 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
511 			break;
512 		case Opt_longad:
513 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
514 			break;
515 		case Opt_gid:
516 			if (match_uint(args, &uv))
517 				return 0;
518 			uopt->gid = make_kgid(current_user_ns(), uv);
519 			if (!gid_valid(uopt->gid))
520 				return 0;
521 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
522 			break;
523 		case Opt_uid:
524 			if (match_uint(args, &uv))
525 				return 0;
526 			uopt->uid = make_kuid(current_user_ns(), uv);
527 			if (!uid_valid(uopt->uid))
528 				return 0;
529 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
530 			break;
531 		case Opt_umask:
532 			if (match_octal(args, &option))
533 				return 0;
534 			uopt->umask = option;
535 			break;
536 		case Opt_nostrict:
537 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
538 			break;
539 		case Opt_session:
540 			if (match_int(args, &option))
541 				return 0;
542 			uopt->session = option;
543 			if (!remount)
544 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
545 			break;
546 		case Opt_lastblock:
547 			if (match_int(args, &option))
548 				return 0;
549 			uopt->lastblock = option;
550 			if (!remount)
551 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
552 			break;
553 		case Opt_anchor:
554 			if (match_int(args, &option))
555 				return 0;
556 			uopt->anchor = option;
557 			break;
558 		case Opt_volume:
559 		case Opt_partition:
560 		case Opt_fileset:
561 		case Opt_rootdir:
562 			/* Ignored (never implemented properly) */
563 			break;
564 		case Opt_utf8:
565 			if (!remount) {
566 				unload_nls(uopt->nls_map);
567 				uopt->nls_map = NULL;
568 			}
569 			break;
570 		case Opt_iocharset:
571 			if (!remount) {
572 				unload_nls(uopt->nls_map);
573 				uopt->nls_map = NULL;
574 			}
575 			/* When nls_map is not loaded then UTF-8 is used */
576 			if (!remount && strcmp(args[0].from, "utf8") != 0) {
577 				uopt->nls_map = load_nls(args[0].from);
578 				if (!uopt->nls_map) {
579 					pr_err("iocharset %s not found\n",
580 						args[0].from);
581 					return 0;
582 				}
583 			}
584 			break;
585 		case Opt_uforget:
586 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
587 			break;
588 		case Opt_uignore:
589 		case Opt_gignore:
590 			/* These options are superseeded by uid=<number> */
591 			break;
592 		case Opt_gforget:
593 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
594 			break;
595 		case Opt_fmode:
596 			if (match_octal(args, &option))
597 				return 0;
598 			uopt->fmode = option & 0777;
599 			break;
600 		case Opt_dmode:
601 			if (match_octal(args, &option))
602 				return 0;
603 			uopt->dmode = option & 0777;
604 			break;
605 		default:
606 			pr_err("bad mount option \"%s\" or missing value\n", p);
607 			return 0;
608 		}
609 	}
610 	return 1;
611 }
612 
613 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
614 {
615 	struct udf_options uopt;
616 	struct udf_sb_info *sbi = UDF_SB(sb);
617 	int error = 0;
618 
619 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
620 		return -EACCES;
621 
622 	sync_filesystem(sb);
623 
624 	uopt.flags = sbi->s_flags;
625 	uopt.uid   = sbi->s_uid;
626 	uopt.gid   = sbi->s_gid;
627 	uopt.umask = sbi->s_umask;
628 	uopt.fmode = sbi->s_fmode;
629 	uopt.dmode = sbi->s_dmode;
630 	uopt.nls_map = NULL;
631 
632 	if (!udf_parse_options(options, &uopt, true))
633 		return -EINVAL;
634 
635 	write_lock(&sbi->s_cred_lock);
636 	sbi->s_flags = uopt.flags;
637 	sbi->s_uid   = uopt.uid;
638 	sbi->s_gid   = uopt.gid;
639 	sbi->s_umask = uopt.umask;
640 	sbi->s_fmode = uopt.fmode;
641 	sbi->s_dmode = uopt.dmode;
642 	write_unlock(&sbi->s_cred_lock);
643 
644 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
645 		goto out_unlock;
646 
647 	if (*flags & SB_RDONLY)
648 		udf_close_lvid(sb);
649 	else
650 		udf_open_lvid(sb);
651 
652 out_unlock:
653 	return error;
654 }
655 
656 /*
657  * Check VSD descriptor. Returns -1 in case we are at the end of volume
658  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
659  * we found one of NSR descriptors we are looking for.
660  */
661 static int identify_vsd(const struct volStructDesc *vsd)
662 {
663 	int ret = 0;
664 
665 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
666 		switch (vsd->structType) {
667 		case 0:
668 			udf_debug("ISO9660 Boot Record found\n");
669 			break;
670 		case 1:
671 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
672 			break;
673 		case 2:
674 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
675 			break;
676 		case 3:
677 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
678 			break;
679 		case 255:
680 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
681 			break;
682 		default:
683 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
684 			break;
685 		}
686 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
687 		; /* ret = 0 */
688 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
689 		ret = 1;
690 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
691 		ret = 1;
692 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
693 		; /* ret = 0 */
694 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
695 		; /* ret = 0 */
696 	else {
697 		/* TEA01 or invalid id : end of volume recognition area */
698 		ret = -1;
699 	}
700 
701 	return ret;
702 }
703 
704 /*
705  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
706  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
707  * @return   1 if NSR02 or NSR03 found,
708  *	    -1 if first sector read error, 0 otherwise
709  */
710 static int udf_check_vsd(struct super_block *sb)
711 {
712 	struct volStructDesc *vsd = NULL;
713 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
714 	int sectorsize;
715 	struct buffer_head *bh = NULL;
716 	int nsr = 0;
717 	struct udf_sb_info *sbi;
718 	loff_t session_offset;
719 
720 	sbi = UDF_SB(sb);
721 	if (sb->s_blocksize < sizeof(struct volStructDesc))
722 		sectorsize = sizeof(struct volStructDesc);
723 	else
724 		sectorsize = sb->s_blocksize;
725 
726 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
727 	sector += session_offset;
728 
729 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
730 		  (unsigned int)(sector >> sb->s_blocksize_bits),
731 		  sb->s_blocksize);
732 	/* Process the sequence (if applicable). The hard limit on the sector
733 	 * offset is arbitrary, hopefully large enough so that all valid UDF
734 	 * filesystems will be recognised. There is no mention of an upper
735 	 * bound to the size of the volume recognition area in the standard.
736 	 *  The limit will prevent the code to read all the sectors of a
737 	 * specially crafted image (like a bluray disc full of CD001 sectors),
738 	 * potentially causing minutes or even hours of uninterruptible I/O
739 	 * activity. This actually happened with uninitialised SSD partitions
740 	 * (all 0xFF) before the check for the limit and all valid IDs were
741 	 * added */
742 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
743 		/* Read a block */
744 		bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
745 		if (!bh)
746 			break;
747 
748 		vsd = (struct volStructDesc *)(bh->b_data +
749 					      (sector & (sb->s_blocksize - 1)));
750 		nsr = identify_vsd(vsd);
751 		/* Found NSR or end? */
752 		if (nsr) {
753 			brelse(bh);
754 			break;
755 		}
756 		/*
757 		 * Special handling for improperly formatted VRS (e.g., Win10)
758 		 * where components are separated by 2048 bytes even though
759 		 * sectors are 4K
760 		 */
761 		if (sb->s_blocksize == 4096) {
762 			nsr = identify_vsd(vsd + 1);
763 			/* Ignore unknown IDs... */
764 			if (nsr < 0)
765 				nsr = 0;
766 		}
767 		brelse(bh);
768 	}
769 
770 	if (nsr > 0)
771 		return 1;
772 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
773 		return -1;
774 	else
775 		return 0;
776 }
777 
778 static int udf_verify_domain_identifier(struct super_block *sb,
779 					struct regid *ident, char *dname)
780 {
781 	struct domainIdentSuffix *suffix;
782 
783 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
784 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
785 		goto force_ro;
786 	}
787 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
788 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
789 			 dname);
790 		goto force_ro;
791 	}
792 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
793 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
794 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
795 		if (!sb_rdonly(sb)) {
796 			udf_warn(sb, "Descriptor for %s marked write protected."
797 				 " Forcing read only mount.\n", dname);
798 		}
799 		goto force_ro;
800 	}
801 	return 0;
802 
803 force_ro:
804 	if (!sb_rdonly(sb))
805 		return -EACCES;
806 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
807 	return 0;
808 }
809 
810 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
811 			    struct kernel_lb_addr *root)
812 {
813 	int ret;
814 
815 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
816 	if (ret < 0)
817 		return ret;
818 
819 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
820 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
821 
822 	udf_debug("Rootdir at block=%u, partition=%u\n",
823 		  root->logicalBlockNum, root->partitionReferenceNum);
824 	return 0;
825 }
826 
827 static int udf_find_fileset(struct super_block *sb,
828 			    struct kernel_lb_addr *fileset,
829 			    struct kernel_lb_addr *root)
830 {
831 	struct buffer_head *bh;
832 	uint16_t ident;
833 	int ret;
834 
835 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
836 	    fileset->partitionReferenceNum == 0xFFFF)
837 		return -EINVAL;
838 
839 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
840 	if (!bh)
841 		return -EIO;
842 	if (ident != TAG_IDENT_FSD) {
843 		brelse(bh);
844 		return -EINVAL;
845 	}
846 
847 	udf_debug("Fileset at block=%u, partition=%u\n",
848 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
849 
850 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
851 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
852 	brelse(bh);
853 	return ret;
854 }
855 
856 /*
857  * Load primary Volume Descriptor Sequence
858  *
859  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
860  * should be tried.
861  */
862 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
863 {
864 	struct primaryVolDesc *pvoldesc;
865 	uint8_t *outstr;
866 	struct buffer_head *bh;
867 	uint16_t ident;
868 	int ret;
869 	struct timestamp *ts;
870 
871 	outstr = kmalloc(128, GFP_NOFS);
872 	if (!outstr)
873 		return -ENOMEM;
874 
875 	bh = udf_read_tagged(sb, block, block, &ident);
876 	if (!bh) {
877 		ret = -EAGAIN;
878 		goto out2;
879 	}
880 
881 	if (ident != TAG_IDENT_PVD) {
882 		ret = -EIO;
883 		goto out_bh;
884 	}
885 
886 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
887 
888 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
889 			      pvoldesc->recordingDateAndTime);
890 	ts = &pvoldesc->recordingDateAndTime;
891 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
892 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
893 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
894 
895 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
896 	if (ret < 0) {
897 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
898 		pr_warn("incorrect volume identification, setting to "
899 			"'InvalidName'\n");
900 	} else {
901 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
902 	}
903 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
904 
905 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
906 	if (ret < 0) {
907 		ret = 0;
908 		goto out_bh;
909 	}
910 	outstr[ret] = 0;
911 	udf_debug("volSetIdent[] = '%s'\n", outstr);
912 
913 	ret = 0;
914 out_bh:
915 	brelse(bh);
916 out2:
917 	kfree(outstr);
918 	return ret;
919 }
920 
921 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
922 					u32 meta_file_loc, u32 partition_ref)
923 {
924 	struct kernel_lb_addr addr;
925 	struct inode *metadata_fe;
926 
927 	addr.logicalBlockNum = meta_file_loc;
928 	addr.partitionReferenceNum = partition_ref;
929 
930 	metadata_fe = udf_iget_special(sb, &addr);
931 
932 	if (IS_ERR(metadata_fe)) {
933 		udf_warn(sb, "metadata inode efe not found\n");
934 		return metadata_fe;
935 	}
936 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
937 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
938 		iput(metadata_fe);
939 		return ERR_PTR(-EIO);
940 	}
941 
942 	return metadata_fe;
943 }
944 
945 static int udf_load_metadata_files(struct super_block *sb, int partition,
946 				   int type1_index)
947 {
948 	struct udf_sb_info *sbi = UDF_SB(sb);
949 	struct udf_part_map *map;
950 	struct udf_meta_data *mdata;
951 	struct kernel_lb_addr addr;
952 	struct inode *fe;
953 
954 	map = &sbi->s_partmaps[partition];
955 	mdata = &map->s_type_specific.s_metadata;
956 	mdata->s_phys_partition_ref = type1_index;
957 
958 	/* metadata address */
959 	udf_debug("Metadata file location: block = %u part = %u\n",
960 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
961 
962 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
963 					 mdata->s_phys_partition_ref);
964 	if (IS_ERR(fe)) {
965 		/* mirror file entry */
966 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
967 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
968 
969 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
970 						 mdata->s_phys_partition_ref);
971 
972 		if (IS_ERR(fe)) {
973 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
974 			return PTR_ERR(fe);
975 		}
976 		mdata->s_mirror_fe = fe;
977 	} else
978 		mdata->s_metadata_fe = fe;
979 
980 
981 	/*
982 	 * bitmap file entry
983 	 * Note:
984 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
985 	*/
986 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
987 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
988 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
989 
990 		udf_debug("Bitmap file location: block = %u part = %u\n",
991 			  addr.logicalBlockNum, addr.partitionReferenceNum);
992 
993 		fe = udf_iget_special(sb, &addr);
994 		if (IS_ERR(fe)) {
995 			if (sb_rdonly(sb))
996 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
997 			else {
998 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
999 				return PTR_ERR(fe);
1000 			}
1001 		} else
1002 			mdata->s_bitmap_fe = fe;
1003 	}
1004 
1005 	udf_debug("udf_load_metadata_files Ok\n");
1006 	return 0;
1007 }
1008 
1009 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1010 {
1011 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1012 	return DIV_ROUND_UP(map->s_partition_len +
1013 			    (sizeof(struct spaceBitmapDesc) << 3),
1014 			    sb->s_blocksize * 8);
1015 }
1016 
1017 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1018 {
1019 	struct udf_bitmap *bitmap;
1020 	int nr_groups = udf_compute_nr_groups(sb, index);
1021 
1022 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1023 			  GFP_KERNEL);
1024 	if (!bitmap)
1025 		return NULL;
1026 
1027 	bitmap->s_nr_groups = nr_groups;
1028 	return bitmap;
1029 }
1030 
1031 static int check_partition_desc(struct super_block *sb,
1032 				struct partitionDesc *p,
1033 				struct udf_part_map *map)
1034 {
1035 	bool umap, utable, fmap, ftable;
1036 	struct partitionHeaderDesc *phd;
1037 
1038 	switch (le32_to_cpu(p->accessType)) {
1039 	case PD_ACCESS_TYPE_READ_ONLY:
1040 	case PD_ACCESS_TYPE_WRITE_ONCE:
1041 	case PD_ACCESS_TYPE_NONE:
1042 		goto force_ro;
1043 	}
1044 
1045 	/* No Partition Header Descriptor? */
1046 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1047 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1048 		goto force_ro;
1049 
1050 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1051 	utable = phd->unallocSpaceTable.extLength;
1052 	umap = phd->unallocSpaceBitmap.extLength;
1053 	ftable = phd->freedSpaceTable.extLength;
1054 	fmap = phd->freedSpaceBitmap.extLength;
1055 
1056 	/* No allocation info? */
1057 	if (!utable && !umap && !ftable && !fmap)
1058 		goto force_ro;
1059 
1060 	/* We don't support blocks that require erasing before overwrite */
1061 	if (ftable || fmap)
1062 		goto force_ro;
1063 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1064 	if (utable && umap)
1065 		goto force_ro;
1066 
1067 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1068 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1069 	    map->s_partition_type == UDF_METADATA_MAP25)
1070 		goto force_ro;
1071 
1072 	return 0;
1073 force_ro:
1074 	if (!sb_rdonly(sb))
1075 		return -EACCES;
1076 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1077 	return 0;
1078 }
1079 
1080 static int udf_fill_partdesc_info(struct super_block *sb,
1081 		struct partitionDesc *p, int p_index)
1082 {
1083 	struct udf_part_map *map;
1084 	struct udf_sb_info *sbi = UDF_SB(sb);
1085 	struct partitionHeaderDesc *phd;
1086 	int err;
1087 
1088 	map = &sbi->s_partmaps[p_index];
1089 
1090 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1091 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1092 
1093 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1094 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1095 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1096 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1097 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1098 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1099 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1100 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1101 
1102 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1103 		  p_index, map->s_partition_type,
1104 		  map->s_partition_root, map->s_partition_len);
1105 
1106 	err = check_partition_desc(sb, p, map);
1107 	if (err)
1108 		return err;
1109 
1110 	/*
1111 	 * Skip loading allocation info it we cannot ever write to the fs.
1112 	 * This is a correctness thing as we may have decided to force ro mount
1113 	 * to avoid allocation info we don't support.
1114 	 */
1115 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1116 		return 0;
1117 
1118 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1119 	if (phd->unallocSpaceTable.extLength) {
1120 		struct kernel_lb_addr loc = {
1121 			.logicalBlockNum = le32_to_cpu(
1122 				phd->unallocSpaceTable.extPosition),
1123 			.partitionReferenceNum = p_index,
1124 		};
1125 		struct inode *inode;
1126 
1127 		inode = udf_iget_special(sb, &loc);
1128 		if (IS_ERR(inode)) {
1129 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1130 				  p_index);
1131 			return PTR_ERR(inode);
1132 		}
1133 		map->s_uspace.s_table = inode;
1134 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1135 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1136 			  p_index, map->s_uspace.s_table->i_ino);
1137 	}
1138 
1139 	if (phd->unallocSpaceBitmap.extLength) {
1140 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1141 		if (!bitmap)
1142 			return -ENOMEM;
1143 		map->s_uspace.s_bitmap = bitmap;
1144 		bitmap->s_extPosition = le32_to_cpu(
1145 				phd->unallocSpaceBitmap.extPosition);
1146 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1147 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1148 			  p_index, bitmap->s_extPosition);
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static void udf_find_vat_block(struct super_block *sb, int p_index,
1155 			       int type1_index, sector_t start_block)
1156 {
1157 	struct udf_sb_info *sbi = UDF_SB(sb);
1158 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1159 	sector_t vat_block;
1160 	struct kernel_lb_addr ino;
1161 	struct inode *inode;
1162 
1163 	/*
1164 	 * VAT file entry is in the last recorded block. Some broken disks have
1165 	 * it a few blocks before so try a bit harder...
1166 	 */
1167 	ino.partitionReferenceNum = type1_index;
1168 	for (vat_block = start_block;
1169 	     vat_block >= map->s_partition_root &&
1170 	     vat_block >= start_block - 3; vat_block--) {
1171 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1172 		inode = udf_iget_special(sb, &ino);
1173 		if (!IS_ERR(inode)) {
1174 			sbi->s_vat_inode = inode;
1175 			break;
1176 		}
1177 	}
1178 }
1179 
1180 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1181 {
1182 	struct udf_sb_info *sbi = UDF_SB(sb);
1183 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1184 	struct buffer_head *bh = NULL;
1185 	struct udf_inode_info *vati;
1186 	struct virtualAllocationTable20 *vat20;
1187 	sector_t blocks = sb_bdev_nr_blocks(sb);
1188 
1189 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1190 	if (!sbi->s_vat_inode &&
1191 	    sbi->s_last_block != blocks - 1) {
1192 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1193 			  (unsigned long)sbi->s_last_block,
1194 			  (unsigned long)blocks - 1);
1195 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1196 	}
1197 	if (!sbi->s_vat_inode)
1198 		return -EIO;
1199 
1200 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1201 		map->s_type_specific.s_virtual.s_start_offset = 0;
1202 		map->s_type_specific.s_virtual.s_num_entries =
1203 			(sbi->s_vat_inode->i_size - 36) >> 2;
1204 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1205 		vati = UDF_I(sbi->s_vat_inode);
1206 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1207 			int err = 0;
1208 
1209 			bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1210 			if (!bh) {
1211 				if (!err)
1212 					err = -EFSCORRUPTED;
1213 				return err;
1214 			}
1215 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1216 		} else {
1217 			vat20 = (struct virtualAllocationTable20 *)
1218 							vati->i_data;
1219 		}
1220 
1221 		map->s_type_specific.s_virtual.s_start_offset =
1222 			le16_to_cpu(vat20->lengthHeader);
1223 		map->s_type_specific.s_virtual.s_num_entries =
1224 			(sbi->s_vat_inode->i_size -
1225 				map->s_type_specific.s_virtual.
1226 					s_start_offset) >> 2;
1227 		brelse(bh);
1228 	}
1229 	return 0;
1230 }
1231 
1232 /*
1233  * Load partition descriptor block
1234  *
1235  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1236  * sequence.
1237  */
1238 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1239 {
1240 	struct buffer_head *bh;
1241 	struct partitionDesc *p;
1242 	struct udf_part_map *map;
1243 	struct udf_sb_info *sbi = UDF_SB(sb);
1244 	int i, type1_idx;
1245 	uint16_t partitionNumber;
1246 	uint16_t ident;
1247 	int ret;
1248 
1249 	bh = udf_read_tagged(sb, block, block, &ident);
1250 	if (!bh)
1251 		return -EAGAIN;
1252 	if (ident != TAG_IDENT_PD) {
1253 		ret = 0;
1254 		goto out_bh;
1255 	}
1256 
1257 	p = (struct partitionDesc *)bh->b_data;
1258 	partitionNumber = le16_to_cpu(p->partitionNumber);
1259 
1260 	/* First scan for TYPE1 and SPARABLE partitions */
1261 	for (i = 0; i < sbi->s_partitions; i++) {
1262 		map = &sbi->s_partmaps[i];
1263 		udf_debug("Searching map: (%u == %u)\n",
1264 			  map->s_partition_num, partitionNumber);
1265 		if (map->s_partition_num == partitionNumber &&
1266 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1267 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1268 			break;
1269 	}
1270 
1271 	if (i >= sbi->s_partitions) {
1272 		udf_debug("Partition (%u) not found in partition map\n",
1273 			  partitionNumber);
1274 		ret = 0;
1275 		goto out_bh;
1276 	}
1277 
1278 	ret = udf_fill_partdesc_info(sb, p, i);
1279 	if (ret < 0)
1280 		goto out_bh;
1281 
1282 	/*
1283 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1284 	 * PHYSICAL partitions are already set up
1285 	 */
1286 	type1_idx = i;
1287 	map = NULL; /* supress 'maybe used uninitialized' warning */
1288 	for (i = 0; i < sbi->s_partitions; i++) {
1289 		map = &sbi->s_partmaps[i];
1290 
1291 		if (map->s_partition_num == partitionNumber &&
1292 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1293 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1294 		     map->s_partition_type == UDF_METADATA_MAP25))
1295 			break;
1296 	}
1297 
1298 	if (i >= sbi->s_partitions) {
1299 		ret = 0;
1300 		goto out_bh;
1301 	}
1302 
1303 	ret = udf_fill_partdesc_info(sb, p, i);
1304 	if (ret < 0)
1305 		goto out_bh;
1306 
1307 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1308 		ret = udf_load_metadata_files(sb, i, type1_idx);
1309 		if (ret < 0) {
1310 			udf_err(sb, "error loading MetaData partition map %d\n",
1311 				i);
1312 			goto out_bh;
1313 		}
1314 	} else {
1315 		/*
1316 		 * If we have a partition with virtual map, we don't handle
1317 		 * writing to it (we overwrite blocks instead of relocating
1318 		 * them).
1319 		 */
1320 		if (!sb_rdonly(sb)) {
1321 			ret = -EACCES;
1322 			goto out_bh;
1323 		}
1324 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1325 		ret = udf_load_vat(sb, i, type1_idx);
1326 		if (ret < 0)
1327 			goto out_bh;
1328 	}
1329 	ret = 0;
1330 out_bh:
1331 	/* In case loading failed, we handle cleanup in udf_fill_super */
1332 	brelse(bh);
1333 	return ret;
1334 }
1335 
1336 static int udf_load_sparable_map(struct super_block *sb,
1337 				 struct udf_part_map *map,
1338 				 struct sparablePartitionMap *spm)
1339 {
1340 	uint32_t loc;
1341 	uint16_t ident;
1342 	struct sparingTable *st;
1343 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1344 	int i;
1345 	struct buffer_head *bh;
1346 
1347 	map->s_partition_type = UDF_SPARABLE_MAP15;
1348 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1349 	if (!is_power_of_2(sdata->s_packet_len)) {
1350 		udf_err(sb, "error loading logical volume descriptor: "
1351 			"Invalid packet length %u\n",
1352 			(unsigned)sdata->s_packet_len);
1353 		return -EIO;
1354 	}
1355 	if (spm->numSparingTables > 4) {
1356 		udf_err(sb, "error loading logical volume descriptor: "
1357 			"Too many sparing tables (%d)\n",
1358 			(int)spm->numSparingTables);
1359 		return -EIO;
1360 	}
1361 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1362 		udf_err(sb, "error loading logical volume descriptor: "
1363 			"Too big sparing table size (%u)\n",
1364 			le32_to_cpu(spm->sizeSparingTable));
1365 		return -EIO;
1366 	}
1367 
1368 	for (i = 0; i < spm->numSparingTables; i++) {
1369 		loc = le32_to_cpu(spm->locSparingTable[i]);
1370 		bh = udf_read_tagged(sb, loc, loc, &ident);
1371 		if (!bh)
1372 			continue;
1373 
1374 		st = (struct sparingTable *)bh->b_data;
1375 		if (ident != 0 ||
1376 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1377 			    strlen(UDF_ID_SPARING)) ||
1378 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1379 							sb->s_blocksize) {
1380 			brelse(bh);
1381 			continue;
1382 		}
1383 
1384 		sdata->s_spar_map[i] = bh;
1385 	}
1386 	map->s_partition_func = udf_get_pblock_spar15;
1387 	return 0;
1388 }
1389 
1390 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1391 			       struct kernel_lb_addr *fileset)
1392 {
1393 	struct logicalVolDesc *lvd;
1394 	int i, offset;
1395 	uint8_t type;
1396 	struct udf_sb_info *sbi = UDF_SB(sb);
1397 	struct genericPartitionMap *gpm;
1398 	uint16_t ident;
1399 	struct buffer_head *bh;
1400 	unsigned int table_len;
1401 	int ret;
1402 
1403 	bh = udf_read_tagged(sb, block, block, &ident);
1404 	if (!bh)
1405 		return -EAGAIN;
1406 	BUG_ON(ident != TAG_IDENT_LVD);
1407 	lvd = (struct logicalVolDesc *)bh->b_data;
1408 	table_len = le32_to_cpu(lvd->mapTableLength);
1409 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1410 		udf_err(sb, "error loading logical volume descriptor: "
1411 			"Partition table too long (%u > %lu)\n", table_len,
1412 			sb->s_blocksize - sizeof(*lvd));
1413 		ret = -EIO;
1414 		goto out_bh;
1415 	}
1416 
1417 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1418 					   "logical volume");
1419 	if (ret)
1420 		goto out_bh;
1421 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1422 	if (ret)
1423 		goto out_bh;
1424 
1425 	for (i = 0, offset = 0;
1426 	     i < sbi->s_partitions && offset < table_len;
1427 	     i++, offset += gpm->partitionMapLength) {
1428 		struct udf_part_map *map = &sbi->s_partmaps[i];
1429 		gpm = (struct genericPartitionMap *)
1430 				&(lvd->partitionMaps[offset]);
1431 		type = gpm->partitionMapType;
1432 		if (type == 1) {
1433 			struct genericPartitionMap1 *gpm1 =
1434 				(struct genericPartitionMap1 *)gpm;
1435 			map->s_partition_type = UDF_TYPE1_MAP15;
1436 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1437 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1438 			map->s_partition_func = NULL;
1439 		} else if (type == 2) {
1440 			struct udfPartitionMap2 *upm2 =
1441 						(struct udfPartitionMap2 *)gpm;
1442 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1443 						strlen(UDF_ID_VIRTUAL))) {
1444 				u16 suf =
1445 					le16_to_cpu(((__le16 *)upm2->partIdent.
1446 							identSuffix)[0]);
1447 				if (suf < 0x0200) {
1448 					map->s_partition_type =
1449 							UDF_VIRTUAL_MAP15;
1450 					map->s_partition_func =
1451 							udf_get_pblock_virt15;
1452 				} else {
1453 					map->s_partition_type =
1454 							UDF_VIRTUAL_MAP20;
1455 					map->s_partition_func =
1456 							udf_get_pblock_virt20;
1457 				}
1458 			} else if (!strncmp(upm2->partIdent.ident,
1459 						UDF_ID_SPARABLE,
1460 						strlen(UDF_ID_SPARABLE))) {
1461 				ret = udf_load_sparable_map(sb, map,
1462 					(struct sparablePartitionMap *)gpm);
1463 				if (ret < 0)
1464 					goto out_bh;
1465 			} else if (!strncmp(upm2->partIdent.ident,
1466 						UDF_ID_METADATA,
1467 						strlen(UDF_ID_METADATA))) {
1468 				struct udf_meta_data *mdata =
1469 					&map->s_type_specific.s_metadata;
1470 				struct metadataPartitionMap *mdm =
1471 						(struct metadataPartitionMap *)
1472 						&(lvd->partitionMaps[offset]);
1473 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1474 					  i, type, UDF_ID_METADATA);
1475 
1476 				map->s_partition_type = UDF_METADATA_MAP25;
1477 				map->s_partition_func = udf_get_pblock_meta25;
1478 
1479 				mdata->s_meta_file_loc   =
1480 					le32_to_cpu(mdm->metadataFileLoc);
1481 				mdata->s_mirror_file_loc =
1482 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1483 				mdata->s_bitmap_file_loc =
1484 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1485 				mdata->s_alloc_unit_size =
1486 					le32_to_cpu(mdm->allocUnitSize);
1487 				mdata->s_align_unit_size =
1488 					le16_to_cpu(mdm->alignUnitSize);
1489 				if (mdm->flags & 0x01)
1490 					mdata->s_flags |= MF_DUPLICATE_MD;
1491 
1492 				udf_debug("Metadata Ident suffix=0x%x\n",
1493 					  le16_to_cpu(*(__le16 *)
1494 						      mdm->partIdent.identSuffix));
1495 				udf_debug("Metadata part num=%u\n",
1496 					  le16_to_cpu(mdm->partitionNum));
1497 				udf_debug("Metadata part alloc unit size=%u\n",
1498 					  le32_to_cpu(mdm->allocUnitSize));
1499 				udf_debug("Metadata file loc=%u\n",
1500 					  le32_to_cpu(mdm->metadataFileLoc));
1501 				udf_debug("Mirror file loc=%u\n",
1502 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1503 				udf_debug("Bitmap file loc=%u\n",
1504 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1505 				udf_debug("Flags: %d %u\n",
1506 					  mdata->s_flags, mdm->flags);
1507 			} else {
1508 				udf_debug("Unknown ident: %s\n",
1509 					  upm2->partIdent.ident);
1510 				continue;
1511 			}
1512 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1513 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1514 		}
1515 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1516 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1517 	}
1518 
1519 	if (fileset) {
1520 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1521 
1522 		*fileset = lelb_to_cpu(la->extLocation);
1523 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1524 			  fileset->logicalBlockNum,
1525 			  fileset->partitionReferenceNum);
1526 	}
1527 	if (lvd->integritySeqExt.extLength)
1528 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1529 	ret = 0;
1530 
1531 	if (!sbi->s_lvid_bh) {
1532 		/* We can't generate unique IDs without a valid LVID */
1533 		if (sb_rdonly(sb)) {
1534 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1535 		} else {
1536 			udf_warn(sb, "Damaged or missing LVID, forcing "
1537 				     "readonly mount\n");
1538 			ret = -EACCES;
1539 		}
1540 	}
1541 out_bh:
1542 	brelse(bh);
1543 	return ret;
1544 }
1545 
1546 /*
1547  * Find the prevailing Logical Volume Integrity Descriptor.
1548  */
1549 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1550 {
1551 	struct buffer_head *bh, *final_bh;
1552 	uint16_t ident;
1553 	struct udf_sb_info *sbi = UDF_SB(sb);
1554 	struct logicalVolIntegrityDesc *lvid;
1555 	int indirections = 0;
1556 	u32 parts, impuselen;
1557 
1558 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1559 		final_bh = NULL;
1560 		while (loc.extLength > 0 &&
1561 			(bh = udf_read_tagged(sb, loc.extLocation,
1562 					loc.extLocation, &ident))) {
1563 			if (ident != TAG_IDENT_LVID) {
1564 				brelse(bh);
1565 				break;
1566 			}
1567 
1568 			brelse(final_bh);
1569 			final_bh = bh;
1570 
1571 			loc.extLength -= sb->s_blocksize;
1572 			loc.extLocation++;
1573 		}
1574 
1575 		if (!final_bh)
1576 			return;
1577 
1578 		brelse(sbi->s_lvid_bh);
1579 		sbi->s_lvid_bh = final_bh;
1580 
1581 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1582 		if (lvid->nextIntegrityExt.extLength == 0)
1583 			goto check;
1584 
1585 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1586 	}
1587 
1588 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1589 		UDF_MAX_LVID_NESTING);
1590 out_err:
1591 	brelse(sbi->s_lvid_bh);
1592 	sbi->s_lvid_bh = NULL;
1593 	return;
1594 check:
1595 	parts = le32_to_cpu(lvid->numOfPartitions);
1596 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1597 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1598 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1599 	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1600 		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1601 			 "ignoring.\n", parts, impuselen);
1602 		goto out_err;
1603 	}
1604 }
1605 
1606 /*
1607  * Step for reallocation of table of partition descriptor sequence numbers.
1608  * Must be power of 2.
1609  */
1610 #define PART_DESC_ALLOC_STEP 32
1611 
1612 struct part_desc_seq_scan_data {
1613 	struct udf_vds_record rec;
1614 	u32 partnum;
1615 };
1616 
1617 struct desc_seq_scan_data {
1618 	struct udf_vds_record vds[VDS_POS_LENGTH];
1619 	unsigned int size_part_descs;
1620 	unsigned int num_part_descs;
1621 	struct part_desc_seq_scan_data *part_descs_loc;
1622 };
1623 
1624 static struct udf_vds_record *handle_partition_descriptor(
1625 				struct buffer_head *bh,
1626 				struct desc_seq_scan_data *data)
1627 {
1628 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1629 	int partnum;
1630 	int i;
1631 
1632 	partnum = le16_to_cpu(desc->partitionNumber);
1633 	for (i = 0; i < data->num_part_descs; i++)
1634 		if (partnum == data->part_descs_loc[i].partnum)
1635 			return &(data->part_descs_loc[i].rec);
1636 	if (data->num_part_descs >= data->size_part_descs) {
1637 		struct part_desc_seq_scan_data *new_loc;
1638 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1639 
1640 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1641 		if (!new_loc)
1642 			return ERR_PTR(-ENOMEM);
1643 		memcpy(new_loc, data->part_descs_loc,
1644 		       data->size_part_descs * sizeof(*new_loc));
1645 		kfree(data->part_descs_loc);
1646 		data->part_descs_loc = new_loc;
1647 		data->size_part_descs = new_size;
1648 	}
1649 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1650 }
1651 
1652 
1653 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1654 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1655 {
1656 	switch (ident) {
1657 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1658 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1659 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1660 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1661 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1663 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1664 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1665 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1666 		return handle_partition_descriptor(bh, data);
1667 	}
1668 	return NULL;
1669 }
1670 
1671 /*
1672  * Process a main/reserve volume descriptor sequence.
1673  *   @block		First block of first extent of the sequence.
1674  *   @lastblock		Lastblock of first extent of the sequence.
1675  *   @fileset		There we store extent containing root fileset
1676  *
1677  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1678  * sequence
1679  */
1680 static noinline int udf_process_sequence(
1681 		struct super_block *sb,
1682 		sector_t block, sector_t lastblock,
1683 		struct kernel_lb_addr *fileset)
1684 {
1685 	struct buffer_head *bh = NULL;
1686 	struct udf_vds_record *curr;
1687 	struct generic_desc *gd;
1688 	struct volDescPtr *vdp;
1689 	bool done = false;
1690 	uint32_t vdsn;
1691 	uint16_t ident;
1692 	int ret;
1693 	unsigned int indirections = 0;
1694 	struct desc_seq_scan_data data;
1695 	unsigned int i;
1696 
1697 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1698 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1699 	data.num_part_descs = 0;
1700 	data.part_descs_loc = kcalloc(data.size_part_descs,
1701 				      sizeof(*data.part_descs_loc),
1702 				      GFP_KERNEL);
1703 	if (!data.part_descs_loc)
1704 		return -ENOMEM;
1705 
1706 	/*
1707 	 * Read the main descriptor sequence and find which descriptors
1708 	 * are in it.
1709 	 */
1710 	for (; (!done && block <= lastblock); block++) {
1711 		bh = udf_read_tagged(sb, block, block, &ident);
1712 		if (!bh)
1713 			break;
1714 
1715 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1716 		gd = (struct generic_desc *)bh->b_data;
1717 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1718 		switch (ident) {
1719 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1720 			if (++indirections > UDF_MAX_TD_NESTING) {
1721 				udf_err(sb, "too many Volume Descriptor "
1722 					"Pointers (max %u supported)\n",
1723 					UDF_MAX_TD_NESTING);
1724 				brelse(bh);
1725 				ret = -EIO;
1726 				goto out;
1727 			}
1728 
1729 			vdp = (struct volDescPtr *)bh->b_data;
1730 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1731 			lastblock = le32_to_cpu(
1732 				vdp->nextVolDescSeqExt.extLength) >>
1733 				sb->s_blocksize_bits;
1734 			lastblock += block - 1;
1735 			/* For loop is going to increment 'block' again */
1736 			block--;
1737 			break;
1738 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1739 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1740 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1741 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1742 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1743 			curr = get_volume_descriptor_record(ident, bh, &data);
1744 			if (IS_ERR(curr)) {
1745 				brelse(bh);
1746 				ret = PTR_ERR(curr);
1747 				goto out;
1748 			}
1749 			/* Descriptor we don't care about? */
1750 			if (!curr)
1751 				break;
1752 			if (vdsn >= curr->volDescSeqNum) {
1753 				curr->volDescSeqNum = vdsn;
1754 				curr->block = block;
1755 			}
1756 			break;
1757 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1758 			done = true;
1759 			break;
1760 		}
1761 		brelse(bh);
1762 	}
1763 	/*
1764 	 * Now read interesting descriptors again and process them
1765 	 * in a suitable order
1766 	 */
1767 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1768 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1769 		ret = -EAGAIN;
1770 		goto out;
1771 	}
1772 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1773 	if (ret < 0)
1774 		goto out;
1775 
1776 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1777 		ret = udf_load_logicalvol(sb,
1778 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1779 				fileset);
1780 		if (ret < 0)
1781 			goto out;
1782 	}
1783 
1784 	/* Now handle prevailing Partition Descriptors */
1785 	for (i = 0; i < data.num_part_descs; i++) {
1786 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1787 		if (ret < 0)
1788 			goto out;
1789 	}
1790 	ret = 0;
1791 out:
1792 	kfree(data.part_descs_loc);
1793 	return ret;
1794 }
1795 
1796 /*
1797  * Load Volume Descriptor Sequence described by anchor in bh
1798  *
1799  * Returns <0 on error, 0 on success
1800  */
1801 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1802 			     struct kernel_lb_addr *fileset)
1803 {
1804 	struct anchorVolDescPtr *anchor;
1805 	sector_t main_s, main_e, reserve_s, reserve_e;
1806 	int ret;
1807 
1808 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1809 
1810 	/* Locate the main sequence */
1811 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1812 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1813 	main_e = main_e >> sb->s_blocksize_bits;
1814 	main_e += main_s - 1;
1815 
1816 	/* Locate the reserve sequence */
1817 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1818 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1819 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1820 	reserve_e += reserve_s - 1;
1821 
1822 	/* Process the main & reserve sequences */
1823 	/* responsible for finding the PartitionDesc(s) */
1824 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1825 	if (ret != -EAGAIN)
1826 		return ret;
1827 	udf_sb_free_partitions(sb);
1828 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1829 	if (ret < 0) {
1830 		udf_sb_free_partitions(sb);
1831 		/* No sequence was OK, return -EIO */
1832 		if (ret == -EAGAIN)
1833 			ret = -EIO;
1834 	}
1835 	return ret;
1836 }
1837 
1838 /*
1839  * Check whether there is an anchor block in the given block and
1840  * load Volume Descriptor Sequence if so.
1841  *
1842  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1843  * block
1844  */
1845 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1846 				  struct kernel_lb_addr *fileset)
1847 {
1848 	struct buffer_head *bh;
1849 	uint16_t ident;
1850 	int ret;
1851 
1852 	bh = udf_read_tagged(sb, block, block, &ident);
1853 	if (!bh)
1854 		return -EAGAIN;
1855 	if (ident != TAG_IDENT_AVDP) {
1856 		brelse(bh);
1857 		return -EAGAIN;
1858 	}
1859 	ret = udf_load_sequence(sb, bh, fileset);
1860 	brelse(bh);
1861 	return ret;
1862 }
1863 
1864 /*
1865  * Search for an anchor volume descriptor pointer.
1866  *
1867  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1868  * of anchors.
1869  */
1870 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1871 			    struct kernel_lb_addr *fileset)
1872 {
1873 	udf_pblk_t last[6];
1874 	int i;
1875 	struct udf_sb_info *sbi = UDF_SB(sb);
1876 	int last_count = 0;
1877 	int ret;
1878 
1879 	/* First try user provided anchor */
1880 	if (sbi->s_anchor) {
1881 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1882 		if (ret != -EAGAIN)
1883 			return ret;
1884 	}
1885 	/*
1886 	 * according to spec, anchor is in either:
1887 	 *     block 256
1888 	 *     lastblock-256
1889 	 *     lastblock
1890 	 *  however, if the disc isn't closed, it could be 512.
1891 	 */
1892 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1893 	if (ret != -EAGAIN)
1894 		return ret;
1895 	/*
1896 	 * The trouble is which block is the last one. Drives often misreport
1897 	 * this so we try various possibilities.
1898 	 */
1899 	last[last_count++] = *lastblock;
1900 	if (*lastblock >= 1)
1901 		last[last_count++] = *lastblock - 1;
1902 	last[last_count++] = *lastblock + 1;
1903 	if (*lastblock >= 2)
1904 		last[last_count++] = *lastblock - 2;
1905 	if (*lastblock >= 150)
1906 		last[last_count++] = *lastblock - 150;
1907 	if (*lastblock >= 152)
1908 		last[last_count++] = *lastblock - 152;
1909 
1910 	for (i = 0; i < last_count; i++) {
1911 		if (last[i] >= sb_bdev_nr_blocks(sb))
1912 			continue;
1913 		ret = udf_check_anchor_block(sb, last[i], fileset);
1914 		if (ret != -EAGAIN) {
1915 			if (!ret)
1916 				*lastblock = last[i];
1917 			return ret;
1918 		}
1919 		if (last[i] < 256)
1920 			continue;
1921 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1922 		if (ret != -EAGAIN) {
1923 			if (!ret)
1924 				*lastblock = last[i];
1925 			return ret;
1926 		}
1927 	}
1928 
1929 	/* Finally try block 512 in case media is open */
1930 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1931 }
1932 
1933 /*
1934  * Check Volume Structure Descriptor, find Anchor block and load Volume
1935  * Descriptor Sequence.
1936  *
1937  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1938  * block was not found.
1939  */
1940 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1941 			int silent, struct kernel_lb_addr *fileset)
1942 {
1943 	struct udf_sb_info *sbi = UDF_SB(sb);
1944 	int nsr = 0;
1945 	int ret;
1946 
1947 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1948 		if (!silent)
1949 			udf_warn(sb, "Bad block size\n");
1950 		return -EINVAL;
1951 	}
1952 	sbi->s_last_block = uopt->lastblock;
1953 	if (!uopt->novrs) {
1954 		/* Check that it is NSR02 compliant */
1955 		nsr = udf_check_vsd(sb);
1956 		if (!nsr) {
1957 			if (!silent)
1958 				udf_warn(sb, "No VRS found\n");
1959 			return -EINVAL;
1960 		}
1961 		if (nsr == -1)
1962 			udf_debug("Failed to read sector at offset %d. "
1963 				  "Assuming open disc. Skipping validity "
1964 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1965 		if (!sbi->s_last_block)
1966 			sbi->s_last_block = udf_get_last_block(sb);
1967 	} else {
1968 		udf_debug("Validity check skipped because of novrs option\n");
1969 	}
1970 
1971 	/* Look for anchor block and load Volume Descriptor Sequence */
1972 	sbi->s_anchor = uopt->anchor;
1973 	ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1974 	if (ret < 0) {
1975 		if (!silent && ret == -EAGAIN)
1976 			udf_warn(sb, "No anchor found\n");
1977 		return ret;
1978 	}
1979 	return 0;
1980 }
1981 
1982 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1983 {
1984 	struct timespec64 ts;
1985 
1986 	ktime_get_real_ts64(&ts);
1987 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1988 	lvid->descTag.descCRC = cpu_to_le16(
1989 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1990 			le16_to_cpu(lvid->descTag.descCRCLength)));
1991 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1992 }
1993 
1994 static void udf_open_lvid(struct super_block *sb)
1995 {
1996 	struct udf_sb_info *sbi = UDF_SB(sb);
1997 	struct buffer_head *bh = sbi->s_lvid_bh;
1998 	struct logicalVolIntegrityDesc *lvid;
1999 	struct logicalVolIntegrityDescImpUse *lvidiu;
2000 
2001 	if (!bh)
2002 		return;
2003 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2004 	lvidiu = udf_sb_lvidiu(sb);
2005 	if (!lvidiu)
2006 		return;
2007 
2008 	mutex_lock(&sbi->s_alloc_mutex);
2009 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2010 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2011 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2012 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2013 	else
2014 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2015 
2016 	udf_finalize_lvid(lvid);
2017 	mark_buffer_dirty(bh);
2018 	sbi->s_lvid_dirty = 0;
2019 	mutex_unlock(&sbi->s_alloc_mutex);
2020 	/* Make opening of filesystem visible on the media immediately */
2021 	sync_dirty_buffer(bh);
2022 }
2023 
2024 static void udf_close_lvid(struct super_block *sb)
2025 {
2026 	struct udf_sb_info *sbi = UDF_SB(sb);
2027 	struct buffer_head *bh = sbi->s_lvid_bh;
2028 	struct logicalVolIntegrityDesc *lvid;
2029 	struct logicalVolIntegrityDescImpUse *lvidiu;
2030 
2031 	if (!bh)
2032 		return;
2033 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2034 	lvidiu = udf_sb_lvidiu(sb);
2035 	if (!lvidiu)
2036 		return;
2037 
2038 	mutex_lock(&sbi->s_alloc_mutex);
2039 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2040 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2041 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2042 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2043 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2044 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2045 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2046 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2047 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2048 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2049 
2050 	/*
2051 	 * We set buffer uptodate unconditionally here to avoid spurious
2052 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2053 	 * the buffer as !uptodate
2054 	 */
2055 	set_buffer_uptodate(bh);
2056 	udf_finalize_lvid(lvid);
2057 	mark_buffer_dirty(bh);
2058 	sbi->s_lvid_dirty = 0;
2059 	mutex_unlock(&sbi->s_alloc_mutex);
2060 	/* Make closing of filesystem visible on the media immediately */
2061 	sync_dirty_buffer(bh);
2062 }
2063 
2064 u64 lvid_get_unique_id(struct super_block *sb)
2065 {
2066 	struct buffer_head *bh;
2067 	struct udf_sb_info *sbi = UDF_SB(sb);
2068 	struct logicalVolIntegrityDesc *lvid;
2069 	struct logicalVolHeaderDesc *lvhd;
2070 	u64 uniqueID;
2071 	u64 ret;
2072 
2073 	bh = sbi->s_lvid_bh;
2074 	if (!bh)
2075 		return 0;
2076 
2077 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2078 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2079 
2080 	mutex_lock(&sbi->s_alloc_mutex);
2081 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2082 	if (!(++uniqueID & 0xFFFFFFFF))
2083 		uniqueID += 16;
2084 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2085 	udf_updated_lvid(sb);
2086 	mutex_unlock(&sbi->s_alloc_mutex);
2087 
2088 	return ret;
2089 }
2090 
2091 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2092 {
2093 	int ret = -EINVAL;
2094 	struct inode *inode = NULL;
2095 	struct udf_options uopt;
2096 	struct kernel_lb_addr rootdir, fileset;
2097 	struct udf_sb_info *sbi;
2098 	bool lvid_open = false;
2099 
2100 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2101 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2102 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2103 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2104 	uopt.umask = 0;
2105 	uopt.fmode = UDF_INVALID_MODE;
2106 	uopt.dmode = UDF_INVALID_MODE;
2107 	uopt.nls_map = NULL;
2108 
2109 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2110 	if (!sbi)
2111 		return -ENOMEM;
2112 
2113 	sb->s_fs_info = sbi;
2114 
2115 	mutex_init(&sbi->s_alloc_mutex);
2116 
2117 	if (!udf_parse_options((char *)options, &uopt, false))
2118 		goto parse_options_failure;
2119 
2120 	fileset.logicalBlockNum = 0xFFFFFFFF;
2121 	fileset.partitionReferenceNum = 0xFFFF;
2122 
2123 	sbi->s_flags = uopt.flags;
2124 	sbi->s_uid = uopt.uid;
2125 	sbi->s_gid = uopt.gid;
2126 	sbi->s_umask = uopt.umask;
2127 	sbi->s_fmode = uopt.fmode;
2128 	sbi->s_dmode = uopt.dmode;
2129 	sbi->s_nls_map = uopt.nls_map;
2130 	rwlock_init(&sbi->s_cred_lock);
2131 
2132 	if (uopt.session == 0xFFFFFFFF)
2133 		sbi->s_session = udf_get_last_session(sb);
2134 	else
2135 		sbi->s_session = uopt.session;
2136 
2137 	udf_debug("Multi-session=%d\n", sbi->s_session);
2138 
2139 	/* Fill in the rest of the superblock */
2140 	sb->s_op = &udf_sb_ops;
2141 	sb->s_export_op = &udf_export_ops;
2142 
2143 	sb->s_magic = UDF_SUPER_MAGIC;
2144 	sb->s_time_gran = 1000;
2145 
2146 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2147 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148 	} else {
2149 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2150 		while (uopt.blocksize <= 4096) {
2151 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2152 			if (ret < 0) {
2153 				if (!silent && ret != -EACCES) {
2154 					pr_notice("Scanning with blocksize %u failed\n",
2155 						  uopt.blocksize);
2156 				}
2157 				brelse(sbi->s_lvid_bh);
2158 				sbi->s_lvid_bh = NULL;
2159 				/*
2160 				 * EACCES is special - we want to propagate to
2161 				 * upper layers that we cannot handle RW mount.
2162 				 */
2163 				if (ret == -EACCES)
2164 					break;
2165 			} else
2166 				break;
2167 
2168 			uopt.blocksize <<= 1;
2169 		}
2170 	}
2171 	if (ret < 0) {
2172 		if (ret == -EAGAIN) {
2173 			udf_warn(sb, "No partition found (1)\n");
2174 			ret = -EINVAL;
2175 		}
2176 		goto error_out;
2177 	}
2178 
2179 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2180 
2181 	if (sbi->s_lvid_bh) {
2182 		struct logicalVolIntegrityDescImpUse *lvidiu =
2183 							udf_sb_lvidiu(sb);
2184 		uint16_t minUDFReadRev;
2185 		uint16_t minUDFWriteRev;
2186 
2187 		if (!lvidiu) {
2188 			ret = -EINVAL;
2189 			goto error_out;
2190 		}
2191 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2192 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2193 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2194 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2195 				minUDFReadRev,
2196 				UDF_MAX_READ_VERSION);
2197 			ret = -EINVAL;
2198 			goto error_out;
2199 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2200 			if (!sb_rdonly(sb)) {
2201 				ret = -EACCES;
2202 				goto error_out;
2203 			}
2204 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2205 		}
2206 
2207 		sbi->s_udfrev = minUDFWriteRev;
2208 
2209 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2210 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2211 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2212 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2213 	}
2214 
2215 	if (!sbi->s_partitions) {
2216 		udf_warn(sb, "No partition found (2)\n");
2217 		ret = -EINVAL;
2218 		goto error_out;
2219 	}
2220 
2221 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2222 			UDF_PART_FLAG_READ_ONLY) {
2223 		if (!sb_rdonly(sb)) {
2224 			ret = -EACCES;
2225 			goto error_out;
2226 		}
2227 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2228 	}
2229 
2230 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2231 	if (ret < 0) {
2232 		udf_warn(sb, "No fileset found\n");
2233 		goto error_out;
2234 	}
2235 
2236 	if (!silent) {
2237 		struct timestamp ts;
2238 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2239 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2240 			 sbi->s_volume_ident,
2241 			 le16_to_cpu(ts.year), ts.month, ts.day,
2242 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2243 	}
2244 	if (!sb_rdonly(sb)) {
2245 		udf_open_lvid(sb);
2246 		lvid_open = true;
2247 	}
2248 
2249 	/* Assign the root inode */
2250 	/* assign inodes by physical block number */
2251 	/* perhaps it's not extensible enough, but for now ... */
2252 	inode = udf_iget(sb, &rootdir);
2253 	if (IS_ERR(inode)) {
2254 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2255 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2256 		ret = PTR_ERR(inode);
2257 		goto error_out;
2258 	}
2259 
2260 	/* Allocate a dentry for the root inode */
2261 	sb->s_root = d_make_root(inode);
2262 	if (!sb->s_root) {
2263 		udf_err(sb, "Couldn't allocate root dentry\n");
2264 		ret = -ENOMEM;
2265 		goto error_out;
2266 	}
2267 	sb->s_maxbytes = UDF_MAX_FILESIZE;
2268 	sb->s_max_links = UDF_MAX_LINKS;
2269 	return 0;
2270 
2271 error_out:
2272 	iput(sbi->s_vat_inode);
2273 parse_options_failure:
2274 	unload_nls(uopt.nls_map);
2275 	if (lvid_open)
2276 		udf_close_lvid(sb);
2277 	brelse(sbi->s_lvid_bh);
2278 	udf_sb_free_partitions(sb);
2279 	kfree(sbi);
2280 	sb->s_fs_info = NULL;
2281 
2282 	return ret;
2283 }
2284 
2285 void _udf_err(struct super_block *sb, const char *function,
2286 	      const char *fmt, ...)
2287 {
2288 	struct va_format vaf;
2289 	va_list args;
2290 
2291 	va_start(args, fmt);
2292 
2293 	vaf.fmt = fmt;
2294 	vaf.va = &args;
2295 
2296 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297 
2298 	va_end(args);
2299 }
2300 
2301 void _udf_warn(struct super_block *sb, const char *function,
2302 	       const char *fmt, ...)
2303 {
2304 	struct va_format vaf;
2305 	va_list args;
2306 
2307 	va_start(args, fmt);
2308 
2309 	vaf.fmt = fmt;
2310 	vaf.va = &args;
2311 
2312 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313 
2314 	va_end(args);
2315 }
2316 
2317 static void udf_put_super(struct super_block *sb)
2318 {
2319 	struct udf_sb_info *sbi;
2320 
2321 	sbi = UDF_SB(sb);
2322 
2323 	iput(sbi->s_vat_inode);
2324 	unload_nls(sbi->s_nls_map);
2325 	if (!sb_rdonly(sb))
2326 		udf_close_lvid(sb);
2327 	brelse(sbi->s_lvid_bh);
2328 	udf_sb_free_partitions(sb);
2329 	mutex_destroy(&sbi->s_alloc_mutex);
2330 	kfree(sb->s_fs_info);
2331 	sb->s_fs_info = NULL;
2332 }
2333 
2334 static int udf_sync_fs(struct super_block *sb, int wait)
2335 {
2336 	struct udf_sb_info *sbi = UDF_SB(sb);
2337 
2338 	mutex_lock(&sbi->s_alloc_mutex);
2339 	if (sbi->s_lvid_dirty) {
2340 		struct buffer_head *bh = sbi->s_lvid_bh;
2341 		struct logicalVolIntegrityDesc *lvid;
2342 
2343 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2344 		udf_finalize_lvid(lvid);
2345 
2346 		/*
2347 		 * Blockdevice will be synced later so we don't have to submit
2348 		 * the buffer for IO
2349 		 */
2350 		mark_buffer_dirty(bh);
2351 		sbi->s_lvid_dirty = 0;
2352 	}
2353 	mutex_unlock(&sbi->s_alloc_mutex);
2354 
2355 	return 0;
2356 }
2357 
2358 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2359 {
2360 	struct super_block *sb = dentry->d_sb;
2361 	struct udf_sb_info *sbi = UDF_SB(sb);
2362 	struct logicalVolIntegrityDescImpUse *lvidiu;
2363 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2364 
2365 	lvidiu = udf_sb_lvidiu(sb);
2366 	buf->f_type = UDF_SUPER_MAGIC;
2367 	buf->f_bsize = sb->s_blocksize;
2368 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2369 	buf->f_bfree = udf_count_free(sb);
2370 	buf->f_bavail = buf->f_bfree;
2371 	/*
2372 	 * Let's pretend each free block is also a free 'inode' since UDF does
2373 	 * not have separate preallocated table of inodes.
2374 	 */
2375 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2377 			+ buf->f_bfree;
2378 	buf->f_ffree = buf->f_bfree;
2379 	buf->f_namelen = UDF_NAME_LEN;
2380 	buf->f_fsid = u64_to_fsid(id);
2381 
2382 	return 0;
2383 }
2384 
2385 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2386 					  struct udf_bitmap *bitmap)
2387 {
2388 	struct buffer_head *bh = NULL;
2389 	unsigned int accum = 0;
2390 	int index;
2391 	udf_pblk_t block = 0, newblock;
2392 	struct kernel_lb_addr loc;
2393 	uint32_t bytes;
2394 	uint8_t *ptr;
2395 	uint16_t ident;
2396 	struct spaceBitmapDesc *bm;
2397 
2398 	loc.logicalBlockNum = bitmap->s_extPosition;
2399 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2400 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2401 
2402 	if (!bh) {
2403 		udf_err(sb, "udf_count_free failed\n");
2404 		goto out;
2405 	} else if (ident != TAG_IDENT_SBD) {
2406 		brelse(bh);
2407 		udf_err(sb, "udf_count_free failed\n");
2408 		goto out;
2409 	}
2410 
2411 	bm = (struct spaceBitmapDesc *)bh->b_data;
2412 	bytes = le32_to_cpu(bm->numOfBytes);
2413 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2414 	ptr = (uint8_t *)bh->b_data;
2415 
2416 	while (bytes > 0) {
2417 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2418 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2419 					cur_bytes * 8);
2420 		bytes -= cur_bytes;
2421 		if (bytes) {
2422 			brelse(bh);
2423 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2424 			bh = sb_bread(sb, newblock);
2425 			if (!bh) {
2426 				udf_debug("read failed\n");
2427 				goto out;
2428 			}
2429 			index = 0;
2430 			ptr = (uint8_t *)bh->b_data;
2431 		}
2432 	}
2433 	brelse(bh);
2434 out:
2435 	return accum;
2436 }
2437 
2438 static unsigned int udf_count_free_table(struct super_block *sb,
2439 					 struct inode *table)
2440 {
2441 	unsigned int accum = 0;
2442 	uint32_t elen;
2443 	struct kernel_lb_addr eloc;
2444 	struct extent_position epos;
2445 
2446 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2447 	epos.block = UDF_I(table)->i_location;
2448 	epos.offset = sizeof(struct unallocSpaceEntry);
2449 	epos.bh = NULL;
2450 
2451 	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2452 		accum += (elen >> table->i_sb->s_blocksize_bits);
2453 
2454 	brelse(epos.bh);
2455 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2456 
2457 	return accum;
2458 }
2459 
2460 static unsigned int udf_count_free(struct super_block *sb)
2461 {
2462 	unsigned int accum = 0;
2463 	struct udf_sb_info *sbi = UDF_SB(sb);
2464 	struct udf_part_map *map;
2465 	unsigned int part = sbi->s_partition;
2466 	int ptype = sbi->s_partmaps[part].s_partition_type;
2467 
2468 	if (ptype == UDF_METADATA_MAP25) {
2469 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2470 							s_phys_partition_ref;
2471 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2472 		/*
2473 		 * Filesystems with VAT are append-only and we cannot write to
2474  		 * them. Let's just report 0 here.
2475 		 */
2476 		return 0;
2477 	}
2478 
2479 	if (sbi->s_lvid_bh) {
2480 		struct logicalVolIntegrityDesc *lvid =
2481 			(struct logicalVolIntegrityDesc *)
2482 			sbi->s_lvid_bh->b_data;
2483 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2484 			accum = le32_to_cpu(
2485 					lvid->freeSpaceTable[part]);
2486 			if (accum == 0xFFFFFFFF)
2487 				accum = 0;
2488 		}
2489 	}
2490 
2491 	if (accum)
2492 		return accum;
2493 
2494 	map = &sbi->s_partmaps[part];
2495 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2496 		accum += udf_count_free_bitmap(sb,
2497 					       map->s_uspace.s_bitmap);
2498 	}
2499 	if (accum)
2500 		return accum;
2501 
2502 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2503 		accum += udf_count_free_table(sb,
2504 					      map->s_uspace.s_table);
2505 	}
2506 	return accum;
2507 }
2508 
2509 MODULE_AUTHOR("Ben Fennema");
2510 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2511 MODULE_LICENSE("GPL");
2512 module_init(init_udf_fs)
2513 module_exit(exit_udf_fs)
2514