1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * super.c 4 * 5 * PURPOSE 6 * Super block routines for the OSTA-UDF(tm) filesystem. 7 * 8 * DESCRIPTION 9 * OSTA-UDF(tm) = Optical Storage Technology Association 10 * Universal Disk Format. 11 * 12 * This code is based on version 2.00 of the UDF specification, 13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 14 * http://www.osta.org/ 15 * https://www.ecma.ch/ 16 * https://www.iso.org/ 17 * 18 * COPYRIGHT 19 * (C) 1998 Dave Boynton 20 * (C) 1998-2004 Ben Fennema 21 * (C) 2000 Stelias Computing Inc 22 * 23 * HISTORY 24 * 25 * 09/24/98 dgb changed to allow compiling outside of kernel, and 26 * added some debugging. 27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 28 * 10/16/98 attempting some multi-session support 29 * 10/17/98 added freespace count for "df" 30 * 11/11/98 gr added novrs option 31 * 11/26/98 dgb added fileset,anchor mount options 32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 33 * vol descs. rewrote option handling based on isofs 34 * 12/20/98 find the free space bitmap (if it exists) 35 */ 36 37 #include "udfdecl.h" 38 39 #include <linux/blkdev.h> 40 #include <linux/slab.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/parser.h> 44 #include <linux/stat.h> 45 #include <linux/cdrom.h> 46 #include <linux/nls.h> 47 #include <linux/vfs.h> 48 #include <linux/vmalloc.h> 49 #include <linux/errno.h> 50 #include <linux/mount.h> 51 #include <linux/seq_file.h> 52 #include <linux/bitmap.h> 53 #include <linux/crc-itu-t.h> 54 #include <linux/log2.h> 55 #include <asm/byteorder.h> 56 #include <linux/iversion.h> 57 58 #include "udf_sb.h" 59 #include "udf_i.h" 60 61 #include <linux/init.h> 62 #include <linux/uaccess.h> 63 64 enum { 65 VDS_POS_PRIMARY_VOL_DESC, 66 VDS_POS_UNALLOC_SPACE_DESC, 67 VDS_POS_LOGICAL_VOL_DESC, 68 VDS_POS_IMP_USE_VOL_DESC, 69 VDS_POS_LENGTH 70 }; 71 72 #define VSD_FIRST_SECTOR_OFFSET 32768 73 #define VSD_MAX_SECTOR_OFFSET 0x800000 74 75 /* 76 * Maximum number of Terminating Descriptor / Logical Volume Integrity 77 * Descriptor redirections. The chosen numbers are arbitrary - just that we 78 * hopefully don't limit any real use of rewritten inode on write-once media 79 * but avoid looping for too long on corrupted media. 80 */ 81 #define UDF_MAX_TD_NESTING 64 82 #define UDF_MAX_LVID_NESTING 1000 83 84 enum { UDF_MAX_LINKS = 0xffff }; 85 /* 86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports 87 * more but because the file space is described by a linked list of extents, 88 * each of which can have at most 1GB, the creation and handling of extents 89 * gets unusably slow beyond certain point... 90 */ 91 #define UDF_MAX_FILESIZE (1ULL << 42) 92 93 /* These are the "meat" - everything else is stuffing */ 94 static int udf_fill_super(struct super_block *, void *, int); 95 static void udf_put_super(struct super_block *); 96 static int udf_sync_fs(struct super_block *, int); 97 static int udf_remount_fs(struct super_block *, int *, char *); 98 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 116 offset = partnum * 2 * sizeof(uint32_t); 117 return (struct logicalVolIntegrityDescImpUse *) 118 (((uint8_t *)(lvid + 1)) + offset); 119 } 120 121 /* UDF filesystem type */ 122 static struct dentry *udf_mount(struct file_system_type *fs_type, 123 int flags, const char *dev_name, void *data) 124 { 125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 126 } 127 128 static struct file_system_type udf_fstype = { 129 .owner = THIS_MODULE, 130 .name = "udf", 131 .mount = udf_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("udf"); 136 137 static struct kmem_cache *udf_inode_cachep; 138 139 static struct inode *udf_alloc_inode(struct super_block *sb) 140 { 141 struct udf_inode_info *ei; 142 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL); 143 if (!ei) 144 return NULL; 145 146 ei->i_unique = 0; 147 ei->i_lenExtents = 0; 148 ei->i_lenStreams = 0; 149 ei->i_next_alloc_block = 0; 150 ei->i_next_alloc_goal = 0; 151 ei->i_strat4096 = 0; 152 ei->i_streamdir = 0; 153 ei->i_hidden = 0; 154 init_rwsem(&ei->i_data_sem); 155 ei->cached_extent.lstart = -1; 156 spin_lock_init(&ei->i_extent_cache_lock); 157 inode_set_iversion(&ei->vfs_inode, 1); 158 159 return &ei->vfs_inode; 160 } 161 162 static void udf_free_in_core_inode(struct inode *inode) 163 { 164 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 165 } 166 167 static void init_once(void *foo) 168 { 169 struct udf_inode_info *ei = foo; 170 171 ei->i_data = NULL; 172 inode_init_once(&ei->vfs_inode); 173 } 174 175 static int __init init_inodecache(void) 176 { 177 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 178 sizeof(struct udf_inode_info), 179 0, (SLAB_RECLAIM_ACCOUNT | 180 SLAB_MEM_SPREAD | 181 SLAB_ACCOUNT), 182 init_once); 183 if (!udf_inode_cachep) 184 return -ENOMEM; 185 return 0; 186 } 187 188 static void destroy_inodecache(void) 189 { 190 /* 191 * Make sure all delayed rcu free inodes are flushed before we 192 * destroy cache. 193 */ 194 rcu_barrier(); 195 kmem_cache_destroy(udf_inode_cachep); 196 } 197 198 /* Superblock operations */ 199 static const struct super_operations udf_sb_ops = { 200 .alloc_inode = udf_alloc_inode, 201 .free_inode = udf_free_in_core_inode, 202 .write_inode = udf_write_inode, 203 .evict_inode = udf_evict_inode, 204 .put_super = udf_put_super, 205 .sync_fs = udf_sync_fs, 206 .statfs = udf_statfs, 207 .remount_fs = udf_remount_fs, 208 .show_options = udf_show_options, 209 }; 210 211 struct udf_options { 212 unsigned char novrs; 213 unsigned int blocksize; 214 unsigned int session; 215 unsigned int lastblock; 216 unsigned int anchor; 217 unsigned int flags; 218 umode_t umask; 219 kgid_t gid; 220 kuid_t uid; 221 umode_t fmode; 222 umode_t dmode; 223 struct nls_table *nls_map; 224 }; 225 226 static int __init init_udf_fs(void) 227 { 228 int err; 229 230 err = init_inodecache(); 231 if (err) 232 goto out1; 233 err = register_filesystem(&udf_fstype); 234 if (err) 235 goto out; 236 237 return 0; 238 239 out: 240 destroy_inodecache(); 241 242 out1: 243 return err; 244 } 245 246 static void __exit exit_udf_fs(void) 247 { 248 unregister_filesystem(&udf_fstype); 249 destroy_inodecache(); 250 } 251 252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 253 { 254 struct udf_sb_info *sbi = UDF_SB(sb); 255 256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 257 if (!sbi->s_partmaps) { 258 sbi->s_partitions = 0; 259 return -ENOMEM; 260 } 261 262 sbi->s_partitions = count; 263 return 0; 264 } 265 266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 267 { 268 int i; 269 int nr_groups = bitmap->s_nr_groups; 270 271 for (i = 0; i < nr_groups; i++) 272 brelse(bitmap->s_block_bitmap[i]); 273 274 kvfree(bitmap); 275 } 276 277 static void udf_free_partition(struct udf_part_map *map) 278 { 279 int i; 280 struct udf_meta_data *mdata; 281 282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 283 iput(map->s_uspace.s_table); 284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 285 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 286 if (map->s_partition_type == UDF_SPARABLE_MAP15) 287 for (i = 0; i < 4; i++) 288 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 289 else if (map->s_partition_type == UDF_METADATA_MAP25) { 290 mdata = &map->s_type_specific.s_metadata; 291 iput(mdata->s_metadata_fe); 292 mdata->s_metadata_fe = NULL; 293 294 iput(mdata->s_mirror_fe); 295 mdata->s_mirror_fe = NULL; 296 297 iput(mdata->s_bitmap_fe); 298 mdata->s_bitmap_fe = NULL; 299 } 300 } 301 302 static void udf_sb_free_partitions(struct super_block *sb) 303 { 304 struct udf_sb_info *sbi = UDF_SB(sb); 305 int i; 306 307 if (!sbi->s_partmaps) 308 return; 309 for (i = 0; i < sbi->s_partitions; i++) 310 udf_free_partition(&sbi->s_partmaps[i]); 311 kfree(sbi->s_partmaps); 312 sbi->s_partmaps = NULL; 313 } 314 315 static int udf_show_options(struct seq_file *seq, struct dentry *root) 316 { 317 struct super_block *sb = root->d_sb; 318 struct udf_sb_info *sbi = UDF_SB(sb); 319 320 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 321 seq_puts(seq, ",nostrict"); 322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 323 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 325 seq_puts(seq, ",unhide"); 326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 327 seq_puts(seq, ",undelete"); 328 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 329 seq_puts(seq, ",noadinicb"); 330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 331 seq_puts(seq, ",shortad"); 332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 333 seq_puts(seq, ",uid=forget"); 334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 335 seq_puts(seq, ",gid=forget"); 336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 337 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 339 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 340 if (sbi->s_umask != 0) 341 seq_printf(seq, ",umask=%ho", sbi->s_umask); 342 if (sbi->s_fmode != UDF_INVALID_MODE) 343 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 344 if (sbi->s_dmode != UDF_INVALID_MODE) 345 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 347 seq_printf(seq, ",session=%d", sbi->s_session); 348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 349 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 350 if (sbi->s_anchor != 0) 351 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 352 if (sbi->s_nls_map) 353 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 354 else 355 seq_puts(seq, ",iocharset=utf8"); 356 357 return 0; 358 } 359 360 /* 361 * udf_parse_options 362 * 363 * PURPOSE 364 * Parse mount options. 365 * 366 * DESCRIPTION 367 * The following mount options are supported: 368 * 369 * gid= Set the default group. 370 * umask= Set the default umask. 371 * mode= Set the default file permissions. 372 * dmode= Set the default directory permissions. 373 * uid= Set the default user. 374 * bs= Set the block size. 375 * unhide Show otherwise hidden files. 376 * undelete Show deleted files in lists. 377 * adinicb Embed data in the inode (default) 378 * noadinicb Don't embed data in the inode 379 * shortad Use short ad's 380 * longad Use long ad's (default) 381 * nostrict Unset strict conformance 382 * iocharset= Set the NLS character set 383 * 384 * The remaining are for debugging and disaster recovery: 385 * 386 * novrs Skip volume sequence recognition 387 * 388 * The following expect a offset from 0. 389 * 390 * session= Set the CDROM session (default= last session) 391 * anchor= Override standard anchor location. (default= 256) 392 * volume= Override the VolumeDesc location. (unused) 393 * partition= Override the PartitionDesc location. (unused) 394 * lastblock= Set the last block of the filesystem/ 395 * 396 * The following expect a offset from the partition root. 397 * 398 * fileset= Override the fileset block location. (unused) 399 * rootdir= Override the root directory location. (unused) 400 * WARNING: overriding the rootdir to a non-directory may 401 * yield highly unpredictable results. 402 * 403 * PRE-CONDITIONS 404 * options Pointer to mount options string. 405 * uopts Pointer to mount options variable. 406 * 407 * POST-CONDITIONS 408 * <return> 1 Mount options parsed okay. 409 * <return> 0 Error parsing mount options. 410 * 411 * HISTORY 412 * July 1, 1997 - Andrew E. Mileski 413 * Written, tested, and released. 414 */ 415 416 enum { 417 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 418 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 419 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 420 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 421 Opt_rootdir, Opt_utf8, Opt_iocharset, 422 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 423 Opt_fmode, Opt_dmode 424 }; 425 426 static const match_table_t tokens = { 427 {Opt_novrs, "novrs"}, 428 {Opt_nostrict, "nostrict"}, 429 {Opt_bs, "bs=%u"}, 430 {Opt_unhide, "unhide"}, 431 {Opt_undelete, "undelete"}, 432 {Opt_noadinicb, "noadinicb"}, 433 {Opt_adinicb, "adinicb"}, 434 {Opt_shortad, "shortad"}, 435 {Opt_longad, "longad"}, 436 {Opt_uforget, "uid=forget"}, 437 {Opt_uignore, "uid=ignore"}, 438 {Opt_gforget, "gid=forget"}, 439 {Opt_gignore, "gid=ignore"}, 440 {Opt_gid, "gid=%u"}, 441 {Opt_uid, "uid=%u"}, 442 {Opt_umask, "umask=%o"}, 443 {Opt_session, "session=%u"}, 444 {Opt_lastblock, "lastblock=%u"}, 445 {Opt_anchor, "anchor=%u"}, 446 {Opt_volume, "volume=%u"}, 447 {Opt_partition, "partition=%u"}, 448 {Opt_fileset, "fileset=%u"}, 449 {Opt_rootdir, "rootdir=%u"}, 450 {Opt_utf8, "utf8"}, 451 {Opt_iocharset, "iocharset=%s"}, 452 {Opt_fmode, "mode=%o"}, 453 {Opt_dmode, "dmode=%o"}, 454 {Opt_err, NULL} 455 }; 456 457 static int udf_parse_options(char *options, struct udf_options *uopt, 458 bool remount) 459 { 460 char *p; 461 int option; 462 unsigned int uv; 463 464 uopt->novrs = 0; 465 uopt->session = 0xFFFFFFFF; 466 uopt->lastblock = 0; 467 uopt->anchor = 0; 468 469 if (!options) 470 return 1; 471 472 while ((p = strsep(&options, ",")) != NULL) { 473 substring_t args[MAX_OPT_ARGS]; 474 int token; 475 unsigned n; 476 if (!*p) 477 continue; 478 479 token = match_token(p, tokens, args); 480 switch (token) { 481 case Opt_novrs: 482 uopt->novrs = 1; 483 break; 484 case Opt_bs: 485 if (match_int(&args[0], &option)) 486 return 0; 487 n = option; 488 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 489 return 0; 490 uopt->blocksize = n; 491 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 492 break; 493 case Opt_unhide: 494 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 495 break; 496 case Opt_undelete: 497 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 498 break; 499 case Opt_noadinicb: 500 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 501 break; 502 case Opt_adinicb: 503 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 504 break; 505 case Opt_shortad: 506 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 507 break; 508 case Opt_longad: 509 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 510 break; 511 case Opt_gid: 512 if (match_uint(args, &uv)) 513 return 0; 514 uopt->gid = make_kgid(current_user_ns(), uv); 515 if (!gid_valid(uopt->gid)) 516 return 0; 517 uopt->flags |= (1 << UDF_FLAG_GID_SET); 518 break; 519 case Opt_uid: 520 if (match_uint(args, &uv)) 521 return 0; 522 uopt->uid = make_kuid(current_user_ns(), uv); 523 if (!uid_valid(uopt->uid)) 524 return 0; 525 uopt->flags |= (1 << UDF_FLAG_UID_SET); 526 break; 527 case Opt_umask: 528 if (match_octal(args, &option)) 529 return 0; 530 uopt->umask = option; 531 break; 532 case Opt_nostrict: 533 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 534 break; 535 case Opt_session: 536 if (match_int(args, &option)) 537 return 0; 538 uopt->session = option; 539 if (!remount) 540 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 541 break; 542 case Opt_lastblock: 543 if (match_int(args, &option)) 544 return 0; 545 uopt->lastblock = option; 546 if (!remount) 547 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 548 break; 549 case Opt_anchor: 550 if (match_int(args, &option)) 551 return 0; 552 uopt->anchor = option; 553 break; 554 case Opt_volume: 555 case Opt_partition: 556 case Opt_fileset: 557 case Opt_rootdir: 558 /* Ignored (never implemented properly) */ 559 break; 560 case Opt_utf8: 561 if (!remount) { 562 unload_nls(uopt->nls_map); 563 uopt->nls_map = NULL; 564 } 565 break; 566 case Opt_iocharset: 567 if (!remount) { 568 unload_nls(uopt->nls_map); 569 uopt->nls_map = NULL; 570 } 571 /* When nls_map is not loaded then UTF-8 is used */ 572 if (!remount && strcmp(args[0].from, "utf8") != 0) { 573 uopt->nls_map = load_nls(args[0].from); 574 if (!uopt->nls_map) { 575 pr_err("iocharset %s not found\n", 576 args[0].from); 577 return 0; 578 } 579 } 580 break; 581 case Opt_uforget: 582 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 583 break; 584 case Opt_uignore: 585 case Opt_gignore: 586 /* These options are superseeded by uid=<number> */ 587 break; 588 case Opt_gforget: 589 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 590 break; 591 case Opt_fmode: 592 if (match_octal(args, &option)) 593 return 0; 594 uopt->fmode = option & 0777; 595 break; 596 case Opt_dmode: 597 if (match_octal(args, &option)) 598 return 0; 599 uopt->dmode = option & 0777; 600 break; 601 default: 602 pr_err("bad mount option \"%s\" or missing value\n", p); 603 return 0; 604 } 605 } 606 return 1; 607 } 608 609 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 610 { 611 struct udf_options uopt; 612 struct udf_sb_info *sbi = UDF_SB(sb); 613 int error = 0; 614 615 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 616 return -EACCES; 617 618 sync_filesystem(sb); 619 620 uopt.flags = sbi->s_flags; 621 uopt.uid = sbi->s_uid; 622 uopt.gid = sbi->s_gid; 623 uopt.umask = sbi->s_umask; 624 uopt.fmode = sbi->s_fmode; 625 uopt.dmode = sbi->s_dmode; 626 uopt.nls_map = NULL; 627 628 if (!udf_parse_options(options, &uopt, true)) 629 return -EINVAL; 630 631 write_lock(&sbi->s_cred_lock); 632 sbi->s_flags = uopt.flags; 633 sbi->s_uid = uopt.uid; 634 sbi->s_gid = uopt.gid; 635 sbi->s_umask = uopt.umask; 636 sbi->s_fmode = uopt.fmode; 637 sbi->s_dmode = uopt.dmode; 638 write_unlock(&sbi->s_cred_lock); 639 640 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 641 goto out_unlock; 642 643 if (*flags & SB_RDONLY) 644 udf_close_lvid(sb); 645 else 646 udf_open_lvid(sb); 647 648 out_unlock: 649 return error; 650 } 651 652 /* 653 * Check VSD descriptor. Returns -1 in case we are at the end of volume 654 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 655 * we found one of NSR descriptors we are looking for. 656 */ 657 static int identify_vsd(const struct volStructDesc *vsd) 658 { 659 int ret = 0; 660 661 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 662 switch (vsd->structType) { 663 case 0: 664 udf_debug("ISO9660 Boot Record found\n"); 665 break; 666 case 1: 667 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 668 break; 669 case 2: 670 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 671 break; 672 case 3: 673 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 674 break; 675 case 255: 676 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 677 break; 678 default: 679 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 680 break; 681 } 682 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 683 ; /* ret = 0 */ 684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 685 ret = 1; 686 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 687 ret = 1; 688 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 689 ; /* ret = 0 */ 690 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 691 ; /* ret = 0 */ 692 else { 693 /* TEA01 or invalid id : end of volume recognition area */ 694 ret = -1; 695 } 696 697 return ret; 698 } 699 700 /* 701 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 702 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 703 * @return 1 if NSR02 or NSR03 found, 704 * -1 if first sector read error, 0 otherwise 705 */ 706 static int udf_check_vsd(struct super_block *sb) 707 { 708 struct volStructDesc *vsd = NULL; 709 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 710 int sectorsize; 711 struct buffer_head *bh = NULL; 712 int nsr = 0; 713 struct udf_sb_info *sbi; 714 loff_t session_offset; 715 716 sbi = UDF_SB(sb); 717 if (sb->s_blocksize < sizeof(struct volStructDesc)) 718 sectorsize = sizeof(struct volStructDesc); 719 else 720 sectorsize = sb->s_blocksize; 721 722 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; 723 sector += session_offset; 724 725 udf_debug("Starting at sector %u (%lu byte sectors)\n", 726 (unsigned int)(sector >> sb->s_blocksize_bits), 727 sb->s_blocksize); 728 /* Process the sequence (if applicable). The hard limit on the sector 729 * offset is arbitrary, hopefully large enough so that all valid UDF 730 * filesystems will be recognised. There is no mention of an upper 731 * bound to the size of the volume recognition area in the standard. 732 * The limit will prevent the code to read all the sectors of a 733 * specially crafted image (like a bluray disc full of CD001 sectors), 734 * potentially causing minutes or even hours of uninterruptible I/O 735 * activity. This actually happened with uninitialised SSD partitions 736 * (all 0xFF) before the check for the limit and all valid IDs were 737 * added */ 738 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 739 /* Read a block */ 740 bh = sb_bread(sb, sector >> sb->s_blocksize_bits); 741 if (!bh) 742 break; 743 744 vsd = (struct volStructDesc *)(bh->b_data + 745 (sector & (sb->s_blocksize - 1))); 746 nsr = identify_vsd(vsd); 747 /* Found NSR or end? */ 748 if (nsr) { 749 brelse(bh); 750 break; 751 } 752 /* 753 * Special handling for improperly formatted VRS (e.g., Win10) 754 * where components are separated by 2048 bytes even though 755 * sectors are 4K 756 */ 757 if (sb->s_blocksize == 4096) { 758 nsr = identify_vsd(vsd + 1); 759 /* Ignore unknown IDs... */ 760 if (nsr < 0) 761 nsr = 0; 762 } 763 brelse(bh); 764 } 765 766 if (nsr > 0) 767 return 1; 768 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) 769 return -1; 770 else 771 return 0; 772 } 773 774 static int udf_verify_domain_identifier(struct super_block *sb, 775 struct regid *ident, char *dname) 776 { 777 struct domainIdentSuffix *suffix; 778 779 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 780 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 781 goto force_ro; 782 } 783 if (ident->flags & ENTITYID_FLAGS_DIRTY) { 784 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 785 dname); 786 goto force_ro; 787 } 788 suffix = (struct domainIdentSuffix *)ident->identSuffix; 789 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || 790 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { 791 if (!sb_rdonly(sb)) { 792 udf_warn(sb, "Descriptor for %s marked write protected." 793 " Forcing read only mount.\n", dname); 794 } 795 goto force_ro; 796 } 797 return 0; 798 799 force_ro: 800 if (!sb_rdonly(sb)) 801 return -EACCES; 802 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 803 return 0; 804 } 805 806 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 807 struct kernel_lb_addr *root) 808 { 809 int ret; 810 811 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 812 if (ret < 0) 813 return ret; 814 815 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 816 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 817 818 udf_debug("Rootdir at block=%u, partition=%u\n", 819 root->logicalBlockNum, root->partitionReferenceNum); 820 return 0; 821 } 822 823 static int udf_find_fileset(struct super_block *sb, 824 struct kernel_lb_addr *fileset, 825 struct kernel_lb_addr *root) 826 { 827 struct buffer_head *bh; 828 uint16_t ident; 829 int ret; 830 831 if (fileset->logicalBlockNum == 0xFFFFFFFF && 832 fileset->partitionReferenceNum == 0xFFFF) 833 return -EINVAL; 834 835 bh = udf_read_ptagged(sb, fileset, 0, &ident); 836 if (!bh) 837 return -EIO; 838 if (ident != TAG_IDENT_FSD) { 839 brelse(bh); 840 return -EINVAL; 841 } 842 843 udf_debug("Fileset at block=%u, partition=%u\n", 844 fileset->logicalBlockNum, fileset->partitionReferenceNum); 845 846 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 847 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 848 brelse(bh); 849 return ret; 850 } 851 852 /* 853 * Load primary Volume Descriptor Sequence 854 * 855 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 856 * should be tried. 857 */ 858 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 859 { 860 struct primaryVolDesc *pvoldesc; 861 uint8_t *outstr; 862 struct buffer_head *bh; 863 uint16_t ident; 864 int ret; 865 struct timestamp *ts; 866 867 outstr = kmalloc(128, GFP_NOFS); 868 if (!outstr) 869 return -ENOMEM; 870 871 bh = udf_read_tagged(sb, block, block, &ident); 872 if (!bh) { 873 ret = -EAGAIN; 874 goto out2; 875 } 876 877 if (ident != TAG_IDENT_PVD) { 878 ret = -EIO; 879 goto out_bh; 880 } 881 882 pvoldesc = (struct primaryVolDesc *)bh->b_data; 883 884 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 885 pvoldesc->recordingDateAndTime); 886 ts = &pvoldesc->recordingDateAndTime; 887 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 888 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 889 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 890 891 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 892 if (ret < 0) { 893 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 894 pr_warn("incorrect volume identification, setting to " 895 "'InvalidName'\n"); 896 } else { 897 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 898 } 899 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 900 901 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 902 if (ret < 0) { 903 ret = 0; 904 goto out_bh; 905 } 906 outstr[ret] = 0; 907 udf_debug("volSetIdent[] = '%s'\n", outstr); 908 909 ret = 0; 910 out_bh: 911 brelse(bh); 912 out2: 913 kfree(outstr); 914 return ret; 915 } 916 917 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 918 u32 meta_file_loc, u32 partition_ref) 919 { 920 struct kernel_lb_addr addr; 921 struct inode *metadata_fe; 922 923 addr.logicalBlockNum = meta_file_loc; 924 addr.partitionReferenceNum = partition_ref; 925 926 metadata_fe = udf_iget_special(sb, &addr); 927 928 if (IS_ERR(metadata_fe)) { 929 udf_warn(sb, "metadata inode efe not found\n"); 930 return metadata_fe; 931 } 932 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 933 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 934 iput(metadata_fe); 935 return ERR_PTR(-EIO); 936 } 937 938 return metadata_fe; 939 } 940 941 static int udf_load_metadata_files(struct super_block *sb, int partition, 942 int type1_index) 943 { 944 struct udf_sb_info *sbi = UDF_SB(sb); 945 struct udf_part_map *map; 946 struct udf_meta_data *mdata; 947 struct kernel_lb_addr addr; 948 struct inode *fe; 949 950 map = &sbi->s_partmaps[partition]; 951 mdata = &map->s_type_specific.s_metadata; 952 mdata->s_phys_partition_ref = type1_index; 953 954 /* metadata address */ 955 udf_debug("Metadata file location: block = %u part = %u\n", 956 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 957 958 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 959 mdata->s_phys_partition_ref); 960 if (IS_ERR(fe)) { 961 /* mirror file entry */ 962 udf_debug("Mirror metadata file location: block = %u part = %u\n", 963 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 964 965 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 966 mdata->s_phys_partition_ref); 967 968 if (IS_ERR(fe)) { 969 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 970 return PTR_ERR(fe); 971 } 972 mdata->s_mirror_fe = fe; 973 } else 974 mdata->s_metadata_fe = fe; 975 976 977 /* 978 * bitmap file entry 979 * Note: 980 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 981 */ 982 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 983 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 984 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 985 986 udf_debug("Bitmap file location: block = %u part = %u\n", 987 addr.logicalBlockNum, addr.partitionReferenceNum); 988 989 fe = udf_iget_special(sb, &addr); 990 if (IS_ERR(fe)) { 991 if (sb_rdonly(sb)) 992 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 993 else { 994 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 995 return PTR_ERR(fe); 996 } 997 } else 998 mdata->s_bitmap_fe = fe; 999 } 1000 1001 udf_debug("udf_load_metadata_files Ok\n"); 1002 return 0; 1003 } 1004 1005 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1006 { 1007 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1008 return DIV_ROUND_UP(map->s_partition_len + 1009 (sizeof(struct spaceBitmapDesc) << 3), 1010 sb->s_blocksize * 8); 1011 } 1012 1013 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1014 { 1015 struct udf_bitmap *bitmap; 1016 int nr_groups = udf_compute_nr_groups(sb, index); 1017 1018 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), 1019 GFP_KERNEL); 1020 if (!bitmap) 1021 return NULL; 1022 1023 bitmap->s_nr_groups = nr_groups; 1024 return bitmap; 1025 } 1026 1027 static int check_partition_desc(struct super_block *sb, 1028 struct partitionDesc *p, 1029 struct udf_part_map *map) 1030 { 1031 bool umap, utable, fmap, ftable; 1032 struct partitionHeaderDesc *phd; 1033 1034 switch (le32_to_cpu(p->accessType)) { 1035 case PD_ACCESS_TYPE_READ_ONLY: 1036 case PD_ACCESS_TYPE_WRITE_ONCE: 1037 case PD_ACCESS_TYPE_NONE: 1038 goto force_ro; 1039 } 1040 1041 /* No Partition Header Descriptor? */ 1042 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1043 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1044 goto force_ro; 1045 1046 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1047 utable = phd->unallocSpaceTable.extLength; 1048 umap = phd->unallocSpaceBitmap.extLength; 1049 ftable = phd->freedSpaceTable.extLength; 1050 fmap = phd->freedSpaceBitmap.extLength; 1051 1052 /* No allocation info? */ 1053 if (!utable && !umap && !ftable && !fmap) 1054 goto force_ro; 1055 1056 /* We don't support blocks that require erasing before overwrite */ 1057 if (ftable || fmap) 1058 goto force_ro; 1059 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1060 if (utable && umap) 1061 goto force_ro; 1062 1063 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1064 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1065 map->s_partition_type == UDF_METADATA_MAP25) 1066 goto force_ro; 1067 1068 return 0; 1069 force_ro: 1070 if (!sb_rdonly(sb)) 1071 return -EACCES; 1072 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1073 return 0; 1074 } 1075 1076 static int udf_fill_partdesc_info(struct super_block *sb, 1077 struct partitionDesc *p, int p_index) 1078 { 1079 struct udf_part_map *map; 1080 struct udf_sb_info *sbi = UDF_SB(sb); 1081 struct partitionHeaderDesc *phd; 1082 int err; 1083 1084 map = &sbi->s_partmaps[p_index]; 1085 1086 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1087 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1088 1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1090 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1092 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1094 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1096 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1097 1098 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1099 p_index, map->s_partition_type, 1100 map->s_partition_root, map->s_partition_len); 1101 1102 err = check_partition_desc(sb, p, map); 1103 if (err) 1104 return err; 1105 1106 /* 1107 * Skip loading allocation info it we cannot ever write to the fs. 1108 * This is a correctness thing as we may have decided to force ro mount 1109 * to avoid allocation info we don't support. 1110 */ 1111 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1112 return 0; 1113 1114 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1115 if (phd->unallocSpaceTable.extLength) { 1116 struct kernel_lb_addr loc = { 1117 .logicalBlockNum = le32_to_cpu( 1118 phd->unallocSpaceTable.extPosition), 1119 .partitionReferenceNum = p_index, 1120 }; 1121 struct inode *inode; 1122 1123 inode = udf_iget_special(sb, &loc); 1124 if (IS_ERR(inode)) { 1125 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1126 p_index); 1127 return PTR_ERR(inode); 1128 } 1129 map->s_uspace.s_table = inode; 1130 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1131 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1132 p_index, map->s_uspace.s_table->i_ino); 1133 } 1134 1135 if (phd->unallocSpaceBitmap.extLength) { 1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1137 if (!bitmap) 1138 return -ENOMEM; 1139 map->s_uspace.s_bitmap = bitmap; 1140 bitmap->s_extPosition = le32_to_cpu( 1141 phd->unallocSpaceBitmap.extPosition); 1142 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1143 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1144 p_index, bitmap->s_extPosition); 1145 } 1146 1147 return 0; 1148 } 1149 1150 static void udf_find_vat_block(struct super_block *sb, int p_index, 1151 int type1_index, sector_t start_block) 1152 { 1153 struct udf_sb_info *sbi = UDF_SB(sb); 1154 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1155 sector_t vat_block; 1156 struct kernel_lb_addr ino; 1157 struct inode *inode; 1158 1159 /* 1160 * VAT file entry is in the last recorded block. Some broken disks have 1161 * it a few blocks before so try a bit harder... 1162 */ 1163 ino.partitionReferenceNum = type1_index; 1164 for (vat_block = start_block; 1165 vat_block >= map->s_partition_root && 1166 vat_block >= start_block - 3; vat_block--) { 1167 ino.logicalBlockNum = vat_block - map->s_partition_root; 1168 inode = udf_iget_special(sb, &ino); 1169 if (!IS_ERR(inode)) { 1170 sbi->s_vat_inode = inode; 1171 break; 1172 } 1173 } 1174 } 1175 1176 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1177 { 1178 struct udf_sb_info *sbi = UDF_SB(sb); 1179 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1180 struct buffer_head *bh = NULL; 1181 struct udf_inode_info *vati; 1182 struct virtualAllocationTable20 *vat20; 1183 sector_t blocks = sb_bdev_nr_blocks(sb); 1184 1185 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1186 if (!sbi->s_vat_inode && 1187 sbi->s_last_block != blocks - 1) { 1188 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1189 (unsigned long)sbi->s_last_block, 1190 (unsigned long)blocks - 1); 1191 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1192 } 1193 if (!sbi->s_vat_inode) 1194 return -EIO; 1195 1196 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1197 map->s_type_specific.s_virtual.s_start_offset = 0; 1198 map->s_type_specific.s_virtual.s_num_entries = 1199 (sbi->s_vat_inode->i_size - 36) >> 2; 1200 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1201 vati = UDF_I(sbi->s_vat_inode); 1202 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1203 int err = 0; 1204 1205 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err); 1206 if (!bh) { 1207 if (!err) 1208 err = -EFSCORRUPTED; 1209 return err; 1210 } 1211 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1212 } else { 1213 vat20 = (struct virtualAllocationTable20 *) 1214 vati->i_data; 1215 } 1216 1217 map->s_type_specific.s_virtual.s_start_offset = 1218 le16_to_cpu(vat20->lengthHeader); 1219 map->s_type_specific.s_virtual.s_num_entries = 1220 (sbi->s_vat_inode->i_size - 1221 map->s_type_specific.s_virtual. 1222 s_start_offset) >> 2; 1223 brelse(bh); 1224 } 1225 return 0; 1226 } 1227 1228 /* 1229 * Load partition descriptor block 1230 * 1231 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1232 * sequence. 1233 */ 1234 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1235 { 1236 struct buffer_head *bh; 1237 struct partitionDesc *p; 1238 struct udf_part_map *map; 1239 struct udf_sb_info *sbi = UDF_SB(sb); 1240 int i, type1_idx; 1241 uint16_t partitionNumber; 1242 uint16_t ident; 1243 int ret; 1244 1245 bh = udf_read_tagged(sb, block, block, &ident); 1246 if (!bh) 1247 return -EAGAIN; 1248 if (ident != TAG_IDENT_PD) { 1249 ret = 0; 1250 goto out_bh; 1251 } 1252 1253 p = (struct partitionDesc *)bh->b_data; 1254 partitionNumber = le16_to_cpu(p->partitionNumber); 1255 1256 /* First scan for TYPE1 and SPARABLE partitions */ 1257 for (i = 0; i < sbi->s_partitions; i++) { 1258 map = &sbi->s_partmaps[i]; 1259 udf_debug("Searching map: (%u == %u)\n", 1260 map->s_partition_num, partitionNumber); 1261 if (map->s_partition_num == partitionNumber && 1262 (map->s_partition_type == UDF_TYPE1_MAP15 || 1263 map->s_partition_type == UDF_SPARABLE_MAP15)) 1264 break; 1265 } 1266 1267 if (i >= sbi->s_partitions) { 1268 udf_debug("Partition (%u) not found in partition map\n", 1269 partitionNumber); 1270 ret = 0; 1271 goto out_bh; 1272 } 1273 1274 ret = udf_fill_partdesc_info(sb, p, i); 1275 if (ret < 0) 1276 goto out_bh; 1277 1278 /* 1279 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1280 * PHYSICAL partitions are already set up 1281 */ 1282 type1_idx = i; 1283 map = NULL; /* supress 'maybe used uninitialized' warning */ 1284 for (i = 0; i < sbi->s_partitions; i++) { 1285 map = &sbi->s_partmaps[i]; 1286 1287 if (map->s_partition_num == partitionNumber && 1288 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1289 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1290 map->s_partition_type == UDF_METADATA_MAP25)) 1291 break; 1292 } 1293 1294 if (i >= sbi->s_partitions) { 1295 ret = 0; 1296 goto out_bh; 1297 } 1298 1299 ret = udf_fill_partdesc_info(sb, p, i); 1300 if (ret < 0) 1301 goto out_bh; 1302 1303 if (map->s_partition_type == UDF_METADATA_MAP25) { 1304 ret = udf_load_metadata_files(sb, i, type1_idx); 1305 if (ret < 0) { 1306 udf_err(sb, "error loading MetaData partition map %d\n", 1307 i); 1308 goto out_bh; 1309 } 1310 } else { 1311 /* 1312 * If we have a partition with virtual map, we don't handle 1313 * writing to it (we overwrite blocks instead of relocating 1314 * them). 1315 */ 1316 if (!sb_rdonly(sb)) { 1317 ret = -EACCES; 1318 goto out_bh; 1319 } 1320 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1321 ret = udf_load_vat(sb, i, type1_idx); 1322 if (ret < 0) 1323 goto out_bh; 1324 } 1325 ret = 0; 1326 out_bh: 1327 /* In case loading failed, we handle cleanup in udf_fill_super */ 1328 brelse(bh); 1329 return ret; 1330 } 1331 1332 static int udf_load_sparable_map(struct super_block *sb, 1333 struct udf_part_map *map, 1334 struct sparablePartitionMap *spm) 1335 { 1336 uint32_t loc; 1337 uint16_t ident; 1338 struct sparingTable *st; 1339 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1340 int i; 1341 struct buffer_head *bh; 1342 1343 map->s_partition_type = UDF_SPARABLE_MAP15; 1344 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1345 if (!is_power_of_2(sdata->s_packet_len)) { 1346 udf_err(sb, "error loading logical volume descriptor: " 1347 "Invalid packet length %u\n", 1348 (unsigned)sdata->s_packet_len); 1349 return -EIO; 1350 } 1351 if (spm->numSparingTables > 4) { 1352 udf_err(sb, "error loading logical volume descriptor: " 1353 "Too many sparing tables (%d)\n", 1354 (int)spm->numSparingTables); 1355 return -EIO; 1356 } 1357 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { 1358 udf_err(sb, "error loading logical volume descriptor: " 1359 "Too big sparing table size (%u)\n", 1360 le32_to_cpu(spm->sizeSparingTable)); 1361 return -EIO; 1362 } 1363 1364 for (i = 0; i < spm->numSparingTables; i++) { 1365 loc = le32_to_cpu(spm->locSparingTable[i]); 1366 bh = udf_read_tagged(sb, loc, loc, &ident); 1367 if (!bh) 1368 continue; 1369 1370 st = (struct sparingTable *)bh->b_data; 1371 if (ident != 0 || 1372 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1373 strlen(UDF_ID_SPARING)) || 1374 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1375 sb->s_blocksize) { 1376 brelse(bh); 1377 continue; 1378 } 1379 1380 sdata->s_spar_map[i] = bh; 1381 } 1382 map->s_partition_func = udf_get_pblock_spar15; 1383 return 0; 1384 } 1385 1386 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1387 struct kernel_lb_addr *fileset) 1388 { 1389 struct logicalVolDesc *lvd; 1390 int i, offset; 1391 uint8_t type; 1392 struct udf_sb_info *sbi = UDF_SB(sb); 1393 struct genericPartitionMap *gpm; 1394 uint16_t ident; 1395 struct buffer_head *bh; 1396 unsigned int table_len; 1397 int ret; 1398 1399 bh = udf_read_tagged(sb, block, block, &ident); 1400 if (!bh) 1401 return -EAGAIN; 1402 BUG_ON(ident != TAG_IDENT_LVD); 1403 lvd = (struct logicalVolDesc *)bh->b_data; 1404 table_len = le32_to_cpu(lvd->mapTableLength); 1405 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1406 udf_err(sb, "error loading logical volume descriptor: " 1407 "Partition table too long (%u > %lu)\n", table_len, 1408 sb->s_blocksize - sizeof(*lvd)); 1409 ret = -EIO; 1410 goto out_bh; 1411 } 1412 1413 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1414 "logical volume"); 1415 if (ret) 1416 goto out_bh; 1417 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1418 if (ret) 1419 goto out_bh; 1420 1421 for (i = 0, offset = 0; 1422 i < sbi->s_partitions && offset < table_len; 1423 i++, offset += gpm->partitionMapLength) { 1424 struct udf_part_map *map = &sbi->s_partmaps[i]; 1425 gpm = (struct genericPartitionMap *) 1426 &(lvd->partitionMaps[offset]); 1427 type = gpm->partitionMapType; 1428 if (type == 1) { 1429 struct genericPartitionMap1 *gpm1 = 1430 (struct genericPartitionMap1 *)gpm; 1431 map->s_partition_type = UDF_TYPE1_MAP15; 1432 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1433 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1434 map->s_partition_func = NULL; 1435 } else if (type == 2) { 1436 struct udfPartitionMap2 *upm2 = 1437 (struct udfPartitionMap2 *)gpm; 1438 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1439 strlen(UDF_ID_VIRTUAL))) { 1440 u16 suf = 1441 le16_to_cpu(((__le16 *)upm2->partIdent. 1442 identSuffix)[0]); 1443 if (suf < 0x0200) { 1444 map->s_partition_type = 1445 UDF_VIRTUAL_MAP15; 1446 map->s_partition_func = 1447 udf_get_pblock_virt15; 1448 } else { 1449 map->s_partition_type = 1450 UDF_VIRTUAL_MAP20; 1451 map->s_partition_func = 1452 udf_get_pblock_virt20; 1453 } 1454 } else if (!strncmp(upm2->partIdent.ident, 1455 UDF_ID_SPARABLE, 1456 strlen(UDF_ID_SPARABLE))) { 1457 ret = udf_load_sparable_map(sb, map, 1458 (struct sparablePartitionMap *)gpm); 1459 if (ret < 0) 1460 goto out_bh; 1461 } else if (!strncmp(upm2->partIdent.ident, 1462 UDF_ID_METADATA, 1463 strlen(UDF_ID_METADATA))) { 1464 struct udf_meta_data *mdata = 1465 &map->s_type_specific.s_metadata; 1466 struct metadataPartitionMap *mdm = 1467 (struct metadataPartitionMap *) 1468 &(lvd->partitionMaps[offset]); 1469 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1470 i, type, UDF_ID_METADATA); 1471 1472 map->s_partition_type = UDF_METADATA_MAP25; 1473 map->s_partition_func = udf_get_pblock_meta25; 1474 1475 mdata->s_meta_file_loc = 1476 le32_to_cpu(mdm->metadataFileLoc); 1477 mdata->s_mirror_file_loc = 1478 le32_to_cpu(mdm->metadataMirrorFileLoc); 1479 mdata->s_bitmap_file_loc = 1480 le32_to_cpu(mdm->metadataBitmapFileLoc); 1481 mdata->s_alloc_unit_size = 1482 le32_to_cpu(mdm->allocUnitSize); 1483 mdata->s_align_unit_size = 1484 le16_to_cpu(mdm->alignUnitSize); 1485 if (mdm->flags & 0x01) 1486 mdata->s_flags |= MF_DUPLICATE_MD; 1487 1488 udf_debug("Metadata Ident suffix=0x%x\n", 1489 le16_to_cpu(*(__le16 *) 1490 mdm->partIdent.identSuffix)); 1491 udf_debug("Metadata part num=%u\n", 1492 le16_to_cpu(mdm->partitionNum)); 1493 udf_debug("Metadata part alloc unit size=%u\n", 1494 le32_to_cpu(mdm->allocUnitSize)); 1495 udf_debug("Metadata file loc=%u\n", 1496 le32_to_cpu(mdm->metadataFileLoc)); 1497 udf_debug("Mirror file loc=%u\n", 1498 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1499 udf_debug("Bitmap file loc=%u\n", 1500 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1501 udf_debug("Flags: %d %u\n", 1502 mdata->s_flags, mdm->flags); 1503 } else { 1504 udf_debug("Unknown ident: %s\n", 1505 upm2->partIdent.ident); 1506 continue; 1507 } 1508 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1509 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1510 } 1511 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1512 i, map->s_partition_num, type, map->s_volumeseqnum); 1513 } 1514 1515 if (fileset) { 1516 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1517 1518 *fileset = lelb_to_cpu(la->extLocation); 1519 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1520 fileset->logicalBlockNum, 1521 fileset->partitionReferenceNum); 1522 } 1523 if (lvd->integritySeqExt.extLength) 1524 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1525 ret = 0; 1526 1527 if (!sbi->s_lvid_bh) { 1528 /* We can't generate unique IDs without a valid LVID */ 1529 if (sb_rdonly(sb)) { 1530 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1531 } else { 1532 udf_warn(sb, "Damaged or missing LVID, forcing " 1533 "readonly mount\n"); 1534 ret = -EACCES; 1535 } 1536 } 1537 out_bh: 1538 brelse(bh); 1539 return ret; 1540 } 1541 1542 /* 1543 * Find the prevailing Logical Volume Integrity Descriptor. 1544 */ 1545 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1546 { 1547 struct buffer_head *bh, *final_bh; 1548 uint16_t ident; 1549 struct udf_sb_info *sbi = UDF_SB(sb); 1550 struct logicalVolIntegrityDesc *lvid; 1551 int indirections = 0; 1552 u32 parts, impuselen; 1553 1554 while (++indirections <= UDF_MAX_LVID_NESTING) { 1555 final_bh = NULL; 1556 while (loc.extLength > 0 && 1557 (bh = udf_read_tagged(sb, loc.extLocation, 1558 loc.extLocation, &ident))) { 1559 if (ident != TAG_IDENT_LVID) { 1560 brelse(bh); 1561 break; 1562 } 1563 1564 brelse(final_bh); 1565 final_bh = bh; 1566 1567 loc.extLength -= sb->s_blocksize; 1568 loc.extLocation++; 1569 } 1570 1571 if (!final_bh) 1572 return; 1573 1574 brelse(sbi->s_lvid_bh); 1575 sbi->s_lvid_bh = final_bh; 1576 1577 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1578 if (lvid->nextIntegrityExt.extLength == 0) 1579 goto check; 1580 1581 loc = leea_to_cpu(lvid->nextIntegrityExt); 1582 } 1583 1584 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1585 UDF_MAX_LVID_NESTING); 1586 out_err: 1587 brelse(sbi->s_lvid_bh); 1588 sbi->s_lvid_bh = NULL; 1589 return; 1590 check: 1591 parts = le32_to_cpu(lvid->numOfPartitions); 1592 impuselen = le32_to_cpu(lvid->lengthOfImpUse); 1593 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize || 1594 sizeof(struct logicalVolIntegrityDesc) + impuselen + 1595 2 * parts * sizeof(u32) > sb->s_blocksize) { 1596 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), " 1597 "ignoring.\n", parts, impuselen); 1598 goto out_err; 1599 } 1600 } 1601 1602 /* 1603 * Step for reallocation of table of partition descriptor sequence numbers. 1604 * Must be power of 2. 1605 */ 1606 #define PART_DESC_ALLOC_STEP 32 1607 1608 struct part_desc_seq_scan_data { 1609 struct udf_vds_record rec; 1610 u32 partnum; 1611 }; 1612 1613 struct desc_seq_scan_data { 1614 struct udf_vds_record vds[VDS_POS_LENGTH]; 1615 unsigned int size_part_descs; 1616 unsigned int num_part_descs; 1617 struct part_desc_seq_scan_data *part_descs_loc; 1618 }; 1619 1620 static struct udf_vds_record *handle_partition_descriptor( 1621 struct buffer_head *bh, 1622 struct desc_seq_scan_data *data) 1623 { 1624 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1625 int partnum; 1626 int i; 1627 1628 partnum = le16_to_cpu(desc->partitionNumber); 1629 for (i = 0; i < data->num_part_descs; i++) 1630 if (partnum == data->part_descs_loc[i].partnum) 1631 return &(data->part_descs_loc[i].rec); 1632 if (data->num_part_descs >= data->size_part_descs) { 1633 struct part_desc_seq_scan_data *new_loc; 1634 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1635 1636 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1637 if (!new_loc) 1638 return ERR_PTR(-ENOMEM); 1639 memcpy(new_loc, data->part_descs_loc, 1640 data->size_part_descs * sizeof(*new_loc)); 1641 kfree(data->part_descs_loc); 1642 data->part_descs_loc = new_loc; 1643 data->size_part_descs = new_size; 1644 } 1645 return &(data->part_descs_loc[data->num_part_descs++].rec); 1646 } 1647 1648 1649 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1650 struct buffer_head *bh, struct desc_seq_scan_data *data) 1651 { 1652 switch (ident) { 1653 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1654 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1655 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1656 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1657 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1658 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1659 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1660 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1661 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1662 return handle_partition_descriptor(bh, data); 1663 } 1664 return NULL; 1665 } 1666 1667 /* 1668 * Process a main/reserve volume descriptor sequence. 1669 * @block First block of first extent of the sequence. 1670 * @lastblock Lastblock of first extent of the sequence. 1671 * @fileset There we store extent containing root fileset 1672 * 1673 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1674 * sequence 1675 */ 1676 static noinline int udf_process_sequence( 1677 struct super_block *sb, 1678 sector_t block, sector_t lastblock, 1679 struct kernel_lb_addr *fileset) 1680 { 1681 struct buffer_head *bh = NULL; 1682 struct udf_vds_record *curr; 1683 struct generic_desc *gd; 1684 struct volDescPtr *vdp; 1685 bool done = false; 1686 uint32_t vdsn; 1687 uint16_t ident; 1688 int ret; 1689 unsigned int indirections = 0; 1690 struct desc_seq_scan_data data; 1691 unsigned int i; 1692 1693 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1694 data.size_part_descs = PART_DESC_ALLOC_STEP; 1695 data.num_part_descs = 0; 1696 data.part_descs_loc = kcalloc(data.size_part_descs, 1697 sizeof(*data.part_descs_loc), 1698 GFP_KERNEL); 1699 if (!data.part_descs_loc) 1700 return -ENOMEM; 1701 1702 /* 1703 * Read the main descriptor sequence and find which descriptors 1704 * are in it. 1705 */ 1706 for (; (!done && block <= lastblock); block++) { 1707 bh = udf_read_tagged(sb, block, block, &ident); 1708 if (!bh) 1709 break; 1710 1711 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1712 gd = (struct generic_desc *)bh->b_data; 1713 vdsn = le32_to_cpu(gd->volDescSeqNum); 1714 switch (ident) { 1715 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1716 if (++indirections > UDF_MAX_TD_NESTING) { 1717 udf_err(sb, "too many Volume Descriptor " 1718 "Pointers (max %u supported)\n", 1719 UDF_MAX_TD_NESTING); 1720 brelse(bh); 1721 ret = -EIO; 1722 goto out; 1723 } 1724 1725 vdp = (struct volDescPtr *)bh->b_data; 1726 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1727 lastblock = le32_to_cpu( 1728 vdp->nextVolDescSeqExt.extLength) >> 1729 sb->s_blocksize_bits; 1730 lastblock += block - 1; 1731 /* For loop is going to increment 'block' again */ 1732 block--; 1733 break; 1734 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1735 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1736 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1737 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1738 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1739 curr = get_volume_descriptor_record(ident, bh, &data); 1740 if (IS_ERR(curr)) { 1741 brelse(bh); 1742 ret = PTR_ERR(curr); 1743 goto out; 1744 } 1745 /* Descriptor we don't care about? */ 1746 if (!curr) 1747 break; 1748 if (vdsn >= curr->volDescSeqNum) { 1749 curr->volDescSeqNum = vdsn; 1750 curr->block = block; 1751 } 1752 break; 1753 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1754 done = true; 1755 break; 1756 } 1757 brelse(bh); 1758 } 1759 /* 1760 * Now read interesting descriptors again and process them 1761 * in a suitable order 1762 */ 1763 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1764 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1765 ret = -EAGAIN; 1766 goto out; 1767 } 1768 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1769 if (ret < 0) 1770 goto out; 1771 1772 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1773 ret = udf_load_logicalvol(sb, 1774 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1775 fileset); 1776 if (ret < 0) 1777 goto out; 1778 } 1779 1780 /* Now handle prevailing Partition Descriptors */ 1781 for (i = 0; i < data.num_part_descs; i++) { 1782 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1783 if (ret < 0) 1784 goto out; 1785 } 1786 ret = 0; 1787 out: 1788 kfree(data.part_descs_loc); 1789 return ret; 1790 } 1791 1792 /* 1793 * Load Volume Descriptor Sequence described by anchor in bh 1794 * 1795 * Returns <0 on error, 0 on success 1796 */ 1797 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1798 struct kernel_lb_addr *fileset) 1799 { 1800 struct anchorVolDescPtr *anchor; 1801 sector_t main_s, main_e, reserve_s, reserve_e; 1802 int ret; 1803 1804 anchor = (struct anchorVolDescPtr *)bh->b_data; 1805 1806 /* Locate the main sequence */ 1807 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1808 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1809 main_e = main_e >> sb->s_blocksize_bits; 1810 main_e += main_s - 1; 1811 1812 /* Locate the reserve sequence */ 1813 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1814 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1815 reserve_e = reserve_e >> sb->s_blocksize_bits; 1816 reserve_e += reserve_s - 1; 1817 1818 /* Process the main & reserve sequences */ 1819 /* responsible for finding the PartitionDesc(s) */ 1820 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1821 if (ret != -EAGAIN) 1822 return ret; 1823 udf_sb_free_partitions(sb); 1824 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1825 if (ret < 0) { 1826 udf_sb_free_partitions(sb); 1827 /* No sequence was OK, return -EIO */ 1828 if (ret == -EAGAIN) 1829 ret = -EIO; 1830 } 1831 return ret; 1832 } 1833 1834 /* 1835 * Check whether there is an anchor block in the given block and 1836 * load Volume Descriptor Sequence if so. 1837 * 1838 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1839 * block 1840 */ 1841 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1842 struct kernel_lb_addr *fileset) 1843 { 1844 struct buffer_head *bh; 1845 uint16_t ident; 1846 int ret; 1847 1848 bh = udf_read_tagged(sb, block, block, &ident); 1849 if (!bh) 1850 return -EAGAIN; 1851 if (ident != TAG_IDENT_AVDP) { 1852 brelse(bh); 1853 return -EAGAIN; 1854 } 1855 ret = udf_load_sequence(sb, bh, fileset); 1856 brelse(bh); 1857 return ret; 1858 } 1859 1860 /* 1861 * Search for an anchor volume descriptor pointer. 1862 * 1863 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1864 * of anchors. 1865 */ 1866 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock, 1867 struct kernel_lb_addr *fileset) 1868 { 1869 udf_pblk_t last[6]; 1870 int i; 1871 struct udf_sb_info *sbi = UDF_SB(sb); 1872 int last_count = 0; 1873 int ret; 1874 1875 /* First try user provided anchor */ 1876 if (sbi->s_anchor) { 1877 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1878 if (ret != -EAGAIN) 1879 return ret; 1880 } 1881 /* 1882 * according to spec, anchor is in either: 1883 * block 256 1884 * lastblock-256 1885 * lastblock 1886 * however, if the disc isn't closed, it could be 512. 1887 */ 1888 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1889 if (ret != -EAGAIN) 1890 return ret; 1891 /* 1892 * The trouble is which block is the last one. Drives often misreport 1893 * this so we try various possibilities. 1894 */ 1895 last[last_count++] = *lastblock; 1896 if (*lastblock >= 1) 1897 last[last_count++] = *lastblock - 1; 1898 last[last_count++] = *lastblock + 1; 1899 if (*lastblock >= 2) 1900 last[last_count++] = *lastblock - 2; 1901 if (*lastblock >= 150) 1902 last[last_count++] = *lastblock - 150; 1903 if (*lastblock >= 152) 1904 last[last_count++] = *lastblock - 152; 1905 1906 for (i = 0; i < last_count; i++) { 1907 if (last[i] >= sb_bdev_nr_blocks(sb)) 1908 continue; 1909 ret = udf_check_anchor_block(sb, last[i], fileset); 1910 if (ret != -EAGAIN) { 1911 if (!ret) 1912 *lastblock = last[i]; 1913 return ret; 1914 } 1915 if (last[i] < 256) 1916 continue; 1917 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1918 if (ret != -EAGAIN) { 1919 if (!ret) 1920 *lastblock = last[i]; 1921 return ret; 1922 } 1923 } 1924 1925 /* Finally try block 512 in case media is open */ 1926 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1927 } 1928 1929 /* 1930 * Check Volume Structure Descriptor, find Anchor block and load Volume 1931 * Descriptor Sequence. 1932 * 1933 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1934 * block was not found. 1935 */ 1936 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1937 int silent, struct kernel_lb_addr *fileset) 1938 { 1939 struct udf_sb_info *sbi = UDF_SB(sb); 1940 int nsr = 0; 1941 int ret; 1942 1943 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1944 if (!silent) 1945 udf_warn(sb, "Bad block size\n"); 1946 return -EINVAL; 1947 } 1948 sbi->s_last_block = uopt->lastblock; 1949 if (!uopt->novrs) { 1950 /* Check that it is NSR02 compliant */ 1951 nsr = udf_check_vsd(sb); 1952 if (!nsr) { 1953 if (!silent) 1954 udf_warn(sb, "No VRS found\n"); 1955 return -EINVAL; 1956 } 1957 if (nsr == -1) 1958 udf_debug("Failed to read sector at offset %d. " 1959 "Assuming open disc. Skipping validity " 1960 "check\n", VSD_FIRST_SECTOR_OFFSET); 1961 if (!sbi->s_last_block) 1962 sbi->s_last_block = udf_get_last_block(sb); 1963 } else { 1964 udf_debug("Validity check skipped because of novrs option\n"); 1965 } 1966 1967 /* Look for anchor block and load Volume Descriptor Sequence */ 1968 sbi->s_anchor = uopt->anchor; 1969 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset); 1970 if (ret < 0) { 1971 if (!silent && ret == -EAGAIN) 1972 udf_warn(sb, "No anchor found\n"); 1973 return ret; 1974 } 1975 return 0; 1976 } 1977 1978 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 1979 { 1980 struct timespec64 ts; 1981 1982 ktime_get_real_ts64(&ts); 1983 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1984 lvid->descTag.descCRC = cpu_to_le16( 1985 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1986 le16_to_cpu(lvid->descTag.descCRCLength))); 1987 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1988 } 1989 1990 static void udf_open_lvid(struct super_block *sb) 1991 { 1992 struct udf_sb_info *sbi = UDF_SB(sb); 1993 struct buffer_head *bh = sbi->s_lvid_bh; 1994 struct logicalVolIntegrityDesc *lvid; 1995 struct logicalVolIntegrityDescImpUse *lvidiu; 1996 1997 if (!bh) 1998 return; 1999 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2000 lvidiu = udf_sb_lvidiu(sb); 2001 if (!lvidiu) 2002 return; 2003 2004 mutex_lock(&sbi->s_alloc_mutex); 2005 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2006 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2007 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2008 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2009 else 2010 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2011 2012 udf_finalize_lvid(lvid); 2013 mark_buffer_dirty(bh); 2014 sbi->s_lvid_dirty = 0; 2015 mutex_unlock(&sbi->s_alloc_mutex); 2016 /* Make opening of filesystem visible on the media immediately */ 2017 sync_dirty_buffer(bh); 2018 } 2019 2020 static void udf_close_lvid(struct super_block *sb) 2021 { 2022 struct udf_sb_info *sbi = UDF_SB(sb); 2023 struct buffer_head *bh = sbi->s_lvid_bh; 2024 struct logicalVolIntegrityDesc *lvid; 2025 struct logicalVolIntegrityDescImpUse *lvidiu; 2026 2027 if (!bh) 2028 return; 2029 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2030 lvidiu = udf_sb_lvidiu(sb); 2031 if (!lvidiu) 2032 return; 2033 2034 mutex_lock(&sbi->s_alloc_mutex); 2035 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2036 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2037 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2038 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2039 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2040 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2041 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2042 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2043 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2044 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2045 2046 /* 2047 * We set buffer uptodate unconditionally here to avoid spurious 2048 * warnings from mark_buffer_dirty() when previous EIO has marked 2049 * the buffer as !uptodate 2050 */ 2051 set_buffer_uptodate(bh); 2052 udf_finalize_lvid(lvid); 2053 mark_buffer_dirty(bh); 2054 sbi->s_lvid_dirty = 0; 2055 mutex_unlock(&sbi->s_alloc_mutex); 2056 /* Make closing of filesystem visible on the media immediately */ 2057 sync_dirty_buffer(bh); 2058 } 2059 2060 u64 lvid_get_unique_id(struct super_block *sb) 2061 { 2062 struct buffer_head *bh; 2063 struct udf_sb_info *sbi = UDF_SB(sb); 2064 struct logicalVolIntegrityDesc *lvid; 2065 struct logicalVolHeaderDesc *lvhd; 2066 u64 uniqueID; 2067 u64 ret; 2068 2069 bh = sbi->s_lvid_bh; 2070 if (!bh) 2071 return 0; 2072 2073 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2074 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2075 2076 mutex_lock(&sbi->s_alloc_mutex); 2077 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2078 if (!(++uniqueID & 0xFFFFFFFF)) 2079 uniqueID += 16; 2080 lvhd->uniqueID = cpu_to_le64(uniqueID); 2081 udf_updated_lvid(sb); 2082 mutex_unlock(&sbi->s_alloc_mutex); 2083 2084 return ret; 2085 } 2086 2087 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2088 { 2089 int ret = -EINVAL; 2090 struct inode *inode = NULL; 2091 struct udf_options uopt; 2092 struct kernel_lb_addr rootdir, fileset; 2093 struct udf_sb_info *sbi; 2094 bool lvid_open = false; 2095 2096 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2097 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2098 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2099 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2100 uopt.umask = 0; 2101 uopt.fmode = UDF_INVALID_MODE; 2102 uopt.dmode = UDF_INVALID_MODE; 2103 uopt.nls_map = NULL; 2104 2105 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2106 if (!sbi) 2107 return -ENOMEM; 2108 2109 sb->s_fs_info = sbi; 2110 2111 mutex_init(&sbi->s_alloc_mutex); 2112 2113 if (!udf_parse_options((char *)options, &uopt, false)) 2114 goto parse_options_failure; 2115 2116 fileset.logicalBlockNum = 0xFFFFFFFF; 2117 fileset.partitionReferenceNum = 0xFFFF; 2118 2119 sbi->s_flags = uopt.flags; 2120 sbi->s_uid = uopt.uid; 2121 sbi->s_gid = uopt.gid; 2122 sbi->s_umask = uopt.umask; 2123 sbi->s_fmode = uopt.fmode; 2124 sbi->s_dmode = uopt.dmode; 2125 sbi->s_nls_map = uopt.nls_map; 2126 rwlock_init(&sbi->s_cred_lock); 2127 2128 if (uopt.session == 0xFFFFFFFF) 2129 sbi->s_session = udf_get_last_session(sb); 2130 else 2131 sbi->s_session = uopt.session; 2132 2133 udf_debug("Multi-session=%d\n", sbi->s_session); 2134 2135 /* Fill in the rest of the superblock */ 2136 sb->s_op = &udf_sb_ops; 2137 sb->s_export_op = &udf_export_ops; 2138 2139 sb->s_magic = UDF_SUPER_MAGIC; 2140 sb->s_time_gran = 1000; 2141 2142 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2143 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2144 } else { 2145 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2146 while (uopt.blocksize <= 4096) { 2147 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2148 if (ret < 0) { 2149 if (!silent && ret != -EACCES) { 2150 pr_notice("Scanning with blocksize %u failed\n", 2151 uopt.blocksize); 2152 } 2153 brelse(sbi->s_lvid_bh); 2154 sbi->s_lvid_bh = NULL; 2155 /* 2156 * EACCES is special - we want to propagate to 2157 * upper layers that we cannot handle RW mount. 2158 */ 2159 if (ret == -EACCES) 2160 break; 2161 } else 2162 break; 2163 2164 uopt.blocksize <<= 1; 2165 } 2166 } 2167 if (ret < 0) { 2168 if (ret == -EAGAIN) { 2169 udf_warn(sb, "No partition found (1)\n"); 2170 ret = -EINVAL; 2171 } 2172 goto error_out; 2173 } 2174 2175 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2176 2177 if (sbi->s_lvid_bh) { 2178 struct logicalVolIntegrityDescImpUse *lvidiu = 2179 udf_sb_lvidiu(sb); 2180 uint16_t minUDFReadRev; 2181 uint16_t minUDFWriteRev; 2182 2183 if (!lvidiu) { 2184 ret = -EINVAL; 2185 goto error_out; 2186 } 2187 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2188 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2189 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2190 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2191 minUDFReadRev, 2192 UDF_MAX_READ_VERSION); 2193 ret = -EINVAL; 2194 goto error_out; 2195 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2196 if (!sb_rdonly(sb)) { 2197 ret = -EACCES; 2198 goto error_out; 2199 } 2200 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2201 } 2202 2203 sbi->s_udfrev = minUDFWriteRev; 2204 2205 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2206 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2207 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2208 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2209 } 2210 2211 if (!sbi->s_partitions) { 2212 udf_warn(sb, "No partition found (2)\n"); 2213 ret = -EINVAL; 2214 goto error_out; 2215 } 2216 2217 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2218 UDF_PART_FLAG_READ_ONLY) { 2219 if (!sb_rdonly(sb)) { 2220 ret = -EACCES; 2221 goto error_out; 2222 } 2223 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2224 } 2225 2226 ret = udf_find_fileset(sb, &fileset, &rootdir); 2227 if (ret < 0) { 2228 udf_warn(sb, "No fileset found\n"); 2229 goto error_out; 2230 } 2231 2232 if (!silent) { 2233 struct timestamp ts; 2234 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2235 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2236 sbi->s_volume_ident, 2237 le16_to_cpu(ts.year), ts.month, ts.day, 2238 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2239 } 2240 if (!sb_rdonly(sb)) { 2241 udf_open_lvid(sb); 2242 lvid_open = true; 2243 } 2244 2245 /* Assign the root inode */ 2246 /* assign inodes by physical block number */ 2247 /* perhaps it's not extensible enough, but for now ... */ 2248 inode = udf_iget(sb, &rootdir); 2249 if (IS_ERR(inode)) { 2250 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2251 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2252 ret = PTR_ERR(inode); 2253 goto error_out; 2254 } 2255 2256 /* Allocate a dentry for the root inode */ 2257 sb->s_root = d_make_root(inode); 2258 if (!sb->s_root) { 2259 udf_err(sb, "Couldn't allocate root dentry\n"); 2260 ret = -ENOMEM; 2261 goto error_out; 2262 } 2263 sb->s_maxbytes = UDF_MAX_FILESIZE; 2264 sb->s_max_links = UDF_MAX_LINKS; 2265 return 0; 2266 2267 error_out: 2268 iput(sbi->s_vat_inode); 2269 parse_options_failure: 2270 unload_nls(uopt.nls_map); 2271 if (lvid_open) 2272 udf_close_lvid(sb); 2273 brelse(sbi->s_lvid_bh); 2274 udf_sb_free_partitions(sb); 2275 kfree(sbi); 2276 sb->s_fs_info = NULL; 2277 2278 return ret; 2279 } 2280 2281 void _udf_err(struct super_block *sb, const char *function, 2282 const char *fmt, ...) 2283 { 2284 struct va_format vaf; 2285 va_list args; 2286 2287 va_start(args, fmt); 2288 2289 vaf.fmt = fmt; 2290 vaf.va = &args; 2291 2292 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2293 2294 va_end(args); 2295 } 2296 2297 void _udf_warn(struct super_block *sb, const char *function, 2298 const char *fmt, ...) 2299 { 2300 struct va_format vaf; 2301 va_list args; 2302 2303 va_start(args, fmt); 2304 2305 vaf.fmt = fmt; 2306 vaf.va = &args; 2307 2308 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2309 2310 va_end(args); 2311 } 2312 2313 static void udf_put_super(struct super_block *sb) 2314 { 2315 struct udf_sb_info *sbi; 2316 2317 sbi = UDF_SB(sb); 2318 2319 iput(sbi->s_vat_inode); 2320 unload_nls(sbi->s_nls_map); 2321 if (!sb_rdonly(sb)) 2322 udf_close_lvid(sb); 2323 brelse(sbi->s_lvid_bh); 2324 udf_sb_free_partitions(sb); 2325 mutex_destroy(&sbi->s_alloc_mutex); 2326 kfree(sb->s_fs_info); 2327 sb->s_fs_info = NULL; 2328 } 2329 2330 static int udf_sync_fs(struct super_block *sb, int wait) 2331 { 2332 struct udf_sb_info *sbi = UDF_SB(sb); 2333 2334 mutex_lock(&sbi->s_alloc_mutex); 2335 if (sbi->s_lvid_dirty) { 2336 struct buffer_head *bh = sbi->s_lvid_bh; 2337 struct logicalVolIntegrityDesc *lvid; 2338 2339 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2340 udf_finalize_lvid(lvid); 2341 2342 /* 2343 * Blockdevice will be synced later so we don't have to submit 2344 * the buffer for IO 2345 */ 2346 mark_buffer_dirty(bh); 2347 sbi->s_lvid_dirty = 0; 2348 } 2349 mutex_unlock(&sbi->s_alloc_mutex); 2350 2351 return 0; 2352 } 2353 2354 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2355 { 2356 struct super_block *sb = dentry->d_sb; 2357 struct udf_sb_info *sbi = UDF_SB(sb); 2358 struct logicalVolIntegrityDescImpUse *lvidiu; 2359 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2360 2361 lvidiu = udf_sb_lvidiu(sb); 2362 buf->f_type = UDF_SUPER_MAGIC; 2363 buf->f_bsize = sb->s_blocksize; 2364 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2365 buf->f_bfree = udf_count_free(sb); 2366 buf->f_bavail = buf->f_bfree; 2367 /* 2368 * Let's pretend each free block is also a free 'inode' since UDF does 2369 * not have separate preallocated table of inodes. 2370 */ 2371 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2372 le32_to_cpu(lvidiu->numDirs)) : 0) 2373 + buf->f_bfree; 2374 buf->f_ffree = buf->f_bfree; 2375 buf->f_namelen = UDF_NAME_LEN; 2376 buf->f_fsid = u64_to_fsid(id); 2377 2378 return 0; 2379 } 2380 2381 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2382 struct udf_bitmap *bitmap) 2383 { 2384 struct buffer_head *bh = NULL; 2385 unsigned int accum = 0; 2386 int index; 2387 udf_pblk_t block = 0, newblock; 2388 struct kernel_lb_addr loc; 2389 uint32_t bytes; 2390 uint8_t *ptr; 2391 uint16_t ident; 2392 struct spaceBitmapDesc *bm; 2393 2394 loc.logicalBlockNum = bitmap->s_extPosition; 2395 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2396 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2397 2398 if (!bh) { 2399 udf_err(sb, "udf_count_free failed\n"); 2400 goto out; 2401 } else if (ident != TAG_IDENT_SBD) { 2402 brelse(bh); 2403 udf_err(sb, "udf_count_free failed\n"); 2404 goto out; 2405 } 2406 2407 bm = (struct spaceBitmapDesc *)bh->b_data; 2408 bytes = le32_to_cpu(bm->numOfBytes); 2409 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2410 ptr = (uint8_t *)bh->b_data; 2411 2412 while (bytes > 0) { 2413 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2414 accum += bitmap_weight((const unsigned long *)(ptr + index), 2415 cur_bytes * 8); 2416 bytes -= cur_bytes; 2417 if (bytes) { 2418 brelse(bh); 2419 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2420 bh = sb_bread(sb, newblock); 2421 if (!bh) { 2422 udf_debug("read failed\n"); 2423 goto out; 2424 } 2425 index = 0; 2426 ptr = (uint8_t *)bh->b_data; 2427 } 2428 } 2429 brelse(bh); 2430 out: 2431 return accum; 2432 } 2433 2434 static unsigned int udf_count_free_table(struct super_block *sb, 2435 struct inode *table) 2436 { 2437 unsigned int accum = 0; 2438 uint32_t elen; 2439 struct kernel_lb_addr eloc; 2440 struct extent_position epos; 2441 2442 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2443 epos.block = UDF_I(table)->i_location; 2444 epos.offset = sizeof(struct unallocSpaceEntry); 2445 epos.bh = NULL; 2446 2447 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1) 2448 accum += (elen >> table->i_sb->s_blocksize_bits); 2449 2450 brelse(epos.bh); 2451 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2452 2453 return accum; 2454 } 2455 2456 static unsigned int udf_count_free(struct super_block *sb) 2457 { 2458 unsigned int accum = 0; 2459 struct udf_sb_info *sbi = UDF_SB(sb); 2460 struct udf_part_map *map; 2461 unsigned int part = sbi->s_partition; 2462 int ptype = sbi->s_partmaps[part].s_partition_type; 2463 2464 if (ptype == UDF_METADATA_MAP25) { 2465 part = sbi->s_partmaps[part].s_type_specific.s_metadata. 2466 s_phys_partition_ref; 2467 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { 2468 /* 2469 * Filesystems with VAT are append-only and we cannot write to 2470 * them. Let's just report 0 here. 2471 */ 2472 return 0; 2473 } 2474 2475 if (sbi->s_lvid_bh) { 2476 struct logicalVolIntegrityDesc *lvid = 2477 (struct logicalVolIntegrityDesc *) 2478 sbi->s_lvid_bh->b_data; 2479 if (le32_to_cpu(lvid->numOfPartitions) > part) { 2480 accum = le32_to_cpu( 2481 lvid->freeSpaceTable[part]); 2482 if (accum == 0xFFFFFFFF) 2483 accum = 0; 2484 } 2485 } 2486 2487 if (accum) 2488 return accum; 2489 2490 map = &sbi->s_partmaps[part]; 2491 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2492 accum += udf_count_free_bitmap(sb, 2493 map->s_uspace.s_bitmap); 2494 } 2495 if (accum) 2496 return accum; 2497 2498 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2499 accum += udf_count_free_table(sb, 2500 map->s_uspace.s_table); 2501 } 2502 return accum; 2503 } 2504 2505 MODULE_AUTHOR("Ben Fennema"); 2506 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2507 MODULE_LICENSE("GPL"); 2508 module_init(init_udf_fs) 2509 module_exit(exit_udf_fs) 2510