xref: /openbmc/linux/fs/udf/super.c (revision abe9af53)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100 
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 	struct logicalVolIntegrityDesc *lvid;
104 	unsigned int partnum;
105 	unsigned int offset;
106 
107 	if (!UDF_SB(sb)->s_lvid_bh)
108 		return NULL;
109 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 	partnum = le32_to_cpu(lvid->numOfPartitions);
111 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
113 	     (2 * sizeof(uint32_t)) < partnum) {
114 		udf_err(sb, "Logical volume integrity descriptor corrupted "
115 			"(numOfPartitions = %u)!\n", partnum);
116 		return NULL;
117 	}
118 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
119 	offset = partnum * 2 * sizeof(uint32_t);
120 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
121 }
122 
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125 		      int flags, const char *dev_name, void *data)
126 {
127 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
128 }
129 
130 static struct file_system_type udf_fstype = {
131 	.owner		= THIS_MODULE,
132 	.name		= "udf",
133 	.mount		= udf_mount,
134 	.kill_sb	= kill_block_super,
135 	.fs_flags	= FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("udf");
138 
139 static struct kmem_cache *udf_inode_cachep;
140 
141 static struct inode *udf_alloc_inode(struct super_block *sb)
142 {
143 	struct udf_inode_info *ei;
144 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145 	if (!ei)
146 		return NULL;
147 
148 	ei->i_unique = 0;
149 	ei->i_lenExtents = 0;
150 	ei->i_lenStreams = 0;
151 	ei->i_next_alloc_block = 0;
152 	ei->i_next_alloc_goal = 0;
153 	ei->i_strat4096 = 0;
154 	ei->i_streamdir = 0;
155 	init_rwsem(&ei->i_data_sem);
156 	ei->cached_extent.lstart = -1;
157 	spin_lock_init(&ei->i_extent_cache_lock);
158 
159 	return &ei->vfs_inode;
160 }
161 
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166 
167 static void init_once(void *foo)
168 {
169 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170 
171 	ei->i_data = NULL;
172 	inode_init_once(&ei->vfs_inode);
173 }
174 
175 static int __init init_inodecache(void)
176 {
177 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178 					     sizeof(struct udf_inode_info),
179 					     0, (SLAB_RECLAIM_ACCOUNT |
180 						 SLAB_MEM_SPREAD |
181 						 SLAB_ACCOUNT),
182 					     init_once);
183 	if (!udf_inode_cachep)
184 		return -ENOMEM;
185 	return 0;
186 }
187 
188 static void destroy_inodecache(void)
189 {
190 	/*
191 	 * Make sure all delayed rcu free inodes are flushed before we
192 	 * destroy cache.
193 	 */
194 	rcu_barrier();
195 	kmem_cache_destroy(udf_inode_cachep);
196 }
197 
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200 	.alloc_inode	= udf_alloc_inode,
201 	.free_inode	= udf_free_in_core_inode,
202 	.write_inode	= udf_write_inode,
203 	.evict_inode	= udf_evict_inode,
204 	.put_super	= udf_put_super,
205 	.sync_fs	= udf_sync_fs,
206 	.statfs		= udf_statfs,
207 	.remount_fs	= udf_remount_fs,
208 	.show_options	= udf_show_options,
209 };
210 
211 struct udf_options {
212 	unsigned char novrs;
213 	unsigned int blocksize;
214 	unsigned int session;
215 	unsigned int lastblock;
216 	unsigned int anchor;
217 	unsigned int flags;
218 	umode_t umask;
219 	kgid_t gid;
220 	kuid_t uid;
221 	umode_t fmode;
222 	umode_t dmode;
223 	struct nls_table *nls_map;
224 };
225 
226 static int __init init_udf_fs(void)
227 {
228 	int err;
229 
230 	err = init_inodecache();
231 	if (err)
232 		goto out1;
233 	err = register_filesystem(&udf_fstype);
234 	if (err)
235 		goto out;
236 
237 	return 0;
238 
239 out:
240 	destroy_inodecache();
241 
242 out1:
243 	return err;
244 }
245 
246 static void __exit exit_udf_fs(void)
247 {
248 	unregister_filesystem(&udf_fstype);
249 	destroy_inodecache();
250 }
251 
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254 	struct udf_sb_info *sbi = UDF_SB(sb);
255 
256 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257 	if (!sbi->s_partmaps) {
258 		sbi->s_partitions = 0;
259 		return -ENOMEM;
260 	}
261 
262 	sbi->s_partitions = count;
263 	return 0;
264 }
265 
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268 	int i;
269 	int nr_groups = bitmap->s_nr_groups;
270 
271 	for (i = 0; i < nr_groups; i++)
272 		brelse(bitmap->s_block_bitmap[i]);
273 
274 	kvfree(bitmap);
275 }
276 
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279 	int i;
280 	struct udf_meta_data *mdata;
281 
282 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 		iput(map->s_uspace.s_table);
284 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
287 		for (i = 0; i < 4; i++)
288 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
290 		mdata = &map->s_type_specific.s_metadata;
291 		iput(mdata->s_metadata_fe);
292 		mdata->s_metadata_fe = NULL;
293 
294 		iput(mdata->s_mirror_fe);
295 		mdata->s_mirror_fe = NULL;
296 
297 		iput(mdata->s_bitmap_fe);
298 		mdata->s_bitmap_fe = NULL;
299 	}
300 }
301 
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304 	struct udf_sb_info *sbi = UDF_SB(sb);
305 	int i;
306 
307 	if (!sbi->s_partmaps)
308 		return;
309 	for (i = 0; i < sbi->s_partitions; i++)
310 		udf_free_partition(&sbi->s_partmaps[i]);
311 	kfree(sbi->s_partmaps);
312 	sbi->s_partmaps = NULL;
313 }
314 
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317 	struct super_block *sb = root->d_sb;
318 	struct udf_sb_info *sbi = UDF_SB(sb);
319 
320 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321 		seq_puts(seq, ",nostrict");
322 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325 		seq_puts(seq, ",unhide");
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327 		seq_puts(seq, ",undelete");
328 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329 		seq_puts(seq, ",noadinicb");
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331 		seq_puts(seq, ",shortad");
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333 		seq_puts(seq, ",uid=forget");
334 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335 		seq_puts(seq, ",gid=forget");
336 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340 	if (sbi->s_umask != 0)
341 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
342 	if (sbi->s_fmode != UDF_INVALID_MODE)
343 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344 	if (sbi->s_dmode != UDF_INVALID_MODE)
345 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347 		seq_printf(seq, ",session=%d", sbi->s_session);
348 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350 	if (sbi->s_anchor != 0)
351 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353 		seq_puts(seq, ",utf8");
354 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
356 
357 	return 0;
358 }
359 
360 /*
361  * udf_parse_options
362  *
363  * PURPOSE
364  *	Parse mount options.
365  *
366  * DESCRIPTION
367  *	The following mount options are supported:
368  *
369  *	gid=		Set the default group.
370  *	umask=		Set the default umask.
371  *	mode=		Set the default file permissions.
372  *	dmode=		Set the default directory permissions.
373  *	uid=		Set the default user.
374  *	bs=		Set the block size.
375  *	unhide		Show otherwise hidden files.
376  *	undelete	Show deleted files in lists.
377  *	adinicb		Embed data in the inode (default)
378  *	noadinicb	Don't embed data in the inode
379  *	shortad		Use short ad's
380  *	longad		Use long ad's (default)
381  *	nostrict	Unset strict conformance
382  *	iocharset=	Set the NLS character set
383  *
384  *	The remaining are for debugging and disaster recovery:
385  *
386  *	novrs		Skip volume sequence recognition
387  *
388  *	The following expect a offset from 0.
389  *
390  *	session=	Set the CDROM session (default= last session)
391  *	anchor=		Override standard anchor location. (default= 256)
392  *	volume=		Override the VolumeDesc location. (unused)
393  *	partition=	Override the PartitionDesc location. (unused)
394  *	lastblock=	Set the last block of the filesystem/
395  *
396  *	The following expect a offset from the partition root.
397  *
398  *	fileset=	Override the fileset block location. (unused)
399  *	rootdir=	Override the root directory location. (unused)
400  *		WARNING: overriding the rootdir to a non-directory may
401  *		yield highly unpredictable results.
402  *
403  * PRE-CONDITIONS
404  *	options		Pointer to mount options string.
405  *	uopts		Pointer to mount options variable.
406  *
407  * POST-CONDITIONS
408  *	<return>	1	Mount options parsed okay.
409  *	<return>	0	Error parsing mount options.
410  *
411  * HISTORY
412  *	July 1, 1997 - Andrew E. Mileski
413  *	Written, tested, and released.
414  */
415 
416 enum {
417 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421 	Opt_rootdir, Opt_utf8, Opt_iocharset,
422 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423 	Opt_fmode, Opt_dmode
424 };
425 
426 static const match_table_t tokens = {
427 	{Opt_novrs,	"novrs"},
428 	{Opt_nostrict,	"nostrict"},
429 	{Opt_bs,	"bs=%u"},
430 	{Opt_unhide,	"unhide"},
431 	{Opt_undelete,	"undelete"},
432 	{Opt_noadinicb,	"noadinicb"},
433 	{Opt_adinicb,	"adinicb"},
434 	{Opt_shortad,	"shortad"},
435 	{Opt_longad,	"longad"},
436 	{Opt_uforget,	"uid=forget"},
437 	{Opt_uignore,	"uid=ignore"},
438 	{Opt_gforget,	"gid=forget"},
439 	{Opt_gignore,	"gid=ignore"},
440 	{Opt_gid,	"gid=%u"},
441 	{Opt_uid,	"uid=%u"},
442 	{Opt_umask,	"umask=%o"},
443 	{Opt_session,	"session=%u"},
444 	{Opt_lastblock,	"lastblock=%u"},
445 	{Opt_anchor,	"anchor=%u"},
446 	{Opt_volume,	"volume=%u"},
447 	{Opt_partition,	"partition=%u"},
448 	{Opt_fileset,	"fileset=%u"},
449 	{Opt_rootdir,	"rootdir=%u"},
450 	{Opt_utf8,	"utf8"},
451 	{Opt_iocharset,	"iocharset=%s"},
452 	{Opt_fmode,     "mode=%o"},
453 	{Opt_dmode,     "dmode=%o"},
454 	{Opt_err,	NULL}
455 };
456 
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458 			     bool remount)
459 {
460 	char *p;
461 	int option;
462 
463 	uopt->novrs = 0;
464 	uopt->session = 0xFFFFFFFF;
465 	uopt->lastblock = 0;
466 	uopt->anchor = 0;
467 
468 	if (!options)
469 		return 1;
470 
471 	while ((p = strsep(&options, ",")) != NULL) {
472 		substring_t args[MAX_OPT_ARGS];
473 		int token;
474 		unsigned n;
475 		if (!*p)
476 			continue;
477 
478 		token = match_token(p, tokens, args);
479 		switch (token) {
480 		case Opt_novrs:
481 			uopt->novrs = 1;
482 			break;
483 		case Opt_bs:
484 			if (match_int(&args[0], &option))
485 				return 0;
486 			n = option;
487 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
488 				return 0;
489 			uopt->blocksize = n;
490 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
491 			break;
492 		case Opt_unhide:
493 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
494 			break;
495 		case Opt_undelete:
496 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
497 			break;
498 		case Opt_noadinicb:
499 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
500 			break;
501 		case Opt_adinicb:
502 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
503 			break;
504 		case Opt_shortad:
505 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
506 			break;
507 		case Opt_longad:
508 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
509 			break;
510 		case Opt_gid:
511 			if (match_int(args, &option))
512 				return 0;
513 			uopt->gid = make_kgid(current_user_ns(), option);
514 			if (!gid_valid(uopt->gid))
515 				return 0;
516 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
517 			break;
518 		case Opt_uid:
519 			if (match_int(args, &option))
520 				return 0;
521 			uopt->uid = make_kuid(current_user_ns(), option);
522 			if (!uid_valid(uopt->uid))
523 				return 0;
524 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
525 			break;
526 		case Opt_umask:
527 			if (match_octal(args, &option))
528 				return 0;
529 			uopt->umask = option;
530 			break;
531 		case Opt_nostrict:
532 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
533 			break;
534 		case Opt_session:
535 			if (match_int(args, &option))
536 				return 0;
537 			uopt->session = option;
538 			if (!remount)
539 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
540 			break;
541 		case Opt_lastblock:
542 			if (match_int(args, &option))
543 				return 0;
544 			uopt->lastblock = option;
545 			if (!remount)
546 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
547 			break;
548 		case Opt_anchor:
549 			if (match_int(args, &option))
550 				return 0;
551 			uopt->anchor = option;
552 			break;
553 		case Opt_volume:
554 		case Opt_partition:
555 		case Opt_fileset:
556 		case Opt_rootdir:
557 			/* Ignored (never implemented properly) */
558 			break;
559 		case Opt_utf8:
560 			uopt->flags |= (1 << UDF_FLAG_UTF8);
561 			break;
562 		case Opt_iocharset:
563 			if (!remount) {
564 				if (uopt->nls_map)
565 					unload_nls(uopt->nls_map);
566 				/*
567 				 * load_nls() failure is handled later in
568 				 * udf_fill_super() after all options are
569 				 * parsed.
570 				 */
571 				uopt->nls_map = load_nls(args[0].from);
572 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
573 			}
574 			break;
575 		case Opt_uforget:
576 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577 			break;
578 		case Opt_uignore:
579 		case Opt_gignore:
580 			/* These options are superseeded by uid=<number> */
581 			break;
582 		case Opt_gforget:
583 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584 			break;
585 		case Opt_fmode:
586 			if (match_octal(args, &option))
587 				return 0;
588 			uopt->fmode = option & 0777;
589 			break;
590 		case Opt_dmode:
591 			if (match_octal(args, &option))
592 				return 0;
593 			uopt->dmode = option & 0777;
594 			break;
595 		default:
596 			pr_err("bad mount option \"%s\" or missing value\n", p);
597 			return 0;
598 		}
599 	}
600 	return 1;
601 }
602 
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605 	struct udf_options uopt;
606 	struct udf_sb_info *sbi = UDF_SB(sb);
607 	int error = 0;
608 
609 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610 		return -EACCES;
611 
612 	sync_filesystem(sb);
613 
614 	uopt.flags = sbi->s_flags;
615 	uopt.uid   = sbi->s_uid;
616 	uopt.gid   = sbi->s_gid;
617 	uopt.umask = sbi->s_umask;
618 	uopt.fmode = sbi->s_fmode;
619 	uopt.dmode = sbi->s_dmode;
620 	uopt.nls_map = NULL;
621 
622 	if (!udf_parse_options(options, &uopt, true))
623 		return -EINVAL;
624 
625 	write_lock(&sbi->s_cred_lock);
626 	sbi->s_flags = uopt.flags;
627 	sbi->s_uid   = uopt.uid;
628 	sbi->s_gid   = uopt.gid;
629 	sbi->s_umask = uopt.umask;
630 	sbi->s_fmode = uopt.fmode;
631 	sbi->s_dmode = uopt.dmode;
632 	write_unlock(&sbi->s_cred_lock);
633 
634 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635 		goto out_unlock;
636 
637 	if (*flags & SB_RDONLY)
638 		udf_close_lvid(sb);
639 	else
640 		udf_open_lvid(sb);
641 
642 out_unlock:
643 	return error;
644 }
645 
646 /*
647  * Check VSD descriptor. Returns -1 in case we are at the end of volume
648  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649  * we found one of NSR descriptors we are looking for.
650  */
651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653 	int ret = 0;
654 
655 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656 		switch (vsd->structType) {
657 		case 0:
658 			udf_debug("ISO9660 Boot Record found\n");
659 			break;
660 		case 1:
661 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
662 			break;
663 		case 2:
664 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665 			break;
666 		case 3:
667 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
668 			break;
669 		case 255:
670 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671 			break;
672 		default:
673 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674 			break;
675 		}
676 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677 		; /* ret = 0 */
678 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679 		ret = 1;
680 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681 		ret = 1;
682 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683 		; /* ret = 0 */
684 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685 		; /* ret = 0 */
686 	else {
687 		/* TEA01 or invalid id : end of volume recognition area */
688 		ret = -1;
689 	}
690 
691 	return ret;
692 }
693 
694 /*
695  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697  * @return   1 if NSR02 or NSR03 found,
698  *	    -1 if first sector read error, 0 otherwise
699  */
700 static int udf_check_vsd(struct super_block *sb)
701 {
702 	struct volStructDesc *vsd = NULL;
703 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704 	int sectorsize;
705 	struct buffer_head *bh = NULL;
706 	int nsr = 0;
707 	struct udf_sb_info *sbi;
708 
709 	sbi = UDF_SB(sb);
710 	if (sb->s_blocksize < sizeof(struct volStructDesc))
711 		sectorsize = sizeof(struct volStructDesc);
712 	else
713 		sectorsize = sb->s_blocksize;
714 
715 	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
716 
717 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
718 		  (unsigned int)(sector >> sb->s_blocksize_bits),
719 		  sb->s_blocksize);
720 	/* Process the sequence (if applicable). The hard limit on the sector
721 	 * offset is arbitrary, hopefully large enough so that all valid UDF
722 	 * filesystems will be recognised. There is no mention of an upper
723 	 * bound to the size of the volume recognition area in the standard.
724 	 *  The limit will prevent the code to read all the sectors of a
725 	 * specially crafted image (like a bluray disc full of CD001 sectors),
726 	 * potentially causing minutes or even hours of uninterruptible I/O
727 	 * activity. This actually happened with uninitialised SSD partitions
728 	 * (all 0xFF) before the check for the limit and all valid IDs were
729 	 * added */
730 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
731 		/* Read a block */
732 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
733 		if (!bh)
734 			break;
735 
736 		vsd = (struct volStructDesc *)(bh->b_data +
737 					      (sector & (sb->s_blocksize - 1)));
738 		nsr = identify_vsd(vsd);
739 		/* Found NSR or end? */
740 		if (nsr) {
741 			brelse(bh);
742 			break;
743 		}
744 		/*
745 		 * Special handling for improperly formatted VRS (e.g., Win10)
746 		 * where components are separated by 2048 bytes even though
747 		 * sectors are 4K
748 		 */
749 		if (sb->s_blocksize == 4096) {
750 			nsr = identify_vsd(vsd + 1);
751 			/* Ignore unknown IDs... */
752 			if (nsr < 0)
753 				nsr = 0;
754 		}
755 		brelse(bh);
756 	}
757 
758 	if (nsr > 0)
759 		return 1;
760 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
761 			VSD_FIRST_SECTOR_OFFSET)
762 		return -1;
763 	else
764 		return 0;
765 }
766 
767 static int udf_verify_domain_identifier(struct super_block *sb,
768 					struct regid *ident, char *dname)
769 {
770 	struct domainIdentSuffix *suffix;
771 
772 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
773 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
774 		goto force_ro;
775 	}
776 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
777 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
778 			 dname);
779 		goto force_ro;
780 	}
781 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
782 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
783 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
784 		if (!sb_rdonly(sb)) {
785 			udf_warn(sb, "Descriptor for %s marked write protected."
786 				 " Forcing read only mount.\n", dname);
787 		}
788 		goto force_ro;
789 	}
790 	return 0;
791 
792 force_ro:
793 	if (!sb_rdonly(sb))
794 		return -EACCES;
795 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
796 	return 0;
797 }
798 
799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
800 			    struct kernel_lb_addr *root)
801 {
802 	int ret;
803 
804 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
805 	if (ret < 0)
806 		return ret;
807 
808 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
809 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
810 
811 	udf_debug("Rootdir at block=%u, partition=%u\n",
812 		  root->logicalBlockNum, root->partitionReferenceNum);
813 	return 0;
814 }
815 
816 static int udf_find_fileset(struct super_block *sb,
817 			    struct kernel_lb_addr *fileset,
818 			    struct kernel_lb_addr *root)
819 {
820 	struct buffer_head *bh = NULL;
821 	uint16_t ident;
822 	int ret;
823 
824 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
825 	    fileset->partitionReferenceNum == 0xFFFF)
826 		return -EINVAL;
827 
828 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
829 	if (!bh)
830 		return -EIO;
831 	if (ident != TAG_IDENT_FSD) {
832 		brelse(bh);
833 		return -EINVAL;
834 	}
835 
836 	udf_debug("Fileset at block=%u, partition=%u\n",
837 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
838 
839 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
840 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
841 	brelse(bh);
842 	return ret;
843 }
844 
845 /*
846  * Load primary Volume Descriptor Sequence
847  *
848  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
849  * should be tried.
850  */
851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
852 {
853 	struct primaryVolDesc *pvoldesc;
854 	uint8_t *outstr;
855 	struct buffer_head *bh;
856 	uint16_t ident;
857 	int ret;
858 	struct timestamp *ts;
859 
860 	outstr = kmalloc(128, GFP_NOFS);
861 	if (!outstr)
862 		return -ENOMEM;
863 
864 	bh = udf_read_tagged(sb, block, block, &ident);
865 	if (!bh) {
866 		ret = -EAGAIN;
867 		goto out2;
868 	}
869 
870 	if (ident != TAG_IDENT_PVD) {
871 		ret = -EIO;
872 		goto out_bh;
873 	}
874 
875 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
876 
877 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
878 			      pvoldesc->recordingDateAndTime);
879 	ts = &pvoldesc->recordingDateAndTime;
880 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
882 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
883 
884 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
885 	if (ret < 0) {
886 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
887 		pr_warn("incorrect volume identification, setting to "
888 			"'InvalidName'\n");
889 	} else {
890 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
891 	}
892 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
893 
894 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
895 	if (ret < 0) {
896 		ret = 0;
897 		goto out_bh;
898 	}
899 	outstr[ret] = 0;
900 	udf_debug("volSetIdent[] = '%s'\n", outstr);
901 
902 	ret = 0;
903 out_bh:
904 	brelse(bh);
905 out2:
906 	kfree(outstr);
907 	return ret;
908 }
909 
910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
911 					u32 meta_file_loc, u32 partition_ref)
912 {
913 	struct kernel_lb_addr addr;
914 	struct inode *metadata_fe;
915 
916 	addr.logicalBlockNum = meta_file_loc;
917 	addr.partitionReferenceNum = partition_ref;
918 
919 	metadata_fe = udf_iget_special(sb, &addr);
920 
921 	if (IS_ERR(metadata_fe)) {
922 		udf_warn(sb, "metadata inode efe not found\n");
923 		return metadata_fe;
924 	}
925 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
926 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
927 		iput(metadata_fe);
928 		return ERR_PTR(-EIO);
929 	}
930 
931 	return metadata_fe;
932 }
933 
934 static int udf_load_metadata_files(struct super_block *sb, int partition,
935 				   int type1_index)
936 {
937 	struct udf_sb_info *sbi = UDF_SB(sb);
938 	struct udf_part_map *map;
939 	struct udf_meta_data *mdata;
940 	struct kernel_lb_addr addr;
941 	struct inode *fe;
942 
943 	map = &sbi->s_partmaps[partition];
944 	mdata = &map->s_type_specific.s_metadata;
945 	mdata->s_phys_partition_ref = type1_index;
946 
947 	/* metadata address */
948 	udf_debug("Metadata file location: block = %u part = %u\n",
949 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
950 
951 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
952 					 mdata->s_phys_partition_ref);
953 	if (IS_ERR(fe)) {
954 		/* mirror file entry */
955 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
956 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
957 
958 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
959 						 mdata->s_phys_partition_ref);
960 
961 		if (IS_ERR(fe)) {
962 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
963 			return PTR_ERR(fe);
964 		}
965 		mdata->s_mirror_fe = fe;
966 	} else
967 		mdata->s_metadata_fe = fe;
968 
969 
970 	/*
971 	 * bitmap file entry
972 	 * Note:
973 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
974 	*/
975 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
976 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
977 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
978 
979 		udf_debug("Bitmap file location: block = %u part = %u\n",
980 			  addr.logicalBlockNum, addr.partitionReferenceNum);
981 
982 		fe = udf_iget_special(sb, &addr);
983 		if (IS_ERR(fe)) {
984 			if (sb_rdonly(sb))
985 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
986 			else {
987 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
988 				return PTR_ERR(fe);
989 			}
990 		} else
991 			mdata->s_bitmap_fe = fe;
992 	}
993 
994 	udf_debug("udf_load_metadata_files Ok\n");
995 	return 0;
996 }
997 
998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001 	return DIV_ROUND_UP(map->s_partition_len +
1002 			    (sizeof(struct spaceBitmapDesc) << 3),
1003 			    sb->s_blocksize * 8);
1004 }
1005 
1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008 	struct udf_bitmap *bitmap;
1009 	int nr_groups = udf_compute_nr_groups(sb, index);
1010 
1011 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1012 			  GFP_KERNEL);
1013 	if (!bitmap)
1014 		return NULL;
1015 
1016 	bitmap->s_nr_groups = nr_groups;
1017 	return bitmap;
1018 }
1019 
1020 static int check_partition_desc(struct super_block *sb,
1021 				struct partitionDesc *p,
1022 				struct udf_part_map *map)
1023 {
1024 	bool umap, utable, fmap, ftable;
1025 	struct partitionHeaderDesc *phd;
1026 
1027 	switch (le32_to_cpu(p->accessType)) {
1028 	case PD_ACCESS_TYPE_READ_ONLY:
1029 	case PD_ACCESS_TYPE_WRITE_ONCE:
1030 	case PD_ACCESS_TYPE_NONE:
1031 		goto force_ro;
1032 	}
1033 
1034 	/* No Partition Header Descriptor? */
1035 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1036 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1037 		goto force_ro;
1038 
1039 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1040 	utable = phd->unallocSpaceTable.extLength;
1041 	umap = phd->unallocSpaceBitmap.extLength;
1042 	ftable = phd->freedSpaceTable.extLength;
1043 	fmap = phd->freedSpaceBitmap.extLength;
1044 
1045 	/* No allocation info? */
1046 	if (!utable && !umap && !ftable && !fmap)
1047 		goto force_ro;
1048 
1049 	/* We don't support blocks that require erasing before overwrite */
1050 	if (ftable || fmap)
1051 		goto force_ro;
1052 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1053 	if (utable && umap)
1054 		goto force_ro;
1055 
1056 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1057 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1058 	    map->s_partition_type == UDF_METADATA_MAP25)
1059 		goto force_ro;
1060 
1061 	return 0;
1062 force_ro:
1063 	if (!sb_rdonly(sb))
1064 		return -EACCES;
1065 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1066 	return 0;
1067 }
1068 
1069 static int udf_fill_partdesc_info(struct super_block *sb,
1070 		struct partitionDesc *p, int p_index)
1071 {
1072 	struct udf_part_map *map;
1073 	struct udf_sb_info *sbi = UDF_SB(sb);
1074 	struct partitionHeaderDesc *phd;
1075 	int err;
1076 
1077 	map = &sbi->s_partmaps[p_index];
1078 
1079 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1080 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1081 
1082 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1083 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1084 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1085 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1086 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1087 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1088 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1089 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1090 
1091 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1092 		  p_index, map->s_partition_type,
1093 		  map->s_partition_root, map->s_partition_len);
1094 
1095 	err = check_partition_desc(sb, p, map);
1096 	if (err)
1097 		return err;
1098 
1099 	/*
1100 	 * Skip loading allocation info it we cannot ever write to the fs.
1101 	 * This is a correctness thing as we may have decided to force ro mount
1102 	 * to avoid allocation info we don't support.
1103 	 */
1104 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1105 		return 0;
1106 
1107 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108 	if (phd->unallocSpaceTable.extLength) {
1109 		struct kernel_lb_addr loc = {
1110 			.logicalBlockNum = le32_to_cpu(
1111 				phd->unallocSpaceTable.extPosition),
1112 			.partitionReferenceNum = p_index,
1113 		};
1114 		struct inode *inode;
1115 
1116 		inode = udf_iget_special(sb, &loc);
1117 		if (IS_ERR(inode)) {
1118 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1119 				  p_index);
1120 			return PTR_ERR(inode);
1121 		}
1122 		map->s_uspace.s_table = inode;
1123 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1124 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1125 			  p_index, map->s_uspace.s_table->i_ino);
1126 	}
1127 
1128 	if (phd->unallocSpaceBitmap.extLength) {
1129 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1130 		if (!bitmap)
1131 			return -ENOMEM;
1132 		map->s_uspace.s_bitmap = bitmap;
1133 		bitmap->s_extPosition = le32_to_cpu(
1134 				phd->unallocSpaceBitmap.extPosition);
1135 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1136 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1137 			  p_index, bitmap->s_extPosition);
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static void udf_find_vat_block(struct super_block *sb, int p_index,
1144 			       int type1_index, sector_t start_block)
1145 {
1146 	struct udf_sb_info *sbi = UDF_SB(sb);
1147 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1148 	sector_t vat_block;
1149 	struct kernel_lb_addr ino;
1150 	struct inode *inode;
1151 
1152 	/*
1153 	 * VAT file entry is in the last recorded block. Some broken disks have
1154 	 * it a few blocks before so try a bit harder...
1155 	 */
1156 	ino.partitionReferenceNum = type1_index;
1157 	for (vat_block = start_block;
1158 	     vat_block >= map->s_partition_root &&
1159 	     vat_block >= start_block - 3; vat_block--) {
1160 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1161 		inode = udf_iget_special(sb, &ino);
1162 		if (!IS_ERR(inode)) {
1163 			sbi->s_vat_inode = inode;
1164 			break;
1165 		}
1166 	}
1167 }
1168 
1169 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1170 {
1171 	struct udf_sb_info *sbi = UDF_SB(sb);
1172 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1173 	struct buffer_head *bh = NULL;
1174 	struct udf_inode_info *vati;
1175 	uint32_t pos;
1176 	struct virtualAllocationTable20 *vat20;
1177 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1178 			  sb->s_blocksize_bits;
1179 
1180 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1181 	if (!sbi->s_vat_inode &&
1182 	    sbi->s_last_block != blocks - 1) {
1183 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1184 			  (unsigned long)sbi->s_last_block,
1185 			  (unsigned long)blocks - 1);
1186 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1187 	}
1188 	if (!sbi->s_vat_inode)
1189 		return -EIO;
1190 
1191 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1192 		map->s_type_specific.s_virtual.s_start_offset = 0;
1193 		map->s_type_specific.s_virtual.s_num_entries =
1194 			(sbi->s_vat_inode->i_size - 36) >> 2;
1195 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1196 		vati = UDF_I(sbi->s_vat_inode);
1197 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1198 			pos = udf_block_map(sbi->s_vat_inode, 0);
1199 			bh = sb_bread(sb, pos);
1200 			if (!bh)
1201 				return -EIO;
1202 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1203 		} else {
1204 			vat20 = (struct virtualAllocationTable20 *)
1205 							vati->i_data;
1206 		}
1207 
1208 		map->s_type_specific.s_virtual.s_start_offset =
1209 			le16_to_cpu(vat20->lengthHeader);
1210 		map->s_type_specific.s_virtual.s_num_entries =
1211 			(sbi->s_vat_inode->i_size -
1212 				map->s_type_specific.s_virtual.
1213 					s_start_offset) >> 2;
1214 		brelse(bh);
1215 	}
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Load partition descriptor block
1221  *
1222  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1223  * sequence.
1224  */
1225 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1226 {
1227 	struct buffer_head *bh;
1228 	struct partitionDesc *p;
1229 	struct udf_part_map *map;
1230 	struct udf_sb_info *sbi = UDF_SB(sb);
1231 	int i, type1_idx;
1232 	uint16_t partitionNumber;
1233 	uint16_t ident;
1234 	int ret;
1235 
1236 	bh = udf_read_tagged(sb, block, block, &ident);
1237 	if (!bh)
1238 		return -EAGAIN;
1239 	if (ident != TAG_IDENT_PD) {
1240 		ret = 0;
1241 		goto out_bh;
1242 	}
1243 
1244 	p = (struct partitionDesc *)bh->b_data;
1245 	partitionNumber = le16_to_cpu(p->partitionNumber);
1246 
1247 	/* First scan for TYPE1 and SPARABLE partitions */
1248 	for (i = 0; i < sbi->s_partitions; i++) {
1249 		map = &sbi->s_partmaps[i];
1250 		udf_debug("Searching map: (%u == %u)\n",
1251 			  map->s_partition_num, partitionNumber);
1252 		if (map->s_partition_num == partitionNumber &&
1253 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1254 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1255 			break;
1256 	}
1257 
1258 	if (i >= sbi->s_partitions) {
1259 		udf_debug("Partition (%u) not found in partition map\n",
1260 			  partitionNumber);
1261 		ret = 0;
1262 		goto out_bh;
1263 	}
1264 
1265 	ret = udf_fill_partdesc_info(sb, p, i);
1266 	if (ret < 0)
1267 		goto out_bh;
1268 
1269 	/*
1270 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1271 	 * PHYSICAL partitions are already set up
1272 	 */
1273 	type1_idx = i;
1274 	map = NULL; /* supress 'maybe used uninitialized' warning */
1275 	for (i = 0; i < sbi->s_partitions; i++) {
1276 		map = &sbi->s_partmaps[i];
1277 
1278 		if (map->s_partition_num == partitionNumber &&
1279 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1280 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1281 		     map->s_partition_type == UDF_METADATA_MAP25))
1282 			break;
1283 	}
1284 
1285 	if (i >= sbi->s_partitions) {
1286 		ret = 0;
1287 		goto out_bh;
1288 	}
1289 
1290 	ret = udf_fill_partdesc_info(sb, p, i);
1291 	if (ret < 0)
1292 		goto out_bh;
1293 
1294 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1295 		ret = udf_load_metadata_files(sb, i, type1_idx);
1296 		if (ret < 0) {
1297 			udf_err(sb, "error loading MetaData partition map %d\n",
1298 				i);
1299 			goto out_bh;
1300 		}
1301 	} else {
1302 		/*
1303 		 * If we have a partition with virtual map, we don't handle
1304 		 * writing to it (we overwrite blocks instead of relocating
1305 		 * them).
1306 		 */
1307 		if (!sb_rdonly(sb)) {
1308 			ret = -EACCES;
1309 			goto out_bh;
1310 		}
1311 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1312 		ret = udf_load_vat(sb, i, type1_idx);
1313 		if (ret < 0)
1314 			goto out_bh;
1315 	}
1316 	ret = 0;
1317 out_bh:
1318 	/* In case loading failed, we handle cleanup in udf_fill_super */
1319 	brelse(bh);
1320 	return ret;
1321 }
1322 
1323 static int udf_load_sparable_map(struct super_block *sb,
1324 				 struct udf_part_map *map,
1325 				 struct sparablePartitionMap *spm)
1326 {
1327 	uint32_t loc;
1328 	uint16_t ident;
1329 	struct sparingTable *st;
1330 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1331 	int i;
1332 	struct buffer_head *bh;
1333 
1334 	map->s_partition_type = UDF_SPARABLE_MAP15;
1335 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1336 	if (!is_power_of_2(sdata->s_packet_len)) {
1337 		udf_err(sb, "error loading logical volume descriptor: "
1338 			"Invalid packet length %u\n",
1339 			(unsigned)sdata->s_packet_len);
1340 		return -EIO;
1341 	}
1342 	if (spm->numSparingTables > 4) {
1343 		udf_err(sb, "error loading logical volume descriptor: "
1344 			"Too many sparing tables (%d)\n",
1345 			(int)spm->numSparingTables);
1346 		return -EIO;
1347 	}
1348 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1349 		udf_err(sb, "error loading logical volume descriptor: "
1350 			"Too big sparing table size (%u)\n",
1351 			le32_to_cpu(spm->sizeSparingTable));
1352 		return -EIO;
1353 	}
1354 
1355 	for (i = 0; i < spm->numSparingTables; i++) {
1356 		loc = le32_to_cpu(spm->locSparingTable[i]);
1357 		bh = udf_read_tagged(sb, loc, loc, &ident);
1358 		if (!bh)
1359 			continue;
1360 
1361 		st = (struct sparingTable *)bh->b_data;
1362 		if (ident != 0 ||
1363 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1364 			    strlen(UDF_ID_SPARING)) ||
1365 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1366 							sb->s_blocksize) {
1367 			brelse(bh);
1368 			continue;
1369 		}
1370 
1371 		sdata->s_spar_map[i] = bh;
1372 	}
1373 	map->s_partition_func = udf_get_pblock_spar15;
1374 	return 0;
1375 }
1376 
1377 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1378 			       struct kernel_lb_addr *fileset)
1379 {
1380 	struct logicalVolDesc *lvd;
1381 	int i, offset;
1382 	uint8_t type;
1383 	struct udf_sb_info *sbi = UDF_SB(sb);
1384 	struct genericPartitionMap *gpm;
1385 	uint16_t ident;
1386 	struct buffer_head *bh;
1387 	unsigned int table_len;
1388 	int ret;
1389 
1390 	bh = udf_read_tagged(sb, block, block, &ident);
1391 	if (!bh)
1392 		return -EAGAIN;
1393 	BUG_ON(ident != TAG_IDENT_LVD);
1394 	lvd = (struct logicalVolDesc *)bh->b_data;
1395 	table_len = le32_to_cpu(lvd->mapTableLength);
1396 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1397 		udf_err(sb, "error loading logical volume descriptor: "
1398 			"Partition table too long (%u > %lu)\n", table_len,
1399 			sb->s_blocksize - sizeof(*lvd));
1400 		ret = -EIO;
1401 		goto out_bh;
1402 	}
1403 
1404 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1405 					   "logical volume");
1406 	if (ret)
1407 		goto out_bh;
1408 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1409 	if (ret)
1410 		goto out_bh;
1411 
1412 	for (i = 0, offset = 0;
1413 	     i < sbi->s_partitions && offset < table_len;
1414 	     i++, offset += gpm->partitionMapLength) {
1415 		struct udf_part_map *map = &sbi->s_partmaps[i];
1416 		gpm = (struct genericPartitionMap *)
1417 				&(lvd->partitionMaps[offset]);
1418 		type = gpm->partitionMapType;
1419 		if (type == 1) {
1420 			struct genericPartitionMap1 *gpm1 =
1421 				(struct genericPartitionMap1 *)gpm;
1422 			map->s_partition_type = UDF_TYPE1_MAP15;
1423 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1424 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1425 			map->s_partition_func = NULL;
1426 		} else if (type == 2) {
1427 			struct udfPartitionMap2 *upm2 =
1428 						(struct udfPartitionMap2 *)gpm;
1429 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1430 						strlen(UDF_ID_VIRTUAL))) {
1431 				u16 suf =
1432 					le16_to_cpu(((__le16 *)upm2->partIdent.
1433 							identSuffix)[0]);
1434 				if (suf < 0x0200) {
1435 					map->s_partition_type =
1436 							UDF_VIRTUAL_MAP15;
1437 					map->s_partition_func =
1438 							udf_get_pblock_virt15;
1439 				} else {
1440 					map->s_partition_type =
1441 							UDF_VIRTUAL_MAP20;
1442 					map->s_partition_func =
1443 							udf_get_pblock_virt20;
1444 				}
1445 			} else if (!strncmp(upm2->partIdent.ident,
1446 						UDF_ID_SPARABLE,
1447 						strlen(UDF_ID_SPARABLE))) {
1448 				ret = udf_load_sparable_map(sb, map,
1449 					(struct sparablePartitionMap *)gpm);
1450 				if (ret < 0)
1451 					goto out_bh;
1452 			} else if (!strncmp(upm2->partIdent.ident,
1453 						UDF_ID_METADATA,
1454 						strlen(UDF_ID_METADATA))) {
1455 				struct udf_meta_data *mdata =
1456 					&map->s_type_specific.s_metadata;
1457 				struct metadataPartitionMap *mdm =
1458 						(struct metadataPartitionMap *)
1459 						&(lvd->partitionMaps[offset]);
1460 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1461 					  i, type, UDF_ID_METADATA);
1462 
1463 				map->s_partition_type = UDF_METADATA_MAP25;
1464 				map->s_partition_func = udf_get_pblock_meta25;
1465 
1466 				mdata->s_meta_file_loc   =
1467 					le32_to_cpu(mdm->metadataFileLoc);
1468 				mdata->s_mirror_file_loc =
1469 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1470 				mdata->s_bitmap_file_loc =
1471 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1472 				mdata->s_alloc_unit_size =
1473 					le32_to_cpu(mdm->allocUnitSize);
1474 				mdata->s_align_unit_size =
1475 					le16_to_cpu(mdm->alignUnitSize);
1476 				if (mdm->flags & 0x01)
1477 					mdata->s_flags |= MF_DUPLICATE_MD;
1478 
1479 				udf_debug("Metadata Ident suffix=0x%x\n",
1480 					  le16_to_cpu(*(__le16 *)
1481 						      mdm->partIdent.identSuffix));
1482 				udf_debug("Metadata part num=%u\n",
1483 					  le16_to_cpu(mdm->partitionNum));
1484 				udf_debug("Metadata part alloc unit size=%u\n",
1485 					  le32_to_cpu(mdm->allocUnitSize));
1486 				udf_debug("Metadata file loc=%u\n",
1487 					  le32_to_cpu(mdm->metadataFileLoc));
1488 				udf_debug("Mirror file loc=%u\n",
1489 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1490 				udf_debug("Bitmap file loc=%u\n",
1491 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1492 				udf_debug("Flags: %d %u\n",
1493 					  mdata->s_flags, mdm->flags);
1494 			} else {
1495 				udf_debug("Unknown ident: %s\n",
1496 					  upm2->partIdent.ident);
1497 				continue;
1498 			}
1499 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1500 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1501 		}
1502 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1503 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1504 	}
1505 
1506 	if (fileset) {
1507 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1508 
1509 		*fileset = lelb_to_cpu(la->extLocation);
1510 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1511 			  fileset->logicalBlockNum,
1512 			  fileset->partitionReferenceNum);
1513 	}
1514 	if (lvd->integritySeqExt.extLength)
1515 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1516 	ret = 0;
1517 
1518 	if (!sbi->s_lvid_bh) {
1519 		/* We can't generate unique IDs without a valid LVID */
1520 		if (sb_rdonly(sb)) {
1521 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1522 		} else {
1523 			udf_warn(sb, "Damaged or missing LVID, forcing "
1524 				     "readonly mount\n");
1525 			ret = -EACCES;
1526 		}
1527 	}
1528 out_bh:
1529 	brelse(bh);
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Find the prevailing Logical Volume Integrity Descriptor.
1535  */
1536 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1537 {
1538 	struct buffer_head *bh, *final_bh;
1539 	uint16_t ident;
1540 	struct udf_sb_info *sbi = UDF_SB(sb);
1541 	struct logicalVolIntegrityDesc *lvid;
1542 	int indirections = 0;
1543 
1544 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1545 		final_bh = NULL;
1546 		while (loc.extLength > 0 &&
1547 			(bh = udf_read_tagged(sb, loc.extLocation,
1548 					loc.extLocation, &ident))) {
1549 			if (ident != TAG_IDENT_LVID) {
1550 				brelse(bh);
1551 				break;
1552 			}
1553 
1554 			brelse(final_bh);
1555 			final_bh = bh;
1556 
1557 			loc.extLength -= sb->s_blocksize;
1558 			loc.extLocation++;
1559 		}
1560 
1561 		if (!final_bh)
1562 			return;
1563 
1564 		brelse(sbi->s_lvid_bh);
1565 		sbi->s_lvid_bh = final_bh;
1566 
1567 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1568 		if (lvid->nextIntegrityExt.extLength == 0)
1569 			return;
1570 
1571 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1572 	}
1573 
1574 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1575 		UDF_MAX_LVID_NESTING);
1576 	brelse(sbi->s_lvid_bh);
1577 	sbi->s_lvid_bh = NULL;
1578 }
1579 
1580 /*
1581  * Step for reallocation of table of partition descriptor sequence numbers.
1582  * Must be power of 2.
1583  */
1584 #define PART_DESC_ALLOC_STEP 32
1585 
1586 struct part_desc_seq_scan_data {
1587 	struct udf_vds_record rec;
1588 	u32 partnum;
1589 };
1590 
1591 struct desc_seq_scan_data {
1592 	struct udf_vds_record vds[VDS_POS_LENGTH];
1593 	unsigned int size_part_descs;
1594 	unsigned int num_part_descs;
1595 	struct part_desc_seq_scan_data *part_descs_loc;
1596 };
1597 
1598 static struct udf_vds_record *handle_partition_descriptor(
1599 				struct buffer_head *bh,
1600 				struct desc_seq_scan_data *data)
1601 {
1602 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1603 	int partnum;
1604 	int i;
1605 
1606 	partnum = le16_to_cpu(desc->partitionNumber);
1607 	for (i = 0; i < data->num_part_descs; i++)
1608 		if (partnum == data->part_descs_loc[i].partnum)
1609 			return &(data->part_descs_loc[i].rec);
1610 	if (data->num_part_descs >= data->size_part_descs) {
1611 		struct part_desc_seq_scan_data *new_loc;
1612 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1613 
1614 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1615 		if (!new_loc)
1616 			return ERR_PTR(-ENOMEM);
1617 		memcpy(new_loc, data->part_descs_loc,
1618 		       data->size_part_descs * sizeof(*new_loc));
1619 		kfree(data->part_descs_loc);
1620 		data->part_descs_loc = new_loc;
1621 		data->size_part_descs = new_size;
1622 	}
1623 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1624 }
1625 
1626 
1627 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1628 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1629 {
1630 	switch (ident) {
1631 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1632 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1633 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1634 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1635 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1636 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1637 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1638 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1639 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1640 		return handle_partition_descriptor(bh, data);
1641 	}
1642 	return NULL;
1643 }
1644 
1645 /*
1646  * Process a main/reserve volume descriptor sequence.
1647  *   @block		First block of first extent of the sequence.
1648  *   @lastblock		Lastblock of first extent of the sequence.
1649  *   @fileset		There we store extent containing root fileset
1650  *
1651  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1652  * sequence
1653  */
1654 static noinline int udf_process_sequence(
1655 		struct super_block *sb,
1656 		sector_t block, sector_t lastblock,
1657 		struct kernel_lb_addr *fileset)
1658 {
1659 	struct buffer_head *bh = NULL;
1660 	struct udf_vds_record *curr;
1661 	struct generic_desc *gd;
1662 	struct volDescPtr *vdp;
1663 	bool done = false;
1664 	uint32_t vdsn;
1665 	uint16_t ident;
1666 	int ret;
1667 	unsigned int indirections = 0;
1668 	struct desc_seq_scan_data data;
1669 	unsigned int i;
1670 
1671 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1672 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1673 	data.num_part_descs = 0;
1674 	data.part_descs_loc = kcalloc(data.size_part_descs,
1675 				      sizeof(*data.part_descs_loc),
1676 				      GFP_KERNEL);
1677 	if (!data.part_descs_loc)
1678 		return -ENOMEM;
1679 
1680 	/*
1681 	 * Read the main descriptor sequence and find which descriptors
1682 	 * are in it.
1683 	 */
1684 	for (; (!done && block <= lastblock); block++) {
1685 		bh = udf_read_tagged(sb, block, block, &ident);
1686 		if (!bh)
1687 			break;
1688 
1689 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1690 		gd = (struct generic_desc *)bh->b_data;
1691 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1692 		switch (ident) {
1693 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1694 			if (++indirections > UDF_MAX_TD_NESTING) {
1695 				udf_err(sb, "too many Volume Descriptor "
1696 					"Pointers (max %u supported)\n",
1697 					UDF_MAX_TD_NESTING);
1698 				brelse(bh);
1699 				ret = -EIO;
1700 				goto out;
1701 			}
1702 
1703 			vdp = (struct volDescPtr *)bh->b_data;
1704 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1705 			lastblock = le32_to_cpu(
1706 				vdp->nextVolDescSeqExt.extLength) >>
1707 				sb->s_blocksize_bits;
1708 			lastblock += block - 1;
1709 			/* For loop is going to increment 'block' again */
1710 			block--;
1711 			break;
1712 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1713 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1714 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1715 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1716 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1717 			curr = get_volume_descriptor_record(ident, bh, &data);
1718 			if (IS_ERR(curr)) {
1719 				brelse(bh);
1720 				ret = PTR_ERR(curr);
1721 				goto out;
1722 			}
1723 			/* Descriptor we don't care about? */
1724 			if (!curr)
1725 				break;
1726 			if (vdsn >= curr->volDescSeqNum) {
1727 				curr->volDescSeqNum = vdsn;
1728 				curr->block = block;
1729 			}
1730 			break;
1731 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1732 			done = true;
1733 			break;
1734 		}
1735 		brelse(bh);
1736 	}
1737 	/*
1738 	 * Now read interesting descriptors again and process them
1739 	 * in a suitable order
1740 	 */
1741 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1742 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1743 		ret = -EAGAIN;
1744 		goto out;
1745 	}
1746 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1747 	if (ret < 0)
1748 		goto out;
1749 
1750 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1751 		ret = udf_load_logicalvol(sb,
1752 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1753 				fileset);
1754 		if (ret < 0)
1755 			goto out;
1756 	}
1757 
1758 	/* Now handle prevailing Partition Descriptors */
1759 	for (i = 0; i < data.num_part_descs; i++) {
1760 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1761 		if (ret < 0)
1762 			goto out;
1763 	}
1764 	ret = 0;
1765 out:
1766 	kfree(data.part_descs_loc);
1767 	return ret;
1768 }
1769 
1770 /*
1771  * Load Volume Descriptor Sequence described by anchor in bh
1772  *
1773  * Returns <0 on error, 0 on success
1774  */
1775 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1776 			     struct kernel_lb_addr *fileset)
1777 {
1778 	struct anchorVolDescPtr *anchor;
1779 	sector_t main_s, main_e, reserve_s, reserve_e;
1780 	int ret;
1781 
1782 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1783 
1784 	/* Locate the main sequence */
1785 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1786 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1787 	main_e = main_e >> sb->s_blocksize_bits;
1788 	main_e += main_s - 1;
1789 
1790 	/* Locate the reserve sequence */
1791 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1792 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1793 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1794 	reserve_e += reserve_s - 1;
1795 
1796 	/* Process the main & reserve sequences */
1797 	/* responsible for finding the PartitionDesc(s) */
1798 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1799 	if (ret != -EAGAIN)
1800 		return ret;
1801 	udf_sb_free_partitions(sb);
1802 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1803 	if (ret < 0) {
1804 		udf_sb_free_partitions(sb);
1805 		/* No sequence was OK, return -EIO */
1806 		if (ret == -EAGAIN)
1807 			ret = -EIO;
1808 	}
1809 	return ret;
1810 }
1811 
1812 /*
1813  * Check whether there is an anchor block in the given block and
1814  * load Volume Descriptor Sequence if so.
1815  *
1816  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1817  * block
1818  */
1819 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1820 				  struct kernel_lb_addr *fileset)
1821 {
1822 	struct buffer_head *bh;
1823 	uint16_t ident;
1824 	int ret;
1825 
1826 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1827 	    udf_fixed_to_variable(block) >=
1828 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1829 		return -EAGAIN;
1830 
1831 	bh = udf_read_tagged(sb, block, block, &ident);
1832 	if (!bh)
1833 		return -EAGAIN;
1834 	if (ident != TAG_IDENT_AVDP) {
1835 		brelse(bh);
1836 		return -EAGAIN;
1837 	}
1838 	ret = udf_load_sequence(sb, bh, fileset);
1839 	brelse(bh);
1840 	return ret;
1841 }
1842 
1843 /*
1844  * Search for an anchor volume descriptor pointer.
1845  *
1846  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1847  * of anchors.
1848  */
1849 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1850 			    struct kernel_lb_addr *fileset)
1851 {
1852 	sector_t last[6];
1853 	int i;
1854 	struct udf_sb_info *sbi = UDF_SB(sb);
1855 	int last_count = 0;
1856 	int ret;
1857 
1858 	/* First try user provided anchor */
1859 	if (sbi->s_anchor) {
1860 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1861 		if (ret != -EAGAIN)
1862 			return ret;
1863 	}
1864 	/*
1865 	 * according to spec, anchor is in either:
1866 	 *     block 256
1867 	 *     lastblock-256
1868 	 *     lastblock
1869 	 *  however, if the disc isn't closed, it could be 512.
1870 	 */
1871 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1872 	if (ret != -EAGAIN)
1873 		return ret;
1874 	/*
1875 	 * The trouble is which block is the last one. Drives often misreport
1876 	 * this so we try various possibilities.
1877 	 */
1878 	last[last_count++] = *lastblock;
1879 	if (*lastblock >= 1)
1880 		last[last_count++] = *lastblock - 1;
1881 	last[last_count++] = *lastblock + 1;
1882 	if (*lastblock >= 2)
1883 		last[last_count++] = *lastblock - 2;
1884 	if (*lastblock >= 150)
1885 		last[last_count++] = *lastblock - 150;
1886 	if (*lastblock >= 152)
1887 		last[last_count++] = *lastblock - 152;
1888 
1889 	for (i = 0; i < last_count; i++) {
1890 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1891 				sb->s_blocksize_bits)
1892 			continue;
1893 		ret = udf_check_anchor_block(sb, last[i], fileset);
1894 		if (ret != -EAGAIN) {
1895 			if (!ret)
1896 				*lastblock = last[i];
1897 			return ret;
1898 		}
1899 		if (last[i] < 256)
1900 			continue;
1901 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1902 		if (ret != -EAGAIN) {
1903 			if (!ret)
1904 				*lastblock = last[i];
1905 			return ret;
1906 		}
1907 	}
1908 
1909 	/* Finally try block 512 in case media is open */
1910 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1911 }
1912 
1913 /*
1914  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1915  * area specified by it. The function expects sbi->s_lastblock to be the last
1916  * block on the media.
1917  *
1918  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1919  * was not found.
1920  */
1921 static int udf_find_anchor(struct super_block *sb,
1922 			   struct kernel_lb_addr *fileset)
1923 {
1924 	struct udf_sb_info *sbi = UDF_SB(sb);
1925 	sector_t lastblock = sbi->s_last_block;
1926 	int ret;
1927 
1928 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1929 	if (ret != -EAGAIN)
1930 		goto out;
1931 
1932 	/* No anchor found? Try VARCONV conversion of block numbers */
1933 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1934 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1935 	/* Firstly, we try to not convert number of the last block */
1936 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1937 	if (ret != -EAGAIN)
1938 		goto out;
1939 
1940 	lastblock = sbi->s_last_block;
1941 	/* Secondly, we try with converted number of the last block */
1942 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1943 	if (ret < 0) {
1944 		/* VARCONV didn't help. Clear it. */
1945 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1946 	}
1947 out:
1948 	if (ret == 0)
1949 		sbi->s_last_block = lastblock;
1950 	return ret;
1951 }
1952 
1953 /*
1954  * Check Volume Structure Descriptor, find Anchor block and load Volume
1955  * Descriptor Sequence.
1956  *
1957  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1958  * block was not found.
1959  */
1960 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1961 			int silent, struct kernel_lb_addr *fileset)
1962 {
1963 	struct udf_sb_info *sbi = UDF_SB(sb);
1964 	int nsr = 0;
1965 	int ret;
1966 
1967 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1968 		if (!silent)
1969 			udf_warn(sb, "Bad block size\n");
1970 		return -EINVAL;
1971 	}
1972 	sbi->s_last_block = uopt->lastblock;
1973 	if (!uopt->novrs) {
1974 		/* Check that it is NSR02 compliant */
1975 		nsr = udf_check_vsd(sb);
1976 		if (!nsr) {
1977 			if (!silent)
1978 				udf_warn(sb, "No VRS found\n");
1979 			return -EINVAL;
1980 		}
1981 		if (nsr == -1)
1982 			udf_debug("Failed to read sector at offset %d. "
1983 				  "Assuming open disc. Skipping validity "
1984 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1985 		if (!sbi->s_last_block)
1986 			sbi->s_last_block = udf_get_last_block(sb);
1987 	} else {
1988 		udf_debug("Validity check skipped because of novrs option\n");
1989 	}
1990 
1991 	/* Look for anchor block and load Volume Descriptor Sequence */
1992 	sbi->s_anchor = uopt->anchor;
1993 	ret = udf_find_anchor(sb, fileset);
1994 	if (ret < 0) {
1995 		if (!silent && ret == -EAGAIN)
1996 			udf_warn(sb, "No anchor found\n");
1997 		return ret;
1998 	}
1999 	return 0;
2000 }
2001 
2002 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2003 {
2004 	struct timespec64 ts;
2005 
2006 	ktime_get_real_ts64(&ts);
2007 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2008 	lvid->descTag.descCRC = cpu_to_le16(
2009 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2010 			le16_to_cpu(lvid->descTag.descCRCLength)));
2011 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2012 }
2013 
2014 static void udf_open_lvid(struct super_block *sb)
2015 {
2016 	struct udf_sb_info *sbi = UDF_SB(sb);
2017 	struct buffer_head *bh = sbi->s_lvid_bh;
2018 	struct logicalVolIntegrityDesc *lvid;
2019 	struct logicalVolIntegrityDescImpUse *lvidiu;
2020 
2021 	if (!bh)
2022 		return;
2023 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024 	lvidiu = udf_sb_lvidiu(sb);
2025 	if (!lvidiu)
2026 		return;
2027 
2028 	mutex_lock(&sbi->s_alloc_mutex);
2029 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2032 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2033 	else
2034 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2035 
2036 	udf_finalize_lvid(lvid);
2037 	mark_buffer_dirty(bh);
2038 	sbi->s_lvid_dirty = 0;
2039 	mutex_unlock(&sbi->s_alloc_mutex);
2040 	/* Make opening of filesystem visible on the media immediately */
2041 	sync_dirty_buffer(bh);
2042 }
2043 
2044 static void udf_close_lvid(struct super_block *sb)
2045 {
2046 	struct udf_sb_info *sbi = UDF_SB(sb);
2047 	struct buffer_head *bh = sbi->s_lvid_bh;
2048 	struct logicalVolIntegrityDesc *lvid;
2049 	struct logicalVolIntegrityDescImpUse *lvidiu;
2050 
2051 	if (!bh)
2052 		return;
2053 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2054 	lvidiu = udf_sb_lvidiu(sb);
2055 	if (!lvidiu)
2056 		return;
2057 
2058 	mutex_lock(&sbi->s_alloc_mutex);
2059 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2060 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2061 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2062 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2063 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2064 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2065 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2066 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2067 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2068 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2069 
2070 	/*
2071 	 * We set buffer uptodate unconditionally here to avoid spurious
2072 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2073 	 * the buffer as !uptodate
2074 	 */
2075 	set_buffer_uptodate(bh);
2076 	udf_finalize_lvid(lvid);
2077 	mark_buffer_dirty(bh);
2078 	sbi->s_lvid_dirty = 0;
2079 	mutex_unlock(&sbi->s_alloc_mutex);
2080 	/* Make closing of filesystem visible on the media immediately */
2081 	sync_dirty_buffer(bh);
2082 }
2083 
2084 u64 lvid_get_unique_id(struct super_block *sb)
2085 {
2086 	struct buffer_head *bh;
2087 	struct udf_sb_info *sbi = UDF_SB(sb);
2088 	struct logicalVolIntegrityDesc *lvid;
2089 	struct logicalVolHeaderDesc *lvhd;
2090 	u64 uniqueID;
2091 	u64 ret;
2092 
2093 	bh = sbi->s_lvid_bh;
2094 	if (!bh)
2095 		return 0;
2096 
2097 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2098 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2099 
2100 	mutex_lock(&sbi->s_alloc_mutex);
2101 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2102 	if (!(++uniqueID & 0xFFFFFFFF))
2103 		uniqueID += 16;
2104 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2105 	udf_updated_lvid(sb);
2106 	mutex_unlock(&sbi->s_alloc_mutex);
2107 
2108 	return ret;
2109 }
2110 
2111 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2112 {
2113 	int ret = -EINVAL;
2114 	struct inode *inode = NULL;
2115 	struct udf_options uopt;
2116 	struct kernel_lb_addr rootdir, fileset;
2117 	struct udf_sb_info *sbi;
2118 	bool lvid_open = false;
2119 
2120 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2121 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2122 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2123 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2124 	uopt.umask = 0;
2125 	uopt.fmode = UDF_INVALID_MODE;
2126 	uopt.dmode = UDF_INVALID_MODE;
2127 	uopt.nls_map = NULL;
2128 
2129 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2130 	if (!sbi)
2131 		return -ENOMEM;
2132 
2133 	sb->s_fs_info = sbi;
2134 
2135 	mutex_init(&sbi->s_alloc_mutex);
2136 
2137 	if (!udf_parse_options((char *)options, &uopt, false))
2138 		goto parse_options_failure;
2139 
2140 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2141 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2142 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2143 		goto parse_options_failure;
2144 	}
2145 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2146 		uopt.nls_map = load_nls_default();
2147 		if (!uopt.nls_map)
2148 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2149 		else
2150 			udf_debug("Using default NLS map\n");
2151 	}
2152 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2153 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2154 
2155 	fileset.logicalBlockNum = 0xFFFFFFFF;
2156 	fileset.partitionReferenceNum = 0xFFFF;
2157 
2158 	sbi->s_flags = uopt.flags;
2159 	sbi->s_uid = uopt.uid;
2160 	sbi->s_gid = uopt.gid;
2161 	sbi->s_umask = uopt.umask;
2162 	sbi->s_fmode = uopt.fmode;
2163 	sbi->s_dmode = uopt.dmode;
2164 	sbi->s_nls_map = uopt.nls_map;
2165 	rwlock_init(&sbi->s_cred_lock);
2166 
2167 	if (uopt.session == 0xFFFFFFFF)
2168 		sbi->s_session = udf_get_last_session(sb);
2169 	else
2170 		sbi->s_session = uopt.session;
2171 
2172 	udf_debug("Multi-session=%d\n", sbi->s_session);
2173 
2174 	/* Fill in the rest of the superblock */
2175 	sb->s_op = &udf_sb_ops;
2176 	sb->s_export_op = &udf_export_ops;
2177 
2178 	sb->s_magic = UDF_SUPER_MAGIC;
2179 	sb->s_time_gran = 1000;
2180 
2181 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2182 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2183 	} else {
2184 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2185 		while (uopt.blocksize <= 4096) {
2186 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2187 			if (ret < 0) {
2188 				if (!silent && ret != -EACCES) {
2189 					pr_notice("Scanning with blocksize %u failed\n",
2190 						  uopt.blocksize);
2191 				}
2192 				brelse(sbi->s_lvid_bh);
2193 				sbi->s_lvid_bh = NULL;
2194 				/*
2195 				 * EACCES is special - we want to propagate to
2196 				 * upper layers that we cannot handle RW mount.
2197 				 */
2198 				if (ret == -EACCES)
2199 					break;
2200 			} else
2201 				break;
2202 
2203 			uopt.blocksize <<= 1;
2204 		}
2205 	}
2206 	if (ret < 0) {
2207 		if (ret == -EAGAIN) {
2208 			udf_warn(sb, "No partition found (1)\n");
2209 			ret = -EINVAL;
2210 		}
2211 		goto error_out;
2212 	}
2213 
2214 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2215 
2216 	if (sbi->s_lvid_bh) {
2217 		struct logicalVolIntegrityDescImpUse *lvidiu =
2218 							udf_sb_lvidiu(sb);
2219 		uint16_t minUDFReadRev;
2220 		uint16_t minUDFWriteRev;
2221 
2222 		if (!lvidiu) {
2223 			ret = -EINVAL;
2224 			goto error_out;
2225 		}
2226 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2227 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2228 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2229 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2230 				minUDFReadRev,
2231 				UDF_MAX_READ_VERSION);
2232 			ret = -EINVAL;
2233 			goto error_out;
2234 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2235 			if (!sb_rdonly(sb)) {
2236 				ret = -EACCES;
2237 				goto error_out;
2238 			}
2239 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2240 		}
2241 
2242 		sbi->s_udfrev = minUDFWriteRev;
2243 
2244 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2245 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2246 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2247 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2248 	}
2249 
2250 	if (!sbi->s_partitions) {
2251 		udf_warn(sb, "No partition found (2)\n");
2252 		ret = -EINVAL;
2253 		goto error_out;
2254 	}
2255 
2256 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2257 			UDF_PART_FLAG_READ_ONLY) {
2258 		if (!sb_rdonly(sb)) {
2259 			ret = -EACCES;
2260 			goto error_out;
2261 		}
2262 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2263 	}
2264 
2265 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2266 	if (ret < 0) {
2267 		udf_warn(sb, "No fileset found\n");
2268 		goto error_out;
2269 	}
2270 
2271 	if (!silent) {
2272 		struct timestamp ts;
2273 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2274 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2275 			 sbi->s_volume_ident,
2276 			 le16_to_cpu(ts.year), ts.month, ts.day,
2277 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2278 	}
2279 	if (!sb_rdonly(sb)) {
2280 		udf_open_lvid(sb);
2281 		lvid_open = true;
2282 	}
2283 
2284 	/* Assign the root inode */
2285 	/* assign inodes by physical block number */
2286 	/* perhaps it's not extensible enough, but for now ... */
2287 	inode = udf_iget(sb, &rootdir);
2288 	if (IS_ERR(inode)) {
2289 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2290 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2291 		ret = PTR_ERR(inode);
2292 		goto error_out;
2293 	}
2294 
2295 	/* Allocate a dentry for the root inode */
2296 	sb->s_root = d_make_root(inode);
2297 	if (!sb->s_root) {
2298 		udf_err(sb, "Couldn't allocate root dentry\n");
2299 		ret = -ENOMEM;
2300 		goto error_out;
2301 	}
2302 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2303 	sb->s_max_links = UDF_MAX_LINKS;
2304 	return 0;
2305 
2306 error_out:
2307 	iput(sbi->s_vat_inode);
2308 parse_options_failure:
2309 	if (uopt.nls_map)
2310 		unload_nls(uopt.nls_map);
2311 	if (lvid_open)
2312 		udf_close_lvid(sb);
2313 	brelse(sbi->s_lvid_bh);
2314 	udf_sb_free_partitions(sb);
2315 	kfree(sbi);
2316 	sb->s_fs_info = NULL;
2317 
2318 	return ret;
2319 }
2320 
2321 void _udf_err(struct super_block *sb, const char *function,
2322 	      const char *fmt, ...)
2323 {
2324 	struct va_format vaf;
2325 	va_list args;
2326 
2327 	va_start(args, fmt);
2328 
2329 	vaf.fmt = fmt;
2330 	vaf.va = &args;
2331 
2332 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2333 
2334 	va_end(args);
2335 }
2336 
2337 void _udf_warn(struct super_block *sb, const char *function,
2338 	       const char *fmt, ...)
2339 {
2340 	struct va_format vaf;
2341 	va_list args;
2342 
2343 	va_start(args, fmt);
2344 
2345 	vaf.fmt = fmt;
2346 	vaf.va = &args;
2347 
2348 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2349 
2350 	va_end(args);
2351 }
2352 
2353 static void udf_put_super(struct super_block *sb)
2354 {
2355 	struct udf_sb_info *sbi;
2356 
2357 	sbi = UDF_SB(sb);
2358 
2359 	iput(sbi->s_vat_inode);
2360 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2361 		unload_nls(sbi->s_nls_map);
2362 	if (!sb_rdonly(sb))
2363 		udf_close_lvid(sb);
2364 	brelse(sbi->s_lvid_bh);
2365 	udf_sb_free_partitions(sb);
2366 	mutex_destroy(&sbi->s_alloc_mutex);
2367 	kfree(sb->s_fs_info);
2368 	sb->s_fs_info = NULL;
2369 }
2370 
2371 static int udf_sync_fs(struct super_block *sb, int wait)
2372 {
2373 	struct udf_sb_info *sbi = UDF_SB(sb);
2374 
2375 	mutex_lock(&sbi->s_alloc_mutex);
2376 	if (sbi->s_lvid_dirty) {
2377 		struct buffer_head *bh = sbi->s_lvid_bh;
2378 		struct logicalVolIntegrityDesc *lvid;
2379 
2380 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2381 		udf_finalize_lvid(lvid);
2382 
2383 		/*
2384 		 * Blockdevice will be synced later so we don't have to submit
2385 		 * the buffer for IO
2386 		 */
2387 		mark_buffer_dirty(bh);
2388 		sbi->s_lvid_dirty = 0;
2389 	}
2390 	mutex_unlock(&sbi->s_alloc_mutex);
2391 
2392 	return 0;
2393 }
2394 
2395 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2396 {
2397 	struct super_block *sb = dentry->d_sb;
2398 	struct udf_sb_info *sbi = UDF_SB(sb);
2399 	struct logicalVolIntegrityDescImpUse *lvidiu;
2400 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2401 
2402 	lvidiu = udf_sb_lvidiu(sb);
2403 	buf->f_type = UDF_SUPER_MAGIC;
2404 	buf->f_bsize = sb->s_blocksize;
2405 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2406 	buf->f_bfree = udf_count_free(sb);
2407 	buf->f_bavail = buf->f_bfree;
2408 	/*
2409 	 * Let's pretend each free block is also a free 'inode' since UDF does
2410 	 * not have separate preallocated table of inodes.
2411 	 */
2412 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2413 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2414 			+ buf->f_bfree;
2415 	buf->f_ffree = buf->f_bfree;
2416 	buf->f_namelen = UDF_NAME_LEN;
2417 	buf->f_fsid = u64_to_fsid(id);
2418 
2419 	return 0;
2420 }
2421 
2422 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2423 					  struct udf_bitmap *bitmap)
2424 {
2425 	struct buffer_head *bh = NULL;
2426 	unsigned int accum = 0;
2427 	int index;
2428 	udf_pblk_t block = 0, newblock;
2429 	struct kernel_lb_addr loc;
2430 	uint32_t bytes;
2431 	uint8_t *ptr;
2432 	uint16_t ident;
2433 	struct spaceBitmapDesc *bm;
2434 
2435 	loc.logicalBlockNum = bitmap->s_extPosition;
2436 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2437 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2438 
2439 	if (!bh) {
2440 		udf_err(sb, "udf_count_free failed\n");
2441 		goto out;
2442 	} else if (ident != TAG_IDENT_SBD) {
2443 		brelse(bh);
2444 		udf_err(sb, "udf_count_free failed\n");
2445 		goto out;
2446 	}
2447 
2448 	bm = (struct spaceBitmapDesc *)bh->b_data;
2449 	bytes = le32_to_cpu(bm->numOfBytes);
2450 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2451 	ptr = (uint8_t *)bh->b_data;
2452 
2453 	while (bytes > 0) {
2454 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2455 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2456 					cur_bytes * 8);
2457 		bytes -= cur_bytes;
2458 		if (bytes) {
2459 			brelse(bh);
2460 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2461 			bh = udf_tread(sb, newblock);
2462 			if (!bh) {
2463 				udf_debug("read failed\n");
2464 				goto out;
2465 			}
2466 			index = 0;
2467 			ptr = (uint8_t *)bh->b_data;
2468 		}
2469 	}
2470 	brelse(bh);
2471 out:
2472 	return accum;
2473 }
2474 
2475 static unsigned int udf_count_free_table(struct super_block *sb,
2476 					 struct inode *table)
2477 {
2478 	unsigned int accum = 0;
2479 	uint32_t elen;
2480 	struct kernel_lb_addr eloc;
2481 	int8_t etype;
2482 	struct extent_position epos;
2483 
2484 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2485 	epos.block = UDF_I(table)->i_location;
2486 	epos.offset = sizeof(struct unallocSpaceEntry);
2487 	epos.bh = NULL;
2488 
2489 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2490 		accum += (elen >> table->i_sb->s_blocksize_bits);
2491 
2492 	brelse(epos.bh);
2493 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2494 
2495 	return accum;
2496 }
2497 
2498 static unsigned int udf_count_free(struct super_block *sb)
2499 {
2500 	unsigned int accum = 0;
2501 	struct udf_sb_info *sbi = UDF_SB(sb);
2502 	struct udf_part_map *map;
2503 	unsigned int part = sbi->s_partition;
2504 	int ptype = sbi->s_partmaps[part].s_partition_type;
2505 
2506 	if (ptype == UDF_METADATA_MAP25) {
2507 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2508 							s_phys_partition_ref;
2509 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2510 		/*
2511 		 * Filesystems with VAT are append-only and we cannot write to
2512  		 * them. Let's just report 0 here.
2513 		 */
2514 		return 0;
2515 	}
2516 
2517 	if (sbi->s_lvid_bh) {
2518 		struct logicalVolIntegrityDesc *lvid =
2519 			(struct logicalVolIntegrityDesc *)
2520 			sbi->s_lvid_bh->b_data;
2521 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2522 			accum = le32_to_cpu(
2523 					lvid->freeSpaceTable[part]);
2524 			if (accum == 0xFFFFFFFF)
2525 				accum = 0;
2526 		}
2527 	}
2528 
2529 	if (accum)
2530 		return accum;
2531 
2532 	map = &sbi->s_partmaps[part];
2533 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2534 		accum += udf_count_free_bitmap(sb,
2535 					       map->s_uspace.s_bitmap);
2536 	}
2537 	if (accum)
2538 		return accum;
2539 
2540 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2541 		accum += udf_count_free_table(sb,
2542 					      map->s_uspace.s_table);
2543 	}
2544 	return accum;
2545 }
2546 
2547 MODULE_AUTHOR("Ben Fennema");
2548 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2549 MODULE_LICENSE("GPL");
2550 module_init(init_udf_fs)
2551 module_exit(exit_udf_fs)
2552