1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define UDF_DEFAULT_BLOCKSIZE 2048 77 78 #define VSD_FIRST_SECTOR_OFFSET 32768 79 #define VSD_MAX_SECTOR_OFFSET 0x800000 80 81 /* 82 * Maximum number of Terminating Descriptor / Logical Volume Integrity 83 * Descriptor redirections. The chosen numbers are arbitrary - just that we 84 * hopefully don't limit any real use of rewritten inode on write-once media 85 * but avoid looping for too long on corrupted media. 86 */ 87 #define UDF_MAX_TD_NESTING 64 88 #define UDF_MAX_LVID_NESTING 1000 89 90 enum { UDF_MAX_LINKS = 0xffff }; 91 92 /* These are the "meat" - everything else is stuffing */ 93 static int udf_fill_super(struct super_block *, void *, int); 94 static void udf_put_super(struct super_block *); 95 static int udf_sync_fs(struct super_block *, int); 96 static int udf_remount_fs(struct super_block *, int *, char *); 97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 99 struct kernel_lb_addr *); 100 static void udf_load_fileset(struct super_block *, struct buffer_head *, 101 struct kernel_lb_addr *); 102 static void udf_open_lvid(struct super_block *); 103 static void udf_close_lvid(struct super_block *); 104 static unsigned int udf_count_free(struct super_block *); 105 static int udf_statfs(struct dentry *, struct kstatfs *); 106 static int udf_show_options(struct seq_file *, struct dentry *); 107 108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 109 { 110 struct logicalVolIntegrityDesc *lvid; 111 unsigned int partnum; 112 unsigned int offset; 113 114 if (!UDF_SB(sb)->s_lvid_bh) 115 return NULL; 116 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 117 partnum = le32_to_cpu(lvid->numOfPartitions); 118 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 119 offsetof(struct logicalVolIntegrityDesc, impUse)) / 120 (2 * sizeof(uint32_t)) < partnum) { 121 udf_err(sb, "Logical volume integrity descriptor corrupted " 122 "(numOfPartitions = %u)!\n", partnum); 123 return NULL; 124 } 125 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 126 offset = partnum * 2 * sizeof(uint32_t); 127 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 128 } 129 130 /* UDF filesystem type */ 131 static struct dentry *udf_mount(struct file_system_type *fs_type, 132 int flags, const char *dev_name, void *data) 133 { 134 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 135 } 136 137 static struct file_system_type udf_fstype = { 138 .owner = THIS_MODULE, 139 .name = "udf", 140 .mount = udf_mount, 141 .kill_sb = kill_block_super, 142 .fs_flags = FS_REQUIRES_DEV, 143 }; 144 MODULE_ALIAS_FS("udf"); 145 146 static struct kmem_cache *udf_inode_cachep; 147 148 static struct inode *udf_alloc_inode(struct super_block *sb) 149 { 150 struct udf_inode_info *ei; 151 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 152 if (!ei) 153 return NULL; 154 155 ei->i_unique = 0; 156 ei->i_lenExtents = 0; 157 ei->i_next_alloc_block = 0; 158 ei->i_next_alloc_goal = 0; 159 ei->i_strat4096 = 0; 160 init_rwsem(&ei->i_data_sem); 161 ei->cached_extent.lstart = -1; 162 spin_lock_init(&ei->i_extent_cache_lock); 163 164 return &ei->vfs_inode; 165 } 166 167 static void udf_i_callback(struct rcu_head *head) 168 { 169 struct inode *inode = container_of(head, struct inode, i_rcu); 170 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 171 } 172 173 static void udf_destroy_inode(struct inode *inode) 174 { 175 call_rcu(&inode->i_rcu, udf_i_callback); 176 } 177 178 static void init_once(void *foo) 179 { 180 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 181 182 ei->i_ext.i_data = NULL; 183 inode_init_once(&ei->vfs_inode); 184 } 185 186 static int __init init_inodecache(void) 187 { 188 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 189 sizeof(struct udf_inode_info), 190 0, (SLAB_RECLAIM_ACCOUNT | 191 SLAB_MEM_SPREAD | 192 SLAB_ACCOUNT), 193 init_once); 194 if (!udf_inode_cachep) 195 return -ENOMEM; 196 return 0; 197 } 198 199 static void destroy_inodecache(void) 200 { 201 /* 202 * Make sure all delayed rcu free inodes are flushed before we 203 * destroy cache. 204 */ 205 rcu_barrier(); 206 kmem_cache_destroy(udf_inode_cachep); 207 } 208 209 /* Superblock operations */ 210 static const struct super_operations udf_sb_ops = { 211 .alloc_inode = udf_alloc_inode, 212 .destroy_inode = udf_destroy_inode, 213 .write_inode = udf_write_inode, 214 .evict_inode = udf_evict_inode, 215 .put_super = udf_put_super, 216 .sync_fs = udf_sync_fs, 217 .statfs = udf_statfs, 218 .remount_fs = udf_remount_fs, 219 .show_options = udf_show_options, 220 }; 221 222 struct udf_options { 223 unsigned char novrs; 224 unsigned int blocksize; 225 unsigned int session; 226 unsigned int lastblock; 227 unsigned int anchor; 228 unsigned int volume; 229 unsigned short partition; 230 unsigned int fileset; 231 unsigned int rootdir; 232 unsigned int flags; 233 umode_t umask; 234 kgid_t gid; 235 kuid_t uid; 236 umode_t fmode; 237 umode_t dmode; 238 struct nls_table *nls_map; 239 }; 240 241 static int __init init_udf_fs(void) 242 { 243 int err; 244 245 err = init_inodecache(); 246 if (err) 247 goto out1; 248 err = register_filesystem(&udf_fstype); 249 if (err) 250 goto out; 251 252 return 0; 253 254 out: 255 destroy_inodecache(); 256 257 out1: 258 return err; 259 } 260 261 static void __exit exit_udf_fs(void) 262 { 263 unregister_filesystem(&udf_fstype); 264 destroy_inodecache(); 265 } 266 267 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 268 { 269 struct udf_sb_info *sbi = UDF_SB(sb); 270 271 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 272 GFP_KERNEL); 273 if (!sbi->s_partmaps) { 274 udf_err(sb, "Unable to allocate space for %d partition maps\n", 275 count); 276 sbi->s_partitions = 0; 277 return -ENOMEM; 278 } 279 280 sbi->s_partitions = count; 281 return 0; 282 } 283 284 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 285 { 286 int i; 287 int nr_groups = bitmap->s_nr_groups; 288 289 for (i = 0; i < nr_groups; i++) 290 if (bitmap->s_block_bitmap[i]) 291 brelse(bitmap->s_block_bitmap[i]); 292 293 kvfree(bitmap); 294 } 295 296 static void udf_free_partition(struct udf_part_map *map) 297 { 298 int i; 299 struct udf_meta_data *mdata; 300 301 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 302 iput(map->s_uspace.s_table); 303 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 304 iput(map->s_fspace.s_table); 305 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 306 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 307 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 308 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 309 if (map->s_partition_type == UDF_SPARABLE_MAP15) 310 for (i = 0; i < 4; i++) 311 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 312 else if (map->s_partition_type == UDF_METADATA_MAP25) { 313 mdata = &map->s_type_specific.s_metadata; 314 iput(mdata->s_metadata_fe); 315 mdata->s_metadata_fe = NULL; 316 317 iput(mdata->s_mirror_fe); 318 mdata->s_mirror_fe = NULL; 319 320 iput(mdata->s_bitmap_fe); 321 mdata->s_bitmap_fe = NULL; 322 } 323 } 324 325 static void udf_sb_free_partitions(struct super_block *sb) 326 { 327 struct udf_sb_info *sbi = UDF_SB(sb); 328 int i; 329 if (sbi->s_partmaps == NULL) 330 return; 331 for (i = 0; i < sbi->s_partitions; i++) 332 udf_free_partition(&sbi->s_partmaps[i]); 333 kfree(sbi->s_partmaps); 334 sbi->s_partmaps = NULL; 335 } 336 337 static int udf_show_options(struct seq_file *seq, struct dentry *root) 338 { 339 struct super_block *sb = root->d_sb; 340 struct udf_sb_info *sbi = UDF_SB(sb); 341 342 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 343 seq_puts(seq, ",nostrict"); 344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 345 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 347 seq_puts(seq, ",unhide"); 348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 349 seq_puts(seq, ",undelete"); 350 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 351 seq_puts(seq, ",noadinicb"); 352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 353 seq_puts(seq, ",shortad"); 354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 355 seq_puts(seq, ",uid=forget"); 356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 357 seq_puts(seq, ",uid=ignore"); 358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 359 seq_puts(seq, ",gid=forget"); 360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 361 seq_puts(seq, ",gid=ignore"); 362 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 363 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 364 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 365 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 366 if (sbi->s_umask != 0) 367 seq_printf(seq, ",umask=%ho", sbi->s_umask); 368 if (sbi->s_fmode != UDF_INVALID_MODE) 369 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 370 if (sbi->s_dmode != UDF_INVALID_MODE) 371 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 372 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 373 seq_printf(seq, ",session=%u", sbi->s_session); 374 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 375 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 376 if (sbi->s_anchor != 0) 377 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 378 /* 379 * volume, partition, fileset and rootdir seem to be ignored 380 * currently 381 */ 382 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 383 seq_puts(seq, ",utf8"); 384 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 385 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 386 387 return 0; 388 } 389 390 /* 391 * udf_parse_options 392 * 393 * PURPOSE 394 * Parse mount options. 395 * 396 * DESCRIPTION 397 * The following mount options are supported: 398 * 399 * gid= Set the default group. 400 * umask= Set the default umask. 401 * mode= Set the default file permissions. 402 * dmode= Set the default directory permissions. 403 * uid= Set the default user. 404 * bs= Set the block size. 405 * unhide Show otherwise hidden files. 406 * undelete Show deleted files in lists. 407 * adinicb Embed data in the inode (default) 408 * noadinicb Don't embed data in the inode 409 * shortad Use short ad's 410 * longad Use long ad's (default) 411 * nostrict Unset strict conformance 412 * iocharset= Set the NLS character set 413 * 414 * The remaining are for debugging and disaster recovery: 415 * 416 * novrs Skip volume sequence recognition 417 * 418 * The following expect a offset from 0. 419 * 420 * session= Set the CDROM session (default= last session) 421 * anchor= Override standard anchor location. (default= 256) 422 * volume= Override the VolumeDesc location. (unused) 423 * partition= Override the PartitionDesc location. (unused) 424 * lastblock= Set the last block of the filesystem/ 425 * 426 * The following expect a offset from the partition root. 427 * 428 * fileset= Override the fileset block location. (unused) 429 * rootdir= Override the root directory location. (unused) 430 * WARNING: overriding the rootdir to a non-directory may 431 * yield highly unpredictable results. 432 * 433 * PRE-CONDITIONS 434 * options Pointer to mount options string. 435 * uopts Pointer to mount options variable. 436 * 437 * POST-CONDITIONS 438 * <return> 1 Mount options parsed okay. 439 * <return> 0 Error parsing mount options. 440 * 441 * HISTORY 442 * July 1, 1997 - Andrew E. Mileski 443 * Written, tested, and released. 444 */ 445 446 enum { 447 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 448 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 449 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 450 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 451 Opt_rootdir, Opt_utf8, Opt_iocharset, 452 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 453 Opt_fmode, Opt_dmode 454 }; 455 456 static const match_table_t tokens = { 457 {Opt_novrs, "novrs"}, 458 {Opt_nostrict, "nostrict"}, 459 {Opt_bs, "bs=%u"}, 460 {Opt_unhide, "unhide"}, 461 {Opt_undelete, "undelete"}, 462 {Opt_noadinicb, "noadinicb"}, 463 {Opt_adinicb, "adinicb"}, 464 {Opt_shortad, "shortad"}, 465 {Opt_longad, "longad"}, 466 {Opt_uforget, "uid=forget"}, 467 {Opt_uignore, "uid=ignore"}, 468 {Opt_gforget, "gid=forget"}, 469 {Opt_gignore, "gid=ignore"}, 470 {Opt_gid, "gid=%u"}, 471 {Opt_uid, "uid=%u"}, 472 {Opt_umask, "umask=%o"}, 473 {Opt_session, "session=%u"}, 474 {Opt_lastblock, "lastblock=%u"}, 475 {Opt_anchor, "anchor=%u"}, 476 {Opt_volume, "volume=%u"}, 477 {Opt_partition, "partition=%u"}, 478 {Opt_fileset, "fileset=%u"}, 479 {Opt_rootdir, "rootdir=%u"}, 480 {Opt_utf8, "utf8"}, 481 {Opt_iocharset, "iocharset=%s"}, 482 {Opt_fmode, "mode=%o"}, 483 {Opt_dmode, "dmode=%o"}, 484 {Opt_err, NULL} 485 }; 486 487 static int udf_parse_options(char *options, struct udf_options *uopt, 488 bool remount) 489 { 490 char *p; 491 int option; 492 493 uopt->novrs = 0; 494 uopt->partition = 0xFFFF; 495 uopt->session = 0xFFFFFFFF; 496 uopt->lastblock = 0; 497 uopt->anchor = 0; 498 uopt->volume = 0xFFFFFFFF; 499 uopt->rootdir = 0xFFFFFFFF; 500 uopt->fileset = 0xFFFFFFFF; 501 uopt->nls_map = NULL; 502 503 if (!options) 504 return 1; 505 506 while ((p = strsep(&options, ",")) != NULL) { 507 substring_t args[MAX_OPT_ARGS]; 508 int token; 509 unsigned n; 510 if (!*p) 511 continue; 512 513 token = match_token(p, tokens, args); 514 switch (token) { 515 case Opt_novrs: 516 uopt->novrs = 1; 517 break; 518 case Opt_bs: 519 if (match_int(&args[0], &option)) 520 return 0; 521 n = option; 522 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 523 return 0; 524 uopt->blocksize = n; 525 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 526 break; 527 case Opt_unhide: 528 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 529 break; 530 case Opt_undelete: 531 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 532 break; 533 case Opt_noadinicb: 534 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 535 break; 536 case Opt_adinicb: 537 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 538 break; 539 case Opt_shortad: 540 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 541 break; 542 case Opt_longad: 543 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 544 break; 545 case Opt_gid: 546 if (match_int(args, &option)) 547 return 0; 548 uopt->gid = make_kgid(current_user_ns(), option); 549 if (!gid_valid(uopt->gid)) 550 return 0; 551 uopt->flags |= (1 << UDF_FLAG_GID_SET); 552 break; 553 case Opt_uid: 554 if (match_int(args, &option)) 555 return 0; 556 uopt->uid = make_kuid(current_user_ns(), option); 557 if (!uid_valid(uopt->uid)) 558 return 0; 559 uopt->flags |= (1 << UDF_FLAG_UID_SET); 560 break; 561 case Opt_umask: 562 if (match_octal(args, &option)) 563 return 0; 564 uopt->umask = option; 565 break; 566 case Opt_nostrict: 567 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 568 break; 569 case Opt_session: 570 if (match_int(args, &option)) 571 return 0; 572 uopt->session = option; 573 if (!remount) 574 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 575 break; 576 case Opt_lastblock: 577 if (match_int(args, &option)) 578 return 0; 579 uopt->lastblock = option; 580 if (!remount) 581 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 582 break; 583 case Opt_anchor: 584 if (match_int(args, &option)) 585 return 0; 586 uopt->anchor = option; 587 break; 588 case Opt_volume: 589 if (match_int(args, &option)) 590 return 0; 591 uopt->volume = option; 592 break; 593 case Opt_partition: 594 if (match_int(args, &option)) 595 return 0; 596 uopt->partition = option; 597 break; 598 case Opt_fileset: 599 if (match_int(args, &option)) 600 return 0; 601 uopt->fileset = option; 602 break; 603 case Opt_rootdir: 604 if (match_int(args, &option)) 605 return 0; 606 uopt->rootdir = option; 607 break; 608 case Opt_utf8: 609 uopt->flags |= (1 << UDF_FLAG_UTF8); 610 break; 611 #ifdef CONFIG_UDF_NLS 612 case Opt_iocharset: 613 uopt->nls_map = load_nls(args[0].from); 614 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 615 break; 616 #endif 617 case Opt_uignore: 618 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 619 break; 620 case Opt_uforget: 621 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 622 break; 623 case Opt_gignore: 624 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 625 break; 626 case Opt_gforget: 627 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 628 break; 629 case Opt_fmode: 630 if (match_octal(args, &option)) 631 return 0; 632 uopt->fmode = option & 0777; 633 break; 634 case Opt_dmode: 635 if (match_octal(args, &option)) 636 return 0; 637 uopt->dmode = option & 0777; 638 break; 639 default: 640 pr_err("bad mount option \"%s\" or missing value\n", p); 641 return 0; 642 } 643 } 644 return 1; 645 } 646 647 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 648 { 649 struct udf_options uopt; 650 struct udf_sb_info *sbi = UDF_SB(sb); 651 int error = 0; 652 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 653 654 sync_filesystem(sb); 655 if (lvidiu) { 656 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 657 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 658 return -EACCES; 659 } 660 661 uopt.flags = sbi->s_flags; 662 uopt.uid = sbi->s_uid; 663 uopt.gid = sbi->s_gid; 664 uopt.umask = sbi->s_umask; 665 uopt.fmode = sbi->s_fmode; 666 uopt.dmode = sbi->s_dmode; 667 668 if (!udf_parse_options(options, &uopt, true)) 669 return -EINVAL; 670 671 write_lock(&sbi->s_cred_lock); 672 sbi->s_flags = uopt.flags; 673 sbi->s_uid = uopt.uid; 674 sbi->s_gid = uopt.gid; 675 sbi->s_umask = uopt.umask; 676 sbi->s_fmode = uopt.fmode; 677 sbi->s_dmode = uopt.dmode; 678 write_unlock(&sbi->s_cred_lock); 679 680 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 681 goto out_unlock; 682 683 if (*flags & MS_RDONLY) 684 udf_close_lvid(sb); 685 else 686 udf_open_lvid(sb); 687 688 out_unlock: 689 return error; 690 } 691 692 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 693 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 694 static loff_t udf_check_vsd(struct super_block *sb) 695 { 696 struct volStructDesc *vsd = NULL; 697 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 698 int sectorsize; 699 struct buffer_head *bh = NULL; 700 int nsr02 = 0; 701 int nsr03 = 0; 702 struct udf_sb_info *sbi; 703 704 sbi = UDF_SB(sb); 705 if (sb->s_blocksize < sizeof(struct volStructDesc)) 706 sectorsize = sizeof(struct volStructDesc); 707 else 708 sectorsize = sb->s_blocksize; 709 710 sector += (sbi->s_session << sb->s_blocksize_bits); 711 712 udf_debug("Starting at sector %u (%ld byte sectors)\n", 713 (unsigned int)(sector >> sb->s_blocksize_bits), 714 sb->s_blocksize); 715 /* Process the sequence (if applicable). The hard limit on the sector 716 * offset is arbitrary, hopefully large enough so that all valid UDF 717 * filesystems will be recognised. There is no mention of an upper 718 * bound to the size of the volume recognition area in the standard. 719 * The limit will prevent the code to read all the sectors of a 720 * specially crafted image (like a bluray disc full of CD001 sectors), 721 * potentially causing minutes or even hours of uninterruptible I/O 722 * activity. This actually happened with uninitialised SSD partitions 723 * (all 0xFF) before the check for the limit and all valid IDs were 724 * added */ 725 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 726 sector += sectorsize) { 727 /* Read a block */ 728 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 729 if (!bh) 730 break; 731 732 /* Look for ISO descriptors */ 733 vsd = (struct volStructDesc *)(bh->b_data + 734 (sector & (sb->s_blocksize - 1))); 735 736 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 737 VSD_STD_ID_LEN)) { 738 switch (vsd->structType) { 739 case 0: 740 udf_debug("ISO9660 Boot Record found\n"); 741 break; 742 case 1: 743 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 744 break; 745 case 2: 746 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 747 break; 748 case 3: 749 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 750 break; 751 case 255: 752 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 753 break; 754 default: 755 udf_debug("ISO9660 VRS (%u) found\n", 756 vsd->structType); 757 break; 758 } 759 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 760 VSD_STD_ID_LEN)) 761 ; /* nothing */ 762 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 763 VSD_STD_ID_LEN)) { 764 brelse(bh); 765 break; 766 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 767 VSD_STD_ID_LEN)) 768 nsr02 = sector; 769 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 770 VSD_STD_ID_LEN)) 771 nsr03 = sector; 772 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 773 VSD_STD_ID_LEN)) 774 ; /* nothing */ 775 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 776 VSD_STD_ID_LEN)) 777 ; /* nothing */ 778 else { 779 /* invalid id : end of volume recognition area */ 780 brelse(bh); 781 break; 782 } 783 brelse(bh); 784 } 785 786 if (nsr03) 787 return nsr03; 788 else if (nsr02) 789 return nsr02; 790 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 791 VSD_FIRST_SECTOR_OFFSET) 792 return -1; 793 else 794 return 0; 795 } 796 797 static int udf_find_fileset(struct super_block *sb, 798 struct kernel_lb_addr *fileset, 799 struct kernel_lb_addr *root) 800 { 801 struct buffer_head *bh = NULL; 802 long lastblock; 803 uint16_t ident; 804 struct udf_sb_info *sbi; 805 806 if (fileset->logicalBlockNum != 0xFFFFFFFF || 807 fileset->partitionReferenceNum != 0xFFFF) { 808 bh = udf_read_ptagged(sb, fileset, 0, &ident); 809 810 if (!bh) { 811 return 1; 812 } else if (ident != TAG_IDENT_FSD) { 813 brelse(bh); 814 return 1; 815 } 816 817 } 818 819 sbi = UDF_SB(sb); 820 if (!bh) { 821 /* Search backwards through the partitions */ 822 struct kernel_lb_addr newfileset; 823 824 /* --> cvg: FIXME - is it reasonable? */ 825 return 1; 826 827 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 828 (newfileset.partitionReferenceNum != 0xFFFF && 829 fileset->logicalBlockNum == 0xFFFFFFFF && 830 fileset->partitionReferenceNum == 0xFFFF); 831 newfileset.partitionReferenceNum--) { 832 lastblock = sbi->s_partmaps 833 [newfileset.partitionReferenceNum] 834 .s_partition_len; 835 newfileset.logicalBlockNum = 0; 836 837 do { 838 bh = udf_read_ptagged(sb, &newfileset, 0, 839 &ident); 840 if (!bh) { 841 newfileset.logicalBlockNum++; 842 continue; 843 } 844 845 switch (ident) { 846 case TAG_IDENT_SBD: 847 { 848 struct spaceBitmapDesc *sp; 849 sp = (struct spaceBitmapDesc *) 850 bh->b_data; 851 newfileset.logicalBlockNum += 1 + 852 ((le32_to_cpu(sp->numOfBytes) + 853 sizeof(struct spaceBitmapDesc) 854 - 1) >> sb->s_blocksize_bits); 855 brelse(bh); 856 break; 857 } 858 case TAG_IDENT_FSD: 859 *fileset = newfileset; 860 break; 861 default: 862 newfileset.logicalBlockNum++; 863 brelse(bh); 864 bh = NULL; 865 break; 866 } 867 } while (newfileset.logicalBlockNum < lastblock && 868 fileset->logicalBlockNum == 0xFFFFFFFF && 869 fileset->partitionReferenceNum == 0xFFFF); 870 } 871 } 872 873 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 874 fileset->partitionReferenceNum != 0xFFFF) && bh) { 875 udf_debug("Fileset at block=%d, partition=%d\n", 876 fileset->logicalBlockNum, 877 fileset->partitionReferenceNum); 878 879 sbi->s_partition = fileset->partitionReferenceNum; 880 udf_load_fileset(sb, bh, root); 881 brelse(bh); 882 return 0; 883 } 884 return 1; 885 } 886 887 /* 888 * Load primary Volume Descriptor Sequence 889 * 890 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 891 * should be tried. 892 */ 893 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 894 { 895 struct primaryVolDesc *pvoldesc; 896 uint8_t *outstr; 897 struct buffer_head *bh; 898 uint16_t ident; 899 int ret = -ENOMEM; 900 901 outstr = kmalloc(128, GFP_NOFS); 902 if (!outstr) 903 return -ENOMEM; 904 905 bh = udf_read_tagged(sb, block, block, &ident); 906 if (!bh) { 907 ret = -EAGAIN; 908 goto out2; 909 } 910 911 if (ident != TAG_IDENT_PVD) { 912 ret = -EIO; 913 goto out_bh; 914 } 915 916 pvoldesc = (struct primaryVolDesc *)bh->b_data; 917 918 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 919 pvoldesc->recordingDateAndTime)) { 920 #ifdef UDFFS_DEBUG 921 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 922 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 923 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 924 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 925 #endif 926 } 927 928 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32); 929 if (ret < 0) 930 goto out_bh; 931 932 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 933 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 934 935 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128); 936 if (ret < 0) 937 goto out_bh; 938 939 outstr[ret] = 0; 940 udf_debug("volSetIdent[] = '%s'\n", outstr); 941 942 ret = 0; 943 out_bh: 944 brelse(bh); 945 out2: 946 kfree(outstr); 947 return ret; 948 } 949 950 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 951 u32 meta_file_loc, u32 partition_ref) 952 { 953 struct kernel_lb_addr addr; 954 struct inode *metadata_fe; 955 956 addr.logicalBlockNum = meta_file_loc; 957 addr.partitionReferenceNum = partition_ref; 958 959 metadata_fe = udf_iget_special(sb, &addr); 960 961 if (IS_ERR(metadata_fe)) { 962 udf_warn(sb, "metadata inode efe not found\n"); 963 return metadata_fe; 964 } 965 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 966 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 967 iput(metadata_fe); 968 return ERR_PTR(-EIO); 969 } 970 971 return metadata_fe; 972 } 973 974 static int udf_load_metadata_files(struct super_block *sb, int partition, 975 int type1_index) 976 { 977 struct udf_sb_info *sbi = UDF_SB(sb); 978 struct udf_part_map *map; 979 struct udf_meta_data *mdata; 980 struct kernel_lb_addr addr; 981 struct inode *fe; 982 983 map = &sbi->s_partmaps[partition]; 984 mdata = &map->s_type_specific.s_metadata; 985 mdata->s_phys_partition_ref = type1_index; 986 987 /* metadata address */ 988 udf_debug("Metadata file location: block = %d part = %d\n", 989 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 990 991 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 992 mdata->s_phys_partition_ref); 993 if (IS_ERR(fe)) { 994 /* mirror file entry */ 995 udf_debug("Mirror metadata file location: block = %d part = %d\n", 996 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 997 998 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 999 mdata->s_phys_partition_ref); 1000 1001 if (IS_ERR(fe)) { 1002 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 1003 return PTR_ERR(fe); 1004 } 1005 mdata->s_mirror_fe = fe; 1006 } else 1007 mdata->s_metadata_fe = fe; 1008 1009 1010 /* 1011 * bitmap file entry 1012 * Note: 1013 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1014 */ 1015 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1016 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1017 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 1018 1019 udf_debug("Bitmap file location: block = %d part = %d\n", 1020 addr.logicalBlockNum, addr.partitionReferenceNum); 1021 1022 fe = udf_iget_special(sb, &addr); 1023 if (IS_ERR(fe)) { 1024 if (sb->s_flags & MS_RDONLY) 1025 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1026 else { 1027 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1028 return PTR_ERR(fe); 1029 } 1030 } else 1031 mdata->s_bitmap_fe = fe; 1032 } 1033 1034 udf_debug("udf_load_metadata_files Ok\n"); 1035 return 0; 1036 } 1037 1038 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1039 struct kernel_lb_addr *root) 1040 { 1041 struct fileSetDesc *fset; 1042 1043 fset = (struct fileSetDesc *)bh->b_data; 1044 1045 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1046 1047 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1048 1049 udf_debug("Rootdir at block=%d, partition=%d\n", 1050 root->logicalBlockNum, root->partitionReferenceNum); 1051 } 1052 1053 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1054 { 1055 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1056 return DIV_ROUND_UP(map->s_partition_len + 1057 (sizeof(struct spaceBitmapDesc) << 3), 1058 sb->s_blocksize * 8); 1059 } 1060 1061 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1062 { 1063 struct udf_bitmap *bitmap; 1064 int nr_groups; 1065 int size; 1066 1067 nr_groups = udf_compute_nr_groups(sb, index); 1068 size = sizeof(struct udf_bitmap) + 1069 (sizeof(struct buffer_head *) * nr_groups); 1070 1071 if (size <= PAGE_SIZE) 1072 bitmap = kzalloc(size, GFP_KERNEL); 1073 else 1074 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1075 1076 if (bitmap == NULL) 1077 return NULL; 1078 1079 bitmap->s_nr_groups = nr_groups; 1080 return bitmap; 1081 } 1082 1083 static int udf_fill_partdesc_info(struct super_block *sb, 1084 struct partitionDesc *p, int p_index) 1085 { 1086 struct udf_part_map *map; 1087 struct udf_sb_info *sbi = UDF_SB(sb); 1088 struct partitionHeaderDesc *phd; 1089 1090 map = &sbi->s_partmaps[p_index]; 1091 1092 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1093 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1094 1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1096 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1098 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1100 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1102 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1103 1104 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1105 p_index, map->s_partition_type, 1106 map->s_partition_root, map->s_partition_len); 1107 1108 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1109 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1110 return 0; 1111 1112 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1113 if (phd->unallocSpaceTable.extLength) { 1114 struct kernel_lb_addr loc = { 1115 .logicalBlockNum = le32_to_cpu( 1116 phd->unallocSpaceTable.extPosition), 1117 .partitionReferenceNum = p_index, 1118 }; 1119 struct inode *inode; 1120 1121 inode = udf_iget_special(sb, &loc); 1122 if (IS_ERR(inode)) { 1123 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1124 p_index); 1125 return PTR_ERR(inode); 1126 } 1127 map->s_uspace.s_table = inode; 1128 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1129 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1130 p_index, map->s_uspace.s_table->i_ino); 1131 } 1132 1133 if (phd->unallocSpaceBitmap.extLength) { 1134 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1135 if (!bitmap) 1136 return -ENOMEM; 1137 map->s_uspace.s_bitmap = bitmap; 1138 bitmap->s_extPosition = le32_to_cpu( 1139 phd->unallocSpaceBitmap.extPosition); 1140 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1141 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1142 p_index, bitmap->s_extPosition); 1143 } 1144 1145 if (phd->partitionIntegrityTable.extLength) 1146 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1147 1148 if (phd->freedSpaceTable.extLength) { 1149 struct kernel_lb_addr loc = { 1150 .logicalBlockNum = le32_to_cpu( 1151 phd->freedSpaceTable.extPosition), 1152 .partitionReferenceNum = p_index, 1153 }; 1154 struct inode *inode; 1155 1156 inode = udf_iget_special(sb, &loc); 1157 if (IS_ERR(inode)) { 1158 udf_debug("cannot load freedSpaceTable (part %d)\n", 1159 p_index); 1160 return PTR_ERR(inode); 1161 } 1162 map->s_fspace.s_table = inode; 1163 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1164 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1165 p_index, map->s_fspace.s_table->i_ino); 1166 } 1167 1168 if (phd->freedSpaceBitmap.extLength) { 1169 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1170 if (!bitmap) 1171 return -ENOMEM; 1172 map->s_fspace.s_bitmap = bitmap; 1173 bitmap->s_extPosition = le32_to_cpu( 1174 phd->freedSpaceBitmap.extPosition); 1175 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1176 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1177 p_index, bitmap->s_extPosition); 1178 } 1179 return 0; 1180 } 1181 1182 static void udf_find_vat_block(struct super_block *sb, int p_index, 1183 int type1_index, sector_t start_block) 1184 { 1185 struct udf_sb_info *sbi = UDF_SB(sb); 1186 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1187 sector_t vat_block; 1188 struct kernel_lb_addr ino; 1189 struct inode *inode; 1190 1191 /* 1192 * VAT file entry is in the last recorded block. Some broken disks have 1193 * it a few blocks before so try a bit harder... 1194 */ 1195 ino.partitionReferenceNum = type1_index; 1196 for (vat_block = start_block; 1197 vat_block >= map->s_partition_root && 1198 vat_block >= start_block - 3; vat_block--) { 1199 ino.logicalBlockNum = vat_block - map->s_partition_root; 1200 inode = udf_iget_special(sb, &ino); 1201 if (!IS_ERR(inode)) { 1202 sbi->s_vat_inode = inode; 1203 break; 1204 } 1205 } 1206 } 1207 1208 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1209 { 1210 struct udf_sb_info *sbi = UDF_SB(sb); 1211 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1212 struct buffer_head *bh = NULL; 1213 struct udf_inode_info *vati; 1214 uint32_t pos; 1215 struct virtualAllocationTable20 *vat20; 1216 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1217 sb->s_blocksize_bits; 1218 1219 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1220 if (!sbi->s_vat_inode && 1221 sbi->s_last_block != blocks - 1) { 1222 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1223 (unsigned long)sbi->s_last_block, 1224 (unsigned long)blocks - 1); 1225 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1226 } 1227 if (!sbi->s_vat_inode) 1228 return -EIO; 1229 1230 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1231 map->s_type_specific.s_virtual.s_start_offset = 0; 1232 map->s_type_specific.s_virtual.s_num_entries = 1233 (sbi->s_vat_inode->i_size - 36) >> 2; 1234 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1235 vati = UDF_I(sbi->s_vat_inode); 1236 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1237 pos = udf_block_map(sbi->s_vat_inode, 0); 1238 bh = sb_bread(sb, pos); 1239 if (!bh) 1240 return -EIO; 1241 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1242 } else { 1243 vat20 = (struct virtualAllocationTable20 *) 1244 vati->i_ext.i_data; 1245 } 1246 1247 map->s_type_specific.s_virtual.s_start_offset = 1248 le16_to_cpu(vat20->lengthHeader); 1249 map->s_type_specific.s_virtual.s_num_entries = 1250 (sbi->s_vat_inode->i_size - 1251 map->s_type_specific.s_virtual. 1252 s_start_offset) >> 2; 1253 brelse(bh); 1254 } 1255 return 0; 1256 } 1257 1258 /* 1259 * Load partition descriptor block 1260 * 1261 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1262 * sequence. 1263 */ 1264 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1265 { 1266 struct buffer_head *bh; 1267 struct partitionDesc *p; 1268 struct udf_part_map *map; 1269 struct udf_sb_info *sbi = UDF_SB(sb); 1270 int i, type1_idx; 1271 uint16_t partitionNumber; 1272 uint16_t ident; 1273 int ret; 1274 1275 bh = udf_read_tagged(sb, block, block, &ident); 1276 if (!bh) 1277 return -EAGAIN; 1278 if (ident != TAG_IDENT_PD) { 1279 ret = 0; 1280 goto out_bh; 1281 } 1282 1283 p = (struct partitionDesc *)bh->b_data; 1284 partitionNumber = le16_to_cpu(p->partitionNumber); 1285 1286 /* First scan for TYPE1 and SPARABLE partitions */ 1287 for (i = 0; i < sbi->s_partitions; i++) { 1288 map = &sbi->s_partmaps[i]; 1289 udf_debug("Searching map: (%d == %d)\n", 1290 map->s_partition_num, partitionNumber); 1291 if (map->s_partition_num == partitionNumber && 1292 (map->s_partition_type == UDF_TYPE1_MAP15 || 1293 map->s_partition_type == UDF_SPARABLE_MAP15)) 1294 break; 1295 } 1296 1297 if (i >= sbi->s_partitions) { 1298 udf_debug("Partition (%d) not found in partition map\n", 1299 partitionNumber); 1300 ret = 0; 1301 goto out_bh; 1302 } 1303 1304 ret = udf_fill_partdesc_info(sb, p, i); 1305 if (ret < 0) 1306 goto out_bh; 1307 1308 /* 1309 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1310 * PHYSICAL partitions are already set up 1311 */ 1312 type1_idx = i; 1313 #ifdef UDFFS_DEBUG 1314 map = NULL; /* supress 'maybe used uninitialized' warning */ 1315 #endif 1316 for (i = 0; i < sbi->s_partitions; i++) { 1317 map = &sbi->s_partmaps[i]; 1318 1319 if (map->s_partition_num == partitionNumber && 1320 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1321 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1322 map->s_partition_type == UDF_METADATA_MAP25)) 1323 break; 1324 } 1325 1326 if (i >= sbi->s_partitions) { 1327 ret = 0; 1328 goto out_bh; 1329 } 1330 1331 ret = udf_fill_partdesc_info(sb, p, i); 1332 if (ret < 0) 1333 goto out_bh; 1334 1335 if (map->s_partition_type == UDF_METADATA_MAP25) { 1336 ret = udf_load_metadata_files(sb, i, type1_idx); 1337 if (ret < 0) { 1338 udf_err(sb, "error loading MetaData partition map %d\n", 1339 i); 1340 goto out_bh; 1341 } 1342 } else { 1343 /* 1344 * If we have a partition with virtual map, we don't handle 1345 * writing to it (we overwrite blocks instead of relocating 1346 * them). 1347 */ 1348 if (!(sb->s_flags & MS_RDONLY)) { 1349 ret = -EACCES; 1350 goto out_bh; 1351 } 1352 ret = udf_load_vat(sb, i, type1_idx); 1353 if (ret < 0) 1354 goto out_bh; 1355 } 1356 ret = 0; 1357 out_bh: 1358 /* In case loading failed, we handle cleanup in udf_fill_super */ 1359 brelse(bh); 1360 return ret; 1361 } 1362 1363 static int udf_load_sparable_map(struct super_block *sb, 1364 struct udf_part_map *map, 1365 struct sparablePartitionMap *spm) 1366 { 1367 uint32_t loc; 1368 uint16_t ident; 1369 struct sparingTable *st; 1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1371 int i; 1372 struct buffer_head *bh; 1373 1374 map->s_partition_type = UDF_SPARABLE_MAP15; 1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1376 if (!is_power_of_2(sdata->s_packet_len)) { 1377 udf_err(sb, "error loading logical volume descriptor: " 1378 "Invalid packet length %u\n", 1379 (unsigned)sdata->s_packet_len); 1380 return -EIO; 1381 } 1382 if (spm->numSparingTables > 4) { 1383 udf_err(sb, "error loading logical volume descriptor: " 1384 "Too many sparing tables (%d)\n", 1385 (int)spm->numSparingTables); 1386 return -EIO; 1387 } 1388 1389 for (i = 0; i < spm->numSparingTables; i++) { 1390 loc = le32_to_cpu(spm->locSparingTable[i]); 1391 bh = udf_read_tagged(sb, loc, loc, &ident); 1392 if (!bh) 1393 continue; 1394 1395 st = (struct sparingTable *)bh->b_data; 1396 if (ident != 0 || 1397 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1398 strlen(UDF_ID_SPARING)) || 1399 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1400 sb->s_blocksize) { 1401 brelse(bh); 1402 continue; 1403 } 1404 1405 sdata->s_spar_map[i] = bh; 1406 } 1407 map->s_partition_func = udf_get_pblock_spar15; 1408 return 0; 1409 } 1410 1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1412 struct kernel_lb_addr *fileset) 1413 { 1414 struct logicalVolDesc *lvd; 1415 int i, offset; 1416 uint8_t type; 1417 struct udf_sb_info *sbi = UDF_SB(sb); 1418 struct genericPartitionMap *gpm; 1419 uint16_t ident; 1420 struct buffer_head *bh; 1421 unsigned int table_len; 1422 int ret; 1423 1424 bh = udf_read_tagged(sb, block, block, &ident); 1425 if (!bh) 1426 return -EAGAIN; 1427 BUG_ON(ident != TAG_IDENT_LVD); 1428 lvd = (struct logicalVolDesc *)bh->b_data; 1429 table_len = le32_to_cpu(lvd->mapTableLength); 1430 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1431 udf_err(sb, "error loading logical volume descriptor: " 1432 "Partition table too long (%u > %lu)\n", table_len, 1433 sb->s_blocksize - sizeof(*lvd)); 1434 ret = -EIO; 1435 goto out_bh; 1436 } 1437 1438 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1439 if (ret) 1440 goto out_bh; 1441 1442 for (i = 0, offset = 0; 1443 i < sbi->s_partitions && offset < table_len; 1444 i++, offset += gpm->partitionMapLength) { 1445 struct udf_part_map *map = &sbi->s_partmaps[i]; 1446 gpm = (struct genericPartitionMap *) 1447 &(lvd->partitionMaps[offset]); 1448 type = gpm->partitionMapType; 1449 if (type == 1) { 1450 struct genericPartitionMap1 *gpm1 = 1451 (struct genericPartitionMap1 *)gpm; 1452 map->s_partition_type = UDF_TYPE1_MAP15; 1453 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1454 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1455 map->s_partition_func = NULL; 1456 } else if (type == 2) { 1457 struct udfPartitionMap2 *upm2 = 1458 (struct udfPartitionMap2 *)gpm; 1459 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1460 strlen(UDF_ID_VIRTUAL))) { 1461 u16 suf = 1462 le16_to_cpu(((__le16 *)upm2->partIdent. 1463 identSuffix)[0]); 1464 if (suf < 0x0200) { 1465 map->s_partition_type = 1466 UDF_VIRTUAL_MAP15; 1467 map->s_partition_func = 1468 udf_get_pblock_virt15; 1469 } else { 1470 map->s_partition_type = 1471 UDF_VIRTUAL_MAP20; 1472 map->s_partition_func = 1473 udf_get_pblock_virt20; 1474 } 1475 } else if (!strncmp(upm2->partIdent.ident, 1476 UDF_ID_SPARABLE, 1477 strlen(UDF_ID_SPARABLE))) { 1478 ret = udf_load_sparable_map(sb, map, 1479 (struct sparablePartitionMap *)gpm); 1480 if (ret < 0) 1481 goto out_bh; 1482 } else if (!strncmp(upm2->partIdent.ident, 1483 UDF_ID_METADATA, 1484 strlen(UDF_ID_METADATA))) { 1485 struct udf_meta_data *mdata = 1486 &map->s_type_specific.s_metadata; 1487 struct metadataPartitionMap *mdm = 1488 (struct metadataPartitionMap *) 1489 &(lvd->partitionMaps[offset]); 1490 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1491 i, type, UDF_ID_METADATA); 1492 1493 map->s_partition_type = UDF_METADATA_MAP25; 1494 map->s_partition_func = udf_get_pblock_meta25; 1495 1496 mdata->s_meta_file_loc = 1497 le32_to_cpu(mdm->metadataFileLoc); 1498 mdata->s_mirror_file_loc = 1499 le32_to_cpu(mdm->metadataMirrorFileLoc); 1500 mdata->s_bitmap_file_loc = 1501 le32_to_cpu(mdm->metadataBitmapFileLoc); 1502 mdata->s_alloc_unit_size = 1503 le32_to_cpu(mdm->allocUnitSize); 1504 mdata->s_align_unit_size = 1505 le16_to_cpu(mdm->alignUnitSize); 1506 if (mdm->flags & 0x01) 1507 mdata->s_flags |= MF_DUPLICATE_MD; 1508 1509 udf_debug("Metadata Ident suffix=0x%x\n", 1510 le16_to_cpu(*(__le16 *) 1511 mdm->partIdent.identSuffix)); 1512 udf_debug("Metadata part num=%d\n", 1513 le16_to_cpu(mdm->partitionNum)); 1514 udf_debug("Metadata part alloc unit size=%d\n", 1515 le32_to_cpu(mdm->allocUnitSize)); 1516 udf_debug("Metadata file loc=%d\n", 1517 le32_to_cpu(mdm->metadataFileLoc)); 1518 udf_debug("Mirror file loc=%d\n", 1519 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1520 udf_debug("Bitmap file loc=%d\n", 1521 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1522 udf_debug("Flags: %d %d\n", 1523 mdata->s_flags, mdm->flags); 1524 } else { 1525 udf_debug("Unknown ident: %s\n", 1526 upm2->partIdent.ident); 1527 continue; 1528 } 1529 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1530 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1531 } 1532 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1533 i, map->s_partition_num, type, map->s_volumeseqnum); 1534 } 1535 1536 if (fileset) { 1537 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1538 1539 *fileset = lelb_to_cpu(la->extLocation); 1540 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1541 fileset->logicalBlockNum, 1542 fileset->partitionReferenceNum); 1543 } 1544 if (lvd->integritySeqExt.extLength) 1545 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1546 ret = 0; 1547 out_bh: 1548 brelse(bh); 1549 return ret; 1550 } 1551 1552 /* 1553 * Find the prevailing Logical Volume Integrity Descriptor. 1554 */ 1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1556 { 1557 struct buffer_head *bh, *final_bh; 1558 uint16_t ident; 1559 struct udf_sb_info *sbi = UDF_SB(sb); 1560 struct logicalVolIntegrityDesc *lvid; 1561 int indirections = 0; 1562 1563 while (++indirections <= UDF_MAX_LVID_NESTING) { 1564 final_bh = NULL; 1565 while (loc.extLength > 0 && 1566 (bh = udf_read_tagged(sb, loc.extLocation, 1567 loc.extLocation, &ident))) { 1568 if (ident != TAG_IDENT_LVID) { 1569 brelse(bh); 1570 break; 1571 } 1572 1573 brelse(final_bh); 1574 final_bh = bh; 1575 1576 loc.extLength -= sb->s_blocksize; 1577 loc.extLocation++; 1578 } 1579 1580 if (!final_bh) 1581 return; 1582 1583 brelse(sbi->s_lvid_bh); 1584 sbi->s_lvid_bh = final_bh; 1585 1586 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1587 if (lvid->nextIntegrityExt.extLength == 0) 1588 return; 1589 1590 loc = leea_to_cpu(lvid->nextIntegrityExt); 1591 } 1592 1593 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1594 UDF_MAX_LVID_NESTING); 1595 brelse(sbi->s_lvid_bh); 1596 sbi->s_lvid_bh = NULL; 1597 } 1598 1599 1600 /* 1601 * Process a main/reserve volume descriptor sequence. 1602 * @block First block of first extent of the sequence. 1603 * @lastblock Lastblock of first extent of the sequence. 1604 * @fileset There we store extent containing root fileset 1605 * 1606 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1607 * sequence 1608 */ 1609 static noinline int udf_process_sequence( 1610 struct super_block *sb, 1611 sector_t block, sector_t lastblock, 1612 struct kernel_lb_addr *fileset) 1613 { 1614 struct buffer_head *bh = NULL; 1615 struct udf_vds_record vds[VDS_POS_LENGTH]; 1616 struct udf_vds_record *curr; 1617 struct generic_desc *gd; 1618 struct volDescPtr *vdp; 1619 bool done = false; 1620 uint32_t vdsn; 1621 uint16_t ident; 1622 long next_s = 0, next_e = 0; 1623 int ret; 1624 unsigned int indirections = 0; 1625 1626 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1627 1628 /* 1629 * Read the main descriptor sequence and find which descriptors 1630 * are in it. 1631 */ 1632 for (; (!done && block <= lastblock); block++) { 1633 1634 bh = udf_read_tagged(sb, block, block, &ident); 1635 if (!bh) { 1636 udf_err(sb, 1637 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1638 (unsigned long long)block); 1639 return -EAGAIN; 1640 } 1641 1642 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1643 gd = (struct generic_desc *)bh->b_data; 1644 vdsn = le32_to_cpu(gd->volDescSeqNum); 1645 switch (ident) { 1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1647 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1648 if (vdsn >= curr->volDescSeqNum) { 1649 curr->volDescSeqNum = vdsn; 1650 curr->block = block; 1651 } 1652 break; 1653 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1654 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1655 if (vdsn >= curr->volDescSeqNum) { 1656 curr->volDescSeqNum = vdsn; 1657 curr->block = block; 1658 1659 vdp = (struct volDescPtr *)bh->b_data; 1660 next_s = le32_to_cpu( 1661 vdp->nextVolDescSeqExt.extLocation); 1662 next_e = le32_to_cpu( 1663 vdp->nextVolDescSeqExt.extLength); 1664 next_e = next_e >> sb->s_blocksize_bits; 1665 next_e += next_s; 1666 } 1667 break; 1668 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1669 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1670 if (vdsn >= curr->volDescSeqNum) { 1671 curr->volDescSeqNum = vdsn; 1672 curr->block = block; 1673 } 1674 break; 1675 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1676 curr = &vds[VDS_POS_PARTITION_DESC]; 1677 if (!curr->block) 1678 curr->block = block; 1679 break; 1680 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1681 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1682 if (vdsn >= curr->volDescSeqNum) { 1683 curr->volDescSeqNum = vdsn; 1684 curr->block = block; 1685 } 1686 break; 1687 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1688 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1689 if (vdsn >= curr->volDescSeqNum) { 1690 curr->volDescSeqNum = vdsn; 1691 curr->block = block; 1692 } 1693 break; 1694 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1695 if (++indirections > UDF_MAX_TD_NESTING) { 1696 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING); 1697 brelse(bh); 1698 return -EIO; 1699 } 1700 1701 vds[VDS_POS_TERMINATING_DESC].block = block; 1702 if (next_e) { 1703 block = next_s; 1704 lastblock = next_e; 1705 next_s = next_e = 0; 1706 } else 1707 done = true; 1708 break; 1709 } 1710 brelse(bh); 1711 } 1712 /* 1713 * Now read interesting descriptors again and process them 1714 * in a suitable order 1715 */ 1716 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1717 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1718 return -EAGAIN; 1719 } 1720 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1721 if (ret < 0) 1722 return ret; 1723 1724 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1725 ret = udf_load_logicalvol(sb, 1726 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1727 fileset); 1728 if (ret < 0) 1729 return ret; 1730 } 1731 1732 if (vds[VDS_POS_PARTITION_DESC].block) { 1733 /* 1734 * We rescan the whole descriptor sequence to find 1735 * partition descriptor blocks and process them. 1736 */ 1737 for (block = vds[VDS_POS_PARTITION_DESC].block; 1738 block < vds[VDS_POS_TERMINATING_DESC].block; 1739 block++) { 1740 ret = udf_load_partdesc(sb, block); 1741 if (ret < 0) 1742 return ret; 1743 } 1744 } 1745 1746 return 0; 1747 } 1748 1749 /* 1750 * Load Volume Descriptor Sequence described by anchor in bh 1751 * 1752 * Returns <0 on error, 0 on success 1753 */ 1754 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1755 struct kernel_lb_addr *fileset) 1756 { 1757 struct anchorVolDescPtr *anchor; 1758 sector_t main_s, main_e, reserve_s, reserve_e; 1759 int ret; 1760 1761 anchor = (struct anchorVolDescPtr *)bh->b_data; 1762 1763 /* Locate the main sequence */ 1764 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1765 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1766 main_e = main_e >> sb->s_blocksize_bits; 1767 main_e += main_s; 1768 1769 /* Locate the reserve sequence */ 1770 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1771 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1772 reserve_e = reserve_e >> sb->s_blocksize_bits; 1773 reserve_e += reserve_s; 1774 1775 /* Process the main & reserve sequences */ 1776 /* responsible for finding the PartitionDesc(s) */ 1777 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1778 if (ret != -EAGAIN) 1779 return ret; 1780 udf_sb_free_partitions(sb); 1781 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1782 if (ret < 0) { 1783 udf_sb_free_partitions(sb); 1784 /* No sequence was OK, return -EIO */ 1785 if (ret == -EAGAIN) 1786 ret = -EIO; 1787 } 1788 return ret; 1789 } 1790 1791 /* 1792 * Check whether there is an anchor block in the given block and 1793 * load Volume Descriptor Sequence if so. 1794 * 1795 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1796 * block 1797 */ 1798 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1799 struct kernel_lb_addr *fileset) 1800 { 1801 struct buffer_head *bh; 1802 uint16_t ident; 1803 int ret; 1804 1805 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1806 udf_fixed_to_variable(block) >= 1807 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1808 return -EAGAIN; 1809 1810 bh = udf_read_tagged(sb, block, block, &ident); 1811 if (!bh) 1812 return -EAGAIN; 1813 if (ident != TAG_IDENT_AVDP) { 1814 brelse(bh); 1815 return -EAGAIN; 1816 } 1817 ret = udf_load_sequence(sb, bh, fileset); 1818 brelse(bh); 1819 return ret; 1820 } 1821 1822 /* 1823 * Search for an anchor volume descriptor pointer. 1824 * 1825 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1826 * of anchors. 1827 */ 1828 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1829 struct kernel_lb_addr *fileset) 1830 { 1831 sector_t last[6]; 1832 int i; 1833 struct udf_sb_info *sbi = UDF_SB(sb); 1834 int last_count = 0; 1835 int ret; 1836 1837 /* First try user provided anchor */ 1838 if (sbi->s_anchor) { 1839 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1840 if (ret != -EAGAIN) 1841 return ret; 1842 } 1843 /* 1844 * according to spec, anchor is in either: 1845 * block 256 1846 * lastblock-256 1847 * lastblock 1848 * however, if the disc isn't closed, it could be 512. 1849 */ 1850 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1851 if (ret != -EAGAIN) 1852 return ret; 1853 /* 1854 * The trouble is which block is the last one. Drives often misreport 1855 * this so we try various possibilities. 1856 */ 1857 last[last_count++] = *lastblock; 1858 if (*lastblock >= 1) 1859 last[last_count++] = *lastblock - 1; 1860 last[last_count++] = *lastblock + 1; 1861 if (*lastblock >= 2) 1862 last[last_count++] = *lastblock - 2; 1863 if (*lastblock >= 150) 1864 last[last_count++] = *lastblock - 150; 1865 if (*lastblock >= 152) 1866 last[last_count++] = *lastblock - 152; 1867 1868 for (i = 0; i < last_count; i++) { 1869 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1870 sb->s_blocksize_bits) 1871 continue; 1872 ret = udf_check_anchor_block(sb, last[i], fileset); 1873 if (ret != -EAGAIN) { 1874 if (!ret) 1875 *lastblock = last[i]; 1876 return ret; 1877 } 1878 if (last[i] < 256) 1879 continue; 1880 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1881 if (ret != -EAGAIN) { 1882 if (!ret) 1883 *lastblock = last[i]; 1884 return ret; 1885 } 1886 } 1887 1888 /* Finally try block 512 in case media is open */ 1889 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1890 } 1891 1892 /* 1893 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1894 * area specified by it. The function expects sbi->s_lastblock to be the last 1895 * block on the media. 1896 * 1897 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1898 * was not found. 1899 */ 1900 static int udf_find_anchor(struct super_block *sb, 1901 struct kernel_lb_addr *fileset) 1902 { 1903 struct udf_sb_info *sbi = UDF_SB(sb); 1904 sector_t lastblock = sbi->s_last_block; 1905 int ret; 1906 1907 ret = udf_scan_anchors(sb, &lastblock, fileset); 1908 if (ret != -EAGAIN) 1909 goto out; 1910 1911 /* No anchor found? Try VARCONV conversion of block numbers */ 1912 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1913 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1914 /* Firstly, we try to not convert number of the last block */ 1915 ret = udf_scan_anchors(sb, &lastblock, fileset); 1916 if (ret != -EAGAIN) 1917 goto out; 1918 1919 lastblock = sbi->s_last_block; 1920 /* Secondly, we try with converted number of the last block */ 1921 ret = udf_scan_anchors(sb, &lastblock, fileset); 1922 if (ret < 0) { 1923 /* VARCONV didn't help. Clear it. */ 1924 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1925 } 1926 out: 1927 if (ret == 0) 1928 sbi->s_last_block = lastblock; 1929 return ret; 1930 } 1931 1932 /* 1933 * Check Volume Structure Descriptor, find Anchor block and load Volume 1934 * Descriptor Sequence. 1935 * 1936 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1937 * block was not found. 1938 */ 1939 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1940 int silent, struct kernel_lb_addr *fileset) 1941 { 1942 struct udf_sb_info *sbi = UDF_SB(sb); 1943 loff_t nsr_off; 1944 int ret; 1945 1946 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1947 if (!silent) 1948 udf_warn(sb, "Bad block size\n"); 1949 return -EINVAL; 1950 } 1951 sbi->s_last_block = uopt->lastblock; 1952 if (!uopt->novrs) { 1953 /* Check that it is NSR02 compliant */ 1954 nsr_off = udf_check_vsd(sb); 1955 if (!nsr_off) { 1956 if (!silent) 1957 udf_warn(sb, "No VRS found\n"); 1958 return -EINVAL; 1959 } 1960 if (nsr_off == -1) 1961 udf_debug("Failed to read sector at offset %d. " 1962 "Assuming open disc. Skipping validity " 1963 "check\n", VSD_FIRST_SECTOR_OFFSET); 1964 if (!sbi->s_last_block) 1965 sbi->s_last_block = udf_get_last_block(sb); 1966 } else { 1967 udf_debug("Validity check skipped because of novrs option\n"); 1968 } 1969 1970 /* Look for anchor block and load Volume Descriptor Sequence */ 1971 sbi->s_anchor = uopt->anchor; 1972 ret = udf_find_anchor(sb, fileset); 1973 if (ret < 0) { 1974 if (!silent && ret == -EAGAIN) 1975 udf_warn(sb, "No anchor found\n"); 1976 return ret; 1977 } 1978 return 0; 1979 } 1980 1981 static void udf_open_lvid(struct super_block *sb) 1982 { 1983 struct udf_sb_info *sbi = UDF_SB(sb); 1984 struct buffer_head *bh = sbi->s_lvid_bh; 1985 struct logicalVolIntegrityDesc *lvid; 1986 struct logicalVolIntegrityDescImpUse *lvidiu; 1987 struct timespec ts; 1988 1989 if (!bh) 1990 return; 1991 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1992 lvidiu = udf_sb_lvidiu(sb); 1993 if (!lvidiu) 1994 return; 1995 1996 mutex_lock(&sbi->s_alloc_mutex); 1997 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1998 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1999 ktime_get_real_ts(&ts); 2000 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2001 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2002 2003 lvid->descTag.descCRC = cpu_to_le16( 2004 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2005 le16_to_cpu(lvid->descTag.descCRCLength))); 2006 2007 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2008 mark_buffer_dirty(bh); 2009 sbi->s_lvid_dirty = 0; 2010 mutex_unlock(&sbi->s_alloc_mutex); 2011 /* Make opening of filesystem visible on the media immediately */ 2012 sync_dirty_buffer(bh); 2013 } 2014 2015 static void udf_close_lvid(struct super_block *sb) 2016 { 2017 struct udf_sb_info *sbi = UDF_SB(sb); 2018 struct buffer_head *bh = sbi->s_lvid_bh; 2019 struct logicalVolIntegrityDesc *lvid; 2020 struct logicalVolIntegrityDescImpUse *lvidiu; 2021 struct timespec ts; 2022 2023 if (!bh) 2024 return; 2025 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2026 lvidiu = udf_sb_lvidiu(sb); 2027 if (!lvidiu) 2028 return; 2029 2030 mutex_lock(&sbi->s_alloc_mutex); 2031 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2032 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2033 ktime_get_real_ts(&ts); 2034 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2035 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2036 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2037 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2038 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2039 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2040 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2041 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2042 2043 lvid->descTag.descCRC = cpu_to_le16( 2044 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2045 le16_to_cpu(lvid->descTag.descCRCLength))); 2046 2047 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2048 /* 2049 * We set buffer uptodate unconditionally here to avoid spurious 2050 * warnings from mark_buffer_dirty() when previous EIO has marked 2051 * the buffer as !uptodate 2052 */ 2053 set_buffer_uptodate(bh); 2054 mark_buffer_dirty(bh); 2055 sbi->s_lvid_dirty = 0; 2056 mutex_unlock(&sbi->s_alloc_mutex); 2057 /* Make closing of filesystem visible on the media immediately */ 2058 sync_dirty_buffer(bh); 2059 } 2060 2061 u64 lvid_get_unique_id(struct super_block *sb) 2062 { 2063 struct buffer_head *bh; 2064 struct udf_sb_info *sbi = UDF_SB(sb); 2065 struct logicalVolIntegrityDesc *lvid; 2066 struct logicalVolHeaderDesc *lvhd; 2067 u64 uniqueID; 2068 u64 ret; 2069 2070 bh = sbi->s_lvid_bh; 2071 if (!bh) 2072 return 0; 2073 2074 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2075 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2076 2077 mutex_lock(&sbi->s_alloc_mutex); 2078 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2079 if (!(++uniqueID & 0xFFFFFFFF)) 2080 uniqueID += 16; 2081 lvhd->uniqueID = cpu_to_le64(uniqueID); 2082 mutex_unlock(&sbi->s_alloc_mutex); 2083 mark_buffer_dirty(bh); 2084 2085 return ret; 2086 } 2087 2088 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2089 { 2090 int ret = -EINVAL; 2091 struct inode *inode = NULL; 2092 struct udf_options uopt; 2093 struct kernel_lb_addr rootdir, fileset; 2094 struct udf_sb_info *sbi; 2095 bool lvid_open = false; 2096 2097 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2098 uopt.uid = INVALID_UID; 2099 uopt.gid = INVALID_GID; 2100 uopt.umask = 0; 2101 uopt.fmode = UDF_INVALID_MODE; 2102 uopt.dmode = UDF_INVALID_MODE; 2103 2104 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2105 if (!sbi) 2106 return -ENOMEM; 2107 2108 sb->s_fs_info = sbi; 2109 2110 mutex_init(&sbi->s_alloc_mutex); 2111 2112 if (!udf_parse_options((char *)options, &uopt, false)) 2113 goto parse_options_failure; 2114 2115 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2116 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2117 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2118 goto parse_options_failure; 2119 } 2120 #ifdef CONFIG_UDF_NLS 2121 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2122 uopt.nls_map = load_nls_default(); 2123 if (!uopt.nls_map) 2124 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2125 else 2126 udf_debug("Using default NLS map\n"); 2127 } 2128 #endif 2129 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2130 uopt.flags |= (1 << UDF_FLAG_UTF8); 2131 2132 fileset.logicalBlockNum = 0xFFFFFFFF; 2133 fileset.partitionReferenceNum = 0xFFFF; 2134 2135 sbi->s_flags = uopt.flags; 2136 sbi->s_uid = uopt.uid; 2137 sbi->s_gid = uopt.gid; 2138 sbi->s_umask = uopt.umask; 2139 sbi->s_fmode = uopt.fmode; 2140 sbi->s_dmode = uopt.dmode; 2141 sbi->s_nls_map = uopt.nls_map; 2142 rwlock_init(&sbi->s_cred_lock); 2143 2144 if (uopt.session == 0xFFFFFFFF) 2145 sbi->s_session = udf_get_last_session(sb); 2146 else 2147 sbi->s_session = uopt.session; 2148 2149 udf_debug("Multi-session=%d\n", sbi->s_session); 2150 2151 /* Fill in the rest of the superblock */ 2152 sb->s_op = &udf_sb_ops; 2153 sb->s_export_op = &udf_export_ops; 2154 2155 sb->s_magic = UDF_SUPER_MAGIC; 2156 sb->s_time_gran = 1000; 2157 2158 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2160 } else { 2161 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2162 while (uopt.blocksize <= 4096) { 2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2164 if (ret < 0) { 2165 if (!silent && ret != -EACCES) { 2166 pr_notice("Scanning with blocksize %d failed\n", 2167 uopt.blocksize); 2168 } 2169 brelse(sbi->s_lvid_bh); 2170 sbi->s_lvid_bh = NULL; 2171 /* 2172 * EACCES is special - we want to propagate to 2173 * upper layers that we cannot handle RW mount. 2174 */ 2175 if (ret == -EACCES) 2176 break; 2177 } else 2178 break; 2179 2180 uopt.blocksize <<= 1; 2181 } 2182 } 2183 if (ret < 0) { 2184 if (ret == -EAGAIN) { 2185 udf_warn(sb, "No partition found (1)\n"); 2186 ret = -EINVAL; 2187 } 2188 goto error_out; 2189 } 2190 2191 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2192 2193 if (sbi->s_lvid_bh) { 2194 struct logicalVolIntegrityDescImpUse *lvidiu = 2195 udf_sb_lvidiu(sb); 2196 uint16_t minUDFReadRev; 2197 uint16_t minUDFWriteRev; 2198 2199 if (!lvidiu) { 2200 ret = -EINVAL; 2201 goto error_out; 2202 } 2203 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2204 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2205 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2206 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2207 minUDFReadRev, 2208 UDF_MAX_READ_VERSION); 2209 ret = -EINVAL; 2210 goto error_out; 2211 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2212 !(sb->s_flags & MS_RDONLY)) { 2213 ret = -EACCES; 2214 goto error_out; 2215 } 2216 2217 sbi->s_udfrev = minUDFWriteRev; 2218 2219 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2220 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2221 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2222 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2223 } 2224 2225 if (!sbi->s_partitions) { 2226 udf_warn(sb, "No partition found (2)\n"); 2227 ret = -EINVAL; 2228 goto error_out; 2229 } 2230 2231 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2232 UDF_PART_FLAG_READ_ONLY && 2233 !(sb->s_flags & MS_RDONLY)) { 2234 ret = -EACCES; 2235 goto error_out; 2236 } 2237 2238 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2239 udf_warn(sb, "No fileset found\n"); 2240 ret = -EINVAL; 2241 goto error_out; 2242 } 2243 2244 if (!silent) { 2245 struct timestamp ts; 2246 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2247 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2248 sbi->s_volume_ident, 2249 le16_to_cpu(ts.year), ts.month, ts.day, 2250 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2251 } 2252 if (!(sb->s_flags & MS_RDONLY)) { 2253 udf_open_lvid(sb); 2254 lvid_open = true; 2255 } 2256 2257 /* Assign the root inode */ 2258 /* assign inodes by physical block number */ 2259 /* perhaps it's not extensible enough, but for now ... */ 2260 inode = udf_iget(sb, &rootdir); 2261 if (IS_ERR(inode)) { 2262 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2263 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2264 ret = PTR_ERR(inode); 2265 goto error_out; 2266 } 2267 2268 /* Allocate a dentry for the root inode */ 2269 sb->s_root = d_make_root(inode); 2270 if (!sb->s_root) { 2271 udf_err(sb, "Couldn't allocate root dentry\n"); 2272 ret = -ENOMEM; 2273 goto error_out; 2274 } 2275 sb->s_maxbytes = MAX_LFS_FILESIZE; 2276 sb->s_max_links = UDF_MAX_LINKS; 2277 return 0; 2278 2279 error_out: 2280 iput(sbi->s_vat_inode); 2281 parse_options_failure: 2282 #ifdef CONFIG_UDF_NLS 2283 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2284 unload_nls(sbi->s_nls_map); 2285 #endif 2286 if (lvid_open) 2287 udf_close_lvid(sb); 2288 brelse(sbi->s_lvid_bh); 2289 udf_sb_free_partitions(sb); 2290 kfree(sbi); 2291 sb->s_fs_info = NULL; 2292 2293 return ret; 2294 } 2295 2296 void _udf_err(struct super_block *sb, const char *function, 2297 const char *fmt, ...) 2298 { 2299 struct va_format vaf; 2300 va_list args; 2301 2302 va_start(args, fmt); 2303 2304 vaf.fmt = fmt; 2305 vaf.va = &args; 2306 2307 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2308 2309 va_end(args); 2310 } 2311 2312 void _udf_warn(struct super_block *sb, const char *function, 2313 const char *fmt, ...) 2314 { 2315 struct va_format vaf; 2316 va_list args; 2317 2318 va_start(args, fmt); 2319 2320 vaf.fmt = fmt; 2321 vaf.va = &args; 2322 2323 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2324 2325 va_end(args); 2326 } 2327 2328 static void udf_put_super(struct super_block *sb) 2329 { 2330 struct udf_sb_info *sbi; 2331 2332 sbi = UDF_SB(sb); 2333 2334 iput(sbi->s_vat_inode); 2335 #ifdef CONFIG_UDF_NLS 2336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2337 unload_nls(sbi->s_nls_map); 2338 #endif 2339 if (!(sb->s_flags & MS_RDONLY)) 2340 udf_close_lvid(sb); 2341 brelse(sbi->s_lvid_bh); 2342 udf_sb_free_partitions(sb); 2343 mutex_destroy(&sbi->s_alloc_mutex); 2344 kfree(sb->s_fs_info); 2345 sb->s_fs_info = NULL; 2346 } 2347 2348 static int udf_sync_fs(struct super_block *sb, int wait) 2349 { 2350 struct udf_sb_info *sbi = UDF_SB(sb); 2351 2352 mutex_lock(&sbi->s_alloc_mutex); 2353 if (sbi->s_lvid_dirty) { 2354 /* 2355 * Blockdevice will be synced later so we don't have to submit 2356 * the buffer for IO 2357 */ 2358 mark_buffer_dirty(sbi->s_lvid_bh); 2359 sbi->s_lvid_dirty = 0; 2360 } 2361 mutex_unlock(&sbi->s_alloc_mutex); 2362 2363 return 0; 2364 } 2365 2366 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2367 { 2368 struct super_block *sb = dentry->d_sb; 2369 struct udf_sb_info *sbi = UDF_SB(sb); 2370 struct logicalVolIntegrityDescImpUse *lvidiu; 2371 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2372 2373 lvidiu = udf_sb_lvidiu(sb); 2374 buf->f_type = UDF_SUPER_MAGIC; 2375 buf->f_bsize = sb->s_blocksize; 2376 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2377 buf->f_bfree = udf_count_free(sb); 2378 buf->f_bavail = buf->f_bfree; 2379 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2380 le32_to_cpu(lvidiu->numDirs)) : 0) 2381 + buf->f_bfree; 2382 buf->f_ffree = buf->f_bfree; 2383 buf->f_namelen = UDF_NAME_LEN; 2384 buf->f_fsid.val[0] = (u32)id; 2385 buf->f_fsid.val[1] = (u32)(id >> 32); 2386 2387 return 0; 2388 } 2389 2390 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2391 struct udf_bitmap *bitmap) 2392 { 2393 struct buffer_head *bh = NULL; 2394 unsigned int accum = 0; 2395 int index; 2396 int block = 0, newblock; 2397 struct kernel_lb_addr loc; 2398 uint32_t bytes; 2399 uint8_t *ptr; 2400 uint16_t ident; 2401 struct spaceBitmapDesc *bm; 2402 2403 loc.logicalBlockNum = bitmap->s_extPosition; 2404 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2405 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2406 2407 if (!bh) { 2408 udf_err(sb, "udf_count_free failed\n"); 2409 goto out; 2410 } else if (ident != TAG_IDENT_SBD) { 2411 brelse(bh); 2412 udf_err(sb, "udf_count_free failed\n"); 2413 goto out; 2414 } 2415 2416 bm = (struct spaceBitmapDesc *)bh->b_data; 2417 bytes = le32_to_cpu(bm->numOfBytes); 2418 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2419 ptr = (uint8_t *)bh->b_data; 2420 2421 while (bytes > 0) { 2422 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2423 accum += bitmap_weight((const unsigned long *)(ptr + index), 2424 cur_bytes * 8); 2425 bytes -= cur_bytes; 2426 if (bytes) { 2427 brelse(bh); 2428 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2429 bh = udf_tread(sb, newblock); 2430 if (!bh) { 2431 udf_debug("read failed\n"); 2432 goto out; 2433 } 2434 index = 0; 2435 ptr = (uint8_t *)bh->b_data; 2436 } 2437 } 2438 brelse(bh); 2439 out: 2440 return accum; 2441 } 2442 2443 static unsigned int udf_count_free_table(struct super_block *sb, 2444 struct inode *table) 2445 { 2446 unsigned int accum = 0; 2447 uint32_t elen; 2448 struct kernel_lb_addr eloc; 2449 int8_t etype; 2450 struct extent_position epos; 2451 2452 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2453 epos.block = UDF_I(table)->i_location; 2454 epos.offset = sizeof(struct unallocSpaceEntry); 2455 epos.bh = NULL; 2456 2457 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2458 accum += (elen >> table->i_sb->s_blocksize_bits); 2459 2460 brelse(epos.bh); 2461 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2462 2463 return accum; 2464 } 2465 2466 static unsigned int udf_count_free(struct super_block *sb) 2467 { 2468 unsigned int accum = 0; 2469 struct udf_sb_info *sbi; 2470 struct udf_part_map *map; 2471 2472 sbi = UDF_SB(sb); 2473 if (sbi->s_lvid_bh) { 2474 struct logicalVolIntegrityDesc *lvid = 2475 (struct logicalVolIntegrityDesc *) 2476 sbi->s_lvid_bh->b_data; 2477 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2478 accum = le32_to_cpu( 2479 lvid->freeSpaceTable[sbi->s_partition]); 2480 if (accum == 0xFFFFFFFF) 2481 accum = 0; 2482 } 2483 } 2484 2485 if (accum) 2486 return accum; 2487 2488 map = &sbi->s_partmaps[sbi->s_partition]; 2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2490 accum += udf_count_free_bitmap(sb, 2491 map->s_uspace.s_bitmap); 2492 } 2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2494 accum += udf_count_free_bitmap(sb, 2495 map->s_fspace.s_bitmap); 2496 } 2497 if (accum) 2498 return accum; 2499 2500 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2501 accum += udf_count_free_table(sb, 2502 map->s_uspace.s_table); 2503 } 2504 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2505 accum += udf_count_free_table(sb, 2506 map->s_fspace.s_table); 2507 } 2508 2509 return accum; 2510 } 2511 2512 MODULE_AUTHOR("Ben Fennema"); 2513 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2514 MODULE_LICENSE("GPL"); 2515 module_init(init_udf_fs) 2516 module_exit(exit_udf_fs) 2517