xref: /openbmc/linux/fs/udf/super.c (revision a8fe58ce)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77 
78 #define VSD_FIRST_SECTOR_OFFSET		32768
79 #define VSD_MAX_SECTOR_OFFSET		0x800000
80 
81 enum { UDF_MAX_LINKS = 0xffff };
82 
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90 			    struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92 			     struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98 
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101 	struct logicalVolIntegrityDesc *lvid;
102 	unsigned int partnum;
103 	unsigned int offset;
104 
105 	if (!UDF_SB(sb)->s_lvid_bh)
106 		return NULL;
107 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108 	partnum = le32_to_cpu(lvid->numOfPartitions);
109 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
111 	     (2 * sizeof(uint32_t)) < partnum) {
112 		udf_err(sb, "Logical volume integrity descriptor corrupted "
113 			"(numOfPartitions = %u)!\n", partnum);
114 		return NULL;
115 	}
116 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
117 	offset = partnum * 2 * sizeof(uint32_t);
118 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120 
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 		      int flags, const char *dev_name, void *data)
124 {
125 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127 
128 static struct file_system_type udf_fstype = {
129 	.owner		= THIS_MODULE,
130 	.name		= "udf",
131 	.mount		= udf_mount,
132 	.kill_sb	= kill_block_super,
133 	.fs_flags	= FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136 
137 static struct kmem_cache *udf_inode_cachep;
138 
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 	struct udf_inode_info *ei;
142 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143 	if (!ei)
144 		return NULL;
145 
146 	ei->i_unique = 0;
147 	ei->i_lenExtents = 0;
148 	ei->i_next_alloc_block = 0;
149 	ei->i_next_alloc_goal = 0;
150 	ei->i_strat4096 = 0;
151 	init_rwsem(&ei->i_data_sem);
152 	ei->cached_extent.lstart = -1;
153 	spin_lock_init(&ei->i_extent_cache_lock);
154 
155 	return &ei->vfs_inode;
156 }
157 
158 static void udf_i_callback(struct rcu_head *head)
159 {
160 	struct inode *inode = container_of(head, struct inode, i_rcu);
161 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163 
164 static void udf_destroy_inode(struct inode *inode)
165 {
166 	call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168 
169 static void init_once(void *foo)
170 {
171 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172 
173 	ei->i_ext.i_data = NULL;
174 	inode_init_once(&ei->vfs_inode);
175 }
176 
177 static int __init init_inodecache(void)
178 {
179 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180 					     sizeof(struct udf_inode_info),
181 					     0, (SLAB_RECLAIM_ACCOUNT |
182 						 SLAB_MEM_SPREAD |
183 						 SLAB_ACCOUNT),
184 					     init_once);
185 	if (!udf_inode_cachep)
186 		return -ENOMEM;
187 	return 0;
188 }
189 
190 static void destroy_inodecache(void)
191 {
192 	/*
193 	 * Make sure all delayed rcu free inodes are flushed before we
194 	 * destroy cache.
195 	 */
196 	rcu_barrier();
197 	kmem_cache_destroy(udf_inode_cachep);
198 }
199 
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202 	.alloc_inode	= udf_alloc_inode,
203 	.destroy_inode	= udf_destroy_inode,
204 	.write_inode	= udf_write_inode,
205 	.evict_inode	= udf_evict_inode,
206 	.put_super	= udf_put_super,
207 	.sync_fs	= udf_sync_fs,
208 	.statfs		= udf_statfs,
209 	.remount_fs	= udf_remount_fs,
210 	.show_options	= udf_show_options,
211 };
212 
213 struct udf_options {
214 	unsigned char novrs;
215 	unsigned int blocksize;
216 	unsigned int session;
217 	unsigned int lastblock;
218 	unsigned int anchor;
219 	unsigned int volume;
220 	unsigned short partition;
221 	unsigned int fileset;
222 	unsigned int rootdir;
223 	unsigned int flags;
224 	umode_t umask;
225 	kgid_t gid;
226 	kuid_t uid;
227 	umode_t fmode;
228 	umode_t dmode;
229 	struct nls_table *nls_map;
230 };
231 
232 static int __init init_udf_fs(void)
233 {
234 	int err;
235 
236 	err = init_inodecache();
237 	if (err)
238 		goto out1;
239 	err = register_filesystem(&udf_fstype);
240 	if (err)
241 		goto out;
242 
243 	return 0;
244 
245 out:
246 	destroy_inodecache();
247 
248 out1:
249 	return err;
250 }
251 
252 static void __exit exit_udf_fs(void)
253 {
254 	unregister_filesystem(&udf_fstype);
255 	destroy_inodecache();
256 }
257 
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260 
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263 	struct udf_sb_info *sbi = UDF_SB(sb);
264 
265 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 				  GFP_KERNEL);
267 	if (!sbi->s_partmaps) {
268 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 			count);
270 		sbi->s_partitions = 0;
271 		return -ENOMEM;
272 	}
273 
274 	sbi->s_partitions = count;
275 	return 0;
276 }
277 
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280 	int i;
281 	int nr_groups = bitmap->s_nr_groups;
282 
283 	for (i = 0; i < nr_groups; i++)
284 		if (bitmap->s_block_bitmap[i])
285 			brelse(bitmap->s_block_bitmap[i]);
286 
287 	kvfree(bitmap);
288 }
289 
290 static void udf_free_partition(struct udf_part_map *map)
291 {
292 	int i;
293 	struct udf_meta_data *mdata;
294 
295 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
296 		iput(map->s_uspace.s_table);
297 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
298 		iput(map->s_fspace.s_table);
299 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
300 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
301 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
302 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
303 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
304 		for (i = 0; i < 4; i++)
305 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
306 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
307 		mdata = &map->s_type_specific.s_metadata;
308 		iput(mdata->s_metadata_fe);
309 		mdata->s_metadata_fe = NULL;
310 
311 		iput(mdata->s_mirror_fe);
312 		mdata->s_mirror_fe = NULL;
313 
314 		iput(mdata->s_bitmap_fe);
315 		mdata->s_bitmap_fe = NULL;
316 	}
317 }
318 
319 static void udf_sb_free_partitions(struct super_block *sb)
320 {
321 	struct udf_sb_info *sbi = UDF_SB(sb);
322 	int i;
323 	if (sbi->s_partmaps == NULL)
324 		return;
325 	for (i = 0; i < sbi->s_partitions; i++)
326 		udf_free_partition(&sbi->s_partmaps[i]);
327 	kfree(sbi->s_partmaps);
328 	sbi->s_partmaps = NULL;
329 }
330 
331 static int udf_show_options(struct seq_file *seq, struct dentry *root)
332 {
333 	struct super_block *sb = root->d_sb;
334 	struct udf_sb_info *sbi = UDF_SB(sb);
335 
336 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
337 		seq_puts(seq, ",nostrict");
338 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
339 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
341 		seq_puts(seq, ",unhide");
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
343 		seq_puts(seq, ",undelete");
344 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
345 		seq_puts(seq, ",noadinicb");
346 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
347 		seq_puts(seq, ",shortad");
348 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
349 		seq_puts(seq, ",uid=forget");
350 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
351 		seq_puts(seq, ",uid=ignore");
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
353 		seq_puts(seq, ",gid=forget");
354 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
355 		seq_puts(seq, ",gid=ignore");
356 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
357 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
358 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
359 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
360 	if (sbi->s_umask != 0)
361 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
362 	if (sbi->s_fmode != UDF_INVALID_MODE)
363 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
364 	if (sbi->s_dmode != UDF_INVALID_MODE)
365 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
366 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
367 		seq_printf(seq, ",session=%u", sbi->s_session);
368 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
369 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
370 	if (sbi->s_anchor != 0)
371 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
372 	/*
373 	 * volume, partition, fileset and rootdir seem to be ignored
374 	 * currently
375 	 */
376 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
377 		seq_puts(seq, ",utf8");
378 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
379 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
380 
381 	return 0;
382 }
383 
384 /*
385  * udf_parse_options
386  *
387  * PURPOSE
388  *	Parse mount options.
389  *
390  * DESCRIPTION
391  *	The following mount options are supported:
392  *
393  *	gid=		Set the default group.
394  *	umask=		Set the default umask.
395  *	mode=		Set the default file permissions.
396  *	dmode=		Set the default directory permissions.
397  *	uid=		Set the default user.
398  *	bs=		Set the block size.
399  *	unhide		Show otherwise hidden files.
400  *	undelete	Show deleted files in lists.
401  *	adinicb		Embed data in the inode (default)
402  *	noadinicb	Don't embed data in the inode
403  *	shortad		Use short ad's
404  *	longad		Use long ad's (default)
405  *	nostrict	Unset strict conformance
406  *	iocharset=	Set the NLS character set
407  *
408  *	The remaining are for debugging and disaster recovery:
409  *
410  *	novrs		Skip volume sequence recognition
411  *
412  *	The following expect a offset from 0.
413  *
414  *	session=	Set the CDROM session (default= last session)
415  *	anchor=		Override standard anchor location. (default= 256)
416  *	volume=		Override the VolumeDesc location. (unused)
417  *	partition=	Override the PartitionDesc location. (unused)
418  *	lastblock=	Set the last block of the filesystem/
419  *
420  *	The following expect a offset from the partition root.
421  *
422  *	fileset=	Override the fileset block location. (unused)
423  *	rootdir=	Override the root directory location. (unused)
424  *		WARNING: overriding the rootdir to a non-directory may
425  *		yield highly unpredictable results.
426  *
427  * PRE-CONDITIONS
428  *	options		Pointer to mount options string.
429  *	uopts		Pointer to mount options variable.
430  *
431  * POST-CONDITIONS
432  *	<return>	1	Mount options parsed okay.
433  *	<return>	0	Error parsing mount options.
434  *
435  * HISTORY
436  *	July 1, 1997 - Andrew E. Mileski
437  *	Written, tested, and released.
438  */
439 
440 enum {
441 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
442 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
443 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
444 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
445 	Opt_rootdir, Opt_utf8, Opt_iocharset,
446 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
447 	Opt_fmode, Opt_dmode
448 };
449 
450 static const match_table_t tokens = {
451 	{Opt_novrs,	"novrs"},
452 	{Opt_nostrict,	"nostrict"},
453 	{Opt_bs,	"bs=%u"},
454 	{Opt_unhide,	"unhide"},
455 	{Opt_undelete,	"undelete"},
456 	{Opt_noadinicb,	"noadinicb"},
457 	{Opt_adinicb,	"adinicb"},
458 	{Opt_shortad,	"shortad"},
459 	{Opt_longad,	"longad"},
460 	{Opt_uforget,	"uid=forget"},
461 	{Opt_uignore,	"uid=ignore"},
462 	{Opt_gforget,	"gid=forget"},
463 	{Opt_gignore,	"gid=ignore"},
464 	{Opt_gid,	"gid=%u"},
465 	{Opt_uid,	"uid=%u"},
466 	{Opt_umask,	"umask=%o"},
467 	{Opt_session,	"session=%u"},
468 	{Opt_lastblock,	"lastblock=%u"},
469 	{Opt_anchor,	"anchor=%u"},
470 	{Opt_volume,	"volume=%u"},
471 	{Opt_partition,	"partition=%u"},
472 	{Opt_fileset,	"fileset=%u"},
473 	{Opt_rootdir,	"rootdir=%u"},
474 	{Opt_utf8,	"utf8"},
475 	{Opt_iocharset,	"iocharset=%s"},
476 	{Opt_fmode,     "mode=%o"},
477 	{Opt_dmode,     "dmode=%o"},
478 	{Opt_err,	NULL}
479 };
480 
481 static int udf_parse_options(char *options, struct udf_options *uopt,
482 			     bool remount)
483 {
484 	char *p;
485 	int option;
486 
487 	uopt->novrs = 0;
488 	uopt->partition = 0xFFFF;
489 	uopt->session = 0xFFFFFFFF;
490 	uopt->lastblock = 0;
491 	uopt->anchor = 0;
492 	uopt->volume = 0xFFFFFFFF;
493 	uopt->rootdir = 0xFFFFFFFF;
494 	uopt->fileset = 0xFFFFFFFF;
495 	uopt->nls_map = NULL;
496 
497 	if (!options)
498 		return 1;
499 
500 	while ((p = strsep(&options, ",")) != NULL) {
501 		substring_t args[MAX_OPT_ARGS];
502 		int token;
503 		unsigned n;
504 		if (!*p)
505 			continue;
506 
507 		token = match_token(p, tokens, args);
508 		switch (token) {
509 		case Opt_novrs:
510 			uopt->novrs = 1;
511 			break;
512 		case Opt_bs:
513 			if (match_int(&args[0], &option))
514 				return 0;
515 			n = option;
516 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
517 				return 0;
518 			uopt->blocksize = n;
519 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
520 			break;
521 		case Opt_unhide:
522 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
523 			break;
524 		case Opt_undelete:
525 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
526 			break;
527 		case Opt_noadinicb:
528 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
529 			break;
530 		case Opt_adinicb:
531 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
532 			break;
533 		case Opt_shortad:
534 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
535 			break;
536 		case Opt_longad:
537 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
538 			break;
539 		case Opt_gid:
540 			if (match_int(args, &option))
541 				return 0;
542 			uopt->gid = make_kgid(current_user_ns(), option);
543 			if (!gid_valid(uopt->gid))
544 				return 0;
545 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
546 			break;
547 		case Opt_uid:
548 			if (match_int(args, &option))
549 				return 0;
550 			uopt->uid = make_kuid(current_user_ns(), option);
551 			if (!uid_valid(uopt->uid))
552 				return 0;
553 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
554 			break;
555 		case Opt_umask:
556 			if (match_octal(args, &option))
557 				return 0;
558 			uopt->umask = option;
559 			break;
560 		case Opt_nostrict:
561 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
562 			break;
563 		case Opt_session:
564 			if (match_int(args, &option))
565 				return 0;
566 			uopt->session = option;
567 			if (!remount)
568 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
569 			break;
570 		case Opt_lastblock:
571 			if (match_int(args, &option))
572 				return 0;
573 			uopt->lastblock = option;
574 			if (!remount)
575 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
576 			break;
577 		case Opt_anchor:
578 			if (match_int(args, &option))
579 				return 0;
580 			uopt->anchor = option;
581 			break;
582 		case Opt_volume:
583 			if (match_int(args, &option))
584 				return 0;
585 			uopt->volume = option;
586 			break;
587 		case Opt_partition:
588 			if (match_int(args, &option))
589 				return 0;
590 			uopt->partition = option;
591 			break;
592 		case Opt_fileset:
593 			if (match_int(args, &option))
594 				return 0;
595 			uopt->fileset = option;
596 			break;
597 		case Opt_rootdir:
598 			if (match_int(args, &option))
599 				return 0;
600 			uopt->rootdir = option;
601 			break;
602 		case Opt_utf8:
603 			uopt->flags |= (1 << UDF_FLAG_UTF8);
604 			break;
605 #ifdef CONFIG_UDF_NLS
606 		case Opt_iocharset:
607 			uopt->nls_map = load_nls(args[0].from);
608 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
609 			break;
610 #endif
611 		case Opt_uignore:
612 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
613 			break;
614 		case Opt_uforget:
615 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
616 			break;
617 		case Opt_gignore:
618 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
619 			break;
620 		case Opt_gforget:
621 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
622 			break;
623 		case Opt_fmode:
624 			if (match_octal(args, &option))
625 				return 0;
626 			uopt->fmode = option & 0777;
627 			break;
628 		case Opt_dmode:
629 			if (match_octal(args, &option))
630 				return 0;
631 			uopt->dmode = option & 0777;
632 			break;
633 		default:
634 			pr_err("bad mount option \"%s\" or missing value\n", p);
635 			return 0;
636 		}
637 	}
638 	return 1;
639 }
640 
641 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
642 {
643 	struct udf_options uopt;
644 	struct udf_sb_info *sbi = UDF_SB(sb);
645 	int error = 0;
646 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
647 
648 	sync_filesystem(sb);
649 	if (lvidiu) {
650 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
651 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
652 			return -EACCES;
653 	}
654 
655 	uopt.flags = sbi->s_flags;
656 	uopt.uid   = sbi->s_uid;
657 	uopt.gid   = sbi->s_gid;
658 	uopt.umask = sbi->s_umask;
659 	uopt.fmode = sbi->s_fmode;
660 	uopt.dmode = sbi->s_dmode;
661 
662 	if (!udf_parse_options(options, &uopt, true))
663 		return -EINVAL;
664 
665 	write_lock(&sbi->s_cred_lock);
666 	sbi->s_flags = uopt.flags;
667 	sbi->s_uid   = uopt.uid;
668 	sbi->s_gid   = uopt.gid;
669 	sbi->s_umask = uopt.umask;
670 	sbi->s_fmode = uopt.fmode;
671 	sbi->s_dmode = uopt.dmode;
672 	write_unlock(&sbi->s_cred_lock);
673 
674 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
675 		goto out_unlock;
676 
677 	if (*flags & MS_RDONLY)
678 		udf_close_lvid(sb);
679 	else
680 		udf_open_lvid(sb);
681 
682 out_unlock:
683 	return error;
684 }
685 
686 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
687 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
688 static loff_t udf_check_vsd(struct super_block *sb)
689 {
690 	struct volStructDesc *vsd = NULL;
691 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
692 	int sectorsize;
693 	struct buffer_head *bh = NULL;
694 	int nsr02 = 0;
695 	int nsr03 = 0;
696 	struct udf_sb_info *sbi;
697 
698 	sbi = UDF_SB(sb);
699 	if (sb->s_blocksize < sizeof(struct volStructDesc))
700 		sectorsize = sizeof(struct volStructDesc);
701 	else
702 		sectorsize = sb->s_blocksize;
703 
704 	sector += (sbi->s_session << sb->s_blocksize_bits);
705 
706 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
707 		  (unsigned int)(sector >> sb->s_blocksize_bits),
708 		  sb->s_blocksize);
709 	/* Process the sequence (if applicable). The hard limit on the sector
710 	 * offset is arbitrary, hopefully large enough so that all valid UDF
711 	 * filesystems will be recognised. There is no mention of an upper
712 	 * bound to the size of the volume recognition area in the standard.
713 	 *  The limit will prevent the code to read all the sectors of a
714 	 * specially crafted image (like a bluray disc full of CD001 sectors),
715 	 * potentially causing minutes or even hours of uninterruptible I/O
716 	 * activity. This actually happened with uninitialised SSD partitions
717 	 * (all 0xFF) before the check for the limit and all valid IDs were
718 	 * added */
719 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
720 	     sector += sectorsize) {
721 		/* Read a block */
722 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
723 		if (!bh)
724 			break;
725 
726 		/* Look for ISO  descriptors */
727 		vsd = (struct volStructDesc *)(bh->b_data +
728 					      (sector & (sb->s_blocksize - 1)));
729 
730 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
731 				    VSD_STD_ID_LEN)) {
732 			switch (vsd->structType) {
733 			case 0:
734 				udf_debug("ISO9660 Boot Record found\n");
735 				break;
736 			case 1:
737 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
738 				break;
739 			case 2:
740 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
741 				break;
742 			case 3:
743 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
744 				break;
745 			case 255:
746 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
747 				break;
748 			default:
749 				udf_debug("ISO9660 VRS (%u) found\n",
750 					  vsd->structType);
751 				break;
752 			}
753 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
754 				    VSD_STD_ID_LEN))
755 			; /* nothing */
756 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
757 				    VSD_STD_ID_LEN)) {
758 			brelse(bh);
759 			break;
760 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
761 				    VSD_STD_ID_LEN))
762 			nsr02 = sector;
763 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
764 				    VSD_STD_ID_LEN))
765 			nsr03 = sector;
766 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
767 				    VSD_STD_ID_LEN))
768 			; /* nothing */
769 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
770 				    VSD_STD_ID_LEN))
771 			; /* nothing */
772 		else {
773 			/* invalid id : end of volume recognition area */
774 			brelse(bh);
775 			break;
776 		}
777 		brelse(bh);
778 	}
779 
780 	if (nsr03)
781 		return nsr03;
782 	else if (nsr02)
783 		return nsr02;
784 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
785 			VSD_FIRST_SECTOR_OFFSET)
786 		return -1;
787 	else
788 		return 0;
789 }
790 
791 static int udf_find_fileset(struct super_block *sb,
792 			    struct kernel_lb_addr *fileset,
793 			    struct kernel_lb_addr *root)
794 {
795 	struct buffer_head *bh = NULL;
796 	long lastblock;
797 	uint16_t ident;
798 	struct udf_sb_info *sbi;
799 
800 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
801 	    fileset->partitionReferenceNum != 0xFFFF) {
802 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
803 
804 		if (!bh) {
805 			return 1;
806 		} else if (ident != TAG_IDENT_FSD) {
807 			brelse(bh);
808 			return 1;
809 		}
810 
811 	}
812 
813 	sbi = UDF_SB(sb);
814 	if (!bh) {
815 		/* Search backwards through the partitions */
816 		struct kernel_lb_addr newfileset;
817 
818 /* --> cvg: FIXME - is it reasonable? */
819 		return 1;
820 
821 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
822 		     (newfileset.partitionReferenceNum != 0xFFFF &&
823 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
824 		      fileset->partitionReferenceNum == 0xFFFF);
825 		     newfileset.partitionReferenceNum--) {
826 			lastblock = sbi->s_partmaps
827 					[newfileset.partitionReferenceNum]
828 						.s_partition_len;
829 			newfileset.logicalBlockNum = 0;
830 
831 			do {
832 				bh = udf_read_ptagged(sb, &newfileset, 0,
833 						      &ident);
834 				if (!bh) {
835 					newfileset.logicalBlockNum++;
836 					continue;
837 				}
838 
839 				switch (ident) {
840 				case TAG_IDENT_SBD:
841 				{
842 					struct spaceBitmapDesc *sp;
843 					sp = (struct spaceBitmapDesc *)
844 								bh->b_data;
845 					newfileset.logicalBlockNum += 1 +
846 						((le32_to_cpu(sp->numOfBytes) +
847 						  sizeof(struct spaceBitmapDesc)
848 						  - 1) >> sb->s_blocksize_bits);
849 					brelse(bh);
850 					break;
851 				}
852 				case TAG_IDENT_FSD:
853 					*fileset = newfileset;
854 					break;
855 				default:
856 					newfileset.logicalBlockNum++;
857 					brelse(bh);
858 					bh = NULL;
859 					break;
860 				}
861 			} while (newfileset.logicalBlockNum < lastblock &&
862 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
863 				 fileset->partitionReferenceNum == 0xFFFF);
864 		}
865 	}
866 
867 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
868 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
869 		udf_debug("Fileset at block=%d, partition=%d\n",
870 			  fileset->logicalBlockNum,
871 			  fileset->partitionReferenceNum);
872 
873 		sbi->s_partition = fileset->partitionReferenceNum;
874 		udf_load_fileset(sb, bh, root);
875 		brelse(bh);
876 		return 0;
877 	}
878 	return 1;
879 }
880 
881 /*
882  * Load primary Volume Descriptor Sequence
883  *
884  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
885  * should be tried.
886  */
887 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
888 {
889 	struct primaryVolDesc *pvoldesc;
890 	struct ustr *instr, *outstr;
891 	struct buffer_head *bh;
892 	uint16_t ident;
893 	int ret = -ENOMEM;
894 
895 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
896 	if (!instr)
897 		return -ENOMEM;
898 
899 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900 	if (!outstr)
901 		goto out1;
902 
903 	bh = udf_read_tagged(sb, block, block, &ident);
904 	if (!bh) {
905 		ret = -EAGAIN;
906 		goto out2;
907 	}
908 
909 	if (ident != TAG_IDENT_PVD) {
910 		ret = -EIO;
911 		goto out_bh;
912 	}
913 
914 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
915 
916 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917 			      pvoldesc->recordingDateAndTime)) {
918 #ifdef UDFFS_DEBUG
919 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
920 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
921 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
922 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
923 #endif
924 	}
925 
926 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) {
927 		ret = udf_CS0toUTF8(outstr, instr);
928 		if (ret < 0)
929 			goto out_bh;
930 
931 		strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
932 			outstr->u_len > 31 ? 31 : outstr->u_len);
933 		udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
934 	}
935 
936 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) {
937 		ret = udf_CS0toUTF8(outstr, instr);
938 		if (ret < 0)
939 			goto out_bh;
940 
941 		udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942 	}
943 
944 	ret = 0;
945 out_bh:
946 	brelse(bh);
947 out2:
948 	kfree(outstr);
949 out1:
950 	kfree(instr);
951 	return ret;
952 }
953 
954 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
955 					u32 meta_file_loc, u32 partition_num)
956 {
957 	struct kernel_lb_addr addr;
958 	struct inode *metadata_fe;
959 
960 	addr.logicalBlockNum = meta_file_loc;
961 	addr.partitionReferenceNum = partition_num;
962 
963 	metadata_fe = udf_iget_special(sb, &addr);
964 
965 	if (IS_ERR(metadata_fe)) {
966 		udf_warn(sb, "metadata inode efe not found\n");
967 		return metadata_fe;
968 	}
969 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
970 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
971 		iput(metadata_fe);
972 		return ERR_PTR(-EIO);
973 	}
974 
975 	return metadata_fe;
976 }
977 
978 static int udf_load_metadata_files(struct super_block *sb, int partition)
979 {
980 	struct udf_sb_info *sbi = UDF_SB(sb);
981 	struct udf_part_map *map;
982 	struct udf_meta_data *mdata;
983 	struct kernel_lb_addr addr;
984 	struct inode *fe;
985 
986 	map = &sbi->s_partmaps[partition];
987 	mdata = &map->s_type_specific.s_metadata;
988 
989 	/* metadata address */
990 	udf_debug("Metadata file location: block = %d part = %d\n",
991 		  mdata->s_meta_file_loc, map->s_partition_num);
992 
993 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
994 					 map->s_partition_num);
995 	if (IS_ERR(fe)) {
996 		/* mirror file entry */
997 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
998 			  mdata->s_mirror_file_loc, map->s_partition_num);
999 
1000 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1001 						 map->s_partition_num);
1002 
1003 		if (IS_ERR(fe)) {
1004 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1005 			return PTR_ERR(fe);
1006 		}
1007 		mdata->s_mirror_fe = fe;
1008 	} else
1009 		mdata->s_metadata_fe = fe;
1010 
1011 
1012 	/*
1013 	 * bitmap file entry
1014 	 * Note:
1015 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1016 	*/
1017 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1018 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1019 		addr.partitionReferenceNum = map->s_partition_num;
1020 
1021 		udf_debug("Bitmap file location: block = %d part = %d\n",
1022 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1023 
1024 		fe = udf_iget_special(sb, &addr);
1025 		if (IS_ERR(fe)) {
1026 			if (sb->s_flags & MS_RDONLY)
1027 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1028 			else {
1029 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1030 				return PTR_ERR(fe);
1031 			}
1032 		} else
1033 			mdata->s_bitmap_fe = fe;
1034 	}
1035 
1036 	udf_debug("udf_load_metadata_files Ok\n");
1037 	return 0;
1038 }
1039 
1040 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1041 			     struct kernel_lb_addr *root)
1042 {
1043 	struct fileSetDesc *fset;
1044 
1045 	fset = (struct fileSetDesc *)bh->b_data;
1046 
1047 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1048 
1049 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1050 
1051 	udf_debug("Rootdir at block=%d, partition=%d\n",
1052 		  root->logicalBlockNum, root->partitionReferenceNum);
1053 }
1054 
1055 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1056 {
1057 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1058 	return DIV_ROUND_UP(map->s_partition_len +
1059 			    (sizeof(struct spaceBitmapDesc) << 3),
1060 			    sb->s_blocksize * 8);
1061 }
1062 
1063 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1064 {
1065 	struct udf_bitmap *bitmap;
1066 	int nr_groups;
1067 	int size;
1068 
1069 	nr_groups = udf_compute_nr_groups(sb, index);
1070 	size = sizeof(struct udf_bitmap) +
1071 		(sizeof(struct buffer_head *) * nr_groups);
1072 
1073 	if (size <= PAGE_SIZE)
1074 		bitmap = kzalloc(size, GFP_KERNEL);
1075 	else
1076 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1077 
1078 	if (bitmap == NULL)
1079 		return NULL;
1080 
1081 	bitmap->s_nr_groups = nr_groups;
1082 	return bitmap;
1083 }
1084 
1085 static int udf_fill_partdesc_info(struct super_block *sb,
1086 		struct partitionDesc *p, int p_index)
1087 {
1088 	struct udf_part_map *map;
1089 	struct udf_sb_info *sbi = UDF_SB(sb);
1090 	struct partitionHeaderDesc *phd;
1091 
1092 	map = &sbi->s_partmaps[p_index];
1093 
1094 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1095 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1096 
1097 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1098 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1099 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1100 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1101 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1102 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1103 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1104 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1105 
1106 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1107 		  p_index, map->s_partition_type,
1108 		  map->s_partition_root, map->s_partition_len);
1109 
1110 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1111 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1112 		return 0;
1113 
1114 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115 	if (phd->unallocSpaceTable.extLength) {
1116 		struct kernel_lb_addr loc = {
1117 			.logicalBlockNum = le32_to_cpu(
1118 				phd->unallocSpaceTable.extPosition),
1119 			.partitionReferenceNum = p_index,
1120 		};
1121 		struct inode *inode;
1122 
1123 		inode = udf_iget_special(sb, &loc);
1124 		if (IS_ERR(inode)) {
1125 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126 				  p_index);
1127 			return PTR_ERR(inode);
1128 		}
1129 		map->s_uspace.s_table = inode;
1130 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1132 			  p_index, map->s_uspace.s_table->i_ino);
1133 	}
1134 
1135 	if (phd->unallocSpaceBitmap.extLength) {
1136 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 		if (!bitmap)
1138 			return -ENOMEM;
1139 		map->s_uspace.s_bitmap = bitmap;
1140 		bitmap->s_extPosition = le32_to_cpu(
1141 				phd->unallocSpaceBitmap.extPosition);
1142 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1144 			  p_index, bitmap->s_extPosition);
1145 	}
1146 
1147 	if (phd->partitionIntegrityTable.extLength)
1148 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1149 
1150 	if (phd->freedSpaceTable.extLength) {
1151 		struct kernel_lb_addr loc = {
1152 			.logicalBlockNum = le32_to_cpu(
1153 				phd->freedSpaceTable.extPosition),
1154 			.partitionReferenceNum = p_index,
1155 		};
1156 		struct inode *inode;
1157 
1158 		inode = udf_iget_special(sb, &loc);
1159 		if (IS_ERR(inode)) {
1160 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1161 				  p_index);
1162 			return PTR_ERR(inode);
1163 		}
1164 		map->s_fspace.s_table = inode;
1165 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1166 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1167 			  p_index, map->s_fspace.s_table->i_ino);
1168 	}
1169 
1170 	if (phd->freedSpaceBitmap.extLength) {
1171 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1172 		if (!bitmap)
1173 			return -ENOMEM;
1174 		map->s_fspace.s_bitmap = bitmap;
1175 		bitmap->s_extPosition = le32_to_cpu(
1176 				phd->freedSpaceBitmap.extPosition);
1177 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1178 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1179 			  p_index, bitmap->s_extPosition);
1180 	}
1181 	return 0;
1182 }
1183 
1184 static void udf_find_vat_block(struct super_block *sb, int p_index,
1185 			       int type1_index, sector_t start_block)
1186 {
1187 	struct udf_sb_info *sbi = UDF_SB(sb);
1188 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1189 	sector_t vat_block;
1190 	struct kernel_lb_addr ino;
1191 	struct inode *inode;
1192 
1193 	/*
1194 	 * VAT file entry is in the last recorded block. Some broken disks have
1195 	 * it a few blocks before so try a bit harder...
1196 	 */
1197 	ino.partitionReferenceNum = type1_index;
1198 	for (vat_block = start_block;
1199 	     vat_block >= map->s_partition_root &&
1200 	     vat_block >= start_block - 3; vat_block--) {
1201 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1202 		inode = udf_iget_special(sb, &ino);
1203 		if (!IS_ERR(inode)) {
1204 			sbi->s_vat_inode = inode;
1205 			break;
1206 		}
1207 	}
1208 }
1209 
1210 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1211 {
1212 	struct udf_sb_info *sbi = UDF_SB(sb);
1213 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1214 	struct buffer_head *bh = NULL;
1215 	struct udf_inode_info *vati;
1216 	uint32_t pos;
1217 	struct virtualAllocationTable20 *vat20;
1218 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1219 
1220 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1221 	if (!sbi->s_vat_inode &&
1222 	    sbi->s_last_block != blocks - 1) {
1223 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1224 			  (unsigned long)sbi->s_last_block,
1225 			  (unsigned long)blocks - 1);
1226 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1227 	}
1228 	if (!sbi->s_vat_inode)
1229 		return -EIO;
1230 
1231 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1232 		map->s_type_specific.s_virtual.s_start_offset = 0;
1233 		map->s_type_specific.s_virtual.s_num_entries =
1234 			(sbi->s_vat_inode->i_size - 36) >> 2;
1235 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1236 		vati = UDF_I(sbi->s_vat_inode);
1237 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1238 			pos = udf_block_map(sbi->s_vat_inode, 0);
1239 			bh = sb_bread(sb, pos);
1240 			if (!bh)
1241 				return -EIO;
1242 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1243 		} else {
1244 			vat20 = (struct virtualAllocationTable20 *)
1245 							vati->i_ext.i_data;
1246 		}
1247 
1248 		map->s_type_specific.s_virtual.s_start_offset =
1249 			le16_to_cpu(vat20->lengthHeader);
1250 		map->s_type_specific.s_virtual.s_num_entries =
1251 			(sbi->s_vat_inode->i_size -
1252 				map->s_type_specific.s_virtual.
1253 					s_start_offset) >> 2;
1254 		brelse(bh);
1255 	}
1256 	return 0;
1257 }
1258 
1259 /*
1260  * Load partition descriptor block
1261  *
1262  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1263  * sequence.
1264  */
1265 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1266 {
1267 	struct buffer_head *bh;
1268 	struct partitionDesc *p;
1269 	struct udf_part_map *map;
1270 	struct udf_sb_info *sbi = UDF_SB(sb);
1271 	int i, type1_idx;
1272 	uint16_t partitionNumber;
1273 	uint16_t ident;
1274 	int ret;
1275 
1276 	bh = udf_read_tagged(sb, block, block, &ident);
1277 	if (!bh)
1278 		return -EAGAIN;
1279 	if (ident != TAG_IDENT_PD) {
1280 		ret = 0;
1281 		goto out_bh;
1282 	}
1283 
1284 	p = (struct partitionDesc *)bh->b_data;
1285 	partitionNumber = le16_to_cpu(p->partitionNumber);
1286 
1287 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1288 	for (i = 0; i < sbi->s_partitions; i++) {
1289 		map = &sbi->s_partmaps[i];
1290 		udf_debug("Searching map: (%d == %d)\n",
1291 			  map->s_partition_num, partitionNumber);
1292 		if (map->s_partition_num == partitionNumber &&
1293 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1294 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1295 			break;
1296 	}
1297 
1298 	if (i >= sbi->s_partitions) {
1299 		udf_debug("Partition (%d) not found in partition map\n",
1300 			  partitionNumber);
1301 		ret = 0;
1302 		goto out_bh;
1303 	}
1304 
1305 	ret = udf_fill_partdesc_info(sb, p, i);
1306 	if (ret < 0)
1307 		goto out_bh;
1308 
1309 	/*
1310 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1311 	 * PHYSICAL partitions are already set up
1312 	 */
1313 	type1_idx = i;
1314 #ifdef UDFFS_DEBUG
1315 	map = NULL; /* supress 'maybe used uninitialized' warning */
1316 #endif
1317 	for (i = 0; i < sbi->s_partitions; i++) {
1318 		map = &sbi->s_partmaps[i];
1319 
1320 		if (map->s_partition_num == partitionNumber &&
1321 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1322 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1323 		     map->s_partition_type == UDF_METADATA_MAP25))
1324 			break;
1325 	}
1326 
1327 	if (i >= sbi->s_partitions) {
1328 		ret = 0;
1329 		goto out_bh;
1330 	}
1331 
1332 	ret = udf_fill_partdesc_info(sb, p, i);
1333 	if (ret < 0)
1334 		goto out_bh;
1335 
1336 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1337 		ret = udf_load_metadata_files(sb, i);
1338 		if (ret < 0) {
1339 			udf_err(sb, "error loading MetaData partition map %d\n",
1340 				i);
1341 			goto out_bh;
1342 		}
1343 	} else {
1344 		/*
1345 		 * If we have a partition with virtual map, we don't handle
1346 		 * writing to it (we overwrite blocks instead of relocating
1347 		 * them).
1348 		 */
1349 		if (!(sb->s_flags & MS_RDONLY)) {
1350 			ret = -EACCES;
1351 			goto out_bh;
1352 		}
1353 		ret = udf_load_vat(sb, i, type1_idx);
1354 		if (ret < 0)
1355 			goto out_bh;
1356 	}
1357 	ret = 0;
1358 out_bh:
1359 	/* In case loading failed, we handle cleanup in udf_fill_super */
1360 	brelse(bh);
1361 	return ret;
1362 }
1363 
1364 static int udf_load_sparable_map(struct super_block *sb,
1365 				 struct udf_part_map *map,
1366 				 struct sparablePartitionMap *spm)
1367 {
1368 	uint32_t loc;
1369 	uint16_t ident;
1370 	struct sparingTable *st;
1371 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1372 	int i;
1373 	struct buffer_head *bh;
1374 
1375 	map->s_partition_type = UDF_SPARABLE_MAP15;
1376 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1377 	if (!is_power_of_2(sdata->s_packet_len)) {
1378 		udf_err(sb, "error loading logical volume descriptor: "
1379 			"Invalid packet length %u\n",
1380 			(unsigned)sdata->s_packet_len);
1381 		return -EIO;
1382 	}
1383 	if (spm->numSparingTables > 4) {
1384 		udf_err(sb, "error loading logical volume descriptor: "
1385 			"Too many sparing tables (%d)\n",
1386 			(int)spm->numSparingTables);
1387 		return -EIO;
1388 	}
1389 
1390 	for (i = 0; i < spm->numSparingTables; i++) {
1391 		loc = le32_to_cpu(spm->locSparingTable[i]);
1392 		bh = udf_read_tagged(sb, loc, loc, &ident);
1393 		if (!bh)
1394 			continue;
1395 
1396 		st = (struct sparingTable *)bh->b_data;
1397 		if (ident != 0 ||
1398 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1399 			    strlen(UDF_ID_SPARING)) ||
1400 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1401 							sb->s_blocksize) {
1402 			brelse(bh);
1403 			continue;
1404 		}
1405 
1406 		sdata->s_spar_map[i] = bh;
1407 	}
1408 	map->s_partition_func = udf_get_pblock_spar15;
1409 	return 0;
1410 }
1411 
1412 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1413 			       struct kernel_lb_addr *fileset)
1414 {
1415 	struct logicalVolDesc *lvd;
1416 	int i, offset;
1417 	uint8_t type;
1418 	struct udf_sb_info *sbi = UDF_SB(sb);
1419 	struct genericPartitionMap *gpm;
1420 	uint16_t ident;
1421 	struct buffer_head *bh;
1422 	unsigned int table_len;
1423 	int ret;
1424 
1425 	bh = udf_read_tagged(sb, block, block, &ident);
1426 	if (!bh)
1427 		return -EAGAIN;
1428 	BUG_ON(ident != TAG_IDENT_LVD);
1429 	lvd = (struct logicalVolDesc *)bh->b_data;
1430 	table_len = le32_to_cpu(lvd->mapTableLength);
1431 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1432 		udf_err(sb, "error loading logical volume descriptor: "
1433 			"Partition table too long (%u > %lu)\n", table_len,
1434 			sb->s_blocksize - sizeof(*lvd));
1435 		ret = -EIO;
1436 		goto out_bh;
1437 	}
1438 
1439 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1440 	if (ret)
1441 		goto out_bh;
1442 
1443 	for (i = 0, offset = 0;
1444 	     i < sbi->s_partitions && offset < table_len;
1445 	     i++, offset += gpm->partitionMapLength) {
1446 		struct udf_part_map *map = &sbi->s_partmaps[i];
1447 		gpm = (struct genericPartitionMap *)
1448 				&(lvd->partitionMaps[offset]);
1449 		type = gpm->partitionMapType;
1450 		if (type == 1) {
1451 			struct genericPartitionMap1 *gpm1 =
1452 				(struct genericPartitionMap1 *)gpm;
1453 			map->s_partition_type = UDF_TYPE1_MAP15;
1454 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1455 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1456 			map->s_partition_func = NULL;
1457 		} else if (type == 2) {
1458 			struct udfPartitionMap2 *upm2 =
1459 						(struct udfPartitionMap2 *)gpm;
1460 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1461 						strlen(UDF_ID_VIRTUAL))) {
1462 				u16 suf =
1463 					le16_to_cpu(((__le16 *)upm2->partIdent.
1464 							identSuffix)[0]);
1465 				if (suf < 0x0200) {
1466 					map->s_partition_type =
1467 							UDF_VIRTUAL_MAP15;
1468 					map->s_partition_func =
1469 							udf_get_pblock_virt15;
1470 				} else {
1471 					map->s_partition_type =
1472 							UDF_VIRTUAL_MAP20;
1473 					map->s_partition_func =
1474 							udf_get_pblock_virt20;
1475 				}
1476 			} else if (!strncmp(upm2->partIdent.ident,
1477 						UDF_ID_SPARABLE,
1478 						strlen(UDF_ID_SPARABLE))) {
1479 				ret = udf_load_sparable_map(sb, map,
1480 					(struct sparablePartitionMap *)gpm);
1481 				if (ret < 0)
1482 					goto out_bh;
1483 			} else if (!strncmp(upm2->partIdent.ident,
1484 						UDF_ID_METADATA,
1485 						strlen(UDF_ID_METADATA))) {
1486 				struct udf_meta_data *mdata =
1487 					&map->s_type_specific.s_metadata;
1488 				struct metadataPartitionMap *mdm =
1489 						(struct metadataPartitionMap *)
1490 						&(lvd->partitionMaps[offset]);
1491 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1492 					  i, type, UDF_ID_METADATA);
1493 
1494 				map->s_partition_type = UDF_METADATA_MAP25;
1495 				map->s_partition_func = udf_get_pblock_meta25;
1496 
1497 				mdata->s_meta_file_loc   =
1498 					le32_to_cpu(mdm->metadataFileLoc);
1499 				mdata->s_mirror_file_loc =
1500 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1501 				mdata->s_bitmap_file_loc =
1502 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1503 				mdata->s_alloc_unit_size =
1504 					le32_to_cpu(mdm->allocUnitSize);
1505 				mdata->s_align_unit_size =
1506 					le16_to_cpu(mdm->alignUnitSize);
1507 				if (mdm->flags & 0x01)
1508 					mdata->s_flags |= MF_DUPLICATE_MD;
1509 
1510 				udf_debug("Metadata Ident suffix=0x%x\n",
1511 					  le16_to_cpu(*(__le16 *)
1512 						      mdm->partIdent.identSuffix));
1513 				udf_debug("Metadata part num=%d\n",
1514 					  le16_to_cpu(mdm->partitionNum));
1515 				udf_debug("Metadata part alloc unit size=%d\n",
1516 					  le32_to_cpu(mdm->allocUnitSize));
1517 				udf_debug("Metadata file loc=%d\n",
1518 					  le32_to_cpu(mdm->metadataFileLoc));
1519 				udf_debug("Mirror file loc=%d\n",
1520 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1521 				udf_debug("Bitmap file loc=%d\n",
1522 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1523 				udf_debug("Flags: %d %d\n",
1524 					  mdata->s_flags, mdm->flags);
1525 			} else {
1526 				udf_debug("Unknown ident: %s\n",
1527 					  upm2->partIdent.ident);
1528 				continue;
1529 			}
1530 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1531 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1532 		}
1533 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1534 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1535 	}
1536 
1537 	if (fileset) {
1538 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1539 
1540 		*fileset = lelb_to_cpu(la->extLocation);
1541 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1542 			  fileset->logicalBlockNum,
1543 			  fileset->partitionReferenceNum);
1544 	}
1545 	if (lvd->integritySeqExt.extLength)
1546 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1547 	ret = 0;
1548 out_bh:
1549 	brelse(bh);
1550 	return ret;
1551 }
1552 
1553 /*
1554  * udf_load_logicalvolint
1555  *
1556  */
1557 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558 {
1559 	struct buffer_head *bh = NULL;
1560 	uint16_t ident;
1561 	struct udf_sb_info *sbi = UDF_SB(sb);
1562 	struct logicalVolIntegrityDesc *lvid;
1563 
1564 	while (loc.extLength > 0 &&
1565 	       (bh = udf_read_tagged(sb, loc.extLocation,
1566 				     loc.extLocation, &ident)) &&
1567 	       ident == TAG_IDENT_LVID) {
1568 		sbi->s_lvid_bh = bh;
1569 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1570 
1571 		if (lvid->nextIntegrityExt.extLength)
1572 			udf_load_logicalvolint(sb,
1573 				leea_to_cpu(lvid->nextIntegrityExt));
1574 
1575 		if (sbi->s_lvid_bh != bh)
1576 			brelse(bh);
1577 		loc.extLength -= sb->s_blocksize;
1578 		loc.extLocation++;
1579 	}
1580 	if (sbi->s_lvid_bh != bh)
1581 		brelse(bh);
1582 }
1583 
1584 /*
1585  * Maximum number of Terminating Descriptor redirections. The chosen number is
1586  * arbitrary - just that we hopefully don't limit any real use of rewritten
1587  * inode on write-once media but avoid looping for too long on corrupted media.
1588  */
1589 #define UDF_MAX_TD_NESTING 64
1590 
1591 /*
1592  * Process a main/reserve volume descriptor sequence.
1593  *   @block		First block of first extent of the sequence.
1594  *   @lastblock		Lastblock of first extent of the sequence.
1595  *   @fileset		There we store extent containing root fileset
1596  *
1597  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1598  * sequence
1599  */
1600 static noinline int udf_process_sequence(
1601 		struct super_block *sb,
1602 		sector_t block, sector_t lastblock,
1603 		struct kernel_lb_addr *fileset)
1604 {
1605 	struct buffer_head *bh = NULL;
1606 	struct udf_vds_record vds[VDS_POS_LENGTH];
1607 	struct udf_vds_record *curr;
1608 	struct generic_desc *gd;
1609 	struct volDescPtr *vdp;
1610 	bool done = false;
1611 	uint32_t vdsn;
1612 	uint16_t ident;
1613 	long next_s = 0, next_e = 0;
1614 	int ret;
1615 	unsigned int indirections = 0;
1616 
1617 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1618 
1619 	/*
1620 	 * Read the main descriptor sequence and find which descriptors
1621 	 * are in it.
1622 	 */
1623 	for (; (!done && block <= lastblock); block++) {
1624 
1625 		bh = udf_read_tagged(sb, block, block, &ident);
1626 		if (!bh) {
1627 			udf_err(sb,
1628 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1629 				(unsigned long long)block);
1630 			return -EAGAIN;
1631 		}
1632 
1633 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1634 		gd = (struct generic_desc *)bh->b_data;
1635 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1636 		switch (ident) {
1637 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1638 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1639 			if (vdsn >= curr->volDescSeqNum) {
1640 				curr->volDescSeqNum = vdsn;
1641 				curr->block = block;
1642 			}
1643 			break;
1644 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1645 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1646 			if (vdsn >= curr->volDescSeqNum) {
1647 				curr->volDescSeqNum = vdsn;
1648 				curr->block = block;
1649 
1650 				vdp = (struct volDescPtr *)bh->b_data;
1651 				next_s = le32_to_cpu(
1652 					vdp->nextVolDescSeqExt.extLocation);
1653 				next_e = le32_to_cpu(
1654 					vdp->nextVolDescSeqExt.extLength);
1655 				next_e = next_e >> sb->s_blocksize_bits;
1656 				next_e += next_s;
1657 			}
1658 			break;
1659 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1660 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1661 			if (vdsn >= curr->volDescSeqNum) {
1662 				curr->volDescSeqNum = vdsn;
1663 				curr->block = block;
1664 			}
1665 			break;
1666 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1667 			curr = &vds[VDS_POS_PARTITION_DESC];
1668 			if (!curr->block)
1669 				curr->block = block;
1670 			break;
1671 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1672 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1673 			if (vdsn >= curr->volDescSeqNum) {
1674 				curr->volDescSeqNum = vdsn;
1675 				curr->block = block;
1676 			}
1677 			break;
1678 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1679 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1680 			if (vdsn >= curr->volDescSeqNum) {
1681 				curr->volDescSeqNum = vdsn;
1682 				curr->block = block;
1683 			}
1684 			break;
1685 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1686 			if (++indirections > UDF_MAX_TD_NESTING) {
1687 				udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1688 				brelse(bh);
1689 				return -EIO;
1690 			}
1691 
1692 			vds[VDS_POS_TERMINATING_DESC].block = block;
1693 			if (next_e) {
1694 				block = next_s;
1695 				lastblock = next_e;
1696 				next_s = next_e = 0;
1697 			} else
1698 				done = true;
1699 			break;
1700 		}
1701 		brelse(bh);
1702 	}
1703 	/*
1704 	 * Now read interesting descriptors again and process them
1705 	 * in a suitable order
1706 	 */
1707 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1708 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1709 		return -EAGAIN;
1710 	}
1711 	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1712 	if (ret < 0)
1713 		return ret;
1714 
1715 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1716 		ret = udf_load_logicalvol(sb,
1717 					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1718 					  fileset);
1719 		if (ret < 0)
1720 			return ret;
1721 	}
1722 
1723 	if (vds[VDS_POS_PARTITION_DESC].block) {
1724 		/*
1725 		 * We rescan the whole descriptor sequence to find
1726 		 * partition descriptor blocks and process them.
1727 		 */
1728 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1729 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1730 		     block++) {
1731 			ret = udf_load_partdesc(sb, block);
1732 			if (ret < 0)
1733 				return ret;
1734 		}
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 /*
1741  * Load Volume Descriptor Sequence described by anchor in bh
1742  *
1743  * Returns <0 on error, 0 on success
1744  */
1745 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1746 			     struct kernel_lb_addr *fileset)
1747 {
1748 	struct anchorVolDescPtr *anchor;
1749 	sector_t main_s, main_e, reserve_s, reserve_e;
1750 	int ret;
1751 
1752 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1753 
1754 	/* Locate the main sequence */
1755 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1756 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1757 	main_e = main_e >> sb->s_blocksize_bits;
1758 	main_e += main_s;
1759 
1760 	/* Locate the reserve sequence */
1761 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1762 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1763 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1764 	reserve_e += reserve_s;
1765 
1766 	/* Process the main & reserve sequences */
1767 	/* responsible for finding the PartitionDesc(s) */
1768 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1769 	if (ret != -EAGAIN)
1770 		return ret;
1771 	udf_sb_free_partitions(sb);
1772 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1773 	if (ret < 0) {
1774 		udf_sb_free_partitions(sb);
1775 		/* No sequence was OK, return -EIO */
1776 		if (ret == -EAGAIN)
1777 			ret = -EIO;
1778 	}
1779 	return ret;
1780 }
1781 
1782 /*
1783  * Check whether there is an anchor block in the given block and
1784  * load Volume Descriptor Sequence if so.
1785  *
1786  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1787  * block
1788  */
1789 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1790 				  struct kernel_lb_addr *fileset)
1791 {
1792 	struct buffer_head *bh;
1793 	uint16_t ident;
1794 	int ret;
1795 
1796 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1797 	    udf_fixed_to_variable(block) >=
1798 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1799 		return -EAGAIN;
1800 
1801 	bh = udf_read_tagged(sb, block, block, &ident);
1802 	if (!bh)
1803 		return -EAGAIN;
1804 	if (ident != TAG_IDENT_AVDP) {
1805 		brelse(bh);
1806 		return -EAGAIN;
1807 	}
1808 	ret = udf_load_sequence(sb, bh, fileset);
1809 	brelse(bh);
1810 	return ret;
1811 }
1812 
1813 /*
1814  * Search for an anchor volume descriptor pointer.
1815  *
1816  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1817  * of anchors.
1818  */
1819 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1820 			    struct kernel_lb_addr *fileset)
1821 {
1822 	sector_t last[6];
1823 	int i;
1824 	struct udf_sb_info *sbi = UDF_SB(sb);
1825 	int last_count = 0;
1826 	int ret;
1827 
1828 	/* First try user provided anchor */
1829 	if (sbi->s_anchor) {
1830 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1831 		if (ret != -EAGAIN)
1832 			return ret;
1833 	}
1834 	/*
1835 	 * according to spec, anchor is in either:
1836 	 *     block 256
1837 	 *     lastblock-256
1838 	 *     lastblock
1839 	 *  however, if the disc isn't closed, it could be 512.
1840 	 */
1841 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1842 	if (ret != -EAGAIN)
1843 		return ret;
1844 	/*
1845 	 * The trouble is which block is the last one. Drives often misreport
1846 	 * this so we try various possibilities.
1847 	 */
1848 	last[last_count++] = *lastblock;
1849 	if (*lastblock >= 1)
1850 		last[last_count++] = *lastblock - 1;
1851 	last[last_count++] = *lastblock + 1;
1852 	if (*lastblock >= 2)
1853 		last[last_count++] = *lastblock - 2;
1854 	if (*lastblock >= 150)
1855 		last[last_count++] = *lastblock - 150;
1856 	if (*lastblock >= 152)
1857 		last[last_count++] = *lastblock - 152;
1858 
1859 	for (i = 0; i < last_count; i++) {
1860 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1861 				sb->s_blocksize_bits)
1862 			continue;
1863 		ret = udf_check_anchor_block(sb, last[i], fileset);
1864 		if (ret != -EAGAIN) {
1865 			if (!ret)
1866 				*lastblock = last[i];
1867 			return ret;
1868 		}
1869 		if (last[i] < 256)
1870 			continue;
1871 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1872 		if (ret != -EAGAIN) {
1873 			if (!ret)
1874 				*lastblock = last[i];
1875 			return ret;
1876 		}
1877 	}
1878 
1879 	/* Finally try block 512 in case media is open */
1880 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1881 }
1882 
1883 /*
1884  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1885  * area specified by it. The function expects sbi->s_lastblock to be the last
1886  * block on the media.
1887  *
1888  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1889  * was not found.
1890  */
1891 static int udf_find_anchor(struct super_block *sb,
1892 			   struct kernel_lb_addr *fileset)
1893 {
1894 	struct udf_sb_info *sbi = UDF_SB(sb);
1895 	sector_t lastblock = sbi->s_last_block;
1896 	int ret;
1897 
1898 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1899 	if (ret != -EAGAIN)
1900 		goto out;
1901 
1902 	/* No anchor found? Try VARCONV conversion of block numbers */
1903 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1904 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1905 	/* Firstly, we try to not convert number of the last block */
1906 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1907 	if (ret != -EAGAIN)
1908 		goto out;
1909 
1910 	lastblock = sbi->s_last_block;
1911 	/* Secondly, we try with converted number of the last block */
1912 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1913 	if (ret < 0) {
1914 		/* VARCONV didn't help. Clear it. */
1915 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1916 	}
1917 out:
1918 	if (ret == 0)
1919 		sbi->s_last_block = lastblock;
1920 	return ret;
1921 }
1922 
1923 /*
1924  * Check Volume Structure Descriptor, find Anchor block and load Volume
1925  * Descriptor Sequence.
1926  *
1927  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1928  * block was not found.
1929  */
1930 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1931 			int silent, struct kernel_lb_addr *fileset)
1932 {
1933 	struct udf_sb_info *sbi = UDF_SB(sb);
1934 	loff_t nsr_off;
1935 	int ret;
1936 
1937 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1938 		if (!silent)
1939 			udf_warn(sb, "Bad block size\n");
1940 		return -EINVAL;
1941 	}
1942 	sbi->s_last_block = uopt->lastblock;
1943 	if (!uopt->novrs) {
1944 		/* Check that it is NSR02 compliant */
1945 		nsr_off = udf_check_vsd(sb);
1946 		if (!nsr_off) {
1947 			if (!silent)
1948 				udf_warn(sb, "No VRS found\n");
1949 			return 0;
1950 		}
1951 		if (nsr_off == -1)
1952 			udf_debug("Failed to read sector at offset %d. "
1953 				  "Assuming open disc. Skipping validity "
1954 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1955 		if (!sbi->s_last_block)
1956 			sbi->s_last_block = udf_get_last_block(sb);
1957 	} else {
1958 		udf_debug("Validity check skipped because of novrs option\n");
1959 	}
1960 
1961 	/* Look for anchor block and load Volume Descriptor Sequence */
1962 	sbi->s_anchor = uopt->anchor;
1963 	ret = udf_find_anchor(sb, fileset);
1964 	if (ret < 0) {
1965 		if (!silent && ret == -EAGAIN)
1966 			udf_warn(sb, "No anchor found\n");
1967 		return ret;
1968 	}
1969 	return 0;
1970 }
1971 
1972 static void udf_open_lvid(struct super_block *sb)
1973 {
1974 	struct udf_sb_info *sbi = UDF_SB(sb);
1975 	struct buffer_head *bh = sbi->s_lvid_bh;
1976 	struct logicalVolIntegrityDesc *lvid;
1977 	struct logicalVolIntegrityDescImpUse *lvidiu;
1978 
1979 	if (!bh)
1980 		return;
1981 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1982 	lvidiu = udf_sb_lvidiu(sb);
1983 	if (!lvidiu)
1984 		return;
1985 
1986 	mutex_lock(&sbi->s_alloc_mutex);
1987 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1988 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1989 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1990 				CURRENT_TIME);
1991 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1992 
1993 	lvid->descTag.descCRC = cpu_to_le16(
1994 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1995 			le16_to_cpu(lvid->descTag.descCRCLength)));
1996 
1997 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1998 	mark_buffer_dirty(bh);
1999 	sbi->s_lvid_dirty = 0;
2000 	mutex_unlock(&sbi->s_alloc_mutex);
2001 	/* Make opening of filesystem visible on the media immediately */
2002 	sync_dirty_buffer(bh);
2003 }
2004 
2005 static void udf_close_lvid(struct super_block *sb)
2006 {
2007 	struct udf_sb_info *sbi = UDF_SB(sb);
2008 	struct buffer_head *bh = sbi->s_lvid_bh;
2009 	struct logicalVolIntegrityDesc *lvid;
2010 	struct logicalVolIntegrityDescImpUse *lvidiu;
2011 
2012 	if (!bh)
2013 		return;
2014 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2015 	lvidiu = udf_sb_lvidiu(sb);
2016 	if (!lvidiu)
2017 		return;
2018 
2019 	mutex_lock(&sbi->s_alloc_mutex);
2020 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2021 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2022 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2023 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2024 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2025 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2026 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2027 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2028 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2029 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2030 
2031 	lvid->descTag.descCRC = cpu_to_le16(
2032 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2033 				le16_to_cpu(lvid->descTag.descCRCLength)));
2034 
2035 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2036 	/*
2037 	 * We set buffer uptodate unconditionally here to avoid spurious
2038 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2039 	 * the buffer as !uptodate
2040 	 */
2041 	set_buffer_uptodate(bh);
2042 	mark_buffer_dirty(bh);
2043 	sbi->s_lvid_dirty = 0;
2044 	mutex_unlock(&sbi->s_alloc_mutex);
2045 	/* Make closing of filesystem visible on the media immediately */
2046 	sync_dirty_buffer(bh);
2047 }
2048 
2049 u64 lvid_get_unique_id(struct super_block *sb)
2050 {
2051 	struct buffer_head *bh;
2052 	struct udf_sb_info *sbi = UDF_SB(sb);
2053 	struct logicalVolIntegrityDesc *lvid;
2054 	struct logicalVolHeaderDesc *lvhd;
2055 	u64 uniqueID;
2056 	u64 ret;
2057 
2058 	bh = sbi->s_lvid_bh;
2059 	if (!bh)
2060 		return 0;
2061 
2062 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2063 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2064 
2065 	mutex_lock(&sbi->s_alloc_mutex);
2066 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2067 	if (!(++uniqueID & 0xFFFFFFFF))
2068 		uniqueID += 16;
2069 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2070 	mutex_unlock(&sbi->s_alloc_mutex);
2071 	mark_buffer_dirty(bh);
2072 
2073 	return ret;
2074 }
2075 
2076 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2077 {
2078 	int ret = -EINVAL;
2079 	struct inode *inode = NULL;
2080 	struct udf_options uopt;
2081 	struct kernel_lb_addr rootdir, fileset;
2082 	struct udf_sb_info *sbi;
2083 	bool lvid_open = false;
2084 
2085 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2086 	uopt.uid = INVALID_UID;
2087 	uopt.gid = INVALID_GID;
2088 	uopt.umask = 0;
2089 	uopt.fmode = UDF_INVALID_MODE;
2090 	uopt.dmode = UDF_INVALID_MODE;
2091 
2092 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2093 	if (!sbi)
2094 		return -ENOMEM;
2095 
2096 	sb->s_fs_info = sbi;
2097 
2098 	mutex_init(&sbi->s_alloc_mutex);
2099 
2100 	if (!udf_parse_options((char *)options, &uopt, false))
2101 		goto parse_options_failure;
2102 
2103 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2104 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2105 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2106 		goto parse_options_failure;
2107 	}
2108 #ifdef CONFIG_UDF_NLS
2109 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2110 		uopt.nls_map = load_nls_default();
2111 		if (!uopt.nls_map)
2112 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2113 		else
2114 			udf_debug("Using default NLS map\n");
2115 	}
2116 #endif
2117 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2118 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2119 
2120 	fileset.logicalBlockNum = 0xFFFFFFFF;
2121 	fileset.partitionReferenceNum = 0xFFFF;
2122 
2123 	sbi->s_flags = uopt.flags;
2124 	sbi->s_uid = uopt.uid;
2125 	sbi->s_gid = uopt.gid;
2126 	sbi->s_umask = uopt.umask;
2127 	sbi->s_fmode = uopt.fmode;
2128 	sbi->s_dmode = uopt.dmode;
2129 	sbi->s_nls_map = uopt.nls_map;
2130 	rwlock_init(&sbi->s_cred_lock);
2131 
2132 	if (uopt.session == 0xFFFFFFFF)
2133 		sbi->s_session = udf_get_last_session(sb);
2134 	else
2135 		sbi->s_session = uopt.session;
2136 
2137 	udf_debug("Multi-session=%d\n", sbi->s_session);
2138 
2139 	/* Fill in the rest of the superblock */
2140 	sb->s_op = &udf_sb_ops;
2141 	sb->s_export_op = &udf_export_ops;
2142 
2143 	sb->s_magic = UDF_SUPER_MAGIC;
2144 	sb->s_time_gran = 1000;
2145 
2146 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2147 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148 	} else {
2149 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2150 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2151 		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2152 			if (!silent)
2153 				pr_notice("Rescanning with blocksize %d\n",
2154 					  UDF_DEFAULT_BLOCKSIZE);
2155 			brelse(sbi->s_lvid_bh);
2156 			sbi->s_lvid_bh = NULL;
2157 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2158 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159 		}
2160 	}
2161 	if (ret < 0) {
2162 		if (ret == -EAGAIN) {
2163 			udf_warn(sb, "No partition found (1)\n");
2164 			ret = -EINVAL;
2165 		}
2166 		goto error_out;
2167 	}
2168 
2169 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2170 
2171 	if (sbi->s_lvid_bh) {
2172 		struct logicalVolIntegrityDescImpUse *lvidiu =
2173 							udf_sb_lvidiu(sb);
2174 		uint16_t minUDFReadRev;
2175 		uint16_t minUDFWriteRev;
2176 
2177 		if (!lvidiu) {
2178 			ret = -EINVAL;
2179 			goto error_out;
2180 		}
2181 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2182 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2183 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2184 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2185 				minUDFReadRev,
2186 				UDF_MAX_READ_VERSION);
2187 			ret = -EINVAL;
2188 			goto error_out;
2189 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2190 			   !(sb->s_flags & MS_RDONLY)) {
2191 			ret = -EACCES;
2192 			goto error_out;
2193 		}
2194 
2195 		sbi->s_udfrev = minUDFWriteRev;
2196 
2197 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2198 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2199 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2200 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2201 	}
2202 
2203 	if (!sbi->s_partitions) {
2204 		udf_warn(sb, "No partition found (2)\n");
2205 		ret = -EINVAL;
2206 		goto error_out;
2207 	}
2208 
2209 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2210 			UDF_PART_FLAG_READ_ONLY &&
2211 	    !(sb->s_flags & MS_RDONLY)) {
2212 		ret = -EACCES;
2213 		goto error_out;
2214 	}
2215 
2216 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2217 		udf_warn(sb, "No fileset found\n");
2218 		ret = -EINVAL;
2219 		goto error_out;
2220 	}
2221 
2222 	if (!silent) {
2223 		struct timestamp ts;
2224 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2225 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2226 			 sbi->s_volume_ident,
2227 			 le16_to_cpu(ts.year), ts.month, ts.day,
2228 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2229 	}
2230 	if (!(sb->s_flags & MS_RDONLY)) {
2231 		udf_open_lvid(sb);
2232 		lvid_open = true;
2233 	}
2234 
2235 	/* Assign the root inode */
2236 	/* assign inodes by physical block number */
2237 	/* perhaps it's not extensible enough, but for now ... */
2238 	inode = udf_iget(sb, &rootdir);
2239 	if (IS_ERR(inode)) {
2240 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2241 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2242 		ret = PTR_ERR(inode);
2243 		goto error_out;
2244 	}
2245 
2246 	/* Allocate a dentry for the root inode */
2247 	sb->s_root = d_make_root(inode);
2248 	if (!sb->s_root) {
2249 		udf_err(sb, "Couldn't allocate root dentry\n");
2250 		ret = -ENOMEM;
2251 		goto error_out;
2252 	}
2253 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2254 	sb->s_max_links = UDF_MAX_LINKS;
2255 	return 0;
2256 
2257 error_out:
2258 	iput(sbi->s_vat_inode);
2259 parse_options_failure:
2260 #ifdef CONFIG_UDF_NLS
2261 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2262 		unload_nls(sbi->s_nls_map);
2263 #endif
2264 	if (lvid_open)
2265 		udf_close_lvid(sb);
2266 	brelse(sbi->s_lvid_bh);
2267 	udf_sb_free_partitions(sb);
2268 	kfree(sbi);
2269 	sb->s_fs_info = NULL;
2270 
2271 	return ret;
2272 }
2273 
2274 void _udf_err(struct super_block *sb, const char *function,
2275 	      const char *fmt, ...)
2276 {
2277 	struct va_format vaf;
2278 	va_list args;
2279 
2280 	va_start(args, fmt);
2281 
2282 	vaf.fmt = fmt;
2283 	vaf.va = &args;
2284 
2285 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2286 
2287 	va_end(args);
2288 }
2289 
2290 void _udf_warn(struct super_block *sb, const char *function,
2291 	       const char *fmt, ...)
2292 {
2293 	struct va_format vaf;
2294 	va_list args;
2295 
2296 	va_start(args, fmt);
2297 
2298 	vaf.fmt = fmt;
2299 	vaf.va = &args;
2300 
2301 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2302 
2303 	va_end(args);
2304 }
2305 
2306 static void udf_put_super(struct super_block *sb)
2307 {
2308 	struct udf_sb_info *sbi;
2309 
2310 	sbi = UDF_SB(sb);
2311 
2312 	iput(sbi->s_vat_inode);
2313 #ifdef CONFIG_UDF_NLS
2314 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2315 		unload_nls(sbi->s_nls_map);
2316 #endif
2317 	if (!(sb->s_flags & MS_RDONLY))
2318 		udf_close_lvid(sb);
2319 	brelse(sbi->s_lvid_bh);
2320 	udf_sb_free_partitions(sb);
2321 	mutex_destroy(&sbi->s_alloc_mutex);
2322 	kfree(sb->s_fs_info);
2323 	sb->s_fs_info = NULL;
2324 }
2325 
2326 static int udf_sync_fs(struct super_block *sb, int wait)
2327 {
2328 	struct udf_sb_info *sbi = UDF_SB(sb);
2329 
2330 	mutex_lock(&sbi->s_alloc_mutex);
2331 	if (sbi->s_lvid_dirty) {
2332 		/*
2333 		 * Blockdevice will be synced later so we don't have to submit
2334 		 * the buffer for IO
2335 		 */
2336 		mark_buffer_dirty(sbi->s_lvid_bh);
2337 		sbi->s_lvid_dirty = 0;
2338 	}
2339 	mutex_unlock(&sbi->s_alloc_mutex);
2340 
2341 	return 0;
2342 }
2343 
2344 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2345 {
2346 	struct super_block *sb = dentry->d_sb;
2347 	struct udf_sb_info *sbi = UDF_SB(sb);
2348 	struct logicalVolIntegrityDescImpUse *lvidiu;
2349 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2350 
2351 	lvidiu = udf_sb_lvidiu(sb);
2352 	buf->f_type = UDF_SUPER_MAGIC;
2353 	buf->f_bsize = sb->s_blocksize;
2354 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2355 	buf->f_bfree = udf_count_free(sb);
2356 	buf->f_bavail = buf->f_bfree;
2357 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2358 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2359 			+ buf->f_bfree;
2360 	buf->f_ffree = buf->f_bfree;
2361 	buf->f_namelen = UDF_NAME_LEN - 2;
2362 	buf->f_fsid.val[0] = (u32)id;
2363 	buf->f_fsid.val[1] = (u32)(id >> 32);
2364 
2365 	return 0;
2366 }
2367 
2368 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2369 					  struct udf_bitmap *bitmap)
2370 {
2371 	struct buffer_head *bh = NULL;
2372 	unsigned int accum = 0;
2373 	int index;
2374 	int block = 0, newblock;
2375 	struct kernel_lb_addr loc;
2376 	uint32_t bytes;
2377 	uint8_t *ptr;
2378 	uint16_t ident;
2379 	struct spaceBitmapDesc *bm;
2380 
2381 	loc.logicalBlockNum = bitmap->s_extPosition;
2382 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2383 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2384 
2385 	if (!bh) {
2386 		udf_err(sb, "udf_count_free failed\n");
2387 		goto out;
2388 	} else if (ident != TAG_IDENT_SBD) {
2389 		brelse(bh);
2390 		udf_err(sb, "udf_count_free failed\n");
2391 		goto out;
2392 	}
2393 
2394 	bm = (struct spaceBitmapDesc *)bh->b_data;
2395 	bytes = le32_to_cpu(bm->numOfBytes);
2396 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2397 	ptr = (uint8_t *)bh->b_data;
2398 
2399 	while (bytes > 0) {
2400 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2401 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2402 					cur_bytes * 8);
2403 		bytes -= cur_bytes;
2404 		if (bytes) {
2405 			brelse(bh);
2406 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2407 			bh = udf_tread(sb, newblock);
2408 			if (!bh) {
2409 				udf_debug("read failed\n");
2410 				goto out;
2411 			}
2412 			index = 0;
2413 			ptr = (uint8_t *)bh->b_data;
2414 		}
2415 	}
2416 	brelse(bh);
2417 out:
2418 	return accum;
2419 }
2420 
2421 static unsigned int udf_count_free_table(struct super_block *sb,
2422 					 struct inode *table)
2423 {
2424 	unsigned int accum = 0;
2425 	uint32_t elen;
2426 	struct kernel_lb_addr eloc;
2427 	int8_t etype;
2428 	struct extent_position epos;
2429 
2430 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2431 	epos.block = UDF_I(table)->i_location;
2432 	epos.offset = sizeof(struct unallocSpaceEntry);
2433 	epos.bh = NULL;
2434 
2435 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2436 		accum += (elen >> table->i_sb->s_blocksize_bits);
2437 
2438 	brelse(epos.bh);
2439 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2440 
2441 	return accum;
2442 }
2443 
2444 static unsigned int udf_count_free(struct super_block *sb)
2445 {
2446 	unsigned int accum = 0;
2447 	struct udf_sb_info *sbi;
2448 	struct udf_part_map *map;
2449 
2450 	sbi = UDF_SB(sb);
2451 	if (sbi->s_lvid_bh) {
2452 		struct logicalVolIntegrityDesc *lvid =
2453 			(struct logicalVolIntegrityDesc *)
2454 			sbi->s_lvid_bh->b_data;
2455 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2456 			accum = le32_to_cpu(
2457 					lvid->freeSpaceTable[sbi->s_partition]);
2458 			if (accum == 0xFFFFFFFF)
2459 				accum = 0;
2460 		}
2461 	}
2462 
2463 	if (accum)
2464 		return accum;
2465 
2466 	map = &sbi->s_partmaps[sbi->s_partition];
2467 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2468 		accum += udf_count_free_bitmap(sb,
2469 					       map->s_uspace.s_bitmap);
2470 	}
2471 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2472 		accum += udf_count_free_bitmap(sb,
2473 					       map->s_fspace.s_bitmap);
2474 	}
2475 	if (accum)
2476 		return accum;
2477 
2478 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2479 		accum += udf_count_free_table(sb,
2480 					      map->s_uspace.s_table);
2481 	}
2482 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2483 		accum += udf_count_free_table(sb,
2484 					      map->s_fspace.s_table);
2485 	}
2486 
2487 	return accum;
2488 }
2489