1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * https://www.ecma.ch/ 15 * https://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static void udf_open_lvid(struct super_block *); 96 static void udf_close_lvid(struct super_block *); 97 static unsigned int udf_count_free(struct super_block *); 98 static int udf_statfs(struct dentry *, struct kstatfs *); 99 static int udf_show_options(struct seq_file *, struct dentry *); 100 101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 102 { 103 struct logicalVolIntegrityDesc *lvid; 104 unsigned int partnum; 105 unsigned int offset; 106 107 if (!UDF_SB(sb)->s_lvid_bh) 108 return NULL; 109 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 110 partnum = le32_to_cpu(lvid->numOfPartitions); 111 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 112 offsetof(struct logicalVolIntegrityDesc, impUse)) / 113 (2 * sizeof(uint32_t)) < partnum) { 114 udf_err(sb, "Logical volume integrity descriptor corrupted " 115 "(numOfPartitions = %u)!\n", partnum); 116 return NULL; 117 } 118 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 119 offset = partnum * 2 * sizeof(uint32_t); 120 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 121 } 122 123 /* UDF filesystem type */ 124 static struct dentry *udf_mount(struct file_system_type *fs_type, 125 int flags, const char *dev_name, void *data) 126 { 127 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 128 } 129 130 static struct file_system_type udf_fstype = { 131 .owner = THIS_MODULE, 132 .name = "udf", 133 .mount = udf_mount, 134 .kill_sb = kill_block_super, 135 .fs_flags = FS_REQUIRES_DEV, 136 }; 137 MODULE_ALIAS_FS("udf"); 138 139 static struct kmem_cache *udf_inode_cachep; 140 141 static struct inode *udf_alloc_inode(struct super_block *sb) 142 { 143 struct udf_inode_info *ei; 144 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 145 if (!ei) 146 return NULL; 147 148 ei->i_unique = 0; 149 ei->i_lenExtents = 0; 150 ei->i_lenStreams = 0; 151 ei->i_next_alloc_block = 0; 152 ei->i_next_alloc_goal = 0; 153 ei->i_strat4096 = 0; 154 ei->i_streamdir = 0; 155 init_rwsem(&ei->i_data_sem); 156 ei->cached_extent.lstart = -1; 157 spin_lock_init(&ei->i_extent_cache_lock); 158 159 return &ei->vfs_inode; 160 } 161 162 static void udf_free_in_core_inode(struct inode *inode) 163 { 164 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 165 } 166 167 static void init_once(void *foo) 168 { 169 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 170 171 ei->i_data = NULL; 172 inode_init_once(&ei->vfs_inode); 173 } 174 175 static int __init init_inodecache(void) 176 { 177 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 178 sizeof(struct udf_inode_info), 179 0, (SLAB_RECLAIM_ACCOUNT | 180 SLAB_MEM_SPREAD | 181 SLAB_ACCOUNT), 182 init_once); 183 if (!udf_inode_cachep) 184 return -ENOMEM; 185 return 0; 186 } 187 188 static void destroy_inodecache(void) 189 { 190 /* 191 * Make sure all delayed rcu free inodes are flushed before we 192 * destroy cache. 193 */ 194 rcu_barrier(); 195 kmem_cache_destroy(udf_inode_cachep); 196 } 197 198 /* Superblock operations */ 199 static const struct super_operations udf_sb_ops = { 200 .alloc_inode = udf_alloc_inode, 201 .free_inode = udf_free_in_core_inode, 202 .write_inode = udf_write_inode, 203 .evict_inode = udf_evict_inode, 204 .put_super = udf_put_super, 205 .sync_fs = udf_sync_fs, 206 .statfs = udf_statfs, 207 .remount_fs = udf_remount_fs, 208 .show_options = udf_show_options, 209 }; 210 211 struct udf_options { 212 unsigned char novrs; 213 unsigned int blocksize; 214 unsigned int session; 215 unsigned int lastblock; 216 unsigned int anchor; 217 unsigned int flags; 218 umode_t umask; 219 kgid_t gid; 220 kuid_t uid; 221 umode_t fmode; 222 umode_t dmode; 223 struct nls_table *nls_map; 224 }; 225 226 static int __init init_udf_fs(void) 227 { 228 int err; 229 230 err = init_inodecache(); 231 if (err) 232 goto out1; 233 err = register_filesystem(&udf_fstype); 234 if (err) 235 goto out; 236 237 return 0; 238 239 out: 240 destroy_inodecache(); 241 242 out1: 243 return err; 244 } 245 246 static void __exit exit_udf_fs(void) 247 { 248 unregister_filesystem(&udf_fstype); 249 destroy_inodecache(); 250 } 251 252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 253 { 254 struct udf_sb_info *sbi = UDF_SB(sb); 255 256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 257 if (!sbi->s_partmaps) { 258 sbi->s_partitions = 0; 259 return -ENOMEM; 260 } 261 262 sbi->s_partitions = count; 263 return 0; 264 } 265 266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 267 { 268 int i; 269 int nr_groups = bitmap->s_nr_groups; 270 271 for (i = 0; i < nr_groups; i++) 272 brelse(bitmap->s_block_bitmap[i]); 273 274 kvfree(bitmap); 275 } 276 277 static void udf_free_partition(struct udf_part_map *map) 278 { 279 int i; 280 struct udf_meta_data *mdata; 281 282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 283 iput(map->s_uspace.s_table); 284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 285 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 286 if (map->s_partition_type == UDF_SPARABLE_MAP15) 287 for (i = 0; i < 4; i++) 288 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 289 else if (map->s_partition_type == UDF_METADATA_MAP25) { 290 mdata = &map->s_type_specific.s_metadata; 291 iput(mdata->s_metadata_fe); 292 mdata->s_metadata_fe = NULL; 293 294 iput(mdata->s_mirror_fe); 295 mdata->s_mirror_fe = NULL; 296 297 iput(mdata->s_bitmap_fe); 298 mdata->s_bitmap_fe = NULL; 299 } 300 } 301 302 static void udf_sb_free_partitions(struct super_block *sb) 303 { 304 struct udf_sb_info *sbi = UDF_SB(sb); 305 int i; 306 307 if (!sbi->s_partmaps) 308 return; 309 for (i = 0; i < sbi->s_partitions; i++) 310 udf_free_partition(&sbi->s_partmaps[i]); 311 kfree(sbi->s_partmaps); 312 sbi->s_partmaps = NULL; 313 } 314 315 static int udf_show_options(struct seq_file *seq, struct dentry *root) 316 { 317 struct super_block *sb = root->d_sb; 318 struct udf_sb_info *sbi = UDF_SB(sb); 319 320 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 321 seq_puts(seq, ",nostrict"); 322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 323 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 325 seq_puts(seq, ",unhide"); 326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 327 seq_puts(seq, ",undelete"); 328 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 329 seq_puts(seq, ",noadinicb"); 330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 331 seq_puts(seq, ",shortad"); 332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 333 seq_puts(seq, ",uid=forget"); 334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 335 seq_puts(seq, ",gid=forget"); 336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 337 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 339 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 340 if (sbi->s_umask != 0) 341 seq_printf(seq, ",umask=%ho", sbi->s_umask); 342 if (sbi->s_fmode != UDF_INVALID_MODE) 343 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 344 if (sbi->s_dmode != UDF_INVALID_MODE) 345 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 347 seq_printf(seq, ",session=%d", sbi->s_session); 348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 349 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 350 if (sbi->s_anchor != 0) 351 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 353 seq_puts(seq, ",utf8"); 354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 355 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 356 357 return 0; 358 } 359 360 /* 361 * udf_parse_options 362 * 363 * PURPOSE 364 * Parse mount options. 365 * 366 * DESCRIPTION 367 * The following mount options are supported: 368 * 369 * gid= Set the default group. 370 * umask= Set the default umask. 371 * mode= Set the default file permissions. 372 * dmode= Set the default directory permissions. 373 * uid= Set the default user. 374 * bs= Set the block size. 375 * unhide Show otherwise hidden files. 376 * undelete Show deleted files in lists. 377 * adinicb Embed data in the inode (default) 378 * noadinicb Don't embed data in the inode 379 * shortad Use short ad's 380 * longad Use long ad's (default) 381 * nostrict Unset strict conformance 382 * iocharset= Set the NLS character set 383 * 384 * The remaining are for debugging and disaster recovery: 385 * 386 * novrs Skip volume sequence recognition 387 * 388 * The following expect a offset from 0. 389 * 390 * session= Set the CDROM session (default= last session) 391 * anchor= Override standard anchor location. (default= 256) 392 * volume= Override the VolumeDesc location. (unused) 393 * partition= Override the PartitionDesc location. (unused) 394 * lastblock= Set the last block of the filesystem/ 395 * 396 * The following expect a offset from the partition root. 397 * 398 * fileset= Override the fileset block location. (unused) 399 * rootdir= Override the root directory location. (unused) 400 * WARNING: overriding the rootdir to a non-directory may 401 * yield highly unpredictable results. 402 * 403 * PRE-CONDITIONS 404 * options Pointer to mount options string. 405 * uopts Pointer to mount options variable. 406 * 407 * POST-CONDITIONS 408 * <return> 1 Mount options parsed okay. 409 * <return> 0 Error parsing mount options. 410 * 411 * HISTORY 412 * July 1, 1997 - Andrew E. Mileski 413 * Written, tested, and released. 414 */ 415 416 enum { 417 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 418 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 419 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 420 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 421 Opt_rootdir, Opt_utf8, Opt_iocharset, 422 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 423 Opt_fmode, Opt_dmode 424 }; 425 426 static const match_table_t tokens = { 427 {Opt_novrs, "novrs"}, 428 {Opt_nostrict, "nostrict"}, 429 {Opt_bs, "bs=%u"}, 430 {Opt_unhide, "unhide"}, 431 {Opt_undelete, "undelete"}, 432 {Opt_noadinicb, "noadinicb"}, 433 {Opt_adinicb, "adinicb"}, 434 {Opt_shortad, "shortad"}, 435 {Opt_longad, "longad"}, 436 {Opt_uforget, "uid=forget"}, 437 {Opt_uignore, "uid=ignore"}, 438 {Opt_gforget, "gid=forget"}, 439 {Opt_gignore, "gid=ignore"}, 440 {Opt_gid, "gid=%u"}, 441 {Opt_uid, "uid=%u"}, 442 {Opt_umask, "umask=%o"}, 443 {Opt_session, "session=%u"}, 444 {Opt_lastblock, "lastblock=%u"}, 445 {Opt_anchor, "anchor=%u"}, 446 {Opt_volume, "volume=%u"}, 447 {Opt_partition, "partition=%u"}, 448 {Opt_fileset, "fileset=%u"}, 449 {Opt_rootdir, "rootdir=%u"}, 450 {Opt_utf8, "utf8"}, 451 {Opt_iocharset, "iocharset=%s"}, 452 {Opt_fmode, "mode=%o"}, 453 {Opt_dmode, "dmode=%o"}, 454 {Opt_err, NULL} 455 }; 456 457 static int udf_parse_options(char *options, struct udf_options *uopt, 458 bool remount) 459 { 460 char *p; 461 int option; 462 463 uopt->novrs = 0; 464 uopt->session = 0xFFFFFFFF; 465 uopt->lastblock = 0; 466 uopt->anchor = 0; 467 468 if (!options) 469 return 1; 470 471 while ((p = strsep(&options, ",")) != NULL) { 472 substring_t args[MAX_OPT_ARGS]; 473 int token; 474 unsigned n; 475 if (!*p) 476 continue; 477 478 token = match_token(p, tokens, args); 479 switch (token) { 480 case Opt_novrs: 481 uopt->novrs = 1; 482 break; 483 case Opt_bs: 484 if (match_int(&args[0], &option)) 485 return 0; 486 n = option; 487 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 488 return 0; 489 uopt->blocksize = n; 490 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 491 break; 492 case Opt_unhide: 493 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 494 break; 495 case Opt_undelete: 496 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 497 break; 498 case Opt_noadinicb: 499 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 500 break; 501 case Opt_adinicb: 502 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 503 break; 504 case Opt_shortad: 505 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 506 break; 507 case Opt_longad: 508 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 509 break; 510 case Opt_gid: 511 if (match_int(args, &option)) 512 return 0; 513 uopt->gid = make_kgid(current_user_ns(), option); 514 if (!gid_valid(uopt->gid)) 515 return 0; 516 uopt->flags |= (1 << UDF_FLAG_GID_SET); 517 break; 518 case Opt_uid: 519 if (match_int(args, &option)) 520 return 0; 521 uopt->uid = make_kuid(current_user_ns(), option); 522 if (!uid_valid(uopt->uid)) 523 return 0; 524 uopt->flags |= (1 << UDF_FLAG_UID_SET); 525 break; 526 case Opt_umask: 527 if (match_octal(args, &option)) 528 return 0; 529 uopt->umask = option; 530 break; 531 case Opt_nostrict: 532 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 533 break; 534 case Opt_session: 535 if (match_int(args, &option)) 536 return 0; 537 uopt->session = option; 538 if (!remount) 539 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 540 break; 541 case Opt_lastblock: 542 if (match_int(args, &option)) 543 return 0; 544 uopt->lastblock = option; 545 if (!remount) 546 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 547 break; 548 case Opt_anchor: 549 if (match_int(args, &option)) 550 return 0; 551 uopt->anchor = option; 552 break; 553 case Opt_volume: 554 case Opt_partition: 555 case Opt_fileset: 556 case Opt_rootdir: 557 /* Ignored (never implemented properly) */ 558 break; 559 case Opt_utf8: 560 uopt->flags |= (1 << UDF_FLAG_UTF8); 561 break; 562 case Opt_iocharset: 563 if (!remount) { 564 if (uopt->nls_map) 565 unload_nls(uopt->nls_map); 566 /* 567 * load_nls() failure is handled later in 568 * udf_fill_super() after all options are 569 * parsed. 570 */ 571 uopt->nls_map = load_nls(args[0].from); 572 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 573 } 574 break; 575 case Opt_uforget: 576 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 577 break; 578 case Opt_uignore: 579 case Opt_gignore: 580 /* These options are superseeded by uid=<number> */ 581 break; 582 case Opt_gforget: 583 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 584 break; 585 case Opt_fmode: 586 if (match_octal(args, &option)) 587 return 0; 588 uopt->fmode = option & 0777; 589 break; 590 case Opt_dmode: 591 if (match_octal(args, &option)) 592 return 0; 593 uopt->dmode = option & 0777; 594 break; 595 default: 596 pr_err("bad mount option \"%s\" or missing value\n", p); 597 return 0; 598 } 599 } 600 return 1; 601 } 602 603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 604 { 605 struct udf_options uopt; 606 struct udf_sb_info *sbi = UDF_SB(sb); 607 int error = 0; 608 609 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 610 return -EACCES; 611 612 sync_filesystem(sb); 613 614 uopt.flags = sbi->s_flags; 615 uopt.uid = sbi->s_uid; 616 uopt.gid = sbi->s_gid; 617 uopt.umask = sbi->s_umask; 618 uopt.fmode = sbi->s_fmode; 619 uopt.dmode = sbi->s_dmode; 620 uopt.nls_map = NULL; 621 622 if (!udf_parse_options(options, &uopt, true)) 623 return -EINVAL; 624 625 write_lock(&sbi->s_cred_lock); 626 sbi->s_flags = uopt.flags; 627 sbi->s_uid = uopt.uid; 628 sbi->s_gid = uopt.gid; 629 sbi->s_umask = uopt.umask; 630 sbi->s_fmode = uopt.fmode; 631 sbi->s_dmode = uopt.dmode; 632 write_unlock(&sbi->s_cred_lock); 633 634 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 635 goto out_unlock; 636 637 if (*flags & SB_RDONLY) 638 udf_close_lvid(sb); 639 else 640 udf_open_lvid(sb); 641 642 out_unlock: 643 return error; 644 } 645 646 /* 647 * Check VSD descriptor. Returns -1 in case we are at the end of volume 648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 649 * we found one of NSR descriptors we are looking for. 650 */ 651 static int identify_vsd(const struct volStructDesc *vsd) 652 { 653 int ret = 0; 654 655 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 656 switch (vsd->structType) { 657 case 0: 658 udf_debug("ISO9660 Boot Record found\n"); 659 break; 660 case 1: 661 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 662 break; 663 case 2: 664 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 665 break; 666 case 3: 667 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 668 break; 669 case 255: 670 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 671 break; 672 default: 673 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 674 break; 675 } 676 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 677 ; /* ret = 0 */ 678 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 679 ret = 1; 680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 681 ret = 1; 682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 683 ; /* ret = 0 */ 684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 685 ; /* ret = 0 */ 686 else { 687 /* TEA01 or invalid id : end of volume recognition area */ 688 ret = -1; 689 } 690 691 return ret; 692 } 693 694 /* 695 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 697 * @return 1 if NSR02 or NSR03 found, 698 * -1 if first sector read error, 0 otherwise 699 */ 700 static int udf_check_vsd(struct super_block *sb) 701 { 702 struct volStructDesc *vsd = NULL; 703 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 704 int sectorsize; 705 struct buffer_head *bh = NULL; 706 int nsr = 0; 707 struct udf_sb_info *sbi; 708 loff_t session_offset; 709 710 sbi = UDF_SB(sb); 711 if (sb->s_blocksize < sizeof(struct volStructDesc)) 712 sectorsize = sizeof(struct volStructDesc); 713 else 714 sectorsize = sb->s_blocksize; 715 716 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; 717 sector += session_offset; 718 719 udf_debug("Starting at sector %u (%lu byte sectors)\n", 720 (unsigned int)(sector >> sb->s_blocksize_bits), 721 sb->s_blocksize); 722 /* Process the sequence (if applicable). The hard limit on the sector 723 * offset is arbitrary, hopefully large enough so that all valid UDF 724 * filesystems will be recognised. There is no mention of an upper 725 * bound to the size of the volume recognition area in the standard. 726 * The limit will prevent the code to read all the sectors of a 727 * specially crafted image (like a bluray disc full of CD001 sectors), 728 * potentially causing minutes or even hours of uninterruptible I/O 729 * activity. This actually happened with uninitialised SSD partitions 730 * (all 0xFF) before the check for the limit and all valid IDs were 731 * added */ 732 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 733 /* Read a block */ 734 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 735 if (!bh) 736 break; 737 738 vsd = (struct volStructDesc *)(bh->b_data + 739 (sector & (sb->s_blocksize - 1))); 740 nsr = identify_vsd(vsd); 741 /* Found NSR or end? */ 742 if (nsr) { 743 brelse(bh); 744 break; 745 } 746 /* 747 * Special handling for improperly formatted VRS (e.g., Win10) 748 * where components are separated by 2048 bytes even though 749 * sectors are 4K 750 */ 751 if (sb->s_blocksize == 4096) { 752 nsr = identify_vsd(vsd + 1); 753 /* Ignore unknown IDs... */ 754 if (nsr < 0) 755 nsr = 0; 756 } 757 brelse(bh); 758 } 759 760 if (nsr > 0) 761 return 1; 762 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) 763 return -1; 764 else 765 return 0; 766 } 767 768 static int udf_verify_domain_identifier(struct super_block *sb, 769 struct regid *ident, char *dname) 770 { 771 struct domainIdentSuffix *suffix; 772 773 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 774 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 775 goto force_ro; 776 } 777 if (ident->flags & ENTITYID_FLAGS_DIRTY) { 778 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 779 dname); 780 goto force_ro; 781 } 782 suffix = (struct domainIdentSuffix *)ident->identSuffix; 783 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || 784 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { 785 if (!sb_rdonly(sb)) { 786 udf_warn(sb, "Descriptor for %s marked write protected." 787 " Forcing read only mount.\n", dname); 788 } 789 goto force_ro; 790 } 791 return 0; 792 793 force_ro: 794 if (!sb_rdonly(sb)) 795 return -EACCES; 796 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 797 return 0; 798 } 799 800 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 801 struct kernel_lb_addr *root) 802 { 803 int ret; 804 805 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 806 if (ret < 0) 807 return ret; 808 809 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 810 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 811 812 udf_debug("Rootdir at block=%u, partition=%u\n", 813 root->logicalBlockNum, root->partitionReferenceNum); 814 return 0; 815 } 816 817 static int udf_find_fileset(struct super_block *sb, 818 struct kernel_lb_addr *fileset, 819 struct kernel_lb_addr *root) 820 { 821 struct buffer_head *bh = NULL; 822 uint16_t ident; 823 int ret; 824 825 if (fileset->logicalBlockNum == 0xFFFFFFFF && 826 fileset->partitionReferenceNum == 0xFFFF) 827 return -EINVAL; 828 829 bh = udf_read_ptagged(sb, fileset, 0, &ident); 830 if (!bh) 831 return -EIO; 832 if (ident != TAG_IDENT_FSD) { 833 brelse(bh); 834 return -EINVAL; 835 } 836 837 udf_debug("Fileset at block=%u, partition=%u\n", 838 fileset->logicalBlockNum, fileset->partitionReferenceNum); 839 840 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 841 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 842 brelse(bh); 843 return ret; 844 } 845 846 /* 847 * Load primary Volume Descriptor Sequence 848 * 849 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 850 * should be tried. 851 */ 852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 853 { 854 struct primaryVolDesc *pvoldesc; 855 uint8_t *outstr; 856 struct buffer_head *bh; 857 uint16_t ident; 858 int ret; 859 struct timestamp *ts; 860 861 outstr = kmalloc(128, GFP_NOFS); 862 if (!outstr) 863 return -ENOMEM; 864 865 bh = udf_read_tagged(sb, block, block, &ident); 866 if (!bh) { 867 ret = -EAGAIN; 868 goto out2; 869 } 870 871 if (ident != TAG_IDENT_PVD) { 872 ret = -EIO; 873 goto out_bh; 874 } 875 876 pvoldesc = (struct primaryVolDesc *)bh->b_data; 877 878 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 879 pvoldesc->recordingDateAndTime); 880 ts = &pvoldesc->recordingDateAndTime; 881 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 882 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 883 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 884 885 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 886 if (ret < 0) { 887 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 888 pr_warn("incorrect volume identification, setting to " 889 "'InvalidName'\n"); 890 } else { 891 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 892 } 893 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 894 895 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 896 if (ret < 0) { 897 ret = 0; 898 goto out_bh; 899 } 900 outstr[ret] = 0; 901 udf_debug("volSetIdent[] = '%s'\n", outstr); 902 903 ret = 0; 904 out_bh: 905 brelse(bh); 906 out2: 907 kfree(outstr); 908 return ret; 909 } 910 911 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 912 u32 meta_file_loc, u32 partition_ref) 913 { 914 struct kernel_lb_addr addr; 915 struct inode *metadata_fe; 916 917 addr.logicalBlockNum = meta_file_loc; 918 addr.partitionReferenceNum = partition_ref; 919 920 metadata_fe = udf_iget_special(sb, &addr); 921 922 if (IS_ERR(metadata_fe)) { 923 udf_warn(sb, "metadata inode efe not found\n"); 924 return metadata_fe; 925 } 926 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 927 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 928 iput(metadata_fe); 929 return ERR_PTR(-EIO); 930 } 931 932 return metadata_fe; 933 } 934 935 static int udf_load_metadata_files(struct super_block *sb, int partition, 936 int type1_index) 937 { 938 struct udf_sb_info *sbi = UDF_SB(sb); 939 struct udf_part_map *map; 940 struct udf_meta_data *mdata; 941 struct kernel_lb_addr addr; 942 struct inode *fe; 943 944 map = &sbi->s_partmaps[partition]; 945 mdata = &map->s_type_specific.s_metadata; 946 mdata->s_phys_partition_ref = type1_index; 947 948 /* metadata address */ 949 udf_debug("Metadata file location: block = %u part = %u\n", 950 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 951 952 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 953 mdata->s_phys_partition_ref); 954 if (IS_ERR(fe)) { 955 /* mirror file entry */ 956 udf_debug("Mirror metadata file location: block = %u part = %u\n", 957 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 958 959 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 960 mdata->s_phys_partition_ref); 961 962 if (IS_ERR(fe)) { 963 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 964 return PTR_ERR(fe); 965 } 966 mdata->s_mirror_fe = fe; 967 } else 968 mdata->s_metadata_fe = fe; 969 970 971 /* 972 * bitmap file entry 973 * Note: 974 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 975 */ 976 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 977 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 978 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 979 980 udf_debug("Bitmap file location: block = %u part = %u\n", 981 addr.logicalBlockNum, addr.partitionReferenceNum); 982 983 fe = udf_iget_special(sb, &addr); 984 if (IS_ERR(fe)) { 985 if (sb_rdonly(sb)) 986 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 987 else { 988 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 989 return PTR_ERR(fe); 990 } 991 } else 992 mdata->s_bitmap_fe = fe; 993 } 994 995 udf_debug("udf_load_metadata_files Ok\n"); 996 return 0; 997 } 998 999 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1000 { 1001 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1002 return DIV_ROUND_UP(map->s_partition_len + 1003 (sizeof(struct spaceBitmapDesc) << 3), 1004 sb->s_blocksize * 8); 1005 } 1006 1007 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1008 { 1009 struct udf_bitmap *bitmap; 1010 int nr_groups = udf_compute_nr_groups(sb, index); 1011 1012 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), 1013 GFP_KERNEL); 1014 if (!bitmap) 1015 return NULL; 1016 1017 bitmap->s_nr_groups = nr_groups; 1018 return bitmap; 1019 } 1020 1021 static int check_partition_desc(struct super_block *sb, 1022 struct partitionDesc *p, 1023 struct udf_part_map *map) 1024 { 1025 bool umap, utable, fmap, ftable; 1026 struct partitionHeaderDesc *phd; 1027 1028 switch (le32_to_cpu(p->accessType)) { 1029 case PD_ACCESS_TYPE_READ_ONLY: 1030 case PD_ACCESS_TYPE_WRITE_ONCE: 1031 case PD_ACCESS_TYPE_NONE: 1032 goto force_ro; 1033 } 1034 1035 /* No Partition Header Descriptor? */ 1036 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1037 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1038 goto force_ro; 1039 1040 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1041 utable = phd->unallocSpaceTable.extLength; 1042 umap = phd->unallocSpaceBitmap.extLength; 1043 ftable = phd->freedSpaceTable.extLength; 1044 fmap = phd->freedSpaceBitmap.extLength; 1045 1046 /* No allocation info? */ 1047 if (!utable && !umap && !ftable && !fmap) 1048 goto force_ro; 1049 1050 /* We don't support blocks that require erasing before overwrite */ 1051 if (ftable || fmap) 1052 goto force_ro; 1053 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1054 if (utable && umap) 1055 goto force_ro; 1056 1057 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1058 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1059 map->s_partition_type == UDF_METADATA_MAP25) 1060 goto force_ro; 1061 1062 return 0; 1063 force_ro: 1064 if (!sb_rdonly(sb)) 1065 return -EACCES; 1066 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1067 return 0; 1068 } 1069 1070 static int udf_fill_partdesc_info(struct super_block *sb, 1071 struct partitionDesc *p, int p_index) 1072 { 1073 struct udf_part_map *map; 1074 struct udf_sb_info *sbi = UDF_SB(sb); 1075 struct partitionHeaderDesc *phd; 1076 int err; 1077 1078 map = &sbi->s_partmaps[p_index]; 1079 1080 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1081 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1082 1083 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1084 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1086 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1088 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1090 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1091 1092 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1093 p_index, map->s_partition_type, 1094 map->s_partition_root, map->s_partition_len); 1095 1096 err = check_partition_desc(sb, p, map); 1097 if (err) 1098 return err; 1099 1100 /* 1101 * Skip loading allocation info it we cannot ever write to the fs. 1102 * This is a correctness thing as we may have decided to force ro mount 1103 * to avoid allocation info we don't support. 1104 */ 1105 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1106 return 0; 1107 1108 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1109 if (phd->unallocSpaceTable.extLength) { 1110 struct kernel_lb_addr loc = { 1111 .logicalBlockNum = le32_to_cpu( 1112 phd->unallocSpaceTable.extPosition), 1113 .partitionReferenceNum = p_index, 1114 }; 1115 struct inode *inode; 1116 1117 inode = udf_iget_special(sb, &loc); 1118 if (IS_ERR(inode)) { 1119 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1120 p_index); 1121 return PTR_ERR(inode); 1122 } 1123 map->s_uspace.s_table = inode; 1124 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1125 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1126 p_index, map->s_uspace.s_table->i_ino); 1127 } 1128 1129 if (phd->unallocSpaceBitmap.extLength) { 1130 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1131 if (!bitmap) 1132 return -ENOMEM; 1133 map->s_uspace.s_bitmap = bitmap; 1134 bitmap->s_extPosition = le32_to_cpu( 1135 phd->unallocSpaceBitmap.extPosition); 1136 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1137 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1138 p_index, bitmap->s_extPosition); 1139 } 1140 1141 return 0; 1142 } 1143 1144 static void udf_find_vat_block(struct super_block *sb, int p_index, 1145 int type1_index, sector_t start_block) 1146 { 1147 struct udf_sb_info *sbi = UDF_SB(sb); 1148 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1149 sector_t vat_block; 1150 struct kernel_lb_addr ino; 1151 struct inode *inode; 1152 1153 /* 1154 * VAT file entry is in the last recorded block. Some broken disks have 1155 * it a few blocks before so try a bit harder... 1156 */ 1157 ino.partitionReferenceNum = type1_index; 1158 for (vat_block = start_block; 1159 vat_block >= map->s_partition_root && 1160 vat_block >= start_block - 3; vat_block--) { 1161 ino.logicalBlockNum = vat_block - map->s_partition_root; 1162 inode = udf_iget_special(sb, &ino); 1163 if (!IS_ERR(inode)) { 1164 sbi->s_vat_inode = inode; 1165 break; 1166 } 1167 } 1168 } 1169 1170 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1171 { 1172 struct udf_sb_info *sbi = UDF_SB(sb); 1173 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1174 struct buffer_head *bh = NULL; 1175 struct udf_inode_info *vati; 1176 uint32_t pos; 1177 struct virtualAllocationTable20 *vat20; 1178 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1179 sb->s_blocksize_bits; 1180 1181 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1182 if (!sbi->s_vat_inode && 1183 sbi->s_last_block != blocks - 1) { 1184 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1185 (unsigned long)sbi->s_last_block, 1186 (unsigned long)blocks - 1); 1187 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1188 } 1189 if (!sbi->s_vat_inode) 1190 return -EIO; 1191 1192 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1193 map->s_type_specific.s_virtual.s_start_offset = 0; 1194 map->s_type_specific.s_virtual.s_num_entries = 1195 (sbi->s_vat_inode->i_size - 36) >> 2; 1196 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1197 vati = UDF_I(sbi->s_vat_inode); 1198 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1199 pos = udf_block_map(sbi->s_vat_inode, 0); 1200 bh = sb_bread(sb, pos); 1201 if (!bh) 1202 return -EIO; 1203 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1204 } else { 1205 vat20 = (struct virtualAllocationTable20 *) 1206 vati->i_data; 1207 } 1208 1209 map->s_type_specific.s_virtual.s_start_offset = 1210 le16_to_cpu(vat20->lengthHeader); 1211 map->s_type_specific.s_virtual.s_num_entries = 1212 (sbi->s_vat_inode->i_size - 1213 map->s_type_specific.s_virtual. 1214 s_start_offset) >> 2; 1215 brelse(bh); 1216 } 1217 return 0; 1218 } 1219 1220 /* 1221 * Load partition descriptor block 1222 * 1223 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1224 * sequence. 1225 */ 1226 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1227 { 1228 struct buffer_head *bh; 1229 struct partitionDesc *p; 1230 struct udf_part_map *map; 1231 struct udf_sb_info *sbi = UDF_SB(sb); 1232 int i, type1_idx; 1233 uint16_t partitionNumber; 1234 uint16_t ident; 1235 int ret; 1236 1237 bh = udf_read_tagged(sb, block, block, &ident); 1238 if (!bh) 1239 return -EAGAIN; 1240 if (ident != TAG_IDENT_PD) { 1241 ret = 0; 1242 goto out_bh; 1243 } 1244 1245 p = (struct partitionDesc *)bh->b_data; 1246 partitionNumber = le16_to_cpu(p->partitionNumber); 1247 1248 /* First scan for TYPE1 and SPARABLE partitions */ 1249 for (i = 0; i < sbi->s_partitions; i++) { 1250 map = &sbi->s_partmaps[i]; 1251 udf_debug("Searching map: (%u == %u)\n", 1252 map->s_partition_num, partitionNumber); 1253 if (map->s_partition_num == partitionNumber && 1254 (map->s_partition_type == UDF_TYPE1_MAP15 || 1255 map->s_partition_type == UDF_SPARABLE_MAP15)) 1256 break; 1257 } 1258 1259 if (i >= sbi->s_partitions) { 1260 udf_debug("Partition (%u) not found in partition map\n", 1261 partitionNumber); 1262 ret = 0; 1263 goto out_bh; 1264 } 1265 1266 ret = udf_fill_partdesc_info(sb, p, i); 1267 if (ret < 0) 1268 goto out_bh; 1269 1270 /* 1271 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1272 * PHYSICAL partitions are already set up 1273 */ 1274 type1_idx = i; 1275 map = NULL; /* supress 'maybe used uninitialized' warning */ 1276 for (i = 0; i < sbi->s_partitions; i++) { 1277 map = &sbi->s_partmaps[i]; 1278 1279 if (map->s_partition_num == partitionNumber && 1280 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1281 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1282 map->s_partition_type == UDF_METADATA_MAP25)) 1283 break; 1284 } 1285 1286 if (i >= sbi->s_partitions) { 1287 ret = 0; 1288 goto out_bh; 1289 } 1290 1291 ret = udf_fill_partdesc_info(sb, p, i); 1292 if (ret < 0) 1293 goto out_bh; 1294 1295 if (map->s_partition_type == UDF_METADATA_MAP25) { 1296 ret = udf_load_metadata_files(sb, i, type1_idx); 1297 if (ret < 0) { 1298 udf_err(sb, "error loading MetaData partition map %d\n", 1299 i); 1300 goto out_bh; 1301 } 1302 } else { 1303 /* 1304 * If we have a partition with virtual map, we don't handle 1305 * writing to it (we overwrite blocks instead of relocating 1306 * them). 1307 */ 1308 if (!sb_rdonly(sb)) { 1309 ret = -EACCES; 1310 goto out_bh; 1311 } 1312 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1313 ret = udf_load_vat(sb, i, type1_idx); 1314 if (ret < 0) 1315 goto out_bh; 1316 } 1317 ret = 0; 1318 out_bh: 1319 /* In case loading failed, we handle cleanup in udf_fill_super */ 1320 brelse(bh); 1321 return ret; 1322 } 1323 1324 static int udf_load_sparable_map(struct super_block *sb, 1325 struct udf_part_map *map, 1326 struct sparablePartitionMap *spm) 1327 { 1328 uint32_t loc; 1329 uint16_t ident; 1330 struct sparingTable *st; 1331 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1332 int i; 1333 struct buffer_head *bh; 1334 1335 map->s_partition_type = UDF_SPARABLE_MAP15; 1336 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1337 if (!is_power_of_2(sdata->s_packet_len)) { 1338 udf_err(sb, "error loading logical volume descriptor: " 1339 "Invalid packet length %u\n", 1340 (unsigned)sdata->s_packet_len); 1341 return -EIO; 1342 } 1343 if (spm->numSparingTables > 4) { 1344 udf_err(sb, "error loading logical volume descriptor: " 1345 "Too many sparing tables (%d)\n", 1346 (int)spm->numSparingTables); 1347 return -EIO; 1348 } 1349 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { 1350 udf_err(sb, "error loading logical volume descriptor: " 1351 "Too big sparing table size (%u)\n", 1352 le32_to_cpu(spm->sizeSparingTable)); 1353 return -EIO; 1354 } 1355 1356 for (i = 0; i < spm->numSparingTables; i++) { 1357 loc = le32_to_cpu(spm->locSparingTable[i]); 1358 bh = udf_read_tagged(sb, loc, loc, &ident); 1359 if (!bh) 1360 continue; 1361 1362 st = (struct sparingTable *)bh->b_data; 1363 if (ident != 0 || 1364 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1365 strlen(UDF_ID_SPARING)) || 1366 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1367 sb->s_blocksize) { 1368 brelse(bh); 1369 continue; 1370 } 1371 1372 sdata->s_spar_map[i] = bh; 1373 } 1374 map->s_partition_func = udf_get_pblock_spar15; 1375 return 0; 1376 } 1377 1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1379 struct kernel_lb_addr *fileset) 1380 { 1381 struct logicalVolDesc *lvd; 1382 int i, offset; 1383 uint8_t type; 1384 struct udf_sb_info *sbi = UDF_SB(sb); 1385 struct genericPartitionMap *gpm; 1386 uint16_t ident; 1387 struct buffer_head *bh; 1388 unsigned int table_len; 1389 int ret; 1390 1391 bh = udf_read_tagged(sb, block, block, &ident); 1392 if (!bh) 1393 return -EAGAIN; 1394 BUG_ON(ident != TAG_IDENT_LVD); 1395 lvd = (struct logicalVolDesc *)bh->b_data; 1396 table_len = le32_to_cpu(lvd->mapTableLength); 1397 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1398 udf_err(sb, "error loading logical volume descriptor: " 1399 "Partition table too long (%u > %lu)\n", table_len, 1400 sb->s_blocksize - sizeof(*lvd)); 1401 ret = -EIO; 1402 goto out_bh; 1403 } 1404 1405 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1406 "logical volume"); 1407 if (ret) 1408 goto out_bh; 1409 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1410 if (ret) 1411 goto out_bh; 1412 1413 for (i = 0, offset = 0; 1414 i < sbi->s_partitions && offset < table_len; 1415 i++, offset += gpm->partitionMapLength) { 1416 struct udf_part_map *map = &sbi->s_partmaps[i]; 1417 gpm = (struct genericPartitionMap *) 1418 &(lvd->partitionMaps[offset]); 1419 type = gpm->partitionMapType; 1420 if (type == 1) { 1421 struct genericPartitionMap1 *gpm1 = 1422 (struct genericPartitionMap1 *)gpm; 1423 map->s_partition_type = UDF_TYPE1_MAP15; 1424 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1425 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1426 map->s_partition_func = NULL; 1427 } else if (type == 2) { 1428 struct udfPartitionMap2 *upm2 = 1429 (struct udfPartitionMap2 *)gpm; 1430 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1431 strlen(UDF_ID_VIRTUAL))) { 1432 u16 suf = 1433 le16_to_cpu(((__le16 *)upm2->partIdent. 1434 identSuffix)[0]); 1435 if (suf < 0x0200) { 1436 map->s_partition_type = 1437 UDF_VIRTUAL_MAP15; 1438 map->s_partition_func = 1439 udf_get_pblock_virt15; 1440 } else { 1441 map->s_partition_type = 1442 UDF_VIRTUAL_MAP20; 1443 map->s_partition_func = 1444 udf_get_pblock_virt20; 1445 } 1446 } else if (!strncmp(upm2->partIdent.ident, 1447 UDF_ID_SPARABLE, 1448 strlen(UDF_ID_SPARABLE))) { 1449 ret = udf_load_sparable_map(sb, map, 1450 (struct sparablePartitionMap *)gpm); 1451 if (ret < 0) 1452 goto out_bh; 1453 } else if (!strncmp(upm2->partIdent.ident, 1454 UDF_ID_METADATA, 1455 strlen(UDF_ID_METADATA))) { 1456 struct udf_meta_data *mdata = 1457 &map->s_type_specific.s_metadata; 1458 struct metadataPartitionMap *mdm = 1459 (struct metadataPartitionMap *) 1460 &(lvd->partitionMaps[offset]); 1461 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1462 i, type, UDF_ID_METADATA); 1463 1464 map->s_partition_type = UDF_METADATA_MAP25; 1465 map->s_partition_func = udf_get_pblock_meta25; 1466 1467 mdata->s_meta_file_loc = 1468 le32_to_cpu(mdm->metadataFileLoc); 1469 mdata->s_mirror_file_loc = 1470 le32_to_cpu(mdm->metadataMirrorFileLoc); 1471 mdata->s_bitmap_file_loc = 1472 le32_to_cpu(mdm->metadataBitmapFileLoc); 1473 mdata->s_alloc_unit_size = 1474 le32_to_cpu(mdm->allocUnitSize); 1475 mdata->s_align_unit_size = 1476 le16_to_cpu(mdm->alignUnitSize); 1477 if (mdm->flags & 0x01) 1478 mdata->s_flags |= MF_DUPLICATE_MD; 1479 1480 udf_debug("Metadata Ident suffix=0x%x\n", 1481 le16_to_cpu(*(__le16 *) 1482 mdm->partIdent.identSuffix)); 1483 udf_debug("Metadata part num=%u\n", 1484 le16_to_cpu(mdm->partitionNum)); 1485 udf_debug("Metadata part alloc unit size=%u\n", 1486 le32_to_cpu(mdm->allocUnitSize)); 1487 udf_debug("Metadata file loc=%u\n", 1488 le32_to_cpu(mdm->metadataFileLoc)); 1489 udf_debug("Mirror file loc=%u\n", 1490 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1491 udf_debug("Bitmap file loc=%u\n", 1492 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1493 udf_debug("Flags: %d %u\n", 1494 mdata->s_flags, mdm->flags); 1495 } else { 1496 udf_debug("Unknown ident: %s\n", 1497 upm2->partIdent.ident); 1498 continue; 1499 } 1500 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1501 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1502 } 1503 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1504 i, map->s_partition_num, type, map->s_volumeseqnum); 1505 } 1506 1507 if (fileset) { 1508 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1509 1510 *fileset = lelb_to_cpu(la->extLocation); 1511 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1512 fileset->logicalBlockNum, 1513 fileset->partitionReferenceNum); 1514 } 1515 if (lvd->integritySeqExt.extLength) 1516 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1517 ret = 0; 1518 1519 if (!sbi->s_lvid_bh) { 1520 /* We can't generate unique IDs without a valid LVID */ 1521 if (sb_rdonly(sb)) { 1522 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1523 } else { 1524 udf_warn(sb, "Damaged or missing LVID, forcing " 1525 "readonly mount\n"); 1526 ret = -EACCES; 1527 } 1528 } 1529 out_bh: 1530 brelse(bh); 1531 return ret; 1532 } 1533 1534 /* 1535 * Find the prevailing Logical Volume Integrity Descriptor. 1536 */ 1537 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1538 { 1539 struct buffer_head *bh, *final_bh; 1540 uint16_t ident; 1541 struct udf_sb_info *sbi = UDF_SB(sb); 1542 struct logicalVolIntegrityDesc *lvid; 1543 int indirections = 0; 1544 1545 while (++indirections <= UDF_MAX_LVID_NESTING) { 1546 final_bh = NULL; 1547 while (loc.extLength > 0 && 1548 (bh = udf_read_tagged(sb, loc.extLocation, 1549 loc.extLocation, &ident))) { 1550 if (ident != TAG_IDENT_LVID) { 1551 brelse(bh); 1552 break; 1553 } 1554 1555 brelse(final_bh); 1556 final_bh = bh; 1557 1558 loc.extLength -= sb->s_blocksize; 1559 loc.extLocation++; 1560 } 1561 1562 if (!final_bh) 1563 return; 1564 1565 brelse(sbi->s_lvid_bh); 1566 sbi->s_lvid_bh = final_bh; 1567 1568 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1569 if (lvid->nextIntegrityExt.extLength == 0) 1570 return; 1571 1572 loc = leea_to_cpu(lvid->nextIntegrityExt); 1573 } 1574 1575 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1576 UDF_MAX_LVID_NESTING); 1577 brelse(sbi->s_lvid_bh); 1578 sbi->s_lvid_bh = NULL; 1579 } 1580 1581 /* 1582 * Step for reallocation of table of partition descriptor sequence numbers. 1583 * Must be power of 2. 1584 */ 1585 #define PART_DESC_ALLOC_STEP 32 1586 1587 struct part_desc_seq_scan_data { 1588 struct udf_vds_record rec; 1589 u32 partnum; 1590 }; 1591 1592 struct desc_seq_scan_data { 1593 struct udf_vds_record vds[VDS_POS_LENGTH]; 1594 unsigned int size_part_descs; 1595 unsigned int num_part_descs; 1596 struct part_desc_seq_scan_data *part_descs_loc; 1597 }; 1598 1599 static struct udf_vds_record *handle_partition_descriptor( 1600 struct buffer_head *bh, 1601 struct desc_seq_scan_data *data) 1602 { 1603 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1604 int partnum; 1605 int i; 1606 1607 partnum = le16_to_cpu(desc->partitionNumber); 1608 for (i = 0; i < data->num_part_descs; i++) 1609 if (partnum == data->part_descs_loc[i].partnum) 1610 return &(data->part_descs_loc[i].rec); 1611 if (data->num_part_descs >= data->size_part_descs) { 1612 struct part_desc_seq_scan_data *new_loc; 1613 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1614 1615 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1616 if (!new_loc) 1617 return ERR_PTR(-ENOMEM); 1618 memcpy(new_loc, data->part_descs_loc, 1619 data->size_part_descs * sizeof(*new_loc)); 1620 kfree(data->part_descs_loc); 1621 data->part_descs_loc = new_loc; 1622 data->size_part_descs = new_size; 1623 } 1624 return &(data->part_descs_loc[data->num_part_descs++].rec); 1625 } 1626 1627 1628 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1629 struct buffer_head *bh, struct desc_seq_scan_data *data) 1630 { 1631 switch (ident) { 1632 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1633 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1634 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1635 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1636 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1637 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1638 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1639 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1640 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1641 return handle_partition_descriptor(bh, data); 1642 } 1643 return NULL; 1644 } 1645 1646 /* 1647 * Process a main/reserve volume descriptor sequence. 1648 * @block First block of first extent of the sequence. 1649 * @lastblock Lastblock of first extent of the sequence. 1650 * @fileset There we store extent containing root fileset 1651 * 1652 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1653 * sequence 1654 */ 1655 static noinline int udf_process_sequence( 1656 struct super_block *sb, 1657 sector_t block, sector_t lastblock, 1658 struct kernel_lb_addr *fileset) 1659 { 1660 struct buffer_head *bh = NULL; 1661 struct udf_vds_record *curr; 1662 struct generic_desc *gd; 1663 struct volDescPtr *vdp; 1664 bool done = false; 1665 uint32_t vdsn; 1666 uint16_t ident; 1667 int ret; 1668 unsigned int indirections = 0; 1669 struct desc_seq_scan_data data; 1670 unsigned int i; 1671 1672 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1673 data.size_part_descs = PART_DESC_ALLOC_STEP; 1674 data.num_part_descs = 0; 1675 data.part_descs_loc = kcalloc(data.size_part_descs, 1676 sizeof(*data.part_descs_loc), 1677 GFP_KERNEL); 1678 if (!data.part_descs_loc) 1679 return -ENOMEM; 1680 1681 /* 1682 * Read the main descriptor sequence and find which descriptors 1683 * are in it. 1684 */ 1685 for (; (!done && block <= lastblock); block++) { 1686 bh = udf_read_tagged(sb, block, block, &ident); 1687 if (!bh) 1688 break; 1689 1690 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1691 gd = (struct generic_desc *)bh->b_data; 1692 vdsn = le32_to_cpu(gd->volDescSeqNum); 1693 switch (ident) { 1694 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1695 if (++indirections > UDF_MAX_TD_NESTING) { 1696 udf_err(sb, "too many Volume Descriptor " 1697 "Pointers (max %u supported)\n", 1698 UDF_MAX_TD_NESTING); 1699 brelse(bh); 1700 ret = -EIO; 1701 goto out; 1702 } 1703 1704 vdp = (struct volDescPtr *)bh->b_data; 1705 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1706 lastblock = le32_to_cpu( 1707 vdp->nextVolDescSeqExt.extLength) >> 1708 sb->s_blocksize_bits; 1709 lastblock += block - 1; 1710 /* For loop is going to increment 'block' again */ 1711 block--; 1712 break; 1713 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1714 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1715 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1716 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1717 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1718 curr = get_volume_descriptor_record(ident, bh, &data); 1719 if (IS_ERR(curr)) { 1720 brelse(bh); 1721 ret = PTR_ERR(curr); 1722 goto out; 1723 } 1724 /* Descriptor we don't care about? */ 1725 if (!curr) 1726 break; 1727 if (vdsn >= curr->volDescSeqNum) { 1728 curr->volDescSeqNum = vdsn; 1729 curr->block = block; 1730 } 1731 break; 1732 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1733 done = true; 1734 break; 1735 } 1736 brelse(bh); 1737 } 1738 /* 1739 * Now read interesting descriptors again and process them 1740 * in a suitable order 1741 */ 1742 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1743 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1744 ret = -EAGAIN; 1745 goto out; 1746 } 1747 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1748 if (ret < 0) 1749 goto out; 1750 1751 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1752 ret = udf_load_logicalvol(sb, 1753 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1754 fileset); 1755 if (ret < 0) 1756 goto out; 1757 } 1758 1759 /* Now handle prevailing Partition Descriptors */ 1760 for (i = 0; i < data.num_part_descs; i++) { 1761 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1762 if (ret < 0) 1763 goto out; 1764 } 1765 ret = 0; 1766 out: 1767 kfree(data.part_descs_loc); 1768 return ret; 1769 } 1770 1771 /* 1772 * Load Volume Descriptor Sequence described by anchor in bh 1773 * 1774 * Returns <0 on error, 0 on success 1775 */ 1776 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1777 struct kernel_lb_addr *fileset) 1778 { 1779 struct anchorVolDescPtr *anchor; 1780 sector_t main_s, main_e, reserve_s, reserve_e; 1781 int ret; 1782 1783 anchor = (struct anchorVolDescPtr *)bh->b_data; 1784 1785 /* Locate the main sequence */ 1786 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1787 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1788 main_e = main_e >> sb->s_blocksize_bits; 1789 main_e += main_s - 1; 1790 1791 /* Locate the reserve sequence */ 1792 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1793 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1794 reserve_e = reserve_e >> sb->s_blocksize_bits; 1795 reserve_e += reserve_s - 1; 1796 1797 /* Process the main & reserve sequences */ 1798 /* responsible for finding the PartitionDesc(s) */ 1799 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1800 if (ret != -EAGAIN) 1801 return ret; 1802 udf_sb_free_partitions(sb); 1803 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1804 if (ret < 0) { 1805 udf_sb_free_partitions(sb); 1806 /* No sequence was OK, return -EIO */ 1807 if (ret == -EAGAIN) 1808 ret = -EIO; 1809 } 1810 return ret; 1811 } 1812 1813 /* 1814 * Check whether there is an anchor block in the given block and 1815 * load Volume Descriptor Sequence if so. 1816 * 1817 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1818 * block 1819 */ 1820 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1821 struct kernel_lb_addr *fileset) 1822 { 1823 struct buffer_head *bh; 1824 uint16_t ident; 1825 int ret; 1826 1827 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1828 udf_fixed_to_variable(block) >= 1829 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1830 return -EAGAIN; 1831 1832 bh = udf_read_tagged(sb, block, block, &ident); 1833 if (!bh) 1834 return -EAGAIN; 1835 if (ident != TAG_IDENT_AVDP) { 1836 brelse(bh); 1837 return -EAGAIN; 1838 } 1839 ret = udf_load_sequence(sb, bh, fileset); 1840 brelse(bh); 1841 return ret; 1842 } 1843 1844 /* 1845 * Search for an anchor volume descriptor pointer. 1846 * 1847 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1848 * of anchors. 1849 */ 1850 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1851 struct kernel_lb_addr *fileset) 1852 { 1853 sector_t last[6]; 1854 int i; 1855 struct udf_sb_info *sbi = UDF_SB(sb); 1856 int last_count = 0; 1857 int ret; 1858 1859 /* First try user provided anchor */ 1860 if (sbi->s_anchor) { 1861 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1862 if (ret != -EAGAIN) 1863 return ret; 1864 } 1865 /* 1866 * according to spec, anchor is in either: 1867 * block 256 1868 * lastblock-256 1869 * lastblock 1870 * however, if the disc isn't closed, it could be 512. 1871 */ 1872 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1873 if (ret != -EAGAIN) 1874 return ret; 1875 /* 1876 * The trouble is which block is the last one. Drives often misreport 1877 * this so we try various possibilities. 1878 */ 1879 last[last_count++] = *lastblock; 1880 if (*lastblock >= 1) 1881 last[last_count++] = *lastblock - 1; 1882 last[last_count++] = *lastblock + 1; 1883 if (*lastblock >= 2) 1884 last[last_count++] = *lastblock - 2; 1885 if (*lastblock >= 150) 1886 last[last_count++] = *lastblock - 150; 1887 if (*lastblock >= 152) 1888 last[last_count++] = *lastblock - 152; 1889 1890 for (i = 0; i < last_count; i++) { 1891 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1892 sb->s_blocksize_bits) 1893 continue; 1894 ret = udf_check_anchor_block(sb, last[i], fileset); 1895 if (ret != -EAGAIN) { 1896 if (!ret) 1897 *lastblock = last[i]; 1898 return ret; 1899 } 1900 if (last[i] < 256) 1901 continue; 1902 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1903 if (ret != -EAGAIN) { 1904 if (!ret) 1905 *lastblock = last[i]; 1906 return ret; 1907 } 1908 } 1909 1910 /* Finally try block 512 in case media is open */ 1911 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1912 } 1913 1914 /* 1915 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1916 * area specified by it. The function expects sbi->s_lastblock to be the last 1917 * block on the media. 1918 * 1919 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1920 * was not found. 1921 */ 1922 static int udf_find_anchor(struct super_block *sb, 1923 struct kernel_lb_addr *fileset) 1924 { 1925 struct udf_sb_info *sbi = UDF_SB(sb); 1926 sector_t lastblock = sbi->s_last_block; 1927 int ret; 1928 1929 ret = udf_scan_anchors(sb, &lastblock, fileset); 1930 if (ret != -EAGAIN) 1931 goto out; 1932 1933 /* No anchor found? Try VARCONV conversion of block numbers */ 1934 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1935 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1936 /* Firstly, we try to not convert number of the last block */ 1937 ret = udf_scan_anchors(sb, &lastblock, fileset); 1938 if (ret != -EAGAIN) 1939 goto out; 1940 1941 lastblock = sbi->s_last_block; 1942 /* Secondly, we try with converted number of the last block */ 1943 ret = udf_scan_anchors(sb, &lastblock, fileset); 1944 if (ret < 0) { 1945 /* VARCONV didn't help. Clear it. */ 1946 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1947 } 1948 out: 1949 if (ret == 0) 1950 sbi->s_last_block = lastblock; 1951 return ret; 1952 } 1953 1954 /* 1955 * Check Volume Structure Descriptor, find Anchor block and load Volume 1956 * Descriptor Sequence. 1957 * 1958 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1959 * block was not found. 1960 */ 1961 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1962 int silent, struct kernel_lb_addr *fileset) 1963 { 1964 struct udf_sb_info *sbi = UDF_SB(sb); 1965 int nsr = 0; 1966 int ret; 1967 1968 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1969 if (!silent) 1970 udf_warn(sb, "Bad block size\n"); 1971 return -EINVAL; 1972 } 1973 sbi->s_last_block = uopt->lastblock; 1974 if (!uopt->novrs) { 1975 /* Check that it is NSR02 compliant */ 1976 nsr = udf_check_vsd(sb); 1977 if (!nsr) { 1978 if (!silent) 1979 udf_warn(sb, "No VRS found\n"); 1980 return -EINVAL; 1981 } 1982 if (nsr == -1) 1983 udf_debug("Failed to read sector at offset %d. " 1984 "Assuming open disc. Skipping validity " 1985 "check\n", VSD_FIRST_SECTOR_OFFSET); 1986 if (!sbi->s_last_block) 1987 sbi->s_last_block = udf_get_last_block(sb); 1988 } else { 1989 udf_debug("Validity check skipped because of novrs option\n"); 1990 } 1991 1992 /* Look for anchor block and load Volume Descriptor Sequence */ 1993 sbi->s_anchor = uopt->anchor; 1994 ret = udf_find_anchor(sb, fileset); 1995 if (ret < 0) { 1996 if (!silent && ret == -EAGAIN) 1997 udf_warn(sb, "No anchor found\n"); 1998 return ret; 1999 } 2000 return 0; 2001 } 2002 2003 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 2004 { 2005 struct timespec64 ts; 2006 2007 ktime_get_real_ts64(&ts); 2008 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2009 lvid->descTag.descCRC = cpu_to_le16( 2010 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2011 le16_to_cpu(lvid->descTag.descCRCLength))); 2012 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2013 } 2014 2015 static void udf_open_lvid(struct super_block *sb) 2016 { 2017 struct udf_sb_info *sbi = UDF_SB(sb); 2018 struct buffer_head *bh = sbi->s_lvid_bh; 2019 struct logicalVolIntegrityDesc *lvid; 2020 struct logicalVolIntegrityDescImpUse *lvidiu; 2021 2022 if (!bh) 2023 return; 2024 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2025 lvidiu = udf_sb_lvidiu(sb); 2026 if (!lvidiu) 2027 return; 2028 2029 mutex_lock(&sbi->s_alloc_mutex); 2030 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2031 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2032 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2033 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2034 else 2035 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2036 2037 udf_finalize_lvid(lvid); 2038 mark_buffer_dirty(bh); 2039 sbi->s_lvid_dirty = 0; 2040 mutex_unlock(&sbi->s_alloc_mutex); 2041 /* Make opening of filesystem visible on the media immediately */ 2042 sync_dirty_buffer(bh); 2043 } 2044 2045 static void udf_close_lvid(struct super_block *sb) 2046 { 2047 struct udf_sb_info *sbi = UDF_SB(sb); 2048 struct buffer_head *bh = sbi->s_lvid_bh; 2049 struct logicalVolIntegrityDesc *lvid; 2050 struct logicalVolIntegrityDescImpUse *lvidiu; 2051 2052 if (!bh) 2053 return; 2054 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2055 lvidiu = udf_sb_lvidiu(sb); 2056 if (!lvidiu) 2057 return; 2058 2059 mutex_lock(&sbi->s_alloc_mutex); 2060 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2061 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2062 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2063 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2064 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2065 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2066 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2067 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2068 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2069 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2070 2071 /* 2072 * We set buffer uptodate unconditionally here to avoid spurious 2073 * warnings from mark_buffer_dirty() when previous EIO has marked 2074 * the buffer as !uptodate 2075 */ 2076 set_buffer_uptodate(bh); 2077 udf_finalize_lvid(lvid); 2078 mark_buffer_dirty(bh); 2079 sbi->s_lvid_dirty = 0; 2080 mutex_unlock(&sbi->s_alloc_mutex); 2081 /* Make closing of filesystem visible on the media immediately */ 2082 sync_dirty_buffer(bh); 2083 } 2084 2085 u64 lvid_get_unique_id(struct super_block *sb) 2086 { 2087 struct buffer_head *bh; 2088 struct udf_sb_info *sbi = UDF_SB(sb); 2089 struct logicalVolIntegrityDesc *lvid; 2090 struct logicalVolHeaderDesc *lvhd; 2091 u64 uniqueID; 2092 u64 ret; 2093 2094 bh = sbi->s_lvid_bh; 2095 if (!bh) 2096 return 0; 2097 2098 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2099 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2100 2101 mutex_lock(&sbi->s_alloc_mutex); 2102 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2103 if (!(++uniqueID & 0xFFFFFFFF)) 2104 uniqueID += 16; 2105 lvhd->uniqueID = cpu_to_le64(uniqueID); 2106 udf_updated_lvid(sb); 2107 mutex_unlock(&sbi->s_alloc_mutex); 2108 2109 return ret; 2110 } 2111 2112 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2113 { 2114 int ret = -EINVAL; 2115 struct inode *inode = NULL; 2116 struct udf_options uopt; 2117 struct kernel_lb_addr rootdir, fileset; 2118 struct udf_sb_info *sbi; 2119 bool lvid_open = false; 2120 2121 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2122 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2123 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2124 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2125 uopt.umask = 0; 2126 uopt.fmode = UDF_INVALID_MODE; 2127 uopt.dmode = UDF_INVALID_MODE; 2128 uopt.nls_map = NULL; 2129 2130 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2131 if (!sbi) 2132 return -ENOMEM; 2133 2134 sb->s_fs_info = sbi; 2135 2136 mutex_init(&sbi->s_alloc_mutex); 2137 2138 if (!udf_parse_options((char *)options, &uopt, false)) 2139 goto parse_options_failure; 2140 2141 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2142 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2143 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2144 goto parse_options_failure; 2145 } 2146 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2147 uopt.nls_map = load_nls_default(); 2148 if (!uopt.nls_map) 2149 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2150 else 2151 udf_debug("Using default NLS map\n"); 2152 } 2153 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2154 uopt.flags |= (1 << UDF_FLAG_UTF8); 2155 2156 fileset.logicalBlockNum = 0xFFFFFFFF; 2157 fileset.partitionReferenceNum = 0xFFFF; 2158 2159 sbi->s_flags = uopt.flags; 2160 sbi->s_uid = uopt.uid; 2161 sbi->s_gid = uopt.gid; 2162 sbi->s_umask = uopt.umask; 2163 sbi->s_fmode = uopt.fmode; 2164 sbi->s_dmode = uopt.dmode; 2165 sbi->s_nls_map = uopt.nls_map; 2166 rwlock_init(&sbi->s_cred_lock); 2167 2168 if (uopt.session == 0xFFFFFFFF) 2169 sbi->s_session = udf_get_last_session(sb); 2170 else 2171 sbi->s_session = uopt.session; 2172 2173 udf_debug("Multi-session=%d\n", sbi->s_session); 2174 2175 /* Fill in the rest of the superblock */ 2176 sb->s_op = &udf_sb_ops; 2177 sb->s_export_op = &udf_export_ops; 2178 2179 sb->s_magic = UDF_SUPER_MAGIC; 2180 sb->s_time_gran = 1000; 2181 2182 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2183 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2184 } else { 2185 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2186 while (uopt.blocksize <= 4096) { 2187 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2188 if (ret < 0) { 2189 if (!silent && ret != -EACCES) { 2190 pr_notice("Scanning with blocksize %u failed\n", 2191 uopt.blocksize); 2192 } 2193 brelse(sbi->s_lvid_bh); 2194 sbi->s_lvid_bh = NULL; 2195 /* 2196 * EACCES is special - we want to propagate to 2197 * upper layers that we cannot handle RW mount. 2198 */ 2199 if (ret == -EACCES) 2200 break; 2201 } else 2202 break; 2203 2204 uopt.blocksize <<= 1; 2205 } 2206 } 2207 if (ret < 0) { 2208 if (ret == -EAGAIN) { 2209 udf_warn(sb, "No partition found (1)\n"); 2210 ret = -EINVAL; 2211 } 2212 goto error_out; 2213 } 2214 2215 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2216 2217 if (sbi->s_lvid_bh) { 2218 struct logicalVolIntegrityDescImpUse *lvidiu = 2219 udf_sb_lvidiu(sb); 2220 uint16_t minUDFReadRev; 2221 uint16_t minUDFWriteRev; 2222 2223 if (!lvidiu) { 2224 ret = -EINVAL; 2225 goto error_out; 2226 } 2227 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2228 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2229 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2230 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2231 minUDFReadRev, 2232 UDF_MAX_READ_VERSION); 2233 ret = -EINVAL; 2234 goto error_out; 2235 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2236 if (!sb_rdonly(sb)) { 2237 ret = -EACCES; 2238 goto error_out; 2239 } 2240 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2241 } 2242 2243 sbi->s_udfrev = minUDFWriteRev; 2244 2245 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2246 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2247 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2248 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2249 } 2250 2251 if (!sbi->s_partitions) { 2252 udf_warn(sb, "No partition found (2)\n"); 2253 ret = -EINVAL; 2254 goto error_out; 2255 } 2256 2257 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2258 UDF_PART_FLAG_READ_ONLY) { 2259 if (!sb_rdonly(sb)) { 2260 ret = -EACCES; 2261 goto error_out; 2262 } 2263 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2264 } 2265 2266 ret = udf_find_fileset(sb, &fileset, &rootdir); 2267 if (ret < 0) { 2268 udf_warn(sb, "No fileset found\n"); 2269 goto error_out; 2270 } 2271 2272 if (!silent) { 2273 struct timestamp ts; 2274 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2275 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2276 sbi->s_volume_ident, 2277 le16_to_cpu(ts.year), ts.month, ts.day, 2278 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2279 } 2280 if (!sb_rdonly(sb)) { 2281 udf_open_lvid(sb); 2282 lvid_open = true; 2283 } 2284 2285 /* Assign the root inode */ 2286 /* assign inodes by physical block number */ 2287 /* perhaps it's not extensible enough, but for now ... */ 2288 inode = udf_iget(sb, &rootdir); 2289 if (IS_ERR(inode)) { 2290 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2291 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2292 ret = PTR_ERR(inode); 2293 goto error_out; 2294 } 2295 2296 /* Allocate a dentry for the root inode */ 2297 sb->s_root = d_make_root(inode); 2298 if (!sb->s_root) { 2299 udf_err(sb, "Couldn't allocate root dentry\n"); 2300 ret = -ENOMEM; 2301 goto error_out; 2302 } 2303 sb->s_maxbytes = MAX_LFS_FILESIZE; 2304 sb->s_max_links = UDF_MAX_LINKS; 2305 return 0; 2306 2307 error_out: 2308 iput(sbi->s_vat_inode); 2309 parse_options_failure: 2310 if (uopt.nls_map) 2311 unload_nls(uopt.nls_map); 2312 if (lvid_open) 2313 udf_close_lvid(sb); 2314 brelse(sbi->s_lvid_bh); 2315 udf_sb_free_partitions(sb); 2316 kfree(sbi); 2317 sb->s_fs_info = NULL; 2318 2319 return ret; 2320 } 2321 2322 void _udf_err(struct super_block *sb, const char *function, 2323 const char *fmt, ...) 2324 { 2325 struct va_format vaf; 2326 va_list args; 2327 2328 va_start(args, fmt); 2329 2330 vaf.fmt = fmt; 2331 vaf.va = &args; 2332 2333 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2334 2335 va_end(args); 2336 } 2337 2338 void _udf_warn(struct super_block *sb, const char *function, 2339 const char *fmt, ...) 2340 { 2341 struct va_format vaf; 2342 va_list args; 2343 2344 va_start(args, fmt); 2345 2346 vaf.fmt = fmt; 2347 vaf.va = &args; 2348 2349 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2350 2351 va_end(args); 2352 } 2353 2354 static void udf_put_super(struct super_block *sb) 2355 { 2356 struct udf_sb_info *sbi; 2357 2358 sbi = UDF_SB(sb); 2359 2360 iput(sbi->s_vat_inode); 2361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2362 unload_nls(sbi->s_nls_map); 2363 if (!sb_rdonly(sb)) 2364 udf_close_lvid(sb); 2365 brelse(sbi->s_lvid_bh); 2366 udf_sb_free_partitions(sb); 2367 mutex_destroy(&sbi->s_alloc_mutex); 2368 kfree(sb->s_fs_info); 2369 sb->s_fs_info = NULL; 2370 } 2371 2372 static int udf_sync_fs(struct super_block *sb, int wait) 2373 { 2374 struct udf_sb_info *sbi = UDF_SB(sb); 2375 2376 mutex_lock(&sbi->s_alloc_mutex); 2377 if (sbi->s_lvid_dirty) { 2378 struct buffer_head *bh = sbi->s_lvid_bh; 2379 struct logicalVolIntegrityDesc *lvid; 2380 2381 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2382 udf_finalize_lvid(lvid); 2383 2384 /* 2385 * Blockdevice will be synced later so we don't have to submit 2386 * the buffer for IO 2387 */ 2388 mark_buffer_dirty(bh); 2389 sbi->s_lvid_dirty = 0; 2390 } 2391 mutex_unlock(&sbi->s_alloc_mutex); 2392 2393 return 0; 2394 } 2395 2396 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2397 { 2398 struct super_block *sb = dentry->d_sb; 2399 struct udf_sb_info *sbi = UDF_SB(sb); 2400 struct logicalVolIntegrityDescImpUse *lvidiu; 2401 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2402 2403 lvidiu = udf_sb_lvidiu(sb); 2404 buf->f_type = UDF_SUPER_MAGIC; 2405 buf->f_bsize = sb->s_blocksize; 2406 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2407 buf->f_bfree = udf_count_free(sb); 2408 buf->f_bavail = buf->f_bfree; 2409 /* 2410 * Let's pretend each free block is also a free 'inode' since UDF does 2411 * not have separate preallocated table of inodes. 2412 */ 2413 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2414 le32_to_cpu(lvidiu->numDirs)) : 0) 2415 + buf->f_bfree; 2416 buf->f_ffree = buf->f_bfree; 2417 buf->f_namelen = UDF_NAME_LEN; 2418 buf->f_fsid = u64_to_fsid(id); 2419 2420 return 0; 2421 } 2422 2423 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2424 struct udf_bitmap *bitmap) 2425 { 2426 struct buffer_head *bh = NULL; 2427 unsigned int accum = 0; 2428 int index; 2429 udf_pblk_t block = 0, newblock; 2430 struct kernel_lb_addr loc; 2431 uint32_t bytes; 2432 uint8_t *ptr; 2433 uint16_t ident; 2434 struct spaceBitmapDesc *bm; 2435 2436 loc.logicalBlockNum = bitmap->s_extPosition; 2437 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2438 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2439 2440 if (!bh) { 2441 udf_err(sb, "udf_count_free failed\n"); 2442 goto out; 2443 } else if (ident != TAG_IDENT_SBD) { 2444 brelse(bh); 2445 udf_err(sb, "udf_count_free failed\n"); 2446 goto out; 2447 } 2448 2449 bm = (struct spaceBitmapDesc *)bh->b_data; 2450 bytes = le32_to_cpu(bm->numOfBytes); 2451 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2452 ptr = (uint8_t *)bh->b_data; 2453 2454 while (bytes > 0) { 2455 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2456 accum += bitmap_weight((const unsigned long *)(ptr + index), 2457 cur_bytes * 8); 2458 bytes -= cur_bytes; 2459 if (bytes) { 2460 brelse(bh); 2461 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2462 bh = udf_tread(sb, newblock); 2463 if (!bh) { 2464 udf_debug("read failed\n"); 2465 goto out; 2466 } 2467 index = 0; 2468 ptr = (uint8_t *)bh->b_data; 2469 } 2470 } 2471 brelse(bh); 2472 out: 2473 return accum; 2474 } 2475 2476 static unsigned int udf_count_free_table(struct super_block *sb, 2477 struct inode *table) 2478 { 2479 unsigned int accum = 0; 2480 uint32_t elen; 2481 struct kernel_lb_addr eloc; 2482 int8_t etype; 2483 struct extent_position epos; 2484 2485 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2486 epos.block = UDF_I(table)->i_location; 2487 epos.offset = sizeof(struct unallocSpaceEntry); 2488 epos.bh = NULL; 2489 2490 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2491 accum += (elen >> table->i_sb->s_blocksize_bits); 2492 2493 brelse(epos.bh); 2494 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2495 2496 return accum; 2497 } 2498 2499 static unsigned int udf_count_free(struct super_block *sb) 2500 { 2501 unsigned int accum = 0; 2502 struct udf_sb_info *sbi = UDF_SB(sb); 2503 struct udf_part_map *map; 2504 unsigned int part = sbi->s_partition; 2505 int ptype = sbi->s_partmaps[part].s_partition_type; 2506 2507 if (ptype == UDF_METADATA_MAP25) { 2508 part = sbi->s_partmaps[part].s_type_specific.s_metadata. 2509 s_phys_partition_ref; 2510 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { 2511 /* 2512 * Filesystems with VAT are append-only and we cannot write to 2513 * them. Let's just report 0 here. 2514 */ 2515 return 0; 2516 } 2517 2518 if (sbi->s_lvid_bh) { 2519 struct logicalVolIntegrityDesc *lvid = 2520 (struct logicalVolIntegrityDesc *) 2521 sbi->s_lvid_bh->b_data; 2522 if (le32_to_cpu(lvid->numOfPartitions) > part) { 2523 accum = le32_to_cpu( 2524 lvid->freeSpaceTable[part]); 2525 if (accum == 0xFFFFFFFF) 2526 accum = 0; 2527 } 2528 } 2529 2530 if (accum) 2531 return accum; 2532 2533 map = &sbi->s_partmaps[part]; 2534 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2535 accum += udf_count_free_bitmap(sb, 2536 map->s_uspace.s_bitmap); 2537 } 2538 if (accum) 2539 return accum; 2540 2541 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2542 accum += udf_count_free_table(sb, 2543 map->s_uspace.s_table); 2544 } 2545 return accum; 2546 } 2547 2548 MODULE_AUTHOR("Ben Fennema"); 2549 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2550 MODULE_LICENSE("GPL"); 2551 module_init(init_udf_fs) 2552 module_exit(exit_udf_fs) 2553