1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 enum { UDF_MAX_LINKS = 0xffff }; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct dentry *); 96 97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 98 { 99 struct logicalVolIntegrityDesc *lvid = 100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 102 __u32 offset = number_of_partitions * 2 * 103 sizeof(uint32_t)/sizeof(uint8_t); 104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 105 } 106 107 /* UDF filesystem type */ 108 static struct dentry *udf_mount(struct file_system_type *fs_type, 109 int flags, const char *dev_name, void *data) 110 { 111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 112 } 113 114 static struct file_system_type udf_fstype = { 115 .owner = THIS_MODULE, 116 .name = "udf", 117 .mount = udf_mount, 118 .kill_sb = kill_block_super, 119 .fs_flags = FS_REQUIRES_DEV, 120 }; 121 122 static struct kmem_cache *udf_inode_cachep; 123 124 static struct inode *udf_alloc_inode(struct super_block *sb) 125 { 126 struct udf_inode_info *ei; 127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 128 if (!ei) 129 return NULL; 130 131 ei->i_unique = 0; 132 ei->i_lenExtents = 0; 133 ei->i_next_alloc_block = 0; 134 ei->i_next_alloc_goal = 0; 135 ei->i_strat4096 = 0; 136 init_rwsem(&ei->i_data_sem); 137 ei->cached_extent.lstart = -1; 138 spin_lock_init(&ei->i_extent_cache_lock); 139 140 return &ei->vfs_inode; 141 } 142 143 static void udf_i_callback(struct rcu_head *head) 144 { 145 struct inode *inode = container_of(head, struct inode, i_rcu); 146 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 147 } 148 149 static void udf_destroy_inode(struct inode *inode) 150 { 151 call_rcu(&inode->i_rcu, udf_i_callback); 152 } 153 154 static void init_once(void *foo) 155 { 156 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 157 158 ei->i_ext.i_data = NULL; 159 inode_init_once(&ei->vfs_inode); 160 } 161 162 static int init_inodecache(void) 163 { 164 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 165 sizeof(struct udf_inode_info), 166 0, (SLAB_RECLAIM_ACCOUNT | 167 SLAB_MEM_SPREAD), 168 init_once); 169 if (!udf_inode_cachep) 170 return -ENOMEM; 171 return 0; 172 } 173 174 static void destroy_inodecache(void) 175 { 176 /* 177 * Make sure all delayed rcu free inodes are flushed before we 178 * destroy cache. 179 */ 180 rcu_barrier(); 181 kmem_cache_destroy(udf_inode_cachep); 182 } 183 184 /* Superblock operations */ 185 static const struct super_operations udf_sb_ops = { 186 .alloc_inode = udf_alloc_inode, 187 .destroy_inode = udf_destroy_inode, 188 .write_inode = udf_write_inode, 189 .evict_inode = udf_evict_inode, 190 .put_super = udf_put_super, 191 .sync_fs = udf_sync_fs, 192 .statfs = udf_statfs, 193 .remount_fs = udf_remount_fs, 194 .show_options = udf_show_options, 195 }; 196 197 struct udf_options { 198 unsigned char novrs; 199 unsigned int blocksize; 200 unsigned int session; 201 unsigned int lastblock; 202 unsigned int anchor; 203 unsigned int volume; 204 unsigned short partition; 205 unsigned int fileset; 206 unsigned int rootdir; 207 unsigned int flags; 208 umode_t umask; 209 kgid_t gid; 210 kuid_t uid; 211 umode_t fmode; 212 umode_t dmode; 213 struct nls_table *nls_map; 214 }; 215 216 static int __init init_udf_fs(void) 217 { 218 int err; 219 220 err = init_inodecache(); 221 if (err) 222 goto out1; 223 err = register_filesystem(&udf_fstype); 224 if (err) 225 goto out; 226 227 return 0; 228 229 out: 230 destroy_inodecache(); 231 232 out1: 233 return err; 234 } 235 236 static void __exit exit_udf_fs(void) 237 { 238 unregister_filesystem(&udf_fstype); 239 destroy_inodecache(); 240 } 241 242 module_init(init_udf_fs) 243 module_exit(exit_udf_fs) 244 245 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 246 { 247 struct udf_sb_info *sbi = UDF_SB(sb); 248 249 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 250 GFP_KERNEL); 251 if (!sbi->s_partmaps) { 252 udf_err(sb, "Unable to allocate space for %d partition maps\n", 253 count); 254 sbi->s_partitions = 0; 255 return -ENOMEM; 256 } 257 258 sbi->s_partitions = count; 259 return 0; 260 } 261 262 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 263 { 264 int i; 265 int nr_groups = bitmap->s_nr_groups; 266 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 267 nr_groups); 268 269 for (i = 0; i < nr_groups; i++) 270 if (bitmap->s_block_bitmap[i]) 271 brelse(bitmap->s_block_bitmap[i]); 272 273 if (size <= PAGE_SIZE) 274 kfree(bitmap); 275 else 276 vfree(bitmap); 277 } 278 279 static void udf_free_partition(struct udf_part_map *map) 280 { 281 int i; 282 struct udf_meta_data *mdata; 283 284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 285 iput(map->s_uspace.s_table); 286 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 287 iput(map->s_fspace.s_table); 288 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 289 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 290 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 291 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 292 if (map->s_partition_type == UDF_SPARABLE_MAP15) 293 for (i = 0; i < 4; i++) 294 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 295 else if (map->s_partition_type == UDF_METADATA_MAP25) { 296 mdata = &map->s_type_specific.s_metadata; 297 iput(mdata->s_metadata_fe); 298 mdata->s_metadata_fe = NULL; 299 300 iput(mdata->s_mirror_fe); 301 mdata->s_mirror_fe = NULL; 302 303 iput(mdata->s_bitmap_fe); 304 mdata->s_bitmap_fe = NULL; 305 } 306 } 307 308 static void udf_sb_free_partitions(struct super_block *sb) 309 { 310 struct udf_sb_info *sbi = UDF_SB(sb); 311 int i; 312 if (sbi->s_partmaps == NULL) 313 return; 314 for (i = 0; i < sbi->s_partitions; i++) 315 udf_free_partition(&sbi->s_partmaps[i]); 316 kfree(sbi->s_partmaps); 317 sbi->s_partmaps = NULL; 318 } 319 320 static int udf_show_options(struct seq_file *seq, struct dentry *root) 321 { 322 struct super_block *sb = root->d_sb; 323 struct udf_sb_info *sbi = UDF_SB(sb); 324 325 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 326 seq_puts(seq, ",nostrict"); 327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 328 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 330 seq_puts(seq, ",unhide"); 331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 332 seq_puts(seq, ",undelete"); 333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 334 seq_puts(seq, ",noadinicb"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 336 seq_puts(seq, ",shortad"); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 338 seq_puts(seq, ",uid=forget"); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 340 seq_puts(seq, ",uid=ignore"); 341 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 342 seq_puts(seq, ",gid=forget"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 344 seq_puts(seq, ",gid=ignore"); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 346 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 348 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 349 if (sbi->s_umask != 0) 350 seq_printf(seq, ",umask=%ho", sbi->s_umask); 351 if (sbi->s_fmode != UDF_INVALID_MODE) 352 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 353 if (sbi->s_dmode != UDF_INVALID_MODE) 354 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 356 seq_printf(seq, ",session=%u", sbi->s_session); 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 358 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 359 if (sbi->s_anchor != 0) 360 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 361 /* 362 * volume, partition, fileset and rootdir seem to be ignored 363 * currently 364 */ 365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 366 seq_puts(seq, ",utf8"); 367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 369 370 return 0; 371 } 372 373 /* 374 * udf_parse_options 375 * 376 * PURPOSE 377 * Parse mount options. 378 * 379 * DESCRIPTION 380 * The following mount options are supported: 381 * 382 * gid= Set the default group. 383 * umask= Set the default umask. 384 * mode= Set the default file permissions. 385 * dmode= Set the default directory permissions. 386 * uid= Set the default user. 387 * bs= Set the block size. 388 * unhide Show otherwise hidden files. 389 * undelete Show deleted files in lists. 390 * adinicb Embed data in the inode (default) 391 * noadinicb Don't embed data in the inode 392 * shortad Use short ad's 393 * longad Use long ad's (default) 394 * nostrict Unset strict conformance 395 * iocharset= Set the NLS character set 396 * 397 * The remaining are for debugging and disaster recovery: 398 * 399 * novrs Skip volume sequence recognition 400 * 401 * The following expect a offset from 0. 402 * 403 * session= Set the CDROM session (default= last session) 404 * anchor= Override standard anchor location. (default= 256) 405 * volume= Override the VolumeDesc location. (unused) 406 * partition= Override the PartitionDesc location. (unused) 407 * lastblock= Set the last block of the filesystem/ 408 * 409 * The following expect a offset from the partition root. 410 * 411 * fileset= Override the fileset block location. (unused) 412 * rootdir= Override the root directory location. (unused) 413 * WARNING: overriding the rootdir to a non-directory may 414 * yield highly unpredictable results. 415 * 416 * PRE-CONDITIONS 417 * options Pointer to mount options string. 418 * uopts Pointer to mount options variable. 419 * 420 * POST-CONDITIONS 421 * <return> 1 Mount options parsed okay. 422 * <return> 0 Error parsing mount options. 423 * 424 * HISTORY 425 * July 1, 1997 - Andrew E. Mileski 426 * Written, tested, and released. 427 */ 428 429 enum { 430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 434 Opt_rootdir, Opt_utf8, Opt_iocharset, 435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 436 Opt_fmode, Opt_dmode 437 }; 438 439 static const match_table_t tokens = { 440 {Opt_novrs, "novrs"}, 441 {Opt_nostrict, "nostrict"}, 442 {Opt_bs, "bs=%u"}, 443 {Opt_unhide, "unhide"}, 444 {Opt_undelete, "undelete"}, 445 {Opt_noadinicb, "noadinicb"}, 446 {Opt_adinicb, "adinicb"}, 447 {Opt_shortad, "shortad"}, 448 {Opt_longad, "longad"}, 449 {Opt_uforget, "uid=forget"}, 450 {Opt_uignore, "uid=ignore"}, 451 {Opt_gforget, "gid=forget"}, 452 {Opt_gignore, "gid=ignore"}, 453 {Opt_gid, "gid=%u"}, 454 {Opt_uid, "uid=%u"}, 455 {Opt_umask, "umask=%o"}, 456 {Opt_session, "session=%u"}, 457 {Opt_lastblock, "lastblock=%u"}, 458 {Opt_anchor, "anchor=%u"}, 459 {Opt_volume, "volume=%u"}, 460 {Opt_partition, "partition=%u"}, 461 {Opt_fileset, "fileset=%u"}, 462 {Opt_rootdir, "rootdir=%u"}, 463 {Opt_utf8, "utf8"}, 464 {Opt_iocharset, "iocharset=%s"}, 465 {Opt_fmode, "mode=%o"}, 466 {Opt_dmode, "dmode=%o"}, 467 {Opt_err, NULL} 468 }; 469 470 static int udf_parse_options(char *options, struct udf_options *uopt, 471 bool remount) 472 { 473 char *p; 474 int option; 475 476 uopt->novrs = 0; 477 uopt->partition = 0xFFFF; 478 uopt->session = 0xFFFFFFFF; 479 uopt->lastblock = 0; 480 uopt->anchor = 0; 481 uopt->volume = 0xFFFFFFFF; 482 uopt->rootdir = 0xFFFFFFFF; 483 uopt->fileset = 0xFFFFFFFF; 484 uopt->nls_map = NULL; 485 486 if (!options) 487 return 1; 488 489 while ((p = strsep(&options, ",")) != NULL) { 490 substring_t args[MAX_OPT_ARGS]; 491 int token; 492 if (!*p) 493 continue; 494 495 token = match_token(p, tokens, args); 496 switch (token) { 497 case Opt_novrs: 498 uopt->novrs = 1; 499 break; 500 case Opt_bs: 501 if (match_int(&args[0], &option)) 502 return 0; 503 uopt->blocksize = option; 504 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 505 break; 506 case Opt_unhide: 507 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 508 break; 509 case Opt_undelete: 510 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 511 break; 512 case Opt_noadinicb: 513 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 514 break; 515 case Opt_adinicb: 516 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 517 break; 518 case Opt_shortad: 519 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 520 break; 521 case Opt_longad: 522 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 523 break; 524 case Opt_gid: 525 if (match_int(args, &option)) 526 return 0; 527 uopt->gid = make_kgid(current_user_ns(), option); 528 if (!gid_valid(uopt->gid)) 529 return 0; 530 uopt->flags |= (1 << UDF_FLAG_GID_SET); 531 break; 532 case Opt_uid: 533 if (match_int(args, &option)) 534 return 0; 535 uopt->uid = make_kuid(current_user_ns(), option); 536 if (!uid_valid(uopt->uid)) 537 return 0; 538 uopt->flags |= (1 << UDF_FLAG_UID_SET); 539 break; 540 case Opt_umask: 541 if (match_octal(args, &option)) 542 return 0; 543 uopt->umask = option; 544 break; 545 case Opt_nostrict: 546 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 547 break; 548 case Opt_session: 549 if (match_int(args, &option)) 550 return 0; 551 uopt->session = option; 552 if (!remount) 553 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 554 break; 555 case Opt_lastblock: 556 if (match_int(args, &option)) 557 return 0; 558 uopt->lastblock = option; 559 if (!remount) 560 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 561 break; 562 case Opt_anchor: 563 if (match_int(args, &option)) 564 return 0; 565 uopt->anchor = option; 566 break; 567 case Opt_volume: 568 if (match_int(args, &option)) 569 return 0; 570 uopt->volume = option; 571 break; 572 case Opt_partition: 573 if (match_int(args, &option)) 574 return 0; 575 uopt->partition = option; 576 break; 577 case Opt_fileset: 578 if (match_int(args, &option)) 579 return 0; 580 uopt->fileset = option; 581 break; 582 case Opt_rootdir: 583 if (match_int(args, &option)) 584 return 0; 585 uopt->rootdir = option; 586 break; 587 case Opt_utf8: 588 uopt->flags |= (1 << UDF_FLAG_UTF8); 589 break; 590 #ifdef CONFIG_UDF_NLS 591 case Opt_iocharset: 592 uopt->nls_map = load_nls(args[0].from); 593 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 594 break; 595 #endif 596 case Opt_uignore: 597 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 598 break; 599 case Opt_uforget: 600 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 601 break; 602 case Opt_gignore: 603 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 604 break; 605 case Opt_gforget: 606 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 607 break; 608 case Opt_fmode: 609 if (match_octal(args, &option)) 610 return 0; 611 uopt->fmode = option & 0777; 612 break; 613 case Opt_dmode: 614 if (match_octal(args, &option)) 615 return 0; 616 uopt->dmode = option & 0777; 617 break; 618 default: 619 pr_err("bad mount option \"%s\" or missing value\n", p); 620 return 0; 621 } 622 } 623 return 1; 624 } 625 626 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 627 { 628 struct udf_options uopt; 629 struct udf_sb_info *sbi = UDF_SB(sb); 630 int error = 0; 631 632 uopt.flags = sbi->s_flags; 633 uopt.uid = sbi->s_uid; 634 uopt.gid = sbi->s_gid; 635 uopt.umask = sbi->s_umask; 636 uopt.fmode = sbi->s_fmode; 637 uopt.dmode = sbi->s_dmode; 638 639 if (!udf_parse_options(options, &uopt, true)) 640 return -EINVAL; 641 642 write_lock(&sbi->s_cred_lock); 643 sbi->s_flags = uopt.flags; 644 sbi->s_uid = uopt.uid; 645 sbi->s_gid = uopt.gid; 646 sbi->s_umask = uopt.umask; 647 sbi->s_fmode = uopt.fmode; 648 sbi->s_dmode = uopt.dmode; 649 write_unlock(&sbi->s_cred_lock); 650 651 if (sbi->s_lvid_bh) { 652 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 653 if (write_rev > UDF_MAX_WRITE_VERSION) 654 *flags |= MS_RDONLY; 655 } 656 657 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 658 goto out_unlock; 659 660 if (*flags & MS_RDONLY) 661 udf_close_lvid(sb); 662 else 663 udf_open_lvid(sb); 664 665 out_unlock: 666 return error; 667 } 668 669 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 670 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 671 static loff_t udf_check_vsd(struct super_block *sb) 672 { 673 struct volStructDesc *vsd = NULL; 674 loff_t sector = 32768; 675 int sectorsize; 676 struct buffer_head *bh = NULL; 677 int nsr02 = 0; 678 int nsr03 = 0; 679 struct udf_sb_info *sbi; 680 681 sbi = UDF_SB(sb); 682 if (sb->s_blocksize < sizeof(struct volStructDesc)) 683 sectorsize = sizeof(struct volStructDesc); 684 else 685 sectorsize = sb->s_blocksize; 686 687 sector += (sbi->s_session << sb->s_blocksize_bits); 688 689 udf_debug("Starting at sector %u (%ld byte sectors)\n", 690 (unsigned int)(sector >> sb->s_blocksize_bits), 691 sb->s_blocksize); 692 /* Process the sequence (if applicable) */ 693 for (; !nsr02 && !nsr03; sector += sectorsize) { 694 /* Read a block */ 695 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 696 if (!bh) 697 break; 698 699 /* Look for ISO descriptors */ 700 vsd = (struct volStructDesc *)(bh->b_data + 701 (sector & (sb->s_blocksize - 1))); 702 703 if (vsd->stdIdent[0] == 0) { 704 brelse(bh); 705 break; 706 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 707 VSD_STD_ID_LEN)) { 708 switch (vsd->structType) { 709 case 0: 710 udf_debug("ISO9660 Boot Record found\n"); 711 break; 712 case 1: 713 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 714 break; 715 case 2: 716 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 717 break; 718 case 3: 719 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 720 break; 721 case 255: 722 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 723 break; 724 default: 725 udf_debug("ISO9660 VRS (%u) found\n", 726 vsd->structType); 727 break; 728 } 729 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 730 VSD_STD_ID_LEN)) 731 ; /* nothing */ 732 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 733 VSD_STD_ID_LEN)) { 734 brelse(bh); 735 break; 736 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 737 VSD_STD_ID_LEN)) 738 nsr02 = sector; 739 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 740 VSD_STD_ID_LEN)) 741 nsr03 = sector; 742 brelse(bh); 743 } 744 745 if (nsr03) 746 return nsr03; 747 else if (nsr02) 748 return nsr02; 749 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 750 return -1; 751 else 752 return 0; 753 } 754 755 static int udf_find_fileset(struct super_block *sb, 756 struct kernel_lb_addr *fileset, 757 struct kernel_lb_addr *root) 758 { 759 struct buffer_head *bh = NULL; 760 long lastblock; 761 uint16_t ident; 762 struct udf_sb_info *sbi; 763 764 if (fileset->logicalBlockNum != 0xFFFFFFFF || 765 fileset->partitionReferenceNum != 0xFFFF) { 766 bh = udf_read_ptagged(sb, fileset, 0, &ident); 767 768 if (!bh) { 769 return 1; 770 } else if (ident != TAG_IDENT_FSD) { 771 brelse(bh); 772 return 1; 773 } 774 775 } 776 777 sbi = UDF_SB(sb); 778 if (!bh) { 779 /* Search backwards through the partitions */ 780 struct kernel_lb_addr newfileset; 781 782 /* --> cvg: FIXME - is it reasonable? */ 783 return 1; 784 785 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 786 (newfileset.partitionReferenceNum != 0xFFFF && 787 fileset->logicalBlockNum == 0xFFFFFFFF && 788 fileset->partitionReferenceNum == 0xFFFF); 789 newfileset.partitionReferenceNum--) { 790 lastblock = sbi->s_partmaps 791 [newfileset.partitionReferenceNum] 792 .s_partition_len; 793 newfileset.logicalBlockNum = 0; 794 795 do { 796 bh = udf_read_ptagged(sb, &newfileset, 0, 797 &ident); 798 if (!bh) { 799 newfileset.logicalBlockNum++; 800 continue; 801 } 802 803 switch (ident) { 804 case TAG_IDENT_SBD: 805 { 806 struct spaceBitmapDesc *sp; 807 sp = (struct spaceBitmapDesc *) 808 bh->b_data; 809 newfileset.logicalBlockNum += 1 + 810 ((le32_to_cpu(sp->numOfBytes) + 811 sizeof(struct spaceBitmapDesc) 812 - 1) >> sb->s_blocksize_bits); 813 brelse(bh); 814 break; 815 } 816 case TAG_IDENT_FSD: 817 *fileset = newfileset; 818 break; 819 default: 820 newfileset.logicalBlockNum++; 821 brelse(bh); 822 bh = NULL; 823 break; 824 } 825 } while (newfileset.logicalBlockNum < lastblock && 826 fileset->logicalBlockNum == 0xFFFFFFFF && 827 fileset->partitionReferenceNum == 0xFFFF); 828 } 829 } 830 831 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 832 fileset->partitionReferenceNum != 0xFFFF) && bh) { 833 udf_debug("Fileset at block=%d, partition=%d\n", 834 fileset->logicalBlockNum, 835 fileset->partitionReferenceNum); 836 837 sbi->s_partition = fileset->partitionReferenceNum; 838 udf_load_fileset(sb, bh, root); 839 brelse(bh); 840 return 0; 841 } 842 return 1; 843 } 844 845 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 846 { 847 struct primaryVolDesc *pvoldesc; 848 struct ustr *instr, *outstr; 849 struct buffer_head *bh; 850 uint16_t ident; 851 int ret = 1; 852 853 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 854 if (!instr) 855 return 1; 856 857 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 858 if (!outstr) 859 goto out1; 860 861 bh = udf_read_tagged(sb, block, block, &ident); 862 if (!bh) 863 goto out2; 864 865 BUG_ON(ident != TAG_IDENT_PVD); 866 867 pvoldesc = (struct primaryVolDesc *)bh->b_data; 868 869 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 870 pvoldesc->recordingDateAndTime)) { 871 #ifdef UDFFS_DEBUG 872 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 873 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 874 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 875 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 876 #endif 877 } 878 879 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 880 if (udf_CS0toUTF8(outstr, instr)) { 881 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 882 outstr->u_len > 31 ? 31 : outstr->u_len); 883 udf_debug("volIdent[] = '%s'\n", 884 UDF_SB(sb)->s_volume_ident); 885 } 886 887 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 888 if (udf_CS0toUTF8(outstr, instr)) 889 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 890 891 brelse(bh); 892 ret = 0; 893 out2: 894 kfree(outstr); 895 out1: 896 kfree(instr); 897 return ret; 898 } 899 900 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 901 u32 meta_file_loc, u32 partition_num) 902 { 903 struct kernel_lb_addr addr; 904 struct inode *metadata_fe; 905 906 addr.logicalBlockNum = meta_file_loc; 907 addr.partitionReferenceNum = partition_num; 908 909 metadata_fe = udf_iget(sb, &addr); 910 911 if (metadata_fe == NULL) 912 udf_warn(sb, "metadata inode efe not found\n"); 913 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 914 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 915 iput(metadata_fe); 916 metadata_fe = NULL; 917 } 918 919 return metadata_fe; 920 } 921 922 static int udf_load_metadata_files(struct super_block *sb, int partition) 923 { 924 struct udf_sb_info *sbi = UDF_SB(sb); 925 struct udf_part_map *map; 926 struct udf_meta_data *mdata; 927 struct kernel_lb_addr addr; 928 929 map = &sbi->s_partmaps[partition]; 930 mdata = &map->s_type_specific.s_metadata; 931 932 /* metadata address */ 933 udf_debug("Metadata file location: block = %d part = %d\n", 934 mdata->s_meta_file_loc, map->s_partition_num); 935 936 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 937 mdata->s_meta_file_loc, map->s_partition_num); 938 939 if (mdata->s_metadata_fe == NULL) { 940 /* mirror file entry */ 941 udf_debug("Mirror metadata file location: block = %d part = %d\n", 942 mdata->s_mirror_file_loc, map->s_partition_num); 943 944 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 945 mdata->s_mirror_file_loc, map->s_partition_num); 946 947 if (mdata->s_mirror_fe == NULL) { 948 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 949 goto error_exit; 950 } 951 } 952 953 /* 954 * bitmap file entry 955 * Note: 956 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 957 */ 958 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 959 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 960 addr.partitionReferenceNum = map->s_partition_num; 961 962 udf_debug("Bitmap file location: block = %d part = %d\n", 963 addr.logicalBlockNum, addr.partitionReferenceNum); 964 965 mdata->s_bitmap_fe = udf_iget(sb, &addr); 966 967 if (mdata->s_bitmap_fe == NULL) { 968 if (sb->s_flags & MS_RDONLY) 969 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 970 else { 971 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 972 goto error_exit; 973 } 974 } 975 } 976 977 udf_debug("udf_load_metadata_files Ok\n"); 978 979 return 0; 980 981 error_exit: 982 return 1; 983 } 984 985 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 986 struct kernel_lb_addr *root) 987 { 988 struct fileSetDesc *fset; 989 990 fset = (struct fileSetDesc *)bh->b_data; 991 992 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 993 994 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 995 996 udf_debug("Rootdir at block=%d, partition=%d\n", 997 root->logicalBlockNum, root->partitionReferenceNum); 998 } 999 1000 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1001 { 1002 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1003 return DIV_ROUND_UP(map->s_partition_len + 1004 (sizeof(struct spaceBitmapDesc) << 3), 1005 sb->s_blocksize * 8); 1006 } 1007 1008 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1009 { 1010 struct udf_bitmap *bitmap; 1011 int nr_groups; 1012 int size; 1013 1014 nr_groups = udf_compute_nr_groups(sb, index); 1015 size = sizeof(struct udf_bitmap) + 1016 (sizeof(struct buffer_head *) * nr_groups); 1017 1018 if (size <= PAGE_SIZE) 1019 bitmap = kzalloc(size, GFP_KERNEL); 1020 else 1021 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1022 1023 if (bitmap == NULL) 1024 return NULL; 1025 1026 bitmap->s_nr_groups = nr_groups; 1027 return bitmap; 1028 } 1029 1030 static int udf_fill_partdesc_info(struct super_block *sb, 1031 struct partitionDesc *p, int p_index) 1032 { 1033 struct udf_part_map *map; 1034 struct udf_sb_info *sbi = UDF_SB(sb); 1035 struct partitionHeaderDesc *phd; 1036 1037 map = &sbi->s_partmaps[p_index]; 1038 1039 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1040 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1041 1042 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1043 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1044 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1045 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1046 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1047 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1048 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1049 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1050 1051 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1052 p_index, map->s_partition_type, 1053 map->s_partition_root, map->s_partition_len); 1054 1055 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1056 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1057 return 0; 1058 1059 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1060 if (phd->unallocSpaceTable.extLength) { 1061 struct kernel_lb_addr loc = { 1062 .logicalBlockNum = le32_to_cpu( 1063 phd->unallocSpaceTable.extPosition), 1064 .partitionReferenceNum = p_index, 1065 }; 1066 1067 map->s_uspace.s_table = udf_iget(sb, &loc); 1068 if (!map->s_uspace.s_table) { 1069 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1070 p_index); 1071 return 1; 1072 } 1073 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1074 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1075 p_index, map->s_uspace.s_table->i_ino); 1076 } 1077 1078 if (phd->unallocSpaceBitmap.extLength) { 1079 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1080 if (!bitmap) 1081 return 1; 1082 map->s_uspace.s_bitmap = bitmap; 1083 bitmap->s_extPosition = le32_to_cpu( 1084 phd->unallocSpaceBitmap.extPosition); 1085 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1086 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1087 p_index, bitmap->s_extPosition); 1088 } 1089 1090 if (phd->partitionIntegrityTable.extLength) 1091 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1092 1093 if (phd->freedSpaceTable.extLength) { 1094 struct kernel_lb_addr loc = { 1095 .logicalBlockNum = le32_to_cpu( 1096 phd->freedSpaceTable.extPosition), 1097 .partitionReferenceNum = p_index, 1098 }; 1099 1100 map->s_fspace.s_table = udf_iget(sb, &loc); 1101 if (!map->s_fspace.s_table) { 1102 udf_debug("cannot load freedSpaceTable (part %d)\n", 1103 p_index); 1104 return 1; 1105 } 1106 1107 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1108 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1109 p_index, map->s_fspace.s_table->i_ino); 1110 } 1111 1112 if (phd->freedSpaceBitmap.extLength) { 1113 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1114 if (!bitmap) 1115 return 1; 1116 map->s_fspace.s_bitmap = bitmap; 1117 bitmap->s_extPosition = le32_to_cpu( 1118 phd->freedSpaceBitmap.extPosition); 1119 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1120 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1121 p_index, bitmap->s_extPosition); 1122 } 1123 return 0; 1124 } 1125 1126 static void udf_find_vat_block(struct super_block *sb, int p_index, 1127 int type1_index, sector_t start_block) 1128 { 1129 struct udf_sb_info *sbi = UDF_SB(sb); 1130 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1131 sector_t vat_block; 1132 struct kernel_lb_addr ino; 1133 1134 /* 1135 * VAT file entry is in the last recorded block. Some broken disks have 1136 * it a few blocks before so try a bit harder... 1137 */ 1138 ino.partitionReferenceNum = type1_index; 1139 for (vat_block = start_block; 1140 vat_block >= map->s_partition_root && 1141 vat_block >= start_block - 3 && 1142 !sbi->s_vat_inode; vat_block--) { 1143 ino.logicalBlockNum = vat_block - map->s_partition_root; 1144 sbi->s_vat_inode = udf_iget(sb, &ino); 1145 } 1146 } 1147 1148 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1149 { 1150 struct udf_sb_info *sbi = UDF_SB(sb); 1151 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1152 struct buffer_head *bh = NULL; 1153 struct udf_inode_info *vati; 1154 uint32_t pos; 1155 struct virtualAllocationTable20 *vat20; 1156 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1157 1158 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1159 if (!sbi->s_vat_inode && 1160 sbi->s_last_block != blocks - 1) { 1161 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1162 (unsigned long)sbi->s_last_block, 1163 (unsigned long)blocks - 1); 1164 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1165 } 1166 if (!sbi->s_vat_inode) 1167 return 1; 1168 1169 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1170 map->s_type_specific.s_virtual.s_start_offset = 0; 1171 map->s_type_specific.s_virtual.s_num_entries = 1172 (sbi->s_vat_inode->i_size - 36) >> 2; 1173 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1174 vati = UDF_I(sbi->s_vat_inode); 1175 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1176 pos = udf_block_map(sbi->s_vat_inode, 0); 1177 bh = sb_bread(sb, pos); 1178 if (!bh) 1179 return 1; 1180 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1181 } else { 1182 vat20 = (struct virtualAllocationTable20 *) 1183 vati->i_ext.i_data; 1184 } 1185 1186 map->s_type_specific.s_virtual.s_start_offset = 1187 le16_to_cpu(vat20->lengthHeader); 1188 map->s_type_specific.s_virtual.s_num_entries = 1189 (sbi->s_vat_inode->i_size - 1190 map->s_type_specific.s_virtual. 1191 s_start_offset) >> 2; 1192 brelse(bh); 1193 } 1194 return 0; 1195 } 1196 1197 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1198 { 1199 struct buffer_head *bh; 1200 struct partitionDesc *p; 1201 struct udf_part_map *map; 1202 struct udf_sb_info *sbi = UDF_SB(sb); 1203 int i, type1_idx; 1204 uint16_t partitionNumber; 1205 uint16_t ident; 1206 int ret = 0; 1207 1208 bh = udf_read_tagged(sb, block, block, &ident); 1209 if (!bh) 1210 return 1; 1211 if (ident != TAG_IDENT_PD) 1212 goto out_bh; 1213 1214 p = (struct partitionDesc *)bh->b_data; 1215 partitionNumber = le16_to_cpu(p->partitionNumber); 1216 1217 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1218 for (i = 0; i < sbi->s_partitions; i++) { 1219 map = &sbi->s_partmaps[i]; 1220 udf_debug("Searching map: (%d == %d)\n", 1221 map->s_partition_num, partitionNumber); 1222 if (map->s_partition_num == partitionNumber && 1223 (map->s_partition_type == UDF_TYPE1_MAP15 || 1224 map->s_partition_type == UDF_SPARABLE_MAP15)) 1225 break; 1226 } 1227 1228 if (i >= sbi->s_partitions) { 1229 udf_debug("Partition (%d) not found in partition map\n", 1230 partitionNumber); 1231 goto out_bh; 1232 } 1233 1234 ret = udf_fill_partdesc_info(sb, p, i); 1235 1236 /* 1237 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1238 * PHYSICAL partitions are already set up 1239 */ 1240 type1_idx = i; 1241 for (i = 0; i < sbi->s_partitions; i++) { 1242 map = &sbi->s_partmaps[i]; 1243 1244 if (map->s_partition_num == partitionNumber && 1245 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1246 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1247 map->s_partition_type == UDF_METADATA_MAP25)) 1248 break; 1249 } 1250 1251 if (i >= sbi->s_partitions) 1252 goto out_bh; 1253 1254 ret = udf_fill_partdesc_info(sb, p, i); 1255 if (ret) 1256 goto out_bh; 1257 1258 if (map->s_partition_type == UDF_METADATA_MAP25) { 1259 ret = udf_load_metadata_files(sb, i); 1260 if (ret) { 1261 udf_err(sb, "error loading MetaData partition map %d\n", 1262 i); 1263 goto out_bh; 1264 } 1265 } else { 1266 ret = udf_load_vat(sb, i, type1_idx); 1267 if (ret) 1268 goto out_bh; 1269 /* 1270 * Mark filesystem read-only if we have a partition with 1271 * virtual map since we don't handle writing to it (we 1272 * overwrite blocks instead of relocating them). 1273 */ 1274 sb->s_flags |= MS_RDONLY; 1275 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); 1276 } 1277 out_bh: 1278 /* In case loading failed, we handle cleanup in udf_fill_super */ 1279 brelse(bh); 1280 return ret; 1281 } 1282 1283 static int udf_load_sparable_map(struct super_block *sb, 1284 struct udf_part_map *map, 1285 struct sparablePartitionMap *spm) 1286 { 1287 uint32_t loc; 1288 uint16_t ident; 1289 struct sparingTable *st; 1290 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1291 int i; 1292 struct buffer_head *bh; 1293 1294 map->s_partition_type = UDF_SPARABLE_MAP15; 1295 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1296 if (!is_power_of_2(sdata->s_packet_len)) { 1297 udf_err(sb, "error loading logical volume descriptor: " 1298 "Invalid packet length %u\n", 1299 (unsigned)sdata->s_packet_len); 1300 return -EIO; 1301 } 1302 if (spm->numSparingTables > 4) { 1303 udf_err(sb, "error loading logical volume descriptor: " 1304 "Too many sparing tables (%d)\n", 1305 (int)spm->numSparingTables); 1306 return -EIO; 1307 } 1308 1309 for (i = 0; i < spm->numSparingTables; i++) { 1310 loc = le32_to_cpu(spm->locSparingTable[i]); 1311 bh = udf_read_tagged(sb, loc, loc, &ident); 1312 if (!bh) 1313 continue; 1314 1315 st = (struct sparingTable *)bh->b_data; 1316 if (ident != 0 || 1317 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1318 strlen(UDF_ID_SPARING)) || 1319 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1320 sb->s_blocksize) { 1321 brelse(bh); 1322 continue; 1323 } 1324 1325 sdata->s_spar_map[i] = bh; 1326 } 1327 map->s_partition_func = udf_get_pblock_spar15; 1328 return 0; 1329 } 1330 1331 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1332 struct kernel_lb_addr *fileset) 1333 { 1334 struct logicalVolDesc *lvd; 1335 int i, offset; 1336 uint8_t type; 1337 struct udf_sb_info *sbi = UDF_SB(sb); 1338 struct genericPartitionMap *gpm; 1339 uint16_t ident; 1340 struct buffer_head *bh; 1341 unsigned int table_len; 1342 int ret = 0; 1343 1344 bh = udf_read_tagged(sb, block, block, &ident); 1345 if (!bh) 1346 return 1; 1347 BUG_ON(ident != TAG_IDENT_LVD); 1348 lvd = (struct logicalVolDesc *)bh->b_data; 1349 table_len = le32_to_cpu(lvd->mapTableLength); 1350 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1351 udf_err(sb, "error loading logical volume descriptor: " 1352 "Partition table too long (%u > %lu)\n", table_len, 1353 sb->s_blocksize - sizeof(*lvd)); 1354 ret = 1; 1355 goto out_bh; 1356 } 1357 1358 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1359 if (ret) 1360 goto out_bh; 1361 1362 for (i = 0, offset = 0; 1363 i < sbi->s_partitions && offset < table_len; 1364 i++, offset += gpm->partitionMapLength) { 1365 struct udf_part_map *map = &sbi->s_partmaps[i]; 1366 gpm = (struct genericPartitionMap *) 1367 &(lvd->partitionMaps[offset]); 1368 type = gpm->partitionMapType; 1369 if (type == 1) { 1370 struct genericPartitionMap1 *gpm1 = 1371 (struct genericPartitionMap1 *)gpm; 1372 map->s_partition_type = UDF_TYPE1_MAP15; 1373 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1374 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1375 map->s_partition_func = NULL; 1376 } else if (type == 2) { 1377 struct udfPartitionMap2 *upm2 = 1378 (struct udfPartitionMap2 *)gpm; 1379 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1380 strlen(UDF_ID_VIRTUAL))) { 1381 u16 suf = 1382 le16_to_cpu(((__le16 *)upm2->partIdent. 1383 identSuffix)[0]); 1384 if (suf < 0x0200) { 1385 map->s_partition_type = 1386 UDF_VIRTUAL_MAP15; 1387 map->s_partition_func = 1388 udf_get_pblock_virt15; 1389 } else { 1390 map->s_partition_type = 1391 UDF_VIRTUAL_MAP20; 1392 map->s_partition_func = 1393 udf_get_pblock_virt20; 1394 } 1395 } else if (!strncmp(upm2->partIdent.ident, 1396 UDF_ID_SPARABLE, 1397 strlen(UDF_ID_SPARABLE))) { 1398 if (udf_load_sparable_map(sb, map, 1399 (struct sparablePartitionMap *)gpm) < 0) { 1400 ret = 1; 1401 goto out_bh; 1402 } 1403 } else if (!strncmp(upm2->partIdent.ident, 1404 UDF_ID_METADATA, 1405 strlen(UDF_ID_METADATA))) { 1406 struct udf_meta_data *mdata = 1407 &map->s_type_specific.s_metadata; 1408 struct metadataPartitionMap *mdm = 1409 (struct metadataPartitionMap *) 1410 &(lvd->partitionMaps[offset]); 1411 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1412 i, type, UDF_ID_METADATA); 1413 1414 map->s_partition_type = UDF_METADATA_MAP25; 1415 map->s_partition_func = udf_get_pblock_meta25; 1416 1417 mdata->s_meta_file_loc = 1418 le32_to_cpu(mdm->metadataFileLoc); 1419 mdata->s_mirror_file_loc = 1420 le32_to_cpu(mdm->metadataMirrorFileLoc); 1421 mdata->s_bitmap_file_loc = 1422 le32_to_cpu(mdm->metadataBitmapFileLoc); 1423 mdata->s_alloc_unit_size = 1424 le32_to_cpu(mdm->allocUnitSize); 1425 mdata->s_align_unit_size = 1426 le16_to_cpu(mdm->alignUnitSize); 1427 if (mdm->flags & 0x01) 1428 mdata->s_flags |= MF_DUPLICATE_MD; 1429 1430 udf_debug("Metadata Ident suffix=0x%x\n", 1431 le16_to_cpu(*(__le16 *) 1432 mdm->partIdent.identSuffix)); 1433 udf_debug("Metadata part num=%d\n", 1434 le16_to_cpu(mdm->partitionNum)); 1435 udf_debug("Metadata part alloc unit size=%d\n", 1436 le32_to_cpu(mdm->allocUnitSize)); 1437 udf_debug("Metadata file loc=%d\n", 1438 le32_to_cpu(mdm->metadataFileLoc)); 1439 udf_debug("Mirror file loc=%d\n", 1440 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1441 udf_debug("Bitmap file loc=%d\n", 1442 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1443 udf_debug("Flags: %d %d\n", 1444 mdata->s_flags, mdm->flags); 1445 } else { 1446 udf_debug("Unknown ident: %s\n", 1447 upm2->partIdent.ident); 1448 continue; 1449 } 1450 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1451 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1452 } 1453 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1454 i, map->s_partition_num, type, map->s_volumeseqnum); 1455 } 1456 1457 if (fileset) { 1458 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1459 1460 *fileset = lelb_to_cpu(la->extLocation); 1461 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1462 fileset->logicalBlockNum, 1463 fileset->partitionReferenceNum); 1464 } 1465 if (lvd->integritySeqExt.extLength) 1466 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1467 1468 out_bh: 1469 brelse(bh); 1470 return ret; 1471 } 1472 1473 /* 1474 * udf_load_logicalvolint 1475 * 1476 */ 1477 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1478 { 1479 struct buffer_head *bh = NULL; 1480 uint16_t ident; 1481 struct udf_sb_info *sbi = UDF_SB(sb); 1482 struct logicalVolIntegrityDesc *lvid; 1483 1484 while (loc.extLength > 0 && 1485 (bh = udf_read_tagged(sb, loc.extLocation, 1486 loc.extLocation, &ident)) && 1487 ident == TAG_IDENT_LVID) { 1488 sbi->s_lvid_bh = bh; 1489 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1490 1491 if (lvid->nextIntegrityExt.extLength) 1492 udf_load_logicalvolint(sb, 1493 leea_to_cpu(lvid->nextIntegrityExt)); 1494 1495 if (sbi->s_lvid_bh != bh) 1496 brelse(bh); 1497 loc.extLength -= sb->s_blocksize; 1498 loc.extLocation++; 1499 } 1500 if (sbi->s_lvid_bh != bh) 1501 brelse(bh); 1502 } 1503 1504 /* 1505 * udf_process_sequence 1506 * 1507 * PURPOSE 1508 * Process a main/reserve volume descriptor sequence. 1509 * 1510 * PRE-CONDITIONS 1511 * sb Pointer to _locked_ superblock. 1512 * block First block of first extent of the sequence. 1513 * lastblock Lastblock of first extent of the sequence. 1514 * 1515 * HISTORY 1516 * July 1, 1997 - Andrew E. Mileski 1517 * Written, tested, and released. 1518 */ 1519 static noinline int udf_process_sequence(struct super_block *sb, long block, 1520 long lastblock, struct kernel_lb_addr *fileset) 1521 { 1522 struct buffer_head *bh = NULL; 1523 struct udf_vds_record vds[VDS_POS_LENGTH]; 1524 struct udf_vds_record *curr; 1525 struct generic_desc *gd; 1526 struct volDescPtr *vdp; 1527 int done = 0; 1528 uint32_t vdsn; 1529 uint16_t ident; 1530 long next_s = 0, next_e = 0; 1531 1532 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1533 1534 /* 1535 * Read the main descriptor sequence and find which descriptors 1536 * are in it. 1537 */ 1538 for (; (!done && block <= lastblock); block++) { 1539 1540 bh = udf_read_tagged(sb, block, block, &ident); 1541 if (!bh) { 1542 udf_err(sb, 1543 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1544 (unsigned long long)block); 1545 return 1; 1546 } 1547 1548 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1549 gd = (struct generic_desc *)bh->b_data; 1550 vdsn = le32_to_cpu(gd->volDescSeqNum); 1551 switch (ident) { 1552 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1553 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1554 if (vdsn >= curr->volDescSeqNum) { 1555 curr->volDescSeqNum = vdsn; 1556 curr->block = block; 1557 } 1558 break; 1559 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1560 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1561 if (vdsn >= curr->volDescSeqNum) { 1562 curr->volDescSeqNum = vdsn; 1563 curr->block = block; 1564 1565 vdp = (struct volDescPtr *)bh->b_data; 1566 next_s = le32_to_cpu( 1567 vdp->nextVolDescSeqExt.extLocation); 1568 next_e = le32_to_cpu( 1569 vdp->nextVolDescSeqExt.extLength); 1570 next_e = next_e >> sb->s_blocksize_bits; 1571 next_e += next_s; 1572 } 1573 break; 1574 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1575 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1576 if (vdsn >= curr->volDescSeqNum) { 1577 curr->volDescSeqNum = vdsn; 1578 curr->block = block; 1579 } 1580 break; 1581 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1582 curr = &vds[VDS_POS_PARTITION_DESC]; 1583 if (!curr->block) 1584 curr->block = block; 1585 break; 1586 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1587 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1588 if (vdsn >= curr->volDescSeqNum) { 1589 curr->volDescSeqNum = vdsn; 1590 curr->block = block; 1591 } 1592 break; 1593 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1594 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1595 if (vdsn >= curr->volDescSeqNum) { 1596 curr->volDescSeqNum = vdsn; 1597 curr->block = block; 1598 } 1599 break; 1600 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1601 vds[VDS_POS_TERMINATING_DESC].block = block; 1602 if (next_e) { 1603 block = next_s; 1604 lastblock = next_e; 1605 next_s = next_e = 0; 1606 } else 1607 done = 1; 1608 break; 1609 } 1610 brelse(bh); 1611 } 1612 /* 1613 * Now read interesting descriptors again and process them 1614 * in a suitable order 1615 */ 1616 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1617 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1618 return 1; 1619 } 1620 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1621 return 1; 1622 1623 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1624 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1625 return 1; 1626 1627 if (vds[VDS_POS_PARTITION_DESC].block) { 1628 /* 1629 * We rescan the whole descriptor sequence to find 1630 * partition descriptor blocks and process them. 1631 */ 1632 for (block = vds[VDS_POS_PARTITION_DESC].block; 1633 block < vds[VDS_POS_TERMINATING_DESC].block; 1634 block++) 1635 if (udf_load_partdesc(sb, block)) 1636 return 1; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1643 struct kernel_lb_addr *fileset) 1644 { 1645 struct anchorVolDescPtr *anchor; 1646 long main_s, main_e, reserve_s, reserve_e; 1647 1648 anchor = (struct anchorVolDescPtr *)bh->b_data; 1649 1650 /* Locate the main sequence */ 1651 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1652 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1653 main_e = main_e >> sb->s_blocksize_bits; 1654 main_e += main_s; 1655 1656 /* Locate the reserve sequence */ 1657 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1658 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1659 reserve_e = reserve_e >> sb->s_blocksize_bits; 1660 reserve_e += reserve_s; 1661 1662 /* Process the main & reserve sequences */ 1663 /* responsible for finding the PartitionDesc(s) */ 1664 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1665 return 1; 1666 udf_sb_free_partitions(sb); 1667 if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset)) 1668 return 1; 1669 udf_sb_free_partitions(sb); 1670 return 0; 1671 } 1672 1673 /* 1674 * Check whether there is an anchor block in the given block and 1675 * load Volume Descriptor Sequence if so. 1676 */ 1677 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1678 struct kernel_lb_addr *fileset) 1679 { 1680 struct buffer_head *bh; 1681 uint16_t ident; 1682 int ret; 1683 1684 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1685 udf_fixed_to_variable(block) >= 1686 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1687 return 0; 1688 1689 bh = udf_read_tagged(sb, block, block, &ident); 1690 if (!bh) 1691 return 0; 1692 if (ident != TAG_IDENT_AVDP) { 1693 brelse(bh); 1694 return 0; 1695 } 1696 ret = udf_load_sequence(sb, bh, fileset); 1697 brelse(bh); 1698 return ret; 1699 } 1700 1701 /* Search for an anchor volume descriptor pointer */ 1702 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1703 struct kernel_lb_addr *fileset) 1704 { 1705 sector_t last[6]; 1706 int i; 1707 struct udf_sb_info *sbi = UDF_SB(sb); 1708 int last_count = 0; 1709 1710 /* First try user provided anchor */ 1711 if (sbi->s_anchor) { 1712 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1713 return lastblock; 1714 } 1715 /* 1716 * according to spec, anchor is in either: 1717 * block 256 1718 * lastblock-256 1719 * lastblock 1720 * however, if the disc isn't closed, it could be 512. 1721 */ 1722 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1723 return lastblock; 1724 /* 1725 * The trouble is which block is the last one. Drives often misreport 1726 * this so we try various possibilities. 1727 */ 1728 last[last_count++] = lastblock; 1729 if (lastblock >= 1) 1730 last[last_count++] = lastblock - 1; 1731 last[last_count++] = lastblock + 1; 1732 if (lastblock >= 2) 1733 last[last_count++] = lastblock - 2; 1734 if (lastblock >= 150) 1735 last[last_count++] = lastblock - 150; 1736 if (lastblock >= 152) 1737 last[last_count++] = lastblock - 152; 1738 1739 for (i = 0; i < last_count; i++) { 1740 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1741 sb->s_blocksize_bits) 1742 continue; 1743 if (udf_check_anchor_block(sb, last[i], fileset)) 1744 return last[i]; 1745 if (last[i] < 256) 1746 continue; 1747 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1748 return last[i]; 1749 } 1750 1751 /* Finally try block 512 in case media is open */ 1752 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1753 return last[0]; 1754 return 0; 1755 } 1756 1757 /* 1758 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1759 * area specified by it. The function expects sbi->s_lastblock to be the last 1760 * block on the media. 1761 * 1762 * Return 1 if ok, 0 if not found. 1763 * 1764 */ 1765 static int udf_find_anchor(struct super_block *sb, 1766 struct kernel_lb_addr *fileset) 1767 { 1768 sector_t lastblock; 1769 struct udf_sb_info *sbi = UDF_SB(sb); 1770 1771 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1772 if (lastblock) 1773 goto out; 1774 1775 /* No anchor found? Try VARCONV conversion of block numbers */ 1776 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1777 /* Firstly, we try to not convert number of the last block */ 1778 lastblock = udf_scan_anchors(sb, 1779 udf_variable_to_fixed(sbi->s_last_block), 1780 fileset); 1781 if (lastblock) 1782 goto out; 1783 1784 /* Secondly, we try with converted number of the last block */ 1785 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1786 if (!lastblock) { 1787 /* VARCONV didn't help. Clear it. */ 1788 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1789 return 0; 1790 } 1791 out: 1792 sbi->s_last_block = lastblock; 1793 return 1; 1794 } 1795 1796 /* 1797 * Check Volume Structure Descriptor, find Anchor block and load Volume 1798 * Descriptor Sequence 1799 */ 1800 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1801 int silent, struct kernel_lb_addr *fileset) 1802 { 1803 struct udf_sb_info *sbi = UDF_SB(sb); 1804 loff_t nsr_off; 1805 1806 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1807 if (!silent) 1808 udf_warn(sb, "Bad block size\n"); 1809 return 0; 1810 } 1811 sbi->s_last_block = uopt->lastblock; 1812 if (!uopt->novrs) { 1813 /* Check that it is NSR02 compliant */ 1814 nsr_off = udf_check_vsd(sb); 1815 if (!nsr_off) { 1816 if (!silent) 1817 udf_warn(sb, "No VRS found\n"); 1818 return 0; 1819 } 1820 if (nsr_off == -1) 1821 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1822 if (!sbi->s_last_block) 1823 sbi->s_last_block = udf_get_last_block(sb); 1824 } else { 1825 udf_debug("Validity check skipped because of novrs option\n"); 1826 } 1827 1828 /* Look for anchor block and load Volume Descriptor Sequence */ 1829 sbi->s_anchor = uopt->anchor; 1830 if (!udf_find_anchor(sb, fileset)) { 1831 if (!silent) 1832 udf_warn(sb, "No anchor found\n"); 1833 return 0; 1834 } 1835 return 1; 1836 } 1837 1838 static void udf_open_lvid(struct super_block *sb) 1839 { 1840 struct udf_sb_info *sbi = UDF_SB(sb); 1841 struct buffer_head *bh = sbi->s_lvid_bh; 1842 struct logicalVolIntegrityDesc *lvid; 1843 struct logicalVolIntegrityDescImpUse *lvidiu; 1844 1845 if (!bh) 1846 return; 1847 1848 mutex_lock(&sbi->s_alloc_mutex); 1849 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1850 lvidiu = udf_sb_lvidiu(sbi); 1851 1852 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1853 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1854 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1855 CURRENT_TIME); 1856 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1857 1858 lvid->descTag.descCRC = cpu_to_le16( 1859 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1860 le16_to_cpu(lvid->descTag.descCRCLength))); 1861 1862 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1863 mark_buffer_dirty(bh); 1864 sbi->s_lvid_dirty = 0; 1865 mutex_unlock(&sbi->s_alloc_mutex); 1866 /* Make opening of filesystem visible on the media immediately */ 1867 sync_dirty_buffer(bh); 1868 } 1869 1870 static void udf_close_lvid(struct super_block *sb) 1871 { 1872 struct udf_sb_info *sbi = UDF_SB(sb); 1873 struct buffer_head *bh = sbi->s_lvid_bh; 1874 struct logicalVolIntegrityDesc *lvid; 1875 struct logicalVolIntegrityDescImpUse *lvidiu; 1876 1877 if (!bh) 1878 return; 1879 1880 mutex_lock(&sbi->s_alloc_mutex); 1881 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1882 lvidiu = udf_sb_lvidiu(sbi); 1883 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1884 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1885 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1886 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1887 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1888 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1889 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1890 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1891 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1892 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1893 1894 lvid->descTag.descCRC = cpu_to_le16( 1895 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1896 le16_to_cpu(lvid->descTag.descCRCLength))); 1897 1898 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1899 /* 1900 * We set buffer uptodate unconditionally here to avoid spurious 1901 * warnings from mark_buffer_dirty() when previous EIO has marked 1902 * the buffer as !uptodate 1903 */ 1904 set_buffer_uptodate(bh); 1905 mark_buffer_dirty(bh); 1906 sbi->s_lvid_dirty = 0; 1907 mutex_unlock(&sbi->s_alloc_mutex); 1908 /* Make closing of filesystem visible on the media immediately */ 1909 sync_dirty_buffer(bh); 1910 } 1911 1912 u64 lvid_get_unique_id(struct super_block *sb) 1913 { 1914 struct buffer_head *bh; 1915 struct udf_sb_info *sbi = UDF_SB(sb); 1916 struct logicalVolIntegrityDesc *lvid; 1917 struct logicalVolHeaderDesc *lvhd; 1918 u64 uniqueID; 1919 u64 ret; 1920 1921 bh = sbi->s_lvid_bh; 1922 if (!bh) 1923 return 0; 1924 1925 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1926 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1927 1928 mutex_lock(&sbi->s_alloc_mutex); 1929 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1930 if (!(++uniqueID & 0xFFFFFFFF)) 1931 uniqueID += 16; 1932 lvhd->uniqueID = cpu_to_le64(uniqueID); 1933 mutex_unlock(&sbi->s_alloc_mutex); 1934 mark_buffer_dirty(bh); 1935 1936 return ret; 1937 } 1938 1939 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1940 { 1941 int ret; 1942 struct inode *inode = NULL; 1943 struct udf_options uopt; 1944 struct kernel_lb_addr rootdir, fileset; 1945 struct udf_sb_info *sbi; 1946 1947 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1948 uopt.uid = INVALID_UID; 1949 uopt.gid = INVALID_GID; 1950 uopt.umask = 0; 1951 uopt.fmode = UDF_INVALID_MODE; 1952 uopt.dmode = UDF_INVALID_MODE; 1953 1954 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1955 if (!sbi) 1956 return -ENOMEM; 1957 1958 sb->s_fs_info = sbi; 1959 1960 mutex_init(&sbi->s_alloc_mutex); 1961 1962 if (!udf_parse_options((char *)options, &uopt, false)) 1963 goto error_out; 1964 1965 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1966 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1967 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 1968 goto error_out; 1969 } 1970 #ifdef CONFIG_UDF_NLS 1971 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1972 uopt.nls_map = load_nls_default(); 1973 if (!uopt.nls_map) 1974 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1975 else 1976 udf_debug("Using default NLS map\n"); 1977 } 1978 #endif 1979 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1980 uopt.flags |= (1 << UDF_FLAG_UTF8); 1981 1982 fileset.logicalBlockNum = 0xFFFFFFFF; 1983 fileset.partitionReferenceNum = 0xFFFF; 1984 1985 sbi->s_flags = uopt.flags; 1986 sbi->s_uid = uopt.uid; 1987 sbi->s_gid = uopt.gid; 1988 sbi->s_umask = uopt.umask; 1989 sbi->s_fmode = uopt.fmode; 1990 sbi->s_dmode = uopt.dmode; 1991 sbi->s_nls_map = uopt.nls_map; 1992 rwlock_init(&sbi->s_cred_lock); 1993 1994 if (uopt.session == 0xFFFFFFFF) 1995 sbi->s_session = udf_get_last_session(sb); 1996 else 1997 sbi->s_session = uopt.session; 1998 1999 udf_debug("Multi-session=%d\n", sbi->s_session); 2000 2001 /* Fill in the rest of the superblock */ 2002 sb->s_op = &udf_sb_ops; 2003 sb->s_export_op = &udf_export_ops; 2004 2005 sb->s_magic = UDF_SUPER_MAGIC; 2006 sb->s_time_gran = 1000; 2007 2008 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2009 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2010 } else { 2011 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2012 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2013 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2014 if (!silent) 2015 pr_notice("Rescanning with blocksize %d\n", 2016 UDF_DEFAULT_BLOCKSIZE); 2017 brelse(sbi->s_lvid_bh); 2018 sbi->s_lvid_bh = NULL; 2019 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2020 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2021 } 2022 } 2023 if (!ret) { 2024 udf_warn(sb, "No partition found (1)\n"); 2025 goto error_out; 2026 } 2027 2028 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2029 2030 if (sbi->s_lvid_bh) { 2031 struct logicalVolIntegrityDescImpUse *lvidiu = 2032 udf_sb_lvidiu(sbi); 2033 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2034 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2035 /* uint16_t maxUDFWriteRev = 2036 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 2037 2038 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2039 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2040 le16_to_cpu(lvidiu->minUDFReadRev), 2041 UDF_MAX_READ_VERSION); 2042 goto error_out; 2043 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 2044 sb->s_flags |= MS_RDONLY; 2045 2046 sbi->s_udfrev = minUDFWriteRev; 2047 2048 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2049 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2050 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2051 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2052 } 2053 2054 if (!sbi->s_partitions) { 2055 udf_warn(sb, "No partition found (2)\n"); 2056 goto error_out; 2057 } 2058 2059 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2060 UDF_PART_FLAG_READ_ONLY) { 2061 pr_notice("Partition marked readonly; forcing readonly mount\n"); 2062 sb->s_flags |= MS_RDONLY; 2063 } 2064 2065 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2066 udf_warn(sb, "No fileset found\n"); 2067 goto error_out; 2068 } 2069 2070 if (!silent) { 2071 struct timestamp ts; 2072 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2073 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2074 sbi->s_volume_ident, 2075 le16_to_cpu(ts.year), ts.month, ts.day, 2076 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2077 } 2078 if (!(sb->s_flags & MS_RDONLY)) 2079 udf_open_lvid(sb); 2080 2081 /* Assign the root inode */ 2082 /* assign inodes by physical block number */ 2083 /* perhaps it's not extensible enough, but for now ... */ 2084 inode = udf_iget(sb, &rootdir); 2085 if (!inode) { 2086 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2087 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2088 goto error_out; 2089 } 2090 2091 /* Allocate a dentry for the root inode */ 2092 sb->s_root = d_make_root(inode); 2093 if (!sb->s_root) { 2094 udf_err(sb, "Couldn't allocate root dentry\n"); 2095 goto error_out; 2096 } 2097 sb->s_maxbytes = MAX_LFS_FILESIZE; 2098 sb->s_max_links = UDF_MAX_LINKS; 2099 return 0; 2100 2101 error_out: 2102 if (sbi->s_vat_inode) 2103 iput(sbi->s_vat_inode); 2104 #ifdef CONFIG_UDF_NLS 2105 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2106 unload_nls(sbi->s_nls_map); 2107 #endif 2108 if (!(sb->s_flags & MS_RDONLY)) 2109 udf_close_lvid(sb); 2110 brelse(sbi->s_lvid_bh); 2111 udf_sb_free_partitions(sb); 2112 kfree(sbi); 2113 sb->s_fs_info = NULL; 2114 2115 return -EINVAL; 2116 } 2117 2118 void _udf_err(struct super_block *sb, const char *function, 2119 const char *fmt, ...) 2120 { 2121 struct va_format vaf; 2122 va_list args; 2123 2124 va_start(args, fmt); 2125 2126 vaf.fmt = fmt; 2127 vaf.va = &args; 2128 2129 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2130 2131 va_end(args); 2132 } 2133 2134 void _udf_warn(struct super_block *sb, const char *function, 2135 const char *fmt, ...) 2136 { 2137 struct va_format vaf; 2138 va_list args; 2139 2140 va_start(args, fmt); 2141 2142 vaf.fmt = fmt; 2143 vaf.va = &args; 2144 2145 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2146 2147 va_end(args); 2148 } 2149 2150 static void udf_put_super(struct super_block *sb) 2151 { 2152 struct udf_sb_info *sbi; 2153 2154 sbi = UDF_SB(sb); 2155 2156 if (sbi->s_vat_inode) 2157 iput(sbi->s_vat_inode); 2158 #ifdef CONFIG_UDF_NLS 2159 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2160 unload_nls(sbi->s_nls_map); 2161 #endif 2162 if (!(sb->s_flags & MS_RDONLY)) 2163 udf_close_lvid(sb); 2164 brelse(sbi->s_lvid_bh); 2165 udf_sb_free_partitions(sb); 2166 kfree(sb->s_fs_info); 2167 sb->s_fs_info = NULL; 2168 } 2169 2170 static int udf_sync_fs(struct super_block *sb, int wait) 2171 { 2172 struct udf_sb_info *sbi = UDF_SB(sb); 2173 2174 mutex_lock(&sbi->s_alloc_mutex); 2175 if (sbi->s_lvid_dirty) { 2176 /* 2177 * Blockdevice will be synced later so we don't have to submit 2178 * the buffer for IO 2179 */ 2180 mark_buffer_dirty(sbi->s_lvid_bh); 2181 sbi->s_lvid_dirty = 0; 2182 } 2183 mutex_unlock(&sbi->s_alloc_mutex); 2184 2185 return 0; 2186 } 2187 2188 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2189 { 2190 struct super_block *sb = dentry->d_sb; 2191 struct udf_sb_info *sbi = UDF_SB(sb); 2192 struct logicalVolIntegrityDescImpUse *lvidiu; 2193 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2194 2195 if (sbi->s_lvid_bh != NULL) 2196 lvidiu = udf_sb_lvidiu(sbi); 2197 else 2198 lvidiu = NULL; 2199 2200 buf->f_type = UDF_SUPER_MAGIC; 2201 buf->f_bsize = sb->s_blocksize; 2202 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2203 buf->f_bfree = udf_count_free(sb); 2204 buf->f_bavail = buf->f_bfree; 2205 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2206 le32_to_cpu(lvidiu->numDirs)) : 0) 2207 + buf->f_bfree; 2208 buf->f_ffree = buf->f_bfree; 2209 buf->f_namelen = UDF_NAME_LEN - 2; 2210 buf->f_fsid.val[0] = (u32)id; 2211 buf->f_fsid.val[1] = (u32)(id >> 32); 2212 2213 return 0; 2214 } 2215 2216 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2217 struct udf_bitmap *bitmap) 2218 { 2219 struct buffer_head *bh = NULL; 2220 unsigned int accum = 0; 2221 int index; 2222 int block = 0, newblock; 2223 struct kernel_lb_addr loc; 2224 uint32_t bytes; 2225 uint8_t *ptr; 2226 uint16_t ident; 2227 struct spaceBitmapDesc *bm; 2228 2229 loc.logicalBlockNum = bitmap->s_extPosition; 2230 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2231 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2232 2233 if (!bh) { 2234 udf_err(sb, "udf_count_free failed\n"); 2235 goto out; 2236 } else if (ident != TAG_IDENT_SBD) { 2237 brelse(bh); 2238 udf_err(sb, "udf_count_free failed\n"); 2239 goto out; 2240 } 2241 2242 bm = (struct spaceBitmapDesc *)bh->b_data; 2243 bytes = le32_to_cpu(bm->numOfBytes); 2244 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2245 ptr = (uint8_t *)bh->b_data; 2246 2247 while (bytes > 0) { 2248 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2249 accum += bitmap_weight((const unsigned long *)(ptr + index), 2250 cur_bytes * 8); 2251 bytes -= cur_bytes; 2252 if (bytes) { 2253 brelse(bh); 2254 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2255 bh = udf_tread(sb, newblock); 2256 if (!bh) { 2257 udf_debug("read failed\n"); 2258 goto out; 2259 } 2260 index = 0; 2261 ptr = (uint8_t *)bh->b_data; 2262 } 2263 } 2264 brelse(bh); 2265 out: 2266 return accum; 2267 } 2268 2269 static unsigned int udf_count_free_table(struct super_block *sb, 2270 struct inode *table) 2271 { 2272 unsigned int accum = 0; 2273 uint32_t elen; 2274 struct kernel_lb_addr eloc; 2275 int8_t etype; 2276 struct extent_position epos; 2277 2278 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2279 epos.block = UDF_I(table)->i_location; 2280 epos.offset = sizeof(struct unallocSpaceEntry); 2281 epos.bh = NULL; 2282 2283 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2284 accum += (elen >> table->i_sb->s_blocksize_bits); 2285 2286 brelse(epos.bh); 2287 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2288 2289 return accum; 2290 } 2291 2292 static unsigned int udf_count_free(struct super_block *sb) 2293 { 2294 unsigned int accum = 0; 2295 struct udf_sb_info *sbi; 2296 struct udf_part_map *map; 2297 2298 sbi = UDF_SB(sb); 2299 if (sbi->s_lvid_bh) { 2300 struct logicalVolIntegrityDesc *lvid = 2301 (struct logicalVolIntegrityDesc *) 2302 sbi->s_lvid_bh->b_data; 2303 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2304 accum = le32_to_cpu( 2305 lvid->freeSpaceTable[sbi->s_partition]); 2306 if (accum == 0xFFFFFFFF) 2307 accum = 0; 2308 } 2309 } 2310 2311 if (accum) 2312 return accum; 2313 2314 map = &sbi->s_partmaps[sbi->s_partition]; 2315 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2316 accum += udf_count_free_bitmap(sb, 2317 map->s_uspace.s_bitmap); 2318 } 2319 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2320 accum += udf_count_free_bitmap(sb, 2321 map->s_fspace.s_bitmap); 2322 } 2323 if (accum) 2324 return accum; 2325 2326 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2327 accum += udf_count_free_table(sb, 2328 map->s_uspace.s_table); 2329 } 2330 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2331 accum += udf_count_free_table(sb, 2332 map->s_fspace.s_table); 2333 } 2334 2335 return accum; 2336 } 2337