xref: /openbmc/linux/fs/udf/super.c (revision 97da55fc)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 	struct logicalVolIntegrityDesc *lvid =
100 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 	__u32 offset = number_of_partitions * 2 *
103 				sizeof(uint32_t)/sizeof(uint8_t);
104 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 		      int flags, const char *dev_name, void *data)
110 {
111 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115 	.owner		= THIS_MODULE,
116 	.name		= "udf",
117 	.mount		= udf_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 
122 static struct kmem_cache *udf_inode_cachep;
123 
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 	struct udf_inode_info *ei;
127 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 	if (!ei)
129 		return NULL;
130 
131 	ei->i_unique = 0;
132 	ei->i_lenExtents = 0;
133 	ei->i_next_alloc_block = 0;
134 	ei->i_next_alloc_goal = 0;
135 	ei->i_strat4096 = 0;
136 	init_rwsem(&ei->i_data_sem);
137 	ei->cached_extent.lstart = -1;
138 	spin_lock_init(&ei->i_extent_cache_lock);
139 
140 	return &ei->vfs_inode;
141 }
142 
143 static void udf_i_callback(struct rcu_head *head)
144 {
145 	struct inode *inode = container_of(head, struct inode, i_rcu);
146 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
147 }
148 
149 static void udf_destroy_inode(struct inode *inode)
150 {
151 	call_rcu(&inode->i_rcu, udf_i_callback);
152 }
153 
154 static void init_once(void *foo)
155 {
156 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
157 
158 	ei->i_ext.i_data = NULL;
159 	inode_init_once(&ei->vfs_inode);
160 }
161 
162 static int init_inodecache(void)
163 {
164 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
165 					     sizeof(struct udf_inode_info),
166 					     0, (SLAB_RECLAIM_ACCOUNT |
167 						 SLAB_MEM_SPREAD),
168 					     init_once);
169 	if (!udf_inode_cachep)
170 		return -ENOMEM;
171 	return 0;
172 }
173 
174 static void destroy_inodecache(void)
175 {
176 	/*
177 	 * Make sure all delayed rcu free inodes are flushed before we
178 	 * destroy cache.
179 	 */
180 	rcu_barrier();
181 	kmem_cache_destroy(udf_inode_cachep);
182 }
183 
184 /* Superblock operations */
185 static const struct super_operations udf_sb_ops = {
186 	.alloc_inode	= udf_alloc_inode,
187 	.destroy_inode	= udf_destroy_inode,
188 	.write_inode	= udf_write_inode,
189 	.evict_inode	= udf_evict_inode,
190 	.put_super	= udf_put_super,
191 	.sync_fs	= udf_sync_fs,
192 	.statfs		= udf_statfs,
193 	.remount_fs	= udf_remount_fs,
194 	.show_options	= udf_show_options,
195 };
196 
197 struct udf_options {
198 	unsigned char novrs;
199 	unsigned int blocksize;
200 	unsigned int session;
201 	unsigned int lastblock;
202 	unsigned int anchor;
203 	unsigned int volume;
204 	unsigned short partition;
205 	unsigned int fileset;
206 	unsigned int rootdir;
207 	unsigned int flags;
208 	umode_t umask;
209 	kgid_t gid;
210 	kuid_t uid;
211 	umode_t fmode;
212 	umode_t dmode;
213 	struct nls_table *nls_map;
214 };
215 
216 static int __init init_udf_fs(void)
217 {
218 	int err;
219 
220 	err = init_inodecache();
221 	if (err)
222 		goto out1;
223 	err = register_filesystem(&udf_fstype);
224 	if (err)
225 		goto out;
226 
227 	return 0;
228 
229 out:
230 	destroy_inodecache();
231 
232 out1:
233 	return err;
234 }
235 
236 static void __exit exit_udf_fs(void)
237 {
238 	unregister_filesystem(&udf_fstype);
239 	destroy_inodecache();
240 }
241 
242 module_init(init_udf_fs)
243 module_exit(exit_udf_fs)
244 
245 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
246 {
247 	struct udf_sb_info *sbi = UDF_SB(sb);
248 
249 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
250 				  GFP_KERNEL);
251 	if (!sbi->s_partmaps) {
252 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
253 			count);
254 		sbi->s_partitions = 0;
255 		return -ENOMEM;
256 	}
257 
258 	sbi->s_partitions = count;
259 	return 0;
260 }
261 
262 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
263 {
264 	int i;
265 	int nr_groups = bitmap->s_nr_groups;
266 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
267 						nr_groups);
268 
269 	for (i = 0; i < nr_groups; i++)
270 		if (bitmap->s_block_bitmap[i])
271 			brelse(bitmap->s_block_bitmap[i]);
272 
273 	if (size <= PAGE_SIZE)
274 		kfree(bitmap);
275 	else
276 		vfree(bitmap);
277 }
278 
279 static void udf_free_partition(struct udf_part_map *map)
280 {
281 	int i;
282 	struct udf_meta_data *mdata;
283 
284 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
285 		iput(map->s_uspace.s_table);
286 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
287 		iput(map->s_fspace.s_table);
288 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
289 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
290 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
291 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
292 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
293 		for (i = 0; i < 4; i++)
294 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
295 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
296 		mdata = &map->s_type_specific.s_metadata;
297 		iput(mdata->s_metadata_fe);
298 		mdata->s_metadata_fe = NULL;
299 
300 		iput(mdata->s_mirror_fe);
301 		mdata->s_mirror_fe = NULL;
302 
303 		iput(mdata->s_bitmap_fe);
304 		mdata->s_bitmap_fe = NULL;
305 	}
306 }
307 
308 static void udf_sb_free_partitions(struct super_block *sb)
309 {
310 	struct udf_sb_info *sbi = UDF_SB(sb);
311 	int i;
312 	if (sbi->s_partmaps == NULL)
313 		return;
314 	for (i = 0; i < sbi->s_partitions; i++)
315 		udf_free_partition(&sbi->s_partmaps[i]);
316 	kfree(sbi->s_partmaps);
317 	sbi->s_partmaps = NULL;
318 }
319 
320 static int udf_show_options(struct seq_file *seq, struct dentry *root)
321 {
322 	struct super_block *sb = root->d_sb;
323 	struct udf_sb_info *sbi = UDF_SB(sb);
324 
325 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
326 		seq_puts(seq, ",nostrict");
327 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
328 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
329 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
330 		seq_puts(seq, ",unhide");
331 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
332 		seq_puts(seq, ",undelete");
333 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
334 		seq_puts(seq, ",noadinicb");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
336 		seq_puts(seq, ",shortad");
337 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
338 		seq_puts(seq, ",uid=forget");
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
340 		seq_puts(seq, ",uid=ignore");
341 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
342 		seq_puts(seq, ",gid=forget");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
344 		seq_puts(seq, ",gid=ignore");
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349 	if (sbi->s_umask != 0)
350 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
351 	if (sbi->s_fmode != UDF_INVALID_MODE)
352 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353 	if (sbi->s_dmode != UDF_INVALID_MODE)
354 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356 		seq_printf(seq, ",session=%u", sbi->s_session);
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359 	if (sbi->s_anchor != 0)
360 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361 	/*
362 	 * volume, partition, fileset and rootdir seem to be ignored
363 	 * currently
364 	 */
365 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 		seq_puts(seq, ",utf8");
367 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369 
370 	return 0;
371 }
372 
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *	Parse mount options.
378  *
379  * DESCRIPTION
380  *	The following mount options are supported:
381  *
382  *	gid=		Set the default group.
383  *	umask=		Set the default umask.
384  *	mode=		Set the default file permissions.
385  *	dmode=		Set the default directory permissions.
386  *	uid=		Set the default user.
387  *	bs=		Set the block size.
388  *	unhide		Show otherwise hidden files.
389  *	undelete	Show deleted files in lists.
390  *	adinicb		Embed data in the inode (default)
391  *	noadinicb	Don't embed data in the inode
392  *	shortad		Use short ad's
393  *	longad		Use long ad's (default)
394  *	nostrict	Unset strict conformance
395  *	iocharset=	Set the NLS character set
396  *
397  *	The remaining are for debugging and disaster recovery:
398  *
399  *	novrs		Skip volume sequence recognition
400  *
401  *	The following expect a offset from 0.
402  *
403  *	session=	Set the CDROM session (default= last session)
404  *	anchor=		Override standard anchor location. (default= 256)
405  *	volume=		Override the VolumeDesc location. (unused)
406  *	partition=	Override the PartitionDesc location. (unused)
407  *	lastblock=	Set the last block of the filesystem/
408  *
409  *	The following expect a offset from the partition root.
410  *
411  *	fileset=	Override the fileset block location. (unused)
412  *	rootdir=	Override the root directory location. (unused)
413  *		WARNING: overriding the rootdir to a non-directory may
414  *		yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *	options		Pointer to mount options string.
418  *	uopts		Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *	<return>	1	Mount options parsed okay.
422  *	<return>	0	Error parsing mount options.
423  *
424  * HISTORY
425  *	July 1, 1997 - Andrew E. Mileski
426  *	Written, tested, and released.
427  */
428 
429 enum {
430 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 	Opt_rootdir, Opt_utf8, Opt_iocharset,
435 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 	Opt_fmode, Opt_dmode
437 };
438 
439 static const match_table_t tokens = {
440 	{Opt_novrs,	"novrs"},
441 	{Opt_nostrict,	"nostrict"},
442 	{Opt_bs,	"bs=%u"},
443 	{Opt_unhide,	"unhide"},
444 	{Opt_undelete,	"undelete"},
445 	{Opt_noadinicb,	"noadinicb"},
446 	{Opt_adinicb,	"adinicb"},
447 	{Opt_shortad,	"shortad"},
448 	{Opt_longad,	"longad"},
449 	{Opt_uforget,	"uid=forget"},
450 	{Opt_uignore,	"uid=ignore"},
451 	{Opt_gforget,	"gid=forget"},
452 	{Opt_gignore,	"gid=ignore"},
453 	{Opt_gid,	"gid=%u"},
454 	{Opt_uid,	"uid=%u"},
455 	{Opt_umask,	"umask=%o"},
456 	{Opt_session,	"session=%u"},
457 	{Opt_lastblock,	"lastblock=%u"},
458 	{Opt_anchor,	"anchor=%u"},
459 	{Opt_volume,	"volume=%u"},
460 	{Opt_partition,	"partition=%u"},
461 	{Opt_fileset,	"fileset=%u"},
462 	{Opt_rootdir,	"rootdir=%u"},
463 	{Opt_utf8,	"utf8"},
464 	{Opt_iocharset,	"iocharset=%s"},
465 	{Opt_fmode,     "mode=%o"},
466 	{Opt_dmode,     "dmode=%o"},
467 	{Opt_err,	NULL}
468 };
469 
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471 			     bool remount)
472 {
473 	char *p;
474 	int option;
475 
476 	uopt->novrs = 0;
477 	uopt->partition = 0xFFFF;
478 	uopt->session = 0xFFFFFFFF;
479 	uopt->lastblock = 0;
480 	uopt->anchor = 0;
481 	uopt->volume = 0xFFFFFFFF;
482 	uopt->rootdir = 0xFFFFFFFF;
483 	uopt->fileset = 0xFFFFFFFF;
484 	uopt->nls_map = NULL;
485 
486 	if (!options)
487 		return 1;
488 
489 	while ((p = strsep(&options, ",")) != NULL) {
490 		substring_t args[MAX_OPT_ARGS];
491 		int token;
492 		if (!*p)
493 			continue;
494 
495 		token = match_token(p, tokens, args);
496 		switch (token) {
497 		case Opt_novrs:
498 			uopt->novrs = 1;
499 			break;
500 		case Opt_bs:
501 			if (match_int(&args[0], &option))
502 				return 0;
503 			uopt->blocksize = option;
504 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
505 			break;
506 		case Opt_unhide:
507 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
508 			break;
509 		case Opt_undelete:
510 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
511 			break;
512 		case Opt_noadinicb:
513 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
514 			break;
515 		case Opt_adinicb:
516 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
517 			break;
518 		case Opt_shortad:
519 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
520 			break;
521 		case Opt_longad:
522 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
523 			break;
524 		case Opt_gid:
525 			if (match_int(args, &option))
526 				return 0;
527 			uopt->gid = make_kgid(current_user_ns(), option);
528 			if (!gid_valid(uopt->gid))
529 				return 0;
530 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
531 			break;
532 		case Opt_uid:
533 			if (match_int(args, &option))
534 				return 0;
535 			uopt->uid = make_kuid(current_user_ns(), option);
536 			if (!uid_valid(uopt->uid))
537 				return 0;
538 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
539 			break;
540 		case Opt_umask:
541 			if (match_octal(args, &option))
542 				return 0;
543 			uopt->umask = option;
544 			break;
545 		case Opt_nostrict:
546 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
547 			break;
548 		case Opt_session:
549 			if (match_int(args, &option))
550 				return 0;
551 			uopt->session = option;
552 			if (!remount)
553 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
554 			break;
555 		case Opt_lastblock:
556 			if (match_int(args, &option))
557 				return 0;
558 			uopt->lastblock = option;
559 			if (!remount)
560 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
561 			break;
562 		case Opt_anchor:
563 			if (match_int(args, &option))
564 				return 0;
565 			uopt->anchor = option;
566 			break;
567 		case Opt_volume:
568 			if (match_int(args, &option))
569 				return 0;
570 			uopt->volume = option;
571 			break;
572 		case Opt_partition:
573 			if (match_int(args, &option))
574 				return 0;
575 			uopt->partition = option;
576 			break;
577 		case Opt_fileset:
578 			if (match_int(args, &option))
579 				return 0;
580 			uopt->fileset = option;
581 			break;
582 		case Opt_rootdir:
583 			if (match_int(args, &option))
584 				return 0;
585 			uopt->rootdir = option;
586 			break;
587 		case Opt_utf8:
588 			uopt->flags |= (1 << UDF_FLAG_UTF8);
589 			break;
590 #ifdef CONFIG_UDF_NLS
591 		case Opt_iocharset:
592 			uopt->nls_map = load_nls(args[0].from);
593 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
594 			break;
595 #endif
596 		case Opt_uignore:
597 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
598 			break;
599 		case Opt_uforget:
600 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
601 			break;
602 		case Opt_gignore:
603 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
604 			break;
605 		case Opt_gforget:
606 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
607 			break;
608 		case Opt_fmode:
609 			if (match_octal(args, &option))
610 				return 0;
611 			uopt->fmode = option & 0777;
612 			break;
613 		case Opt_dmode:
614 			if (match_octal(args, &option))
615 				return 0;
616 			uopt->dmode = option & 0777;
617 			break;
618 		default:
619 			pr_err("bad mount option \"%s\" or missing value\n", p);
620 			return 0;
621 		}
622 	}
623 	return 1;
624 }
625 
626 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
627 {
628 	struct udf_options uopt;
629 	struct udf_sb_info *sbi = UDF_SB(sb);
630 	int error = 0;
631 
632 	uopt.flags = sbi->s_flags;
633 	uopt.uid   = sbi->s_uid;
634 	uopt.gid   = sbi->s_gid;
635 	uopt.umask = sbi->s_umask;
636 	uopt.fmode = sbi->s_fmode;
637 	uopt.dmode = sbi->s_dmode;
638 
639 	if (!udf_parse_options(options, &uopt, true))
640 		return -EINVAL;
641 
642 	write_lock(&sbi->s_cred_lock);
643 	sbi->s_flags = uopt.flags;
644 	sbi->s_uid   = uopt.uid;
645 	sbi->s_gid   = uopt.gid;
646 	sbi->s_umask = uopt.umask;
647 	sbi->s_fmode = uopt.fmode;
648 	sbi->s_dmode = uopt.dmode;
649 	write_unlock(&sbi->s_cred_lock);
650 
651 	if (sbi->s_lvid_bh) {
652 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
653 		if (write_rev > UDF_MAX_WRITE_VERSION)
654 			*flags |= MS_RDONLY;
655 	}
656 
657 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
658 		goto out_unlock;
659 
660 	if (*flags & MS_RDONLY)
661 		udf_close_lvid(sb);
662 	else
663 		udf_open_lvid(sb);
664 
665 out_unlock:
666 	return error;
667 }
668 
669 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
670 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
671 static loff_t udf_check_vsd(struct super_block *sb)
672 {
673 	struct volStructDesc *vsd = NULL;
674 	loff_t sector = 32768;
675 	int sectorsize;
676 	struct buffer_head *bh = NULL;
677 	int nsr02 = 0;
678 	int nsr03 = 0;
679 	struct udf_sb_info *sbi;
680 
681 	sbi = UDF_SB(sb);
682 	if (sb->s_blocksize < sizeof(struct volStructDesc))
683 		sectorsize = sizeof(struct volStructDesc);
684 	else
685 		sectorsize = sb->s_blocksize;
686 
687 	sector += (sbi->s_session << sb->s_blocksize_bits);
688 
689 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
690 		  (unsigned int)(sector >> sb->s_blocksize_bits),
691 		  sb->s_blocksize);
692 	/* Process the sequence (if applicable) */
693 	for (; !nsr02 && !nsr03; sector += sectorsize) {
694 		/* Read a block */
695 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
696 		if (!bh)
697 			break;
698 
699 		/* Look for ISO  descriptors */
700 		vsd = (struct volStructDesc *)(bh->b_data +
701 					      (sector & (sb->s_blocksize - 1)));
702 
703 		if (vsd->stdIdent[0] == 0) {
704 			brelse(bh);
705 			break;
706 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
707 				    VSD_STD_ID_LEN)) {
708 			switch (vsd->structType) {
709 			case 0:
710 				udf_debug("ISO9660 Boot Record found\n");
711 				break;
712 			case 1:
713 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
714 				break;
715 			case 2:
716 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
717 				break;
718 			case 3:
719 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
720 				break;
721 			case 255:
722 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
723 				break;
724 			default:
725 				udf_debug("ISO9660 VRS (%u) found\n",
726 					  vsd->structType);
727 				break;
728 			}
729 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
730 				    VSD_STD_ID_LEN))
731 			; /* nothing */
732 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
733 				    VSD_STD_ID_LEN)) {
734 			brelse(bh);
735 			break;
736 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
737 				    VSD_STD_ID_LEN))
738 			nsr02 = sector;
739 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
740 				    VSD_STD_ID_LEN))
741 			nsr03 = sector;
742 		brelse(bh);
743 	}
744 
745 	if (nsr03)
746 		return nsr03;
747 	else if (nsr02)
748 		return nsr02;
749 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
750 		return -1;
751 	else
752 		return 0;
753 }
754 
755 static int udf_find_fileset(struct super_block *sb,
756 			    struct kernel_lb_addr *fileset,
757 			    struct kernel_lb_addr *root)
758 {
759 	struct buffer_head *bh = NULL;
760 	long lastblock;
761 	uint16_t ident;
762 	struct udf_sb_info *sbi;
763 
764 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
765 	    fileset->partitionReferenceNum != 0xFFFF) {
766 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
767 
768 		if (!bh) {
769 			return 1;
770 		} else if (ident != TAG_IDENT_FSD) {
771 			brelse(bh);
772 			return 1;
773 		}
774 
775 	}
776 
777 	sbi = UDF_SB(sb);
778 	if (!bh) {
779 		/* Search backwards through the partitions */
780 		struct kernel_lb_addr newfileset;
781 
782 /* --> cvg: FIXME - is it reasonable? */
783 		return 1;
784 
785 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
786 		     (newfileset.partitionReferenceNum != 0xFFFF &&
787 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
788 		      fileset->partitionReferenceNum == 0xFFFF);
789 		     newfileset.partitionReferenceNum--) {
790 			lastblock = sbi->s_partmaps
791 					[newfileset.partitionReferenceNum]
792 						.s_partition_len;
793 			newfileset.logicalBlockNum = 0;
794 
795 			do {
796 				bh = udf_read_ptagged(sb, &newfileset, 0,
797 						      &ident);
798 				if (!bh) {
799 					newfileset.logicalBlockNum++;
800 					continue;
801 				}
802 
803 				switch (ident) {
804 				case TAG_IDENT_SBD:
805 				{
806 					struct spaceBitmapDesc *sp;
807 					sp = (struct spaceBitmapDesc *)
808 								bh->b_data;
809 					newfileset.logicalBlockNum += 1 +
810 						((le32_to_cpu(sp->numOfBytes) +
811 						  sizeof(struct spaceBitmapDesc)
812 						  - 1) >> sb->s_blocksize_bits);
813 					brelse(bh);
814 					break;
815 				}
816 				case TAG_IDENT_FSD:
817 					*fileset = newfileset;
818 					break;
819 				default:
820 					newfileset.logicalBlockNum++;
821 					brelse(bh);
822 					bh = NULL;
823 					break;
824 				}
825 			} while (newfileset.logicalBlockNum < lastblock &&
826 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
827 				 fileset->partitionReferenceNum == 0xFFFF);
828 		}
829 	}
830 
831 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
832 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
833 		udf_debug("Fileset at block=%d, partition=%d\n",
834 			  fileset->logicalBlockNum,
835 			  fileset->partitionReferenceNum);
836 
837 		sbi->s_partition = fileset->partitionReferenceNum;
838 		udf_load_fileset(sb, bh, root);
839 		brelse(bh);
840 		return 0;
841 	}
842 	return 1;
843 }
844 
845 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
846 {
847 	struct primaryVolDesc *pvoldesc;
848 	struct ustr *instr, *outstr;
849 	struct buffer_head *bh;
850 	uint16_t ident;
851 	int ret = 1;
852 
853 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
854 	if (!instr)
855 		return 1;
856 
857 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
858 	if (!outstr)
859 		goto out1;
860 
861 	bh = udf_read_tagged(sb, block, block, &ident);
862 	if (!bh)
863 		goto out2;
864 
865 	BUG_ON(ident != TAG_IDENT_PVD);
866 
867 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
868 
869 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
870 			      pvoldesc->recordingDateAndTime)) {
871 #ifdef UDFFS_DEBUG
872 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
873 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
874 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
875 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
876 #endif
877 	}
878 
879 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
880 		if (udf_CS0toUTF8(outstr, instr)) {
881 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
882 				outstr->u_len > 31 ? 31 : outstr->u_len);
883 			udf_debug("volIdent[] = '%s'\n",
884 				  UDF_SB(sb)->s_volume_ident);
885 		}
886 
887 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
888 		if (udf_CS0toUTF8(outstr, instr))
889 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
890 
891 	brelse(bh);
892 	ret = 0;
893 out2:
894 	kfree(outstr);
895 out1:
896 	kfree(instr);
897 	return ret;
898 }
899 
900 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
901 					u32 meta_file_loc, u32 partition_num)
902 {
903 	struct kernel_lb_addr addr;
904 	struct inode *metadata_fe;
905 
906 	addr.logicalBlockNum = meta_file_loc;
907 	addr.partitionReferenceNum = partition_num;
908 
909 	metadata_fe = udf_iget(sb, &addr);
910 
911 	if (metadata_fe == NULL)
912 		udf_warn(sb, "metadata inode efe not found\n");
913 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
914 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
915 		iput(metadata_fe);
916 		metadata_fe = NULL;
917 	}
918 
919 	return metadata_fe;
920 }
921 
922 static int udf_load_metadata_files(struct super_block *sb, int partition)
923 {
924 	struct udf_sb_info *sbi = UDF_SB(sb);
925 	struct udf_part_map *map;
926 	struct udf_meta_data *mdata;
927 	struct kernel_lb_addr addr;
928 
929 	map = &sbi->s_partmaps[partition];
930 	mdata = &map->s_type_specific.s_metadata;
931 
932 	/* metadata address */
933 	udf_debug("Metadata file location: block = %d part = %d\n",
934 		  mdata->s_meta_file_loc, map->s_partition_num);
935 
936 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
937 		mdata->s_meta_file_loc, map->s_partition_num);
938 
939 	if (mdata->s_metadata_fe == NULL) {
940 		/* mirror file entry */
941 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
942 			  mdata->s_mirror_file_loc, map->s_partition_num);
943 
944 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
945 			mdata->s_mirror_file_loc, map->s_partition_num);
946 
947 		if (mdata->s_mirror_fe == NULL) {
948 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
949 			goto error_exit;
950 		}
951 	}
952 
953 	/*
954 	 * bitmap file entry
955 	 * Note:
956 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
957 	*/
958 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
959 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
960 		addr.partitionReferenceNum = map->s_partition_num;
961 
962 		udf_debug("Bitmap file location: block = %d part = %d\n",
963 			  addr.logicalBlockNum, addr.partitionReferenceNum);
964 
965 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
966 
967 		if (mdata->s_bitmap_fe == NULL) {
968 			if (sb->s_flags & MS_RDONLY)
969 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
970 			else {
971 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
972 				goto error_exit;
973 			}
974 		}
975 	}
976 
977 	udf_debug("udf_load_metadata_files Ok\n");
978 
979 	return 0;
980 
981 error_exit:
982 	return 1;
983 }
984 
985 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
986 			     struct kernel_lb_addr *root)
987 {
988 	struct fileSetDesc *fset;
989 
990 	fset = (struct fileSetDesc *)bh->b_data;
991 
992 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
993 
994 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
995 
996 	udf_debug("Rootdir at block=%d, partition=%d\n",
997 		  root->logicalBlockNum, root->partitionReferenceNum);
998 }
999 
1000 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1001 {
1002 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1003 	return DIV_ROUND_UP(map->s_partition_len +
1004 			    (sizeof(struct spaceBitmapDesc) << 3),
1005 			    sb->s_blocksize * 8);
1006 }
1007 
1008 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1009 {
1010 	struct udf_bitmap *bitmap;
1011 	int nr_groups;
1012 	int size;
1013 
1014 	nr_groups = udf_compute_nr_groups(sb, index);
1015 	size = sizeof(struct udf_bitmap) +
1016 		(sizeof(struct buffer_head *) * nr_groups);
1017 
1018 	if (size <= PAGE_SIZE)
1019 		bitmap = kzalloc(size, GFP_KERNEL);
1020 	else
1021 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1022 
1023 	if (bitmap == NULL)
1024 		return NULL;
1025 
1026 	bitmap->s_nr_groups = nr_groups;
1027 	return bitmap;
1028 }
1029 
1030 static int udf_fill_partdesc_info(struct super_block *sb,
1031 		struct partitionDesc *p, int p_index)
1032 {
1033 	struct udf_part_map *map;
1034 	struct udf_sb_info *sbi = UDF_SB(sb);
1035 	struct partitionHeaderDesc *phd;
1036 
1037 	map = &sbi->s_partmaps[p_index];
1038 
1039 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1040 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1041 
1042 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1043 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1044 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1045 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1046 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1047 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1048 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1049 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1050 
1051 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1052 		  p_index, map->s_partition_type,
1053 		  map->s_partition_root, map->s_partition_len);
1054 
1055 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1056 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1057 		return 0;
1058 
1059 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1060 	if (phd->unallocSpaceTable.extLength) {
1061 		struct kernel_lb_addr loc = {
1062 			.logicalBlockNum = le32_to_cpu(
1063 				phd->unallocSpaceTable.extPosition),
1064 			.partitionReferenceNum = p_index,
1065 		};
1066 
1067 		map->s_uspace.s_table = udf_iget(sb, &loc);
1068 		if (!map->s_uspace.s_table) {
1069 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1070 				  p_index);
1071 			return 1;
1072 		}
1073 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1074 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1075 			  p_index, map->s_uspace.s_table->i_ino);
1076 	}
1077 
1078 	if (phd->unallocSpaceBitmap.extLength) {
1079 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1080 		if (!bitmap)
1081 			return 1;
1082 		map->s_uspace.s_bitmap = bitmap;
1083 		bitmap->s_extPosition = le32_to_cpu(
1084 				phd->unallocSpaceBitmap.extPosition);
1085 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1086 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1087 			  p_index, bitmap->s_extPosition);
1088 	}
1089 
1090 	if (phd->partitionIntegrityTable.extLength)
1091 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1092 
1093 	if (phd->freedSpaceTable.extLength) {
1094 		struct kernel_lb_addr loc = {
1095 			.logicalBlockNum = le32_to_cpu(
1096 				phd->freedSpaceTable.extPosition),
1097 			.partitionReferenceNum = p_index,
1098 		};
1099 
1100 		map->s_fspace.s_table = udf_iget(sb, &loc);
1101 		if (!map->s_fspace.s_table) {
1102 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1103 				  p_index);
1104 			return 1;
1105 		}
1106 
1107 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1108 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1109 			  p_index, map->s_fspace.s_table->i_ino);
1110 	}
1111 
1112 	if (phd->freedSpaceBitmap.extLength) {
1113 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1114 		if (!bitmap)
1115 			return 1;
1116 		map->s_fspace.s_bitmap = bitmap;
1117 		bitmap->s_extPosition = le32_to_cpu(
1118 				phd->freedSpaceBitmap.extPosition);
1119 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1120 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1121 			  p_index, bitmap->s_extPosition);
1122 	}
1123 	return 0;
1124 }
1125 
1126 static void udf_find_vat_block(struct super_block *sb, int p_index,
1127 			       int type1_index, sector_t start_block)
1128 {
1129 	struct udf_sb_info *sbi = UDF_SB(sb);
1130 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1131 	sector_t vat_block;
1132 	struct kernel_lb_addr ino;
1133 
1134 	/*
1135 	 * VAT file entry is in the last recorded block. Some broken disks have
1136 	 * it a few blocks before so try a bit harder...
1137 	 */
1138 	ino.partitionReferenceNum = type1_index;
1139 	for (vat_block = start_block;
1140 	     vat_block >= map->s_partition_root &&
1141 	     vat_block >= start_block - 3 &&
1142 	     !sbi->s_vat_inode; vat_block--) {
1143 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1144 		sbi->s_vat_inode = udf_iget(sb, &ino);
1145 	}
1146 }
1147 
1148 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1149 {
1150 	struct udf_sb_info *sbi = UDF_SB(sb);
1151 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152 	struct buffer_head *bh = NULL;
1153 	struct udf_inode_info *vati;
1154 	uint32_t pos;
1155 	struct virtualAllocationTable20 *vat20;
1156 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1157 
1158 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1159 	if (!sbi->s_vat_inode &&
1160 	    sbi->s_last_block != blocks - 1) {
1161 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1162 			  (unsigned long)sbi->s_last_block,
1163 			  (unsigned long)blocks - 1);
1164 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1165 	}
1166 	if (!sbi->s_vat_inode)
1167 		return 1;
1168 
1169 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1170 		map->s_type_specific.s_virtual.s_start_offset = 0;
1171 		map->s_type_specific.s_virtual.s_num_entries =
1172 			(sbi->s_vat_inode->i_size - 36) >> 2;
1173 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1174 		vati = UDF_I(sbi->s_vat_inode);
1175 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1176 			pos = udf_block_map(sbi->s_vat_inode, 0);
1177 			bh = sb_bread(sb, pos);
1178 			if (!bh)
1179 				return 1;
1180 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1181 		} else {
1182 			vat20 = (struct virtualAllocationTable20 *)
1183 							vati->i_ext.i_data;
1184 		}
1185 
1186 		map->s_type_specific.s_virtual.s_start_offset =
1187 			le16_to_cpu(vat20->lengthHeader);
1188 		map->s_type_specific.s_virtual.s_num_entries =
1189 			(sbi->s_vat_inode->i_size -
1190 				map->s_type_specific.s_virtual.
1191 					s_start_offset) >> 2;
1192 		brelse(bh);
1193 	}
1194 	return 0;
1195 }
1196 
1197 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1198 {
1199 	struct buffer_head *bh;
1200 	struct partitionDesc *p;
1201 	struct udf_part_map *map;
1202 	struct udf_sb_info *sbi = UDF_SB(sb);
1203 	int i, type1_idx;
1204 	uint16_t partitionNumber;
1205 	uint16_t ident;
1206 	int ret = 0;
1207 
1208 	bh = udf_read_tagged(sb, block, block, &ident);
1209 	if (!bh)
1210 		return 1;
1211 	if (ident != TAG_IDENT_PD)
1212 		goto out_bh;
1213 
1214 	p = (struct partitionDesc *)bh->b_data;
1215 	partitionNumber = le16_to_cpu(p->partitionNumber);
1216 
1217 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1218 	for (i = 0; i < sbi->s_partitions; i++) {
1219 		map = &sbi->s_partmaps[i];
1220 		udf_debug("Searching map: (%d == %d)\n",
1221 			  map->s_partition_num, partitionNumber);
1222 		if (map->s_partition_num == partitionNumber &&
1223 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1224 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1225 			break;
1226 	}
1227 
1228 	if (i >= sbi->s_partitions) {
1229 		udf_debug("Partition (%d) not found in partition map\n",
1230 			  partitionNumber);
1231 		goto out_bh;
1232 	}
1233 
1234 	ret = udf_fill_partdesc_info(sb, p, i);
1235 
1236 	/*
1237 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1238 	 * PHYSICAL partitions are already set up
1239 	 */
1240 	type1_idx = i;
1241 	for (i = 0; i < sbi->s_partitions; i++) {
1242 		map = &sbi->s_partmaps[i];
1243 
1244 		if (map->s_partition_num == partitionNumber &&
1245 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1246 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1247 		     map->s_partition_type == UDF_METADATA_MAP25))
1248 			break;
1249 	}
1250 
1251 	if (i >= sbi->s_partitions)
1252 		goto out_bh;
1253 
1254 	ret = udf_fill_partdesc_info(sb, p, i);
1255 	if (ret)
1256 		goto out_bh;
1257 
1258 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1259 		ret = udf_load_metadata_files(sb, i);
1260 		if (ret) {
1261 			udf_err(sb, "error loading MetaData partition map %d\n",
1262 				i);
1263 			goto out_bh;
1264 		}
1265 	} else {
1266 		ret = udf_load_vat(sb, i, type1_idx);
1267 		if (ret)
1268 			goto out_bh;
1269 		/*
1270 		 * Mark filesystem read-only if we have a partition with
1271 		 * virtual map since we don't handle writing to it (we
1272 		 * overwrite blocks instead of relocating them).
1273 		 */
1274 		sb->s_flags |= MS_RDONLY;
1275 		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1276 	}
1277 out_bh:
1278 	/* In case loading failed, we handle cleanup in udf_fill_super */
1279 	brelse(bh);
1280 	return ret;
1281 }
1282 
1283 static int udf_load_sparable_map(struct super_block *sb,
1284 				 struct udf_part_map *map,
1285 				 struct sparablePartitionMap *spm)
1286 {
1287 	uint32_t loc;
1288 	uint16_t ident;
1289 	struct sparingTable *st;
1290 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1291 	int i;
1292 	struct buffer_head *bh;
1293 
1294 	map->s_partition_type = UDF_SPARABLE_MAP15;
1295 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1296 	if (!is_power_of_2(sdata->s_packet_len)) {
1297 		udf_err(sb, "error loading logical volume descriptor: "
1298 			"Invalid packet length %u\n",
1299 			(unsigned)sdata->s_packet_len);
1300 		return -EIO;
1301 	}
1302 	if (spm->numSparingTables > 4) {
1303 		udf_err(sb, "error loading logical volume descriptor: "
1304 			"Too many sparing tables (%d)\n",
1305 			(int)spm->numSparingTables);
1306 		return -EIO;
1307 	}
1308 
1309 	for (i = 0; i < spm->numSparingTables; i++) {
1310 		loc = le32_to_cpu(spm->locSparingTable[i]);
1311 		bh = udf_read_tagged(sb, loc, loc, &ident);
1312 		if (!bh)
1313 			continue;
1314 
1315 		st = (struct sparingTable *)bh->b_data;
1316 		if (ident != 0 ||
1317 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1318 			    strlen(UDF_ID_SPARING)) ||
1319 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1320 							sb->s_blocksize) {
1321 			brelse(bh);
1322 			continue;
1323 		}
1324 
1325 		sdata->s_spar_map[i] = bh;
1326 	}
1327 	map->s_partition_func = udf_get_pblock_spar15;
1328 	return 0;
1329 }
1330 
1331 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1332 			       struct kernel_lb_addr *fileset)
1333 {
1334 	struct logicalVolDesc *lvd;
1335 	int i, offset;
1336 	uint8_t type;
1337 	struct udf_sb_info *sbi = UDF_SB(sb);
1338 	struct genericPartitionMap *gpm;
1339 	uint16_t ident;
1340 	struct buffer_head *bh;
1341 	unsigned int table_len;
1342 	int ret = 0;
1343 
1344 	bh = udf_read_tagged(sb, block, block, &ident);
1345 	if (!bh)
1346 		return 1;
1347 	BUG_ON(ident != TAG_IDENT_LVD);
1348 	lvd = (struct logicalVolDesc *)bh->b_data;
1349 	table_len = le32_to_cpu(lvd->mapTableLength);
1350 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1351 		udf_err(sb, "error loading logical volume descriptor: "
1352 			"Partition table too long (%u > %lu)\n", table_len,
1353 			sb->s_blocksize - sizeof(*lvd));
1354 		ret = 1;
1355 		goto out_bh;
1356 	}
1357 
1358 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1359 	if (ret)
1360 		goto out_bh;
1361 
1362 	for (i = 0, offset = 0;
1363 	     i < sbi->s_partitions && offset < table_len;
1364 	     i++, offset += gpm->partitionMapLength) {
1365 		struct udf_part_map *map = &sbi->s_partmaps[i];
1366 		gpm = (struct genericPartitionMap *)
1367 				&(lvd->partitionMaps[offset]);
1368 		type = gpm->partitionMapType;
1369 		if (type == 1) {
1370 			struct genericPartitionMap1 *gpm1 =
1371 				(struct genericPartitionMap1 *)gpm;
1372 			map->s_partition_type = UDF_TYPE1_MAP15;
1373 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1374 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1375 			map->s_partition_func = NULL;
1376 		} else if (type == 2) {
1377 			struct udfPartitionMap2 *upm2 =
1378 						(struct udfPartitionMap2 *)gpm;
1379 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1380 						strlen(UDF_ID_VIRTUAL))) {
1381 				u16 suf =
1382 					le16_to_cpu(((__le16 *)upm2->partIdent.
1383 							identSuffix)[0]);
1384 				if (suf < 0x0200) {
1385 					map->s_partition_type =
1386 							UDF_VIRTUAL_MAP15;
1387 					map->s_partition_func =
1388 							udf_get_pblock_virt15;
1389 				} else {
1390 					map->s_partition_type =
1391 							UDF_VIRTUAL_MAP20;
1392 					map->s_partition_func =
1393 							udf_get_pblock_virt20;
1394 				}
1395 			} else if (!strncmp(upm2->partIdent.ident,
1396 						UDF_ID_SPARABLE,
1397 						strlen(UDF_ID_SPARABLE))) {
1398 				if (udf_load_sparable_map(sb, map,
1399 				    (struct sparablePartitionMap *)gpm) < 0) {
1400 					ret = 1;
1401 					goto out_bh;
1402 				}
1403 			} else if (!strncmp(upm2->partIdent.ident,
1404 						UDF_ID_METADATA,
1405 						strlen(UDF_ID_METADATA))) {
1406 				struct udf_meta_data *mdata =
1407 					&map->s_type_specific.s_metadata;
1408 				struct metadataPartitionMap *mdm =
1409 						(struct metadataPartitionMap *)
1410 						&(lvd->partitionMaps[offset]);
1411 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1412 					  i, type, UDF_ID_METADATA);
1413 
1414 				map->s_partition_type = UDF_METADATA_MAP25;
1415 				map->s_partition_func = udf_get_pblock_meta25;
1416 
1417 				mdata->s_meta_file_loc   =
1418 					le32_to_cpu(mdm->metadataFileLoc);
1419 				mdata->s_mirror_file_loc =
1420 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1421 				mdata->s_bitmap_file_loc =
1422 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1423 				mdata->s_alloc_unit_size =
1424 					le32_to_cpu(mdm->allocUnitSize);
1425 				mdata->s_align_unit_size =
1426 					le16_to_cpu(mdm->alignUnitSize);
1427 				if (mdm->flags & 0x01)
1428 					mdata->s_flags |= MF_DUPLICATE_MD;
1429 
1430 				udf_debug("Metadata Ident suffix=0x%x\n",
1431 					  le16_to_cpu(*(__le16 *)
1432 						      mdm->partIdent.identSuffix));
1433 				udf_debug("Metadata part num=%d\n",
1434 					  le16_to_cpu(mdm->partitionNum));
1435 				udf_debug("Metadata part alloc unit size=%d\n",
1436 					  le32_to_cpu(mdm->allocUnitSize));
1437 				udf_debug("Metadata file loc=%d\n",
1438 					  le32_to_cpu(mdm->metadataFileLoc));
1439 				udf_debug("Mirror file loc=%d\n",
1440 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1441 				udf_debug("Bitmap file loc=%d\n",
1442 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1443 				udf_debug("Flags: %d %d\n",
1444 					  mdata->s_flags, mdm->flags);
1445 			} else {
1446 				udf_debug("Unknown ident: %s\n",
1447 					  upm2->partIdent.ident);
1448 				continue;
1449 			}
1450 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1451 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1452 		}
1453 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1454 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1455 	}
1456 
1457 	if (fileset) {
1458 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1459 
1460 		*fileset = lelb_to_cpu(la->extLocation);
1461 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1462 			  fileset->logicalBlockNum,
1463 			  fileset->partitionReferenceNum);
1464 	}
1465 	if (lvd->integritySeqExt.extLength)
1466 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1467 
1468 out_bh:
1469 	brelse(bh);
1470 	return ret;
1471 }
1472 
1473 /*
1474  * udf_load_logicalvolint
1475  *
1476  */
1477 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1478 {
1479 	struct buffer_head *bh = NULL;
1480 	uint16_t ident;
1481 	struct udf_sb_info *sbi = UDF_SB(sb);
1482 	struct logicalVolIntegrityDesc *lvid;
1483 
1484 	while (loc.extLength > 0 &&
1485 	       (bh = udf_read_tagged(sb, loc.extLocation,
1486 				     loc.extLocation, &ident)) &&
1487 	       ident == TAG_IDENT_LVID) {
1488 		sbi->s_lvid_bh = bh;
1489 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1490 
1491 		if (lvid->nextIntegrityExt.extLength)
1492 			udf_load_logicalvolint(sb,
1493 				leea_to_cpu(lvid->nextIntegrityExt));
1494 
1495 		if (sbi->s_lvid_bh != bh)
1496 			brelse(bh);
1497 		loc.extLength -= sb->s_blocksize;
1498 		loc.extLocation++;
1499 	}
1500 	if (sbi->s_lvid_bh != bh)
1501 		brelse(bh);
1502 }
1503 
1504 /*
1505  * udf_process_sequence
1506  *
1507  * PURPOSE
1508  *	Process a main/reserve volume descriptor sequence.
1509  *
1510  * PRE-CONDITIONS
1511  *	sb			Pointer to _locked_ superblock.
1512  *	block			First block of first extent of the sequence.
1513  *	lastblock		Lastblock of first extent of the sequence.
1514  *
1515  * HISTORY
1516  *	July 1, 1997 - Andrew E. Mileski
1517  *	Written, tested, and released.
1518  */
1519 static noinline int udf_process_sequence(struct super_block *sb, long block,
1520 				long lastblock, struct kernel_lb_addr *fileset)
1521 {
1522 	struct buffer_head *bh = NULL;
1523 	struct udf_vds_record vds[VDS_POS_LENGTH];
1524 	struct udf_vds_record *curr;
1525 	struct generic_desc *gd;
1526 	struct volDescPtr *vdp;
1527 	int done = 0;
1528 	uint32_t vdsn;
1529 	uint16_t ident;
1530 	long next_s = 0, next_e = 0;
1531 
1532 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1533 
1534 	/*
1535 	 * Read the main descriptor sequence and find which descriptors
1536 	 * are in it.
1537 	 */
1538 	for (; (!done && block <= lastblock); block++) {
1539 
1540 		bh = udf_read_tagged(sb, block, block, &ident);
1541 		if (!bh) {
1542 			udf_err(sb,
1543 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1544 				(unsigned long long)block);
1545 			return 1;
1546 		}
1547 
1548 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1549 		gd = (struct generic_desc *)bh->b_data;
1550 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1551 		switch (ident) {
1552 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1553 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1554 			if (vdsn >= curr->volDescSeqNum) {
1555 				curr->volDescSeqNum = vdsn;
1556 				curr->block = block;
1557 			}
1558 			break;
1559 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1560 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1561 			if (vdsn >= curr->volDescSeqNum) {
1562 				curr->volDescSeqNum = vdsn;
1563 				curr->block = block;
1564 
1565 				vdp = (struct volDescPtr *)bh->b_data;
1566 				next_s = le32_to_cpu(
1567 					vdp->nextVolDescSeqExt.extLocation);
1568 				next_e = le32_to_cpu(
1569 					vdp->nextVolDescSeqExt.extLength);
1570 				next_e = next_e >> sb->s_blocksize_bits;
1571 				next_e += next_s;
1572 			}
1573 			break;
1574 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1575 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1576 			if (vdsn >= curr->volDescSeqNum) {
1577 				curr->volDescSeqNum = vdsn;
1578 				curr->block = block;
1579 			}
1580 			break;
1581 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1582 			curr = &vds[VDS_POS_PARTITION_DESC];
1583 			if (!curr->block)
1584 				curr->block = block;
1585 			break;
1586 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1587 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1588 			if (vdsn >= curr->volDescSeqNum) {
1589 				curr->volDescSeqNum = vdsn;
1590 				curr->block = block;
1591 			}
1592 			break;
1593 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1594 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1595 			if (vdsn >= curr->volDescSeqNum) {
1596 				curr->volDescSeqNum = vdsn;
1597 				curr->block = block;
1598 			}
1599 			break;
1600 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1601 			vds[VDS_POS_TERMINATING_DESC].block = block;
1602 			if (next_e) {
1603 				block = next_s;
1604 				lastblock = next_e;
1605 				next_s = next_e = 0;
1606 			} else
1607 				done = 1;
1608 			break;
1609 		}
1610 		brelse(bh);
1611 	}
1612 	/*
1613 	 * Now read interesting descriptors again and process them
1614 	 * in a suitable order
1615 	 */
1616 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1617 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1618 		return 1;
1619 	}
1620 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1621 		return 1;
1622 
1623 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1624 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1625 		return 1;
1626 
1627 	if (vds[VDS_POS_PARTITION_DESC].block) {
1628 		/*
1629 		 * We rescan the whole descriptor sequence to find
1630 		 * partition descriptor blocks and process them.
1631 		 */
1632 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1633 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1634 		     block++)
1635 			if (udf_load_partdesc(sb, block))
1636 				return 1;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1643 			     struct kernel_lb_addr *fileset)
1644 {
1645 	struct anchorVolDescPtr *anchor;
1646 	long main_s, main_e, reserve_s, reserve_e;
1647 
1648 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1649 
1650 	/* Locate the main sequence */
1651 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1652 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1653 	main_e = main_e >> sb->s_blocksize_bits;
1654 	main_e += main_s;
1655 
1656 	/* Locate the reserve sequence */
1657 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1658 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1659 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1660 	reserve_e += reserve_s;
1661 
1662 	/* Process the main & reserve sequences */
1663 	/* responsible for finding the PartitionDesc(s) */
1664 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1665 		return 1;
1666 	udf_sb_free_partitions(sb);
1667 	if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1668 		return 1;
1669 	udf_sb_free_partitions(sb);
1670 	return 0;
1671 }
1672 
1673 /*
1674  * Check whether there is an anchor block in the given block and
1675  * load Volume Descriptor Sequence if so.
1676  */
1677 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1678 				  struct kernel_lb_addr *fileset)
1679 {
1680 	struct buffer_head *bh;
1681 	uint16_t ident;
1682 	int ret;
1683 
1684 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1685 	    udf_fixed_to_variable(block) >=
1686 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1687 		return 0;
1688 
1689 	bh = udf_read_tagged(sb, block, block, &ident);
1690 	if (!bh)
1691 		return 0;
1692 	if (ident != TAG_IDENT_AVDP) {
1693 		brelse(bh);
1694 		return 0;
1695 	}
1696 	ret = udf_load_sequence(sb, bh, fileset);
1697 	brelse(bh);
1698 	return ret;
1699 }
1700 
1701 /* Search for an anchor volume descriptor pointer */
1702 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1703 				 struct kernel_lb_addr *fileset)
1704 {
1705 	sector_t last[6];
1706 	int i;
1707 	struct udf_sb_info *sbi = UDF_SB(sb);
1708 	int last_count = 0;
1709 
1710 	/* First try user provided anchor */
1711 	if (sbi->s_anchor) {
1712 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1713 			return lastblock;
1714 	}
1715 	/*
1716 	 * according to spec, anchor is in either:
1717 	 *     block 256
1718 	 *     lastblock-256
1719 	 *     lastblock
1720 	 *  however, if the disc isn't closed, it could be 512.
1721 	 */
1722 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1723 		return lastblock;
1724 	/*
1725 	 * The trouble is which block is the last one. Drives often misreport
1726 	 * this so we try various possibilities.
1727 	 */
1728 	last[last_count++] = lastblock;
1729 	if (lastblock >= 1)
1730 		last[last_count++] = lastblock - 1;
1731 	last[last_count++] = lastblock + 1;
1732 	if (lastblock >= 2)
1733 		last[last_count++] = lastblock - 2;
1734 	if (lastblock >= 150)
1735 		last[last_count++] = lastblock - 150;
1736 	if (lastblock >= 152)
1737 		last[last_count++] = lastblock - 152;
1738 
1739 	for (i = 0; i < last_count; i++) {
1740 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1741 				sb->s_blocksize_bits)
1742 			continue;
1743 		if (udf_check_anchor_block(sb, last[i], fileset))
1744 			return last[i];
1745 		if (last[i] < 256)
1746 			continue;
1747 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1748 			return last[i];
1749 	}
1750 
1751 	/* Finally try block 512 in case media is open */
1752 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1753 		return last[0];
1754 	return 0;
1755 }
1756 
1757 /*
1758  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1759  * area specified by it. The function expects sbi->s_lastblock to be the last
1760  * block on the media.
1761  *
1762  * Return 1 if ok, 0 if not found.
1763  *
1764  */
1765 static int udf_find_anchor(struct super_block *sb,
1766 			   struct kernel_lb_addr *fileset)
1767 {
1768 	sector_t lastblock;
1769 	struct udf_sb_info *sbi = UDF_SB(sb);
1770 
1771 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1772 	if (lastblock)
1773 		goto out;
1774 
1775 	/* No anchor found? Try VARCONV conversion of block numbers */
1776 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1777 	/* Firstly, we try to not convert number of the last block */
1778 	lastblock = udf_scan_anchors(sb,
1779 				udf_variable_to_fixed(sbi->s_last_block),
1780 				fileset);
1781 	if (lastblock)
1782 		goto out;
1783 
1784 	/* Secondly, we try with converted number of the last block */
1785 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1786 	if (!lastblock) {
1787 		/* VARCONV didn't help. Clear it. */
1788 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1789 		return 0;
1790 	}
1791 out:
1792 	sbi->s_last_block = lastblock;
1793 	return 1;
1794 }
1795 
1796 /*
1797  * Check Volume Structure Descriptor, find Anchor block and load Volume
1798  * Descriptor Sequence
1799  */
1800 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1801 			int silent, struct kernel_lb_addr *fileset)
1802 {
1803 	struct udf_sb_info *sbi = UDF_SB(sb);
1804 	loff_t nsr_off;
1805 
1806 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1807 		if (!silent)
1808 			udf_warn(sb, "Bad block size\n");
1809 		return 0;
1810 	}
1811 	sbi->s_last_block = uopt->lastblock;
1812 	if (!uopt->novrs) {
1813 		/* Check that it is NSR02 compliant */
1814 		nsr_off = udf_check_vsd(sb);
1815 		if (!nsr_off) {
1816 			if (!silent)
1817 				udf_warn(sb, "No VRS found\n");
1818 			return 0;
1819 		}
1820 		if (nsr_off == -1)
1821 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1822 		if (!sbi->s_last_block)
1823 			sbi->s_last_block = udf_get_last_block(sb);
1824 	} else {
1825 		udf_debug("Validity check skipped because of novrs option\n");
1826 	}
1827 
1828 	/* Look for anchor block and load Volume Descriptor Sequence */
1829 	sbi->s_anchor = uopt->anchor;
1830 	if (!udf_find_anchor(sb, fileset)) {
1831 		if (!silent)
1832 			udf_warn(sb, "No anchor found\n");
1833 		return 0;
1834 	}
1835 	return 1;
1836 }
1837 
1838 static void udf_open_lvid(struct super_block *sb)
1839 {
1840 	struct udf_sb_info *sbi = UDF_SB(sb);
1841 	struct buffer_head *bh = sbi->s_lvid_bh;
1842 	struct logicalVolIntegrityDesc *lvid;
1843 	struct logicalVolIntegrityDescImpUse *lvidiu;
1844 
1845 	if (!bh)
1846 		return;
1847 
1848 	mutex_lock(&sbi->s_alloc_mutex);
1849 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1850 	lvidiu = udf_sb_lvidiu(sbi);
1851 
1852 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1853 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1854 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1855 				CURRENT_TIME);
1856 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1857 
1858 	lvid->descTag.descCRC = cpu_to_le16(
1859 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1860 			le16_to_cpu(lvid->descTag.descCRCLength)));
1861 
1862 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1863 	mark_buffer_dirty(bh);
1864 	sbi->s_lvid_dirty = 0;
1865 	mutex_unlock(&sbi->s_alloc_mutex);
1866 	/* Make opening of filesystem visible on the media immediately */
1867 	sync_dirty_buffer(bh);
1868 }
1869 
1870 static void udf_close_lvid(struct super_block *sb)
1871 {
1872 	struct udf_sb_info *sbi = UDF_SB(sb);
1873 	struct buffer_head *bh = sbi->s_lvid_bh;
1874 	struct logicalVolIntegrityDesc *lvid;
1875 	struct logicalVolIntegrityDescImpUse *lvidiu;
1876 
1877 	if (!bh)
1878 		return;
1879 
1880 	mutex_lock(&sbi->s_alloc_mutex);
1881 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1882 	lvidiu = udf_sb_lvidiu(sbi);
1883 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1884 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1885 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1886 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1887 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1888 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1889 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1890 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1891 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1892 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1893 
1894 	lvid->descTag.descCRC = cpu_to_le16(
1895 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1896 				le16_to_cpu(lvid->descTag.descCRCLength)));
1897 
1898 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1899 	/*
1900 	 * We set buffer uptodate unconditionally here to avoid spurious
1901 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1902 	 * the buffer as !uptodate
1903 	 */
1904 	set_buffer_uptodate(bh);
1905 	mark_buffer_dirty(bh);
1906 	sbi->s_lvid_dirty = 0;
1907 	mutex_unlock(&sbi->s_alloc_mutex);
1908 	/* Make closing of filesystem visible on the media immediately */
1909 	sync_dirty_buffer(bh);
1910 }
1911 
1912 u64 lvid_get_unique_id(struct super_block *sb)
1913 {
1914 	struct buffer_head *bh;
1915 	struct udf_sb_info *sbi = UDF_SB(sb);
1916 	struct logicalVolIntegrityDesc *lvid;
1917 	struct logicalVolHeaderDesc *lvhd;
1918 	u64 uniqueID;
1919 	u64 ret;
1920 
1921 	bh = sbi->s_lvid_bh;
1922 	if (!bh)
1923 		return 0;
1924 
1925 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1926 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1927 
1928 	mutex_lock(&sbi->s_alloc_mutex);
1929 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1930 	if (!(++uniqueID & 0xFFFFFFFF))
1931 		uniqueID += 16;
1932 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1933 	mutex_unlock(&sbi->s_alloc_mutex);
1934 	mark_buffer_dirty(bh);
1935 
1936 	return ret;
1937 }
1938 
1939 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1940 {
1941 	int ret;
1942 	struct inode *inode = NULL;
1943 	struct udf_options uopt;
1944 	struct kernel_lb_addr rootdir, fileset;
1945 	struct udf_sb_info *sbi;
1946 
1947 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1948 	uopt.uid = INVALID_UID;
1949 	uopt.gid = INVALID_GID;
1950 	uopt.umask = 0;
1951 	uopt.fmode = UDF_INVALID_MODE;
1952 	uopt.dmode = UDF_INVALID_MODE;
1953 
1954 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1955 	if (!sbi)
1956 		return -ENOMEM;
1957 
1958 	sb->s_fs_info = sbi;
1959 
1960 	mutex_init(&sbi->s_alloc_mutex);
1961 
1962 	if (!udf_parse_options((char *)options, &uopt, false))
1963 		goto error_out;
1964 
1965 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1966 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1967 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1968 		goto error_out;
1969 	}
1970 #ifdef CONFIG_UDF_NLS
1971 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1972 		uopt.nls_map = load_nls_default();
1973 		if (!uopt.nls_map)
1974 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1975 		else
1976 			udf_debug("Using default NLS map\n");
1977 	}
1978 #endif
1979 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1980 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1981 
1982 	fileset.logicalBlockNum = 0xFFFFFFFF;
1983 	fileset.partitionReferenceNum = 0xFFFF;
1984 
1985 	sbi->s_flags = uopt.flags;
1986 	sbi->s_uid = uopt.uid;
1987 	sbi->s_gid = uopt.gid;
1988 	sbi->s_umask = uopt.umask;
1989 	sbi->s_fmode = uopt.fmode;
1990 	sbi->s_dmode = uopt.dmode;
1991 	sbi->s_nls_map = uopt.nls_map;
1992 	rwlock_init(&sbi->s_cred_lock);
1993 
1994 	if (uopt.session == 0xFFFFFFFF)
1995 		sbi->s_session = udf_get_last_session(sb);
1996 	else
1997 		sbi->s_session = uopt.session;
1998 
1999 	udf_debug("Multi-session=%d\n", sbi->s_session);
2000 
2001 	/* Fill in the rest of the superblock */
2002 	sb->s_op = &udf_sb_ops;
2003 	sb->s_export_op = &udf_export_ops;
2004 
2005 	sb->s_magic = UDF_SUPER_MAGIC;
2006 	sb->s_time_gran = 1000;
2007 
2008 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2009 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2010 	} else {
2011 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2012 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2013 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2014 			if (!silent)
2015 				pr_notice("Rescanning with blocksize %d\n",
2016 					  UDF_DEFAULT_BLOCKSIZE);
2017 			brelse(sbi->s_lvid_bh);
2018 			sbi->s_lvid_bh = NULL;
2019 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2020 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2021 		}
2022 	}
2023 	if (!ret) {
2024 		udf_warn(sb, "No partition found (1)\n");
2025 		goto error_out;
2026 	}
2027 
2028 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2029 
2030 	if (sbi->s_lvid_bh) {
2031 		struct logicalVolIntegrityDescImpUse *lvidiu =
2032 							udf_sb_lvidiu(sbi);
2033 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2034 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2035 		/* uint16_t maxUDFWriteRev =
2036 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2037 
2038 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2039 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2040 				le16_to_cpu(lvidiu->minUDFReadRev),
2041 				UDF_MAX_READ_VERSION);
2042 			goto error_out;
2043 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2044 			sb->s_flags |= MS_RDONLY;
2045 
2046 		sbi->s_udfrev = minUDFWriteRev;
2047 
2048 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2049 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2050 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2051 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2052 	}
2053 
2054 	if (!sbi->s_partitions) {
2055 		udf_warn(sb, "No partition found (2)\n");
2056 		goto error_out;
2057 	}
2058 
2059 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2060 			UDF_PART_FLAG_READ_ONLY) {
2061 		pr_notice("Partition marked readonly; forcing readonly mount\n");
2062 		sb->s_flags |= MS_RDONLY;
2063 	}
2064 
2065 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2066 		udf_warn(sb, "No fileset found\n");
2067 		goto error_out;
2068 	}
2069 
2070 	if (!silent) {
2071 		struct timestamp ts;
2072 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2073 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2074 			 sbi->s_volume_ident,
2075 			 le16_to_cpu(ts.year), ts.month, ts.day,
2076 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2077 	}
2078 	if (!(sb->s_flags & MS_RDONLY))
2079 		udf_open_lvid(sb);
2080 
2081 	/* Assign the root inode */
2082 	/* assign inodes by physical block number */
2083 	/* perhaps it's not extensible enough, but for now ... */
2084 	inode = udf_iget(sb, &rootdir);
2085 	if (!inode) {
2086 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2087 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2088 		goto error_out;
2089 	}
2090 
2091 	/* Allocate a dentry for the root inode */
2092 	sb->s_root = d_make_root(inode);
2093 	if (!sb->s_root) {
2094 		udf_err(sb, "Couldn't allocate root dentry\n");
2095 		goto error_out;
2096 	}
2097 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2098 	sb->s_max_links = UDF_MAX_LINKS;
2099 	return 0;
2100 
2101 error_out:
2102 	if (sbi->s_vat_inode)
2103 		iput(sbi->s_vat_inode);
2104 #ifdef CONFIG_UDF_NLS
2105 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2106 		unload_nls(sbi->s_nls_map);
2107 #endif
2108 	if (!(sb->s_flags & MS_RDONLY))
2109 		udf_close_lvid(sb);
2110 	brelse(sbi->s_lvid_bh);
2111 	udf_sb_free_partitions(sb);
2112 	kfree(sbi);
2113 	sb->s_fs_info = NULL;
2114 
2115 	return -EINVAL;
2116 }
2117 
2118 void _udf_err(struct super_block *sb, const char *function,
2119 	      const char *fmt, ...)
2120 {
2121 	struct va_format vaf;
2122 	va_list args;
2123 
2124 	va_start(args, fmt);
2125 
2126 	vaf.fmt = fmt;
2127 	vaf.va = &args;
2128 
2129 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2130 
2131 	va_end(args);
2132 }
2133 
2134 void _udf_warn(struct super_block *sb, const char *function,
2135 	       const char *fmt, ...)
2136 {
2137 	struct va_format vaf;
2138 	va_list args;
2139 
2140 	va_start(args, fmt);
2141 
2142 	vaf.fmt = fmt;
2143 	vaf.va = &args;
2144 
2145 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2146 
2147 	va_end(args);
2148 }
2149 
2150 static void udf_put_super(struct super_block *sb)
2151 {
2152 	struct udf_sb_info *sbi;
2153 
2154 	sbi = UDF_SB(sb);
2155 
2156 	if (sbi->s_vat_inode)
2157 		iput(sbi->s_vat_inode);
2158 #ifdef CONFIG_UDF_NLS
2159 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2160 		unload_nls(sbi->s_nls_map);
2161 #endif
2162 	if (!(sb->s_flags & MS_RDONLY))
2163 		udf_close_lvid(sb);
2164 	brelse(sbi->s_lvid_bh);
2165 	udf_sb_free_partitions(sb);
2166 	kfree(sb->s_fs_info);
2167 	sb->s_fs_info = NULL;
2168 }
2169 
2170 static int udf_sync_fs(struct super_block *sb, int wait)
2171 {
2172 	struct udf_sb_info *sbi = UDF_SB(sb);
2173 
2174 	mutex_lock(&sbi->s_alloc_mutex);
2175 	if (sbi->s_lvid_dirty) {
2176 		/*
2177 		 * Blockdevice will be synced later so we don't have to submit
2178 		 * the buffer for IO
2179 		 */
2180 		mark_buffer_dirty(sbi->s_lvid_bh);
2181 		sbi->s_lvid_dirty = 0;
2182 	}
2183 	mutex_unlock(&sbi->s_alloc_mutex);
2184 
2185 	return 0;
2186 }
2187 
2188 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2189 {
2190 	struct super_block *sb = dentry->d_sb;
2191 	struct udf_sb_info *sbi = UDF_SB(sb);
2192 	struct logicalVolIntegrityDescImpUse *lvidiu;
2193 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2194 
2195 	if (sbi->s_lvid_bh != NULL)
2196 		lvidiu = udf_sb_lvidiu(sbi);
2197 	else
2198 		lvidiu = NULL;
2199 
2200 	buf->f_type = UDF_SUPER_MAGIC;
2201 	buf->f_bsize = sb->s_blocksize;
2202 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2203 	buf->f_bfree = udf_count_free(sb);
2204 	buf->f_bavail = buf->f_bfree;
2205 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2206 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2207 			+ buf->f_bfree;
2208 	buf->f_ffree = buf->f_bfree;
2209 	buf->f_namelen = UDF_NAME_LEN - 2;
2210 	buf->f_fsid.val[0] = (u32)id;
2211 	buf->f_fsid.val[1] = (u32)(id >> 32);
2212 
2213 	return 0;
2214 }
2215 
2216 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2217 					  struct udf_bitmap *bitmap)
2218 {
2219 	struct buffer_head *bh = NULL;
2220 	unsigned int accum = 0;
2221 	int index;
2222 	int block = 0, newblock;
2223 	struct kernel_lb_addr loc;
2224 	uint32_t bytes;
2225 	uint8_t *ptr;
2226 	uint16_t ident;
2227 	struct spaceBitmapDesc *bm;
2228 
2229 	loc.logicalBlockNum = bitmap->s_extPosition;
2230 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2231 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2232 
2233 	if (!bh) {
2234 		udf_err(sb, "udf_count_free failed\n");
2235 		goto out;
2236 	} else if (ident != TAG_IDENT_SBD) {
2237 		brelse(bh);
2238 		udf_err(sb, "udf_count_free failed\n");
2239 		goto out;
2240 	}
2241 
2242 	bm = (struct spaceBitmapDesc *)bh->b_data;
2243 	bytes = le32_to_cpu(bm->numOfBytes);
2244 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2245 	ptr = (uint8_t *)bh->b_data;
2246 
2247 	while (bytes > 0) {
2248 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2249 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2250 					cur_bytes * 8);
2251 		bytes -= cur_bytes;
2252 		if (bytes) {
2253 			brelse(bh);
2254 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2255 			bh = udf_tread(sb, newblock);
2256 			if (!bh) {
2257 				udf_debug("read failed\n");
2258 				goto out;
2259 			}
2260 			index = 0;
2261 			ptr = (uint8_t *)bh->b_data;
2262 		}
2263 	}
2264 	brelse(bh);
2265 out:
2266 	return accum;
2267 }
2268 
2269 static unsigned int udf_count_free_table(struct super_block *sb,
2270 					 struct inode *table)
2271 {
2272 	unsigned int accum = 0;
2273 	uint32_t elen;
2274 	struct kernel_lb_addr eloc;
2275 	int8_t etype;
2276 	struct extent_position epos;
2277 
2278 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2279 	epos.block = UDF_I(table)->i_location;
2280 	epos.offset = sizeof(struct unallocSpaceEntry);
2281 	epos.bh = NULL;
2282 
2283 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2284 		accum += (elen >> table->i_sb->s_blocksize_bits);
2285 
2286 	brelse(epos.bh);
2287 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2288 
2289 	return accum;
2290 }
2291 
2292 static unsigned int udf_count_free(struct super_block *sb)
2293 {
2294 	unsigned int accum = 0;
2295 	struct udf_sb_info *sbi;
2296 	struct udf_part_map *map;
2297 
2298 	sbi = UDF_SB(sb);
2299 	if (sbi->s_lvid_bh) {
2300 		struct logicalVolIntegrityDesc *lvid =
2301 			(struct logicalVolIntegrityDesc *)
2302 			sbi->s_lvid_bh->b_data;
2303 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2304 			accum = le32_to_cpu(
2305 					lvid->freeSpaceTable[sbi->s_partition]);
2306 			if (accum == 0xFFFFFFFF)
2307 				accum = 0;
2308 		}
2309 	}
2310 
2311 	if (accum)
2312 		return accum;
2313 
2314 	map = &sbi->s_partmaps[sbi->s_partition];
2315 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2316 		accum += udf_count_free_bitmap(sb,
2317 					       map->s_uspace.s_bitmap);
2318 	}
2319 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2320 		accum += udf_count_free_bitmap(sb,
2321 					       map->s_fspace.s_bitmap);
2322 	}
2323 	if (accum)
2324 		return accum;
2325 
2326 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2327 		accum += udf_count_free_table(sb,
2328 					      map->s_uspace.s_table);
2329 	}
2330 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2331 		accum += udf_count_free_table(sb,
2332 					      map->s_fspace.s_table);
2333 	}
2334 
2335 	return accum;
2336 }
2337