xref: /openbmc/linux/fs/udf/super.c (revision 85250a24)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67 
68 enum {
69 	VDS_POS_PRIMARY_VOL_DESC,
70 	VDS_POS_UNALLOC_SPACE_DESC,
71 	VDS_POS_LOGICAL_VOL_DESC,
72 	VDS_POS_IMP_USE_VOL_DESC,
73 	VDS_POS_LENGTH
74 };
75 
76 #define VSD_FIRST_SECTOR_OFFSET		32768
77 #define VSD_MAX_SECTOR_OFFSET		0x800000
78 
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87 
88 enum { UDF_MAX_LINKS = 0xffff };
89 
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
101 
102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 {
104 	struct logicalVolIntegrityDesc *lvid;
105 	unsigned int partnum;
106 	unsigned int offset;
107 
108 	if (!UDF_SB(sb)->s_lvid_bh)
109 		return NULL;
110 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 	partnum = le32_to_cpu(lvid->numOfPartitions);
112 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
113 	offset = partnum * 2 * sizeof(uint32_t);
114 	return (struct logicalVolIntegrityDescImpUse *)
115 					(((uint8_t *)(lvid + 1)) + offset);
116 }
117 
118 /* UDF filesystem type */
119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 		      int flags, const char *dev_name, void *data)
121 {
122 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123 }
124 
125 static struct file_system_type udf_fstype = {
126 	.owner		= THIS_MODULE,
127 	.name		= "udf",
128 	.mount		= udf_mount,
129 	.kill_sb	= kill_block_super,
130 	.fs_flags	= FS_REQUIRES_DEV,
131 };
132 MODULE_ALIAS_FS("udf");
133 
134 static struct kmem_cache *udf_inode_cachep;
135 
136 static struct inode *udf_alloc_inode(struct super_block *sb)
137 {
138 	struct udf_inode_info *ei;
139 	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
140 	if (!ei)
141 		return NULL;
142 
143 	ei->i_unique = 0;
144 	ei->i_lenExtents = 0;
145 	ei->i_lenStreams = 0;
146 	ei->i_next_alloc_block = 0;
147 	ei->i_next_alloc_goal = 0;
148 	ei->i_strat4096 = 0;
149 	ei->i_streamdir = 0;
150 	init_rwsem(&ei->i_data_sem);
151 	ei->cached_extent.lstart = -1;
152 	spin_lock_init(&ei->i_extent_cache_lock);
153 	inode_set_iversion(&ei->vfs_inode, 1);
154 
155 	return &ei->vfs_inode;
156 }
157 
158 static void udf_free_in_core_inode(struct inode *inode)
159 {
160 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
161 }
162 
163 static void init_once(void *foo)
164 {
165 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
166 
167 	ei->i_data = NULL;
168 	inode_init_once(&ei->vfs_inode);
169 }
170 
171 static int __init init_inodecache(void)
172 {
173 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
174 					     sizeof(struct udf_inode_info),
175 					     0, (SLAB_RECLAIM_ACCOUNT |
176 						 SLAB_MEM_SPREAD |
177 						 SLAB_ACCOUNT),
178 					     init_once);
179 	if (!udf_inode_cachep)
180 		return -ENOMEM;
181 	return 0;
182 }
183 
184 static void destroy_inodecache(void)
185 {
186 	/*
187 	 * Make sure all delayed rcu free inodes are flushed before we
188 	 * destroy cache.
189 	 */
190 	rcu_barrier();
191 	kmem_cache_destroy(udf_inode_cachep);
192 }
193 
194 /* Superblock operations */
195 static const struct super_operations udf_sb_ops = {
196 	.alloc_inode	= udf_alloc_inode,
197 	.free_inode	= udf_free_in_core_inode,
198 	.write_inode	= udf_write_inode,
199 	.evict_inode	= udf_evict_inode,
200 	.put_super	= udf_put_super,
201 	.sync_fs	= udf_sync_fs,
202 	.statfs		= udf_statfs,
203 	.remount_fs	= udf_remount_fs,
204 	.show_options	= udf_show_options,
205 };
206 
207 struct udf_options {
208 	unsigned char novrs;
209 	unsigned int blocksize;
210 	unsigned int session;
211 	unsigned int lastblock;
212 	unsigned int anchor;
213 	unsigned int flags;
214 	umode_t umask;
215 	kgid_t gid;
216 	kuid_t uid;
217 	umode_t fmode;
218 	umode_t dmode;
219 	struct nls_table *nls_map;
220 };
221 
222 static int __init init_udf_fs(void)
223 {
224 	int err;
225 
226 	err = init_inodecache();
227 	if (err)
228 		goto out1;
229 	err = register_filesystem(&udf_fstype);
230 	if (err)
231 		goto out;
232 
233 	return 0;
234 
235 out:
236 	destroy_inodecache();
237 
238 out1:
239 	return err;
240 }
241 
242 static void __exit exit_udf_fs(void)
243 {
244 	unregister_filesystem(&udf_fstype);
245 	destroy_inodecache();
246 }
247 
248 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
249 {
250 	struct udf_sb_info *sbi = UDF_SB(sb);
251 
252 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
253 	if (!sbi->s_partmaps) {
254 		sbi->s_partitions = 0;
255 		return -ENOMEM;
256 	}
257 
258 	sbi->s_partitions = count;
259 	return 0;
260 }
261 
262 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
263 {
264 	int i;
265 	int nr_groups = bitmap->s_nr_groups;
266 
267 	for (i = 0; i < nr_groups; i++)
268 		brelse(bitmap->s_block_bitmap[i]);
269 
270 	kvfree(bitmap);
271 }
272 
273 static void udf_free_partition(struct udf_part_map *map)
274 {
275 	int i;
276 	struct udf_meta_data *mdata;
277 
278 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
279 		iput(map->s_uspace.s_table);
280 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
281 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
282 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
283 		for (i = 0; i < 4; i++)
284 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
285 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
286 		mdata = &map->s_type_specific.s_metadata;
287 		iput(mdata->s_metadata_fe);
288 		mdata->s_metadata_fe = NULL;
289 
290 		iput(mdata->s_mirror_fe);
291 		mdata->s_mirror_fe = NULL;
292 
293 		iput(mdata->s_bitmap_fe);
294 		mdata->s_bitmap_fe = NULL;
295 	}
296 }
297 
298 static void udf_sb_free_partitions(struct super_block *sb)
299 {
300 	struct udf_sb_info *sbi = UDF_SB(sb);
301 	int i;
302 
303 	if (!sbi->s_partmaps)
304 		return;
305 	for (i = 0; i < sbi->s_partitions; i++)
306 		udf_free_partition(&sbi->s_partmaps[i]);
307 	kfree(sbi->s_partmaps);
308 	sbi->s_partmaps = NULL;
309 }
310 
311 static int udf_show_options(struct seq_file *seq, struct dentry *root)
312 {
313 	struct super_block *sb = root->d_sb;
314 	struct udf_sb_info *sbi = UDF_SB(sb);
315 
316 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
317 		seq_puts(seq, ",nostrict");
318 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
319 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
320 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
321 		seq_puts(seq, ",unhide");
322 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
323 		seq_puts(seq, ",undelete");
324 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
325 		seq_puts(seq, ",noadinicb");
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
327 		seq_puts(seq, ",shortad");
328 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
329 		seq_puts(seq, ",uid=forget");
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
331 		seq_puts(seq, ",gid=forget");
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
333 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
334 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
335 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
336 	if (sbi->s_umask != 0)
337 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
338 	if (sbi->s_fmode != UDF_INVALID_MODE)
339 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
340 	if (sbi->s_dmode != UDF_INVALID_MODE)
341 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
343 		seq_printf(seq, ",session=%d", sbi->s_session);
344 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
345 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
346 	if (sbi->s_anchor != 0)
347 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
348 	if (sbi->s_nls_map)
349 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
350 	else
351 		seq_puts(seq, ",iocharset=utf8");
352 
353 	return 0;
354 }
355 
356 /*
357  * udf_parse_options
358  *
359  * PURPOSE
360  *	Parse mount options.
361  *
362  * DESCRIPTION
363  *	The following mount options are supported:
364  *
365  *	gid=		Set the default group.
366  *	umask=		Set the default umask.
367  *	mode=		Set the default file permissions.
368  *	dmode=		Set the default directory permissions.
369  *	uid=		Set the default user.
370  *	bs=		Set the block size.
371  *	unhide		Show otherwise hidden files.
372  *	undelete	Show deleted files in lists.
373  *	adinicb		Embed data in the inode (default)
374  *	noadinicb	Don't embed data in the inode
375  *	shortad		Use short ad's
376  *	longad		Use long ad's (default)
377  *	nostrict	Unset strict conformance
378  *	iocharset=	Set the NLS character set
379  *
380  *	The remaining are for debugging and disaster recovery:
381  *
382  *	novrs		Skip volume sequence recognition
383  *
384  *	The following expect a offset from 0.
385  *
386  *	session=	Set the CDROM session (default= last session)
387  *	anchor=		Override standard anchor location. (default= 256)
388  *	volume=		Override the VolumeDesc location. (unused)
389  *	partition=	Override the PartitionDesc location. (unused)
390  *	lastblock=	Set the last block of the filesystem/
391  *
392  *	The following expect a offset from the partition root.
393  *
394  *	fileset=	Override the fileset block location. (unused)
395  *	rootdir=	Override the root directory location. (unused)
396  *		WARNING: overriding the rootdir to a non-directory may
397  *		yield highly unpredictable results.
398  *
399  * PRE-CONDITIONS
400  *	options		Pointer to mount options string.
401  *	uopts		Pointer to mount options variable.
402  *
403  * POST-CONDITIONS
404  *	<return>	1	Mount options parsed okay.
405  *	<return>	0	Error parsing mount options.
406  *
407  * HISTORY
408  *	July 1, 1997 - Andrew E. Mileski
409  *	Written, tested, and released.
410  */
411 
412 enum {
413 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
414 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
415 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
416 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
417 	Opt_rootdir, Opt_utf8, Opt_iocharset,
418 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
419 	Opt_fmode, Opt_dmode
420 };
421 
422 static const match_table_t tokens = {
423 	{Opt_novrs,	"novrs"},
424 	{Opt_nostrict,	"nostrict"},
425 	{Opt_bs,	"bs=%u"},
426 	{Opt_unhide,	"unhide"},
427 	{Opt_undelete,	"undelete"},
428 	{Opt_noadinicb,	"noadinicb"},
429 	{Opt_adinicb,	"adinicb"},
430 	{Opt_shortad,	"shortad"},
431 	{Opt_longad,	"longad"},
432 	{Opt_uforget,	"uid=forget"},
433 	{Opt_uignore,	"uid=ignore"},
434 	{Opt_gforget,	"gid=forget"},
435 	{Opt_gignore,	"gid=ignore"},
436 	{Opt_gid,	"gid=%u"},
437 	{Opt_uid,	"uid=%u"},
438 	{Opt_umask,	"umask=%o"},
439 	{Opt_session,	"session=%u"},
440 	{Opt_lastblock,	"lastblock=%u"},
441 	{Opt_anchor,	"anchor=%u"},
442 	{Opt_volume,	"volume=%u"},
443 	{Opt_partition,	"partition=%u"},
444 	{Opt_fileset,	"fileset=%u"},
445 	{Opt_rootdir,	"rootdir=%u"},
446 	{Opt_utf8,	"utf8"},
447 	{Opt_iocharset,	"iocharset=%s"},
448 	{Opt_fmode,     "mode=%o"},
449 	{Opt_dmode,     "dmode=%o"},
450 	{Opt_err,	NULL}
451 };
452 
453 static int udf_parse_options(char *options, struct udf_options *uopt,
454 			     bool remount)
455 {
456 	char *p;
457 	int option;
458 	unsigned int uv;
459 
460 	uopt->novrs = 0;
461 	uopt->session = 0xFFFFFFFF;
462 	uopt->lastblock = 0;
463 	uopt->anchor = 0;
464 
465 	if (!options)
466 		return 1;
467 
468 	while ((p = strsep(&options, ",")) != NULL) {
469 		substring_t args[MAX_OPT_ARGS];
470 		int token;
471 		unsigned n;
472 		if (!*p)
473 			continue;
474 
475 		token = match_token(p, tokens, args);
476 		switch (token) {
477 		case Opt_novrs:
478 			uopt->novrs = 1;
479 			break;
480 		case Opt_bs:
481 			if (match_int(&args[0], &option))
482 				return 0;
483 			n = option;
484 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
485 				return 0;
486 			uopt->blocksize = n;
487 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
488 			break;
489 		case Opt_unhide:
490 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
491 			break;
492 		case Opt_undelete:
493 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
494 			break;
495 		case Opt_noadinicb:
496 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
497 			break;
498 		case Opt_adinicb:
499 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
500 			break;
501 		case Opt_shortad:
502 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
503 			break;
504 		case Opt_longad:
505 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
506 			break;
507 		case Opt_gid:
508 			if (match_uint(args, &uv))
509 				return 0;
510 			uopt->gid = make_kgid(current_user_ns(), uv);
511 			if (!gid_valid(uopt->gid))
512 				return 0;
513 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
514 			break;
515 		case Opt_uid:
516 			if (match_uint(args, &uv))
517 				return 0;
518 			uopt->uid = make_kuid(current_user_ns(), uv);
519 			if (!uid_valid(uopt->uid))
520 				return 0;
521 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
522 			break;
523 		case Opt_umask:
524 			if (match_octal(args, &option))
525 				return 0;
526 			uopt->umask = option;
527 			break;
528 		case Opt_nostrict:
529 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
530 			break;
531 		case Opt_session:
532 			if (match_int(args, &option))
533 				return 0;
534 			uopt->session = option;
535 			if (!remount)
536 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
537 			break;
538 		case Opt_lastblock:
539 			if (match_int(args, &option))
540 				return 0;
541 			uopt->lastblock = option;
542 			if (!remount)
543 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
544 			break;
545 		case Opt_anchor:
546 			if (match_int(args, &option))
547 				return 0;
548 			uopt->anchor = option;
549 			break;
550 		case Opt_volume:
551 		case Opt_partition:
552 		case Opt_fileset:
553 		case Opt_rootdir:
554 			/* Ignored (never implemented properly) */
555 			break;
556 		case Opt_utf8:
557 			if (!remount) {
558 				unload_nls(uopt->nls_map);
559 				uopt->nls_map = NULL;
560 			}
561 			break;
562 		case Opt_iocharset:
563 			if (!remount) {
564 				unload_nls(uopt->nls_map);
565 				uopt->nls_map = NULL;
566 			}
567 			/* When nls_map is not loaded then UTF-8 is used */
568 			if (!remount && strcmp(args[0].from, "utf8") != 0) {
569 				uopt->nls_map = load_nls(args[0].from);
570 				if (!uopt->nls_map) {
571 					pr_err("iocharset %s not found\n",
572 						args[0].from);
573 					return 0;
574 				}
575 			}
576 			break;
577 		case Opt_uforget:
578 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
579 			break;
580 		case Opt_uignore:
581 		case Opt_gignore:
582 			/* These options are superseeded by uid=<number> */
583 			break;
584 		case Opt_gforget:
585 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
586 			break;
587 		case Opt_fmode:
588 			if (match_octal(args, &option))
589 				return 0;
590 			uopt->fmode = option & 0777;
591 			break;
592 		case Opt_dmode:
593 			if (match_octal(args, &option))
594 				return 0;
595 			uopt->dmode = option & 0777;
596 			break;
597 		default:
598 			pr_err("bad mount option \"%s\" or missing value\n", p);
599 			return 0;
600 		}
601 	}
602 	return 1;
603 }
604 
605 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
606 {
607 	struct udf_options uopt;
608 	struct udf_sb_info *sbi = UDF_SB(sb);
609 	int error = 0;
610 
611 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
612 		return -EACCES;
613 
614 	sync_filesystem(sb);
615 
616 	uopt.flags = sbi->s_flags;
617 	uopt.uid   = sbi->s_uid;
618 	uopt.gid   = sbi->s_gid;
619 	uopt.umask = sbi->s_umask;
620 	uopt.fmode = sbi->s_fmode;
621 	uopt.dmode = sbi->s_dmode;
622 	uopt.nls_map = NULL;
623 
624 	if (!udf_parse_options(options, &uopt, true))
625 		return -EINVAL;
626 
627 	write_lock(&sbi->s_cred_lock);
628 	sbi->s_flags = uopt.flags;
629 	sbi->s_uid   = uopt.uid;
630 	sbi->s_gid   = uopt.gid;
631 	sbi->s_umask = uopt.umask;
632 	sbi->s_fmode = uopt.fmode;
633 	sbi->s_dmode = uopt.dmode;
634 	write_unlock(&sbi->s_cred_lock);
635 
636 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
637 		goto out_unlock;
638 
639 	if (*flags & SB_RDONLY)
640 		udf_close_lvid(sb);
641 	else
642 		udf_open_lvid(sb);
643 
644 out_unlock:
645 	return error;
646 }
647 
648 /*
649  * Check VSD descriptor. Returns -1 in case we are at the end of volume
650  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
651  * we found one of NSR descriptors we are looking for.
652  */
653 static int identify_vsd(const struct volStructDesc *vsd)
654 {
655 	int ret = 0;
656 
657 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
658 		switch (vsd->structType) {
659 		case 0:
660 			udf_debug("ISO9660 Boot Record found\n");
661 			break;
662 		case 1:
663 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
664 			break;
665 		case 2:
666 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
667 			break;
668 		case 3:
669 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
670 			break;
671 		case 255:
672 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
673 			break;
674 		default:
675 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
676 			break;
677 		}
678 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
679 		; /* ret = 0 */
680 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
681 		ret = 1;
682 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
683 		ret = 1;
684 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
685 		; /* ret = 0 */
686 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
687 		; /* ret = 0 */
688 	else {
689 		/* TEA01 or invalid id : end of volume recognition area */
690 		ret = -1;
691 	}
692 
693 	return ret;
694 }
695 
696 /*
697  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
698  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
699  * @return   1 if NSR02 or NSR03 found,
700  *	    -1 if first sector read error, 0 otherwise
701  */
702 static int udf_check_vsd(struct super_block *sb)
703 {
704 	struct volStructDesc *vsd = NULL;
705 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
706 	int sectorsize;
707 	struct buffer_head *bh = NULL;
708 	int nsr = 0;
709 	struct udf_sb_info *sbi;
710 	loff_t session_offset;
711 
712 	sbi = UDF_SB(sb);
713 	if (sb->s_blocksize < sizeof(struct volStructDesc))
714 		sectorsize = sizeof(struct volStructDesc);
715 	else
716 		sectorsize = sb->s_blocksize;
717 
718 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
719 	sector += session_offset;
720 
721 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
722 		  (unsigned int)(sector >> sb->s_blocksize_bits),
723 		  sb->s_blocksize);
724 	/* Process the sequence (if applicable). The hard limit on the sector
725 	 * offset is arbitrary, hopefully large enough so that all valid UDF
726 	 * filesystems will be recognised. There is no mention of an upper
727 	 * bound to the size of the volume recognition area in the standard.
728 	 *  The limit will prevent the code to read all the sectors of a
729 	 * specially crafted image (like a bluray disc full of CD001 sectors),
730 	 * potentially causing minutes or even hours of uninterruptible I/O
731 	 * activity. This actually happened with uninitialised SSD partitions
732 	 * (all 0xFF) before the check for the limit and all valid IDs were
733 	 * added */
734 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
735 		/* Read a block */
736 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
737 		if (!bh)
738 			break;
739 
740 		vsd = (struct volStructDesc *)(bh->b_data +
741 					      (sector & (sb->s_blocksize - 1)));
742 		nsr = identify_vsd(vsd);
743 		/* Found NSR or end? */
744 		if (nsr) {
745 			brelse(bh);
746 			break;
747 		}
748 		/*
749 		 * Special handling for improperly formatted VRS (e.g., Win10)
750 		 * where components are separated by 2048 bytes even though
751 		 * sectors are 4K
752 		 */
753 		if (sb->s_blocksize == 4096) {
754 			nsr = identify_vsd(vsd + 1);
755 			/* Ignore unknown IDs... */
756 			if (nsr < 0)
757 				nsr = 0;
758 		}
759 		brelse(bh);
760 	}
761 
762 	if (nsr > 0)
763 		return 1;
764 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
765 		return -1;
766 	else
767 		return 0;
768 }
769 
770 static int udf_verify_domain_identifier(struct super_block *sb,
771 					struct regid *ident, char *dname)
772 {
773 	struct domainIdentSuffix *suffix;
774 
775 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
776 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
777 		goto force_ro;
778 	}
779 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
780 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
781 			 dname);
782 		goto force_ro;
783 	}
784 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
785 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
786 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
787 		if (!sb_rdonly(sb)) {
788 			udf_warn(sb, "Descriptor for %s marked write protected."
789 				 " Forcing read only mount.\n", dname);
790 		}
791 		goto force_ro;
792 	}
793 	return 0;
794 
795 force_ro:
796 	if (!sb_rdonly(sb))
797 		return -EACCES;
798 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
799 	return 0;
800 }
801 
802 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
803 			    struct kernel_lb_addr *root)
804 {
805 	int ret;
806 
807 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
808 	if (ret < 0)
809 		return ret;
810 
811 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
812 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
813 
814 	udf_debug("Rootdir at block=%u, partition=%u\n",
815 		  root->logicalBlockNum, root->partitionReferenceNum);
816 	return 0;
817 }
818 
819 static int udf_find_fileset(struct super_block *sb,
820 			    struct kernel_lb_addr *fileset,
821 			    struct kernel_lb_addr *root)
822 {
823 	struct buffer_head *bh = NULL;
824 	uint16_t ident;
825 	int ret;
826 
827 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
828 	    fileset->partitionReferenceNum == 0xFFFF)
829 		return -EINVAL;
830 
831 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
832 	if (!bh)
833 		return -EIO;
834 	if (ident != TAG_IDENT_FSD) {
835 		brelse(bh);
836 		return -EINVAL;
837 	}
838 
839 	udf_debug("Fileset at block=%u, partition=%u\n",
840 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
841 
842 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
843 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
844 	brelse(bh);
845 	return ret;
846 }
847 
848 /*
849  * Load primary Volume Descriptor Sequence
850  *
851  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
852  * should be tried.
853  */
854 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
855 {
856 	struct primaryVolDesc *pvoldesc;
857 	uint8_t *outstr;
858 	struct buffer_head *bh;
859 	uint16_t ident;
860 	int ret;
861 	struct timestamp *ts;
862 
863 	outstr = kmalloc(128, GFP_NOFS);
864 	if (!outstr)
865 		return -ENOMEM;
866 
867 	bh = udf_read_tagged(sb, block, block, &ident);
868 	if (!bh) {
869 		ret = -EAGAIN;
870 		goto out2;
871 	}
872 
873 	if (ident != TAG_IDENT_PVD) {
874 		ret = -EIO;
875 		goto out_bh;
876 	}
877 
878 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
879 
880 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
881 			      pvoldesc->recordingDateAndTime);
882 	ts = &pvoldesc->recordingDateAndTime;
883 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
884 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
885 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
886 
887 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
888 	if (ret < 0) {
889 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
890 		pr_warn("incorrect volume identification, setting to "
891 			"'InvalidName'\n");
892 	} else {
893 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
894 	}
895 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
896 
897 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
898 	if (ret < 0) {
899 		ret = 0;
900 		goto out_bh;
901 	}
902 	outstr[ret] = 0;
903 	udf_debug("volSetIdent[] = '%s'\n", outstr);
904 
905 	ret = 0;
906 out_bh:
907 	brelse(bh);
908 out2:
909 	kfree(outstr);
910 	return ret;
911 }
912 
913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
914 					u32 meta_file_loc, u32 partition_ref)
915 {
916 	struct kernel_lb_addr addr;
917 	struct inode *metadata_fe;
918 
919 	addr.logicalBlockNum = meta_file_loc;
920 	addr.partitionReferenceNum = partition_ref;
921 
922 	metadata_fe = udf_iget_special(sb, &addr);
923 
924 	if (IS_ERR(metadata_fe)) {
925 		udf_warn(sb, "metadata inode efe not found\n");
926 		return metadata_fe;
927 	}
928 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
929 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
930 		iput(metadata_fe);
931 		return ERR_PTR(-EIO);
932 	}
933 
934 	return metadata_fe;
935 }
936 
937 static int udf_load_metadata_files(struct super_block *sb, int partition,
938 				   int type1_index)
939 {
940 	struct udf_sb_info *sbi = UDF_SB(sb);
941 	struct udf_part_map *map;
942 	struct udf_meta_data *mdata;
943 	struct kernel_lb_addr addr;
944 	struct inode *fe;
945 
946 	map = &sbi->s_partmaps[partition];
947 	mdata = &map->s_type_specific.s_metadata;
948 	mdata->s_phys_partition_ref = type1_index;
949 
950 	/* metadata address */
951 	udf_debug("Metadata file location: block = %u part = %u\n",
952 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
953 
954 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
955 					 mdata->s_phys_partition_ref);
956 	if (IS_ERR(fe)) {
957 		/* mirror file entry */
958 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
959 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
960 
961 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
962 						 mdata->s_phys_partition_ref);
963 
964 		if (IS_ERR(fe)) {
965 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
966 			return PTR_ERR(fe);
967 		}
968 		mdata->s_mirror_fe = fe;
969 	} else
970 		mdata->s_metadata_fe = fe;
971 
972 
973 	/*
974 	 * bitmap file entry
975 	 * Note:
976 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
977 	*/
978 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
979 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
980 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
981 
982 		udf_debug("Bitmap file location: block = %u part = %u\n",
983 			  addr.logicalBlockNum, addr.partitionReferenceNum);
984 
985 		fe = udf_iget_special(sb, &addr);
986 		if (IS_ERR(fe)) {
987 			if (sb_rdonly(sb))
988 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
989 			else {
990 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
991 				return PTR_ERR(fe);
992 			}
993 		} else
994 			mdata->s_bitmap_fe = fe;
995 	}
996 
997 	udf_debug("udf_load_metadata_files Ok\n");
998 	return 0;
999 }
1000 
1001 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002 {
1003 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004 	return DIV_ROUND_UP(map->s_partition_len +
1005 			    (sizeof(struct spaceBitmapDesc) << 3),
1006 			    sb->s_blocksize * 8);
1007 }
1008 
1009 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010 {
1011 	struct udf_bitmap *bitmap;
1012 	int nr_groups = udf_compute_nr_groups(sb, index);
1013 
1014 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1015 			  GFP_KERNEL);
1016 	if (!bitmap)
1017 		return NULL;
1018 
1019 	bitmap->s_nr_groups = nr_groups;
1020 	return bitmap;
1021 }
1022 
1023 static int check_partition_desc(struct super_block *sb,
1024 				struct partitionDesc *p,
1025 				struct udf_part_map *map)
1026 {
1027 	bool umap, utable, fmap, ftable;
1028 	struct partitionHeaderDesc *phd;
1029 
1030 	switch (le32_to_cpu(p->accessType)) {
1031 	case PD_ACCESS_TYPE_READ_ONLY:
1032 	case PD_ACCESS_TYPE_WRITE_ONCE:
1033 	case PD_ACCESS_TYPE_NONE:
1034 		goto force_ro;
1035 	}
1036 
1037 	/* No Partition Header Descriptor? */
1038 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1039 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1040 		goto force_ro;
1041 
1042 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1043 	utable = phd->unallocSpaceTable.extLength;
1044 	umap = phd->unallocSpaceBitmap.extLength;
1045 	ftable = phd->freedSpaceTable.extLength;
1046 	fmap = phd->freedSpaceBitmap.extLength;
1047 
1048 	/* No allocation info? */
1049 	if (!utable && !umap && !ftable && !fmap)
1050 		goto force_ro;
1051 
1052 	/* We don't support blocks that require erasing before overwrite */
1053 	if (ftable || fmap)
1054 		goto force_ro;
1055 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1056 	if (utable && umap)
1057 		goto force_ro;
1058 
1059 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1060 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1061 	    map->s_partition_type == UDF_METADATA_MAP25)
1062 		goto force_ro;
1063 
1064 	return 0;
1065 force_ro:
1066 	if (!sb_rdonly(sb))
1067 		return -EACCES;
1068 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1069 	return 0;
1070 }
1071 
1072 static int udf_fill_partdesc_info(struct super_block *sb,
1073 		struct partitionDesc *p, int p_index)
1074 {
1075 	struct udf_part_map *map;
1076 	struct udf_sb_info *sbi = UDF_SB(sb);
1077 	struct partitionHeaderDesc *phd;
1078 	int err;
1079 
1080 	map = &sbi->s_partmaps[p_index];
1081 
1082 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1083 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1084 
1085 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1086 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1087 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1088 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1089 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1090 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1091 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1092 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1093 
1094 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1095 		  p_index, map->s_partition_type,
1096 		  map->s_partition_root, map->s_partition_len);
1097 
1098 	err = check_partition_desc(sb, p, map);
1099 	if (err)
1100 		return err;
1101 
1102 	/*
1103 	 * Skip loading allocation info it we cannot ever write to the fs.
1104 	 * This is a correctness thing as we may have decided to force ro mount
1105 	 * to avoid allocation info we don't support.
1106 	 */
1107 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1108 		return 0;
1109 
1110 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111 	if (phd->unallocSpaceTable.extLength) {
1112 		struct kernel_lb_addr loc = {
1113 			.logicalBlockNum = le32_to_cpu(
1114 				phd->unallocSpaceTable.extPosition),
1115 			.partitionReferenceNum = p_index,
1116 		};
1117 		struct inode *inode;
1118 
1119 		inode = udf_iget_special(sb, &loc);
1120 		if (IS_ERR(inode)) {
1121 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122 				  p_index);
1123 			return PTR_ERR(inode);
1124 		}
1125 		map->s_uspace.s_table = inode;
1126 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1128 			  p_index, map->s_uspace.s_table->i_ino);
1129 	}
1130 
1131 	if (phd->unallocSpaceBitmap.extLength) {
1132 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133 		if (!bitmap)
1134 			return -ENOMEM;
1135 		map->s_uspace.s_bitmap = bitmap;
1136 		bitmap->s_extPosition = le32_to_cpu(
1137 				phd->unallocSpaceBitmap.extPosition);
1138 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1140 			  p_index, bitmap->s_extPosition);
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static void udf_find_vat_block(struct super_block *sb, int p_index,
1147 			       int type1_index, sector_t start_block)
1148 {
1149 	struct udf_sb_info *sbi = UDF_SB(sb);
1150 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1151 	sector_t vat_block;
1152 	struct kernel_lb_addr ino;
1153 	struct inode *inode;
1154 
1155 	/*
1156 	 * VAT file entry is in the last recorded block. Some broken disks have
1157 	 * it a few blocks before so try a bit harder...
1158 	 */
1159 	ino.partitionReferenceNum = type1_index;
1160 	for (vat_block = start_block;
1161 	     vat_block >= map->s_partition_root &&
1162 	     vat_block >= start_block - 3; vat_block--) {
1163 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1164 		inode = udf_iget_special(sb, &ino);
1165 		if (!IS_ERR(inode)) {
1166 			sbi->s_vat_inode = inode;
1167 			break;
1168 		}
1169 	}
1170 }
1171 
1172 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1173 {
1174 	struct udf_sb_info *sbi = UDF_SB(sb);
1175 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1176 	struct buffer_head *bh = NULL;
1177 	struct udf_inode_info *vati;
1178 	uint32_t pos;
1179 	struct virtualAllocationTable20 *vat20;
1180 	sector_t blocks = sb_bdev_nr_blocks(sb);
1181 
1182 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183 	if (!sbi->s_vat_inode &&
1184 	    sbi->s_last_block != blocks - 1) {
1185 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186 			  (unsigned long)sbi->s_last_block,
1187 			  (unsigned long)blocks - 1);
1188 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189 	}
1190 	if (!sbi->s_vat_inode)
1191 		return -EIO;
1192 
1193 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194 		map->s_type_specific.s_virtual.s_start_offset = 0;
1195 		map->s_type_specific.s_virtual.s_num_entries =
1196 			(sbi->s_vat_inode->i_size - 36) >> 2;
1197 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198 		vati = UDF_I(sbi->s_vat_inode);
1199 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200 			pos = udf_block_map(sbi->s_vat_inode, 0);
1201 			bh = sb_bread(sb, pos);
1202 			if (!bh)
1203 				return -EIO;
1204 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205 		} else {
1206 			vat20 = (struct virtualAllocationTable20 *)
1207 							vati->i_data;
1208 		}
1209 
1210 		map->s_type_specific.s_virtual.s_start_offset =
1211 			le16_to_cpu(vat20->lengthHeader);
1212 		map->s_type_specific.s_virtual.s_num_entries =
1213 			(sbi->s_vat_inode->i_size -
1214 				map->s_type_specific.s_virtual.
1215 					s_start_offset) >> 2;
1216 		brelse(bh);
1217 	}
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Load partition descriptor block
1223  *
1224  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225  * sequence.
1226  */
1227 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228 {
1229 	struct buffer_head *bh;
1230 	struct partitionDesc *p;
1231 	struct udf_part_map *map;
1232 	struct udf_sb_info *sbi = UDF_SB(sb);
1233 	int i, type1_idx;
1234 	uint16_t partitionNumber;
1235 	uint16_t ident;
1236 	int ret;
1237 
1238 	bh = udf_read_tagged(sb, block, block, &ident);
1239 	if (!bh)
1240 		return -EAGAIN;
1241 	if (ident != TAG_IDENT_PD) {
1242 		ret = 0;
1243 		goto out_bh;
1244 	}
1245 
1246 	p = (struct partitionDesc *)bh->b_data;
1247 	partitionNumber = le16_to_cpu(p->partitionNumber);
1248 
1249 	/* First scan for TYPE1 and SPARABLE partitions */
1250 	for (i = 0; i < sbi->s_partitions; i++) {
1251 		map = &sbi->s_partmaps[i];
1252 		udf_debug("Searching map: (%u == %u)\n",
1253 			  map->s_partition_num, partitionNumber);
1254 		if (map->s_partition_num == partitionNumber &&
1255 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1257 			break;
1258 	}
1259 
1260 	if (i >= sbi->s_partitions) {
1261 		udf_debug("Partition (%u) not found in partition map\n",
1262 			  partitionNumber);
1263 		ret = 0;
1264 		goto out_bh;
1265 	}
1266 
1267 	ret = udf_fill_partdesc_info(sb, p, i);
1268 	if (ret < 0)
1269 		goto out_bh;
1270 
1271 	/*
1272 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273 	 * PHYSICAL partitions are already set up
1274 	 */
1275 	type1_idx = i;
1276 	map = NULL; /* supress 'maybe used uninitialized' warning */
1277 	for (i = 0; i < sbi->s_partitions; i++) {
1278 		map = &sbi->s_partmaps[i];
1279 
1280 		if (map->s_partition_num == partitionNumber &&
1281 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283 		     map->s_partition_type == UDF_METADATA_MAP25))
1284 			break;
1285 	}
1286 
1287 	if (i >= sbi->s_partitions) {
1288 		ret = 0;
1289 		goto out_bh;
1290 	}
1291 
1292 	ret = udf_fill_partdesc_info(sb, p, i);
1293 	if (ret < 0)
1294 		goto out_bh;
1295 
1296 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1297 		ret = udf_load_metadata_files(sb, i, type1_idx);
1298 		if (ret < 0) {
1299 			udf_err(sb, "error loading MetaData partition map %d\n",
1300 				i);
1301 			goto out_bh;
1302 		}
1303 	} else {
1304 		/*
1305 		 * If we have a partition with virtual map, we don't handle
1306 		 * writing to it (we overwrite blocks instead of relocating
1307 		 * them).
1308 		 */
1309 		if (!sb_rdonly(sb)) {
1310 			ret = -EACCES;
1311 			goto out_bh;
1312 		}
1313 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314 		ret = udf_load_vat(sb, i, type1_idx);
1315 		if (ret < 0)
1316 			goto out_bh;
1317 	}
1318 	ret = 0;
1319 out_bh:
1320 	/* In case loading failed, we handle cleanup in udf_fill_super */
1321 	brelse(bh);
1322 	return ret;
1323 }
1324 
1325 static int udf_load_sparable_map(struct super_block *sb,
1326 				 struct udf_part_map *map,
1327 				 struct sparablePartitionMap *spm)
1328 {
1329 	uint32_t loc;
1330 	uint16_t ident;
1331 	struct sparingTable *st;
1332 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333 	int i;
1334 	struct buffer_head *bh;
1335 
1336 	map->s_partition_type = UDF_SPARABLE_MAP15;
1337 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338 	if (!is_power_of_2(sdata->s_packet_len)) {
1339 		udf_err(sb, "error loading logical volume descriptor: "
1340 			"Invalid packet length %u\n",
1341 			(unsigned)sdata->s_packet_len);
1342 		return -EIO;
1343 	}
1344 	if (spm->numSparingTables > 4) {
1345 		udf_err(sb, "error loading logical volume descriptor: "
1346 			"Too many sparing tables (%d)\n",
1347 			(int)spm->numSparingTables);
1348 		return -EIO;
1349 	}
1350 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351 		udf_err(sb, "error loading logical volume descriptor: "
1352 			"Too big sparing table size (%u)\n",
1353 			le32_to_cpu(spm->sizeSparingTable));
1354 		return -EIO;
1355 	}
1356 
1357 	for (i = 0; i < spm->numSparingTables; i++) {
1358 		loc = le32_to_cpu(spm->locSparingTable[i]);
1359 		bh = udf_read_tagged(sb, loc, loc, &ident);
1360 		if (!bh)
1361 			continue;
1362 
1363 		st = (struct sparingTable *)bh->b_data;
1364 		if (ident != 0 ||
1365 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366 			    strlen(UDF_ID_SPARING)) ||
1367 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368 							sb->s_blocksize) {
1369 			brelse(bh);
1370 			continue;
1371 		}
1372 
1373 		sdata->s_spar_map[i] = bh;
1374 	}
1375 	map->s_partition_func = udf_get_pblock_spar15;
1376 	return 0;
1377 }
1378 
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380 			       struct kernel_lb_addr *fileset)
1381 {
1382 	struct logicalVolDesc *lvd;
1383 	int i, offset;
1384 	uint8_t type;
1385 	struct udf_sb_info *sbi = UDF_SB(sb);
1386 	struct genericPartitionMap *gpm;
1387 	uint16_t ident;
1388 	struct buffer_head *bh;
1389 	unsigned int table_len;
1390 	int ret;
1391 
1392 	bh = udf_read_tagged(sb, block, block, &ident);
1393 	if (!bh)
1394 		return -EAGAIN;
1395 	BUG_ON(ident != TAG_IDENT_LVD);
1396 	lvd = (struct logicalVolDesc *)bh->b_data;
1397 	table_len = le32_to_cpu(lvd->mapTableLength);
1398 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399 		udf_err(sb, "error loading logical volume descriptor: "
1400 			"Partition table too long (%u > %lu)\n", table_len,
1401 			sb->s_blocksize - sizeof(*lvd));
1402 		ret = -EIO;
1403 		goto out_bh;
1404 	}
1405 
1406 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407 					   "logical volume");
1408 	if (ret)
1409 		goto out_bh;
1410 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411 	if (ret)
1412 		goto out_bh;
1413 
1414 	for (i = 0, offset = 0;
1415 	     i < sbi->s_partitions && offset < table_len;
1416 	     i++, offset += gpm->partitionMapLength) {
1417 		struct udf_part_map *map = &sbi->s_partmaps[i];
1418 		gpm = (struct genericPartitionMap *)
1419 				&(lvd->partitionMaps[offset]);
1420 		type = gpm->partitionMapType;
1421 		if (type == 1) {
1422 			struct genericPartitionMap1 *gpm1 =
1423 				(struct genericPartitionMap1 *)gpm;
1424 			map->s_partition_type = UDF_TYPE1_MAP15;
1425 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427 			map->s_partition_func = NULL;
1428 		} else if (type == 2) {
1429 			struct udfPartitionMap2 *upm2 =
1430 						(struct udfPartitionMap2 *)gpm;
1431 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432 						strlen(UDF_ID_VIRTUAL))) {
1433 				u16 suf =
1434 					le16_to_cpu(((__le16 *)upm2->partIdent.
1435 							identSuffix)[0]);
1436 				if (suf < 0x0200) {
1437 					map->s_partition_type =
1438 							UDF_VIRTUAL_MAP15;
1439 					map->s_partition_func =
1440 							udf_get_pblock_virt15;
1441 				} else {
1442 					map->s_partition_type =
1443 							UDF_VIRTUAL_MAP20;
1444 					map->s_partition_func =
1445 							udf_get_pblock_virt20;
1446 				}
1447 			} else if (!strncmp(upm2->partIdent.ident,
1448 						UDF_ID_SPARABLE,
1449 						strlen(UDF_ID_SPARABLE))) {
1450 				ret = udf_load_sparable_map(sb, map,
1451 					(struct sparablePartitionMap *)gpm);
1452 				if (ret < 0)
1453 					goto out_bh;
1454 			} else if (!strncmp(upm2->partIdent.ident,
1455 						UDF_ID_METADATA,
1456 						strlen(UDF_ID_METADATA))) {
1457 				struct udf_meta_data *mdata =
1458 					&map->s_type_specific.s_metadata;
1459 				struct metadataPartitionMap *mdm =
1460 						(struct metadataPartitionMap *)
1461 						&(lvd->partitionMaps[offset]);
1462 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463 					  i, type, UDF_ID_METADATA);
1464 
1465 				map->s_partition_type = UDF_METADATA_MAP25;
1466 				map->s_partition_func = udf_get_pblock_meta25;
1467 
1468 				mdata->s_meta_file_loc   =
1469 					le32_to_cpu(mdm->metadataFileLoc);
1470 				mdata->s_mirror_file_loc =
1471 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1472 				mdata->s_bitmap_file_loc =
1473 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1474 				mdata->s_alloc_unit_size =
1475 					le32_to_cpu(mdm->allocUnitSize);
1476 				mdata->s_align_unit_size =
1477 					le16_to_cpu(mdm->alignUnitSize);
1478 				if (mdm->flags & 0x01)
1479 					mdata->s_flags |= MF_DUPLICATE_MD;
1480 
1481 				udf_debug("Metadata Ident suffix=0x%x\n",
1482 					  le16_to_cpu(*(__le16 *)
1483 						      mdm->partIdent.identSuffix));
1484 				udf_debug("Metadata part num=%u\n",
1485 					  le16_to_cpu(mdm->partitionNum));
1486 				udf_debug("Metadata part alloc unit size=%u\n",
1487 					  le32_to_cpu(mdm->allocUnitSize));
1488 				udf_debug("Metadata file loc=%u\n",
1489 					  le32_to_cpu(mdm->metadataFileLoc));
1490 				udf_debug("Mirror file loc=%u\n",
1491 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1492 				udf_debug("Bitmap file loc=%u\n",
1493 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1494 				udf_debug("Flags: %d %u\n",
1495 					  mdata->s_flags, mdm->flags);
1496 			} else {
1497 				udf_debug("Unknown ident: %s\n",
1498 					  upm2->partIdent.ident);
1499 				continue;
1500 			}
1501 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503 		}
1504 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1506 	}
1507 
1508 	if (fileset) {
1509 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510 
1511 		*fileset = lelb_to_cpu(la->extLocation);
1512 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513 			  fileset->logicalBlockNum,
1514 			  fileset->partitionReferenceNum);
1515 	}
1516 	if (lvd->integritySeqExt.extLength)
1517 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518 	ret = 0;
1519 
1520 	if (!sbi->s_lvid_bh) {
1521 		/* We can't generate unique IDs without a valid LVID */
1522 		if (sb_rdonly(sb)) {
1523 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524 		} else {
1525 			udf_warn(sb, "Damaged or missing LVID, forcing "
1526 				     "readonly mount\n");
1527 			ret = -EACCES;
1528 		}
1529 	}
1530 out_bh:
1531 	brelse(bh);
1532 	return ret;
1533 }
1534 
1535 /*
1536  * Find the prevailing Logical Volume Integrity Descriptor.
1537  */
1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 {
1540 	struct buffer_head *bh, *final_bh;
1541 	uint16_t ident;
1542 	struct udf_sb_info *sbi = UDF_SB(sb);
1543 	struct logicalVolIntegrityDesc *lvid;
1544 	int indirections = 0;
1545 	u32 parts, impuselen;
1546 
1547 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1548 		final_bh = NULL;
1549 		while (loc.extLength > 0 &&
1550 			(bh = udf_read_tagged(sb, loc.extLocation,
1551 					loc.extLocation, &ident))) {
1552 			if (ident != TAG_IDENT_LVID) {
1553 				brelse(bh);
1554 				break;
1555 			}
1556 
1557 			brelse(final_bh);
1558 			final_bh = bh;
1559 
1560 			loc.extLength -= sb->s_blocksize;
1561 			loc.extLocation++;
1562 		}
1563 
1564 		if (!final_bh)
1565 			return;
1566 
1567 		brelse(sbi->s_lvid_bh);
1568 		sbi->s_lvid_bh = final_bh;
1569 
1570 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1571 		if (lvid->nextIntegrityExt.extLength == 0)
1572 			goto check;
1573 
1574 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1575 	}
1576 
1577 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1578 		UDF_MAX_LVID_NESTING);
1579 out_err:
1580 	brelse(sbi->s_lvid_bh);
1581 	sbi->s_lvid_bh = NULL;
1582 	return;
1583 check:
1584 	parts = le32_to_cpu(lvid->numOfPartitions);
1585 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1586 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1587 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1588 	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1589 		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1590 			 "ignoring.\n", parts, impuselen);
1591 		goto out_err;
1592 	}
1593 }
1594 
1595 /*
1596  * Step for reallocation of table of partition descriptor sequence numbers.
1597  * Must be power of 2.
1598  */
1599 #define PART_DESC_ALLOC_STEP 32
1600 
1601 struct part_desc_seq_scan_data {
1602 	struct udf_vds_record rec;
1603 	u32 partnum;
1604 };
1605 
1606 struct desc_seq_scan_data {
1607 	struct udf_vds_record vds[VDS_POS_LENGTH];
1608 	unsigned int size_part_descs;
1609 	unsigned int num_part_descs;
1610 	struct part_desc_seq_scan_data *part_descs_loc;
1611 };
1612 
1613 static struct udf_vds_record *handle_partition_descriptor(
1614 				struct buffer_head *bh,
1615 				struct desc_seq_scan_data *data)
1616 {
1617 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1618 	int partnum;
1619 	int i;
1620 
1621 	partnum = le16_to_cpu(desc->partitionNumber);
1622 	for (i = 0; i < data->num_part_descs; i++)
1623 		if (partnum == data->part_descs_loc[i].partnum)
1624 			return &(data->part_descs_loc[i].rec);
1625 	if (data->num_part_descs >= data->size_part_descs) {
1626 		struct part_desc_seq_scan_data *new_loc;
1627 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1628 
1629 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1630 		if (!new_loc)
1631 			return ERR_PTR(-ENOMEM);
1632 		memcpy(new_loc, data->part_descs_loc,
1633 		       data->size_part_descs * sizeof(*new_loc));
1634 		kfree(data->part_descs_loc);
1635 		data->part_descs_loc = new_loc;
1636 		data->size_part_descs = new_size;
1637 	}
1638 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1639 }
1640 
1641 
1642 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1643 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1644 {
1645 	switch (ident) {
1646 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1648 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1649 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1650 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1651 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1652 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1653 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1654 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1655 		return handle_partition_descriptor(bh, data);
1656 	}
1657 	return NULL;
1658 }
1659 
1660 /*
1661  * Process a main/reserve volume descriptor sequence.
1662  *   @block		First block of first extent of the sequence.
1663  *   @lastblock		Lastblock of first extent of the sequence.
1664  *   @fileset		There we store extent containing root fileset
1665  *
1666  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1667  * sequence
1668  */
1669 static noinline int udf_process_sequence(
1670 		struct super_block *sb,
1671 		sector_t block, sector_t lastblock,
1672 		struct kernel_lb_addr *fileset)
1673 {
1674 	struct buffer_head *bh = NULL;
1675 	struct udf_vds_record *curr;
1676 	struct generic_desc *gd;
1677 	struct volDescPtr *vdp;
1678 	bool done = false;
1679 	uint32_t vdsn;
1680 	uint16_t ident;
1681 	int ret;
1682 	unsigned int indirections = 0;
1683 	struct desc_seq_scan_data data;
1684 	unsigned int i;
1685 
1686 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1687 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1688 	data.num_part_descs = 0;
1689 	data.part_descs_loc = kcalloc(data.size_part_descs,
1690 				      sizeof(*data.part_descs_loc),
1691 				      GFP_KERNEL);
1692 	if (!data.part_descs_loc)
1693 		return -ENOMEM;
1694 
1695 	/*
1696 	 * Read the main descriptor sequence and find which descriptors
1697 	 * are in it.
1698 	 */
1699 	for (; (!done && block <= lastblock); block++) {
1700 		bh = udf_read_tagged(sb, block, block, &ident);
1701 		if (!bh)
1702 			break;
1703 
1704 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1705 		gd = (struct generic_desc *)bh->b_data;
1706 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1707 		switch (ident) {
1708 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1709 			if (++indirections > UDF_MAX_TD_NESTING) {
1710 				udf_err(sb, "too many Volume Descriptor "
1711 					"Pointers (max %u supported)\n",
1712 					UDF_MAX_TD_NESTING);
1713 				brelse(bh);
1714 				ret = -EIO;
1715 				goto out;
1716 			}
1717 
1718 			vdp = (struct volDescPtr *)bh->b_data;
1719 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1720 			lastblock = le32_to_cpu(
1721 				vdp->nextVolDescSeqExt.extLength) >>
1722 				sb->s_blocksize_bits;
1723 			lastblock += block - 1;
1724 			/* For loop is going to increment 'block' again */
1725 			block--;
1726 			break;
1727 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1728 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1729 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1730 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1731 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1732 			curr = get_volume_descriptor_record(ident, bh, &data);
1733 			if (IS_ERR(curr)) {
1734 				brelse(bh);
1735 				ret = PTR_ERR(curr);
1736 				goto out;
1737 			}
1738 			/* Descriptor we don't care about? */
1739 			if (!curr)
1740 				break;
1741 			if (vdsn >= curr->volDescSeqNum) {
1742 				curr->volDescSeqNum = vdsn;
1743 				curr->block = block;
1744 			}
1745 			break;
1746 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1747 			done = true;
1748 			break;
1749 		}
1750 		brelse(bh);
1751 	}
1752 	/*
1753 	 * Now read interesting descriptors again and process them
1754 	 * in a suitable order
1755 	 */
1756 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1757 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1758 		ret = -EAGAIN;
1759 		goto out;
1760 	}
1761 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1762 	if (ret < 0)
1763 		goto out;
1764 
1765 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1766 		ret = udf_load_logicalvol(sb,
1767 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1768 				fileset);
1769 		if (ret < 0)
1770 			goto out;
1771 	}
1772 
1773 	/* Now handle prevailing Partition Descriptors */
1774 	for (i = 0; i < data.num_part_descs; i++) {
1775 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1776 		if (ret < 0)
1777 			goto out;
1778 	}
1779 	ret = 0;
1780 out:
1781 	kfree(data.part_descs_loc);
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Load Volume Descriptor Sequence described by anchor in bh
1787  *
1788  * Returns <0 on error, 0 on success
1789  */
1790 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1791 			     struct kernel_lb_addr *fileset)
1792 {
1793 	struct anchorVolDescPtr *anchor;
1794 	sector_t main_s, main_e, reserve_s, reserve_e;
1795 	int ret;
1796 
1797 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1798 
1799 	/* Locate the main sequence */
1800 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1801 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1802 	main_e = main_e >> sb->s_blocksize_bits;
1803 	main_e += main_s - 1;
1804 
1805 	/* Locate the reserve sequence */
1806 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1807 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1808 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1809 	reserve_e += reserve_s - 1;
1810 
1811 	/* Process the main & reserve sequences */
1812 	/* responsible for finding the PartitionDesc(s) */
1813 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1814 	if (ret != -EAGAIN)
1815 		return ret;
1816 	udf_sb_free_partitions(sb);
1817 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1818 	if (ret < 0) {
1819 		udf_sb_free_partitions(sb);
1820 		/* No sequence was OK, return -EIO */
1821 		if (ret == -EAGAIN)
1822 			ret = -EIO;
1823 	}
1824 	return ret;
1825 }
1826 
1827 /*
1828  * Check whether there is an anchor block in the given block and
1829  * load Volume Descriptor Sequence if so.
1830  *
1831  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1832  * block
1833  */
1834 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1835 				  struct kernel_lb_addr *fileset)
1836 {
1837 	struct buffer_head *bh;
1838 	uint16_t ident;
1839 	int ret;
1840 
1841 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1842 	    udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1843 		return -EAGAIN;
1844 
1845 	bh = udf_read_tagged(sb, block, block, &ident);
1846 	if (!bh)
1847 		return -EAGAIN;
1848 	if (ident != TAG_IDENT_AVDP) {
1849 		brelse(bh);
1850 		return -EAGAIN;
1851 	}
1852 	ret = udf_load_sequence(sb, bh, fileset);
1853 	brelse(bh);
1854 	return ret;
1855 }
1856 
1857 /*
1858  * Search for an anchor volume descriptor pointer.
1859  *
1860  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861  * of anchors.
1862  */
1863 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864 			    struct kernel_lb_addr *fileset)
1865 {
1866 	sector_t last[6];
1867 	int i;
1868 	struct udf_sb_info *sbi = UDF_SB(sb);
1869 	int last_count = 0;
1870 	int ret;
1871 
1872 	/* First try user provided anchor */
1873 	if (sbi->s_anchor) {
1874 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875 		if (ret != -EAGAIN)
1876 			return ret;
1877 	}
1878 	/*
1879 	 * according to spec, anchor is in either:
1880 	 *     block 256
1881 	 *     lastblock-256
1882 	 *     lastblock
1883 	 *  however, if the disc isn't closed, it could be 512.
1884 	 */
1885 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886 	if (ret != -EAGAIN)
1887 		return ret;
1888 	/*
1889 	 * The trouble is which block is the last one. Drives often misreport
1890 	 * this so we try various possibilities.
1891 	 */
1892 	last[last_count++] = *lastblock;
1893 	if (*lastblock >= 1)
1894 		last[last_count++] = *lastblock - 1;
1895 	last[last_count++] = *lastblock + 1;
1896 	if (*lastblock >= 2)
1897 		last[last_count++] = *lastblock - 2;
1898 	if (*lastblock >= 150)
1899 		last[last_count++] = *lastblock - 150;
1900 	if (*lastblock >= 152)
1901 		last[last_count++] = *lastblock - 152;
1902 
1903 	for (i = 0; i < last_count; i++) {
1904 		if (last[i] >= sb_bdev_nr_blocks(sb))
1905 			continue;
1906 		ret = udf_check_anchor_block(sb, last[i], fileset);
1907 		if (ret != -EAGAIN) {
1908 			if (!ret)
1909 				*lastblock = last[i];
1910 			return ret;
1911 		}
1912 		if (last[i] < 256)
1913 			continue;
1914 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915 		if (ret != -EAGAIN) {
1916 			if (!ret)
1917 				*lastblock = last[i];
1918 			return ret;
1919 		}
1920 	}
1921 
1922 	/* Finally try block 512 in case media is open */
1923 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1924 }
1925 
1926 /*
1927  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928  * area specified by it. The function expects sbi->s_lastblock to be the last
1929  * block on the media.
1930  *
1931  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1932  * was not found.
1933  */
1934 static int udf_find_anchor(struct super_block *sb,
1935 			   struct kernel_lb_addr *fileset)
1936 {
1937 	struct udf_sb_info *sbi = UDF_SB(sb);
1938 	sector_t lastblock = sbi->s_last_block;
1939 	int ret;
1940 
1941 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1942 	if (ret != -EAGAIN)
1943 		goto out;
1944 
1945 	/* No anchor found? Try VARCONV conversion of block numbers */
1946 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948 	/* Firstly, we try to not convert number of the last block */
1949 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1950 	if (ret != -EAGAIN)
1951 		goto out;
1952 
1953 	lastblock = sbi->s_last_block;
1954 	/* Secondly, we try with converted number of the last block */
1955 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1956 	if (ret < 0) {
1957 		/* VARCONV didn't help. Clear it. */
1958 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1959 	}
1960 out:
1961 	if (ret == 0)
1962 		sbi->s_last_block = lastblock;
1963 	return ret;
1964 }
1965 
1966 /*
1967  * Check Volume Structure Descriptor, find Anchor block and load Volume
1968  * Descriptor Sequence.
1969  *
1970  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971  * block was not found.
1972  */
1973 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974 			int silent, struct kernel_lb_addr *fileset)
1975 {
1976 	struct udf_sb_info *sbi = UDF_SB(sb);
1977 	int nsr = 0;
1978 	int ret;
1979 
1980 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1981 		if (!silent)
1982 			udf_warn(sb, "Bad block size\n");
1983 		return -EINVAL;
1984 	}
1985 	sbi->s_last_block = uopt->lastblock;
1986 	if (!uopt->novrs) {
1987 		/* Check that it is NSR02 compliant */
1988 		nsr = udf_check_vsd(sb);
1989 		if (!nsr) {
1990 			if (!silent)
1991 				udf_warn(sb, "No VRS found\n");
1992 			return -EINVAL;
1993 		}
1994 		if (nsr == -1)
1995 			udf_debug("Failed to read sector at offset %d. "
1996 				  "Assuming open disc. Skipping validity "
1997 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1998 		if (!sbi->s_last_block)
1999 			sbi->s_last_block = udf_get_last_block(sb);
2000 	} else {
2001 		udf_debug("Validity check skipped because of novrs option\n");
2002 	}
2003 
2004 	/* Look for anchor block and load Volume Descriptor Sequence */
2005 	sbi->s_anchor = uopt->anchor;
2006 	ret = udf_find_anchor(sb, fileset);
2007 	if (ret < 0) {
2008 		if (!silent && ret == -EAGAIN)
2009 			udf_warn(sb, "No anchor found\n");
2010 		return ret;
2011 	}
2012 	return 0;
2013 }
2014 
2015 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2016 {
2017 	struct timespec64 ts;
2018 
2019 	ktime_get_real_ts64(&ts);
2020 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021 	lvid->descTag.descCRC = cpu_to_le16(
2022 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023 			le16_to_cpu(lvid->descTag.descCRCLength)));
2024 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2025 }
2026 
2027 static void udf_open_lvid(struct super_block *sb)
2028 {
2029 	struct udf_sb_info *sbi = UDF_SB(sb);
2030 	struct buffer_head *bh = sbi->s_lvid_bh;
2031 	struct logicalVolIntegrityDesc *lvid;
2032 	struct logicalVolIntegrityDescImpUse *lvidiu;
2033 
2034 	if (!bh)
2035 		return;
2036 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037 	lvidiu = udf_sb_lvidiu(sb);
2038 	if (!lvidiu)
2039 		return;
2040 
2041 	mutex_lock(&sbi->s_alloc_mutex);
2042 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2046 	else
2047 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2048 
2049 	udf_finalize_lvid(lvid);
2050 	mark_buffer_dirty(bh);
2051 	sbi->s_lvid_dirty = 0;
2052 	mutex_unlock(&sbi->s_alloc_mutex);
2053 	/* Make opening of filesystem visible on the media immediately */
2054 	sync_dirty_buffer(bh);
2055 }
2056 
2057 static void udf_close_lvid(struct super_block *sb)
2058 {
2059 	struct udf_sb_info *sbi = UDF_SB(sb);
2060 	struct buffer_head *bh = sbi->s_lvid_bh;
2061 	struct logicalVolIntegrityDesc *lvid;
2062 	struct logicalVolIntegrityDescImpUse *lvidiu;
2063 
2064 	if (!bh)
2065 		return;
2066 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067 	lvidiu = udf_sb_lvidiu(sb);
2068 	if (!lvidiu)
2069 		return;
2070 
2071 	mutex_lock(&sbi->s_alloc_mutex);
2072 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2074 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2082 
2083 	/*
2084 	 * We set buffer uptodate unconditionally here to avoid spurious
2085 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2086 	 * the buffer as !uptodate
2087 	 */
2088 	set_buffer_uptodate(bh);
2089 	udf_finalize_lvid(lvid);
2090 	mark_buffer_dirty(bh);
2091 	sbi->s_lvid_dirty = 0;
2092 	mutex_unlock(&sbi->s_alloc_mutex);
2093 	/* Make closing of filesystem visible on the media immediately */
2094 	sync_dirty_buffer(bh);
2095 }
2096 
2097 u64 lvid_get_unique_id(struct super_block *sb)
2098 {
2099 	struct buffer_head *bh;
2100 	struct udf_sb_info *sbi = UDF_SB(sb);
2101 	struct logicalVolIntegrityDesc *lvid;
2102 	struct logicalVolHeaderDesc *lvhd;
2103 	u64 uniqueID;
2104 	u64 ret;
2105 
2106 	bh = sbi->s_lvid_bh;
2107 	if (!bh)
2108 		return 0;
2109 
2110 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2112 
2113 	mutex_lock(&sbi->s_alloc_mutex);
2114 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115 	if (!(++uniqueID & 0xFFFFFFFF))
2116 		uniqueID += 16;
2117 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2118 	udf_updated_lvid(sb);
2119 	mutex_unlock(&sbi->s_alloc_mutex);
2120 
2121 	return ret;
2122 }
2123 
2124 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2125 {
2126 	int ret = -EINVAL;
2127 	struct inode *inode = NULL;
2128 	struct udf_options uopt;
2129 	struct kernel_lb_addr rootdir, fileset;
2130 	struct udf_sb_info *sbi;
2131 	bool lvid_open = false;
2132 
2133 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2137 	uopt.umask = 0;
2138 	uopt.fmode = UDF_INVALID_MODE;
2139 	uopt.dmode = UDF_INVALID_MODE;
2140 	uopt.nls_map = NULL;
2141 
2142 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2143 	if (!sbi)
2144 		return -ENOMEM;
2145 
2146 	sb->s_fs_info = sbi;
2147 
2148 	mutex_init(&sbi->s_alloc_mutex);
2149 
2150 	if (!udf_parse_options((char *)options, &uopt, false))
2151 		goto parse_options_failure;
2152 
2153 	fileset.logicalBlockNum = 0xFFFFFFFF;
2154 	fileset.partitionReferenceNum = 0xFFFF;
2155 
2156 	sbi->s_flags = uopt.flags;
2157 	sbi->s_uid = uopt.uid;
2158 	sbi->s_gid = uopt.gid;
2159 	sbi->s_umask = uopt.umask;
2160 	sbi->s_fmode = uopt.fmode;
2161 	sbi->s_dmode = uopt.dmode;
2162 	sbi->s_nls_map = uopt.nls_map;
2163 	rwlock_init(&sbi->s_cred_lock);
2164 
2165 	if (uopt.session == 0xFFFFFFFF)
2166 		sbi->s_session = udf_get_last_session(sb);
2167 	else
2168 		sbi->s_session = uopt.session;
2169 
2170 	udf_debug("Multi-session=%d\n", sbi->s_session);
2171 
2172 	/* Fill in the rest of the superblock */
2173 	sb->s_op = &udf_sb_ops;
2174 	sb->s_export_op = &udf_export_ops;
2175 
2176 	sb->s_magic = UDF_SUPER_MAGIC;
2177 	sb->s_time_gran = 1000;
2178 
2179 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181 	} else {
2182 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183 		while (uopt.blocksize <= 4096) {
2184 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185 			if (ret < 0) {
2186 				if (!silent && ret != -EACCES) {
2187 					pr_notice("Scanning with blocksize %u failed\n",
2188 						  uopt.blocksize);
2189 				}
2190 				brelse(sbi->s_lvid_bh);
2191 				sbi->s_lvid_bh = NULL;
2192 				/*
2193 				 * EACCES is special - we want to propagate to
2194 				 * upper layers that we cannot handle RW mount.
2195 				 */
2196 				if (ret == -EACCES)
2197 					break;
2198 			} else
2199 				break;
2200 
2201 			uopt.blocksize <<= 1;
2202 		}
2203 	}
2204 	if (ret < 0) {
2205 		if (ret == -EAGAIN) {
2206 			udf_warn(sb, "No partition found (1)\n");
2207 			ret = -EINVAL;
2208 		}
2209 		goto error_out;
2210 	}
2211 
2212 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213 
2214 	if (sbi->s_lvid_bh) {
2215 		struct logicalVolIntegrityDescImpUse *lvidiu =
2216 							udf_sb_lvidiu(sb);
2217 		uint16_t minUDFReadRev;
2218 		uint16_t minUDFWriteRev;
2219 
2220 		if (!lvidiu) {
2221 			ret = -EINVAL;
2222 			goto error_out;
2223 		}
2224 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228 				minUDFReadRev,
2229 				UDF_MAX_READ_VERSION);
2230 			ret = -EINVAL;
2231 			goto error_out;
2232 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233 			if (!sb_rdonly(sb)) {
2234 				ret = -EACCES;
2235 				goto error_out;
2236 			}
2237 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238 		}
2239 
2240 		sbi->s_udfrev = minUDFWriteRev;
2241 
2242 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246 	}
2247 
2248 	if (!sbi->s_partitions) {
2249 		udf_warn(sb, "No partition found (2)\n");
2250 		ret = -EINVAL;
2251 		goto error_out;
2252 	}
2253 
2254 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255 			UDF_PART_FLAG_READ_ONLY) {
2256 		if (!sb_rdonly(sb)) {
2257 			ret = -EACCES;
2258 			goto error_out;
2259 		}
2260 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261 	}
2262 
2263 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2264 	if (ret < 0) {
2265 		udf_warn(sb, "No fileset found\n");
2266 		goto error_out;
2267 	}
2268 
2269 	if (!silent) {
2270 		struct timestamp ts;
2271 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273 			 sbi->s_volume_ident,
2274 			 le16_to_cpu(ts.year), ts.month, ts.day,
2275 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276 	}
2277 	if (!sb_rdonly(sb)) {
2278 		udf_open_lvid(sb);
2279 		lvid_open = true;
2280 	}
2281 
2282 	/* Assign the root inode */
2283 	/* assign inodes by physical block number */
2284 	/* perhaps it's not extensible enough, but for now ... */
2285 	inode = udf_iget(sb, &rootdir);
2286 	if (IS_ERR(inode)) {
2287 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289 		ret = PTR_ERR(inode);
2290 		goto error_out;
2291 	}
2292 
2293 	/* Allocate a dentry for the root inode */
2294 	sb->s_root = d_make_root(inode);
2295 	if (!sb->s_root) {
2296 		udf_err(sb, "Couldn't allocate root dentry\n");
2297 		ret = -ENOMEM;
2298 		goto error_out;
2299 	}
2300 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2301 	sb->s_max_links = UDF_MAX_LINKS;
2302 	return 0;
2303 
2304 error_out:
2305 	iput(sbi->s_vat_inode);
2306 parse_options_failure:
2307 	unload_nls(uopt.nls_map);
2308 	if (lvid_open)
2309 		udf_close_lvid(sb);
2310 	brelse(sbi->s_lvid_bh);
2311 	udf_sb_free_partitions(sb);
2312 	kfree(sbi);
2313 	sb->s_fs_info = NULL;
2314 
2315 	return ret;
2316 }
2317 
2318 void _udf_err(struct super_block *sb, const char *function,
2319 	      const char *fmt, ...)
2320 {
2321 	struct va_format vaf;
2322 	va_list args;
2323 
2324 	va_start(args, fmt);
2325 
2326 	vaf.fmt = fmt;
2327 	vaf.va = &args;
2328 
2329 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330 
2331 	va_end(args);
2332 }
2333 
2334 void _udf_warn(struct super_block *sb, const char *function,
2335 	       const char *fmt, ...)
2336 {
2337 	struct va_format vaf;
2338 	va_list args;
2339 
2340 	va_start(args, fmt);
2341 
2342 	vaf.fmt = fmt;
2343 	vaf.va = &args;
2344 
2345 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346 
2347 	va_end(args);
2348 }
2349 
2350 static void udf_put_super(struct super_block *sb)
2351 {
2352 	struct udf_sb_info *sbi;
2353 
2354 	sbi = UDF_SB(sb);
2355 
2356 	iput(sbi->s_vat_inode);
2357 	unload_nls(sbi->s_nls_map);
2358 	if (!sb_rdonly(sb))
2359 		udf_close_lvid(sb);
2360 	brelse(sbi->s_lvid_bh);
2361 	udf_sb_free_partitions(sb);
2362 	mutex_destroy(&sbi->s_alloc_mutex);
2363 	kfree(sb->s_fs_info);
2364 	sb->s_fs_info = NULL;
2365 }
2366 
2367 static int udf_sync_fs(struct super_block *sb, int wait)
2368 {
2369 	struct udf_sb_info *sbi = UDF_SB(sb);
2370 
2371 	mutex_lock(&sbi->s_alloc_mutex);
2372 	if (sbi->s_lvid_dirty) {
2373 		struct buffer_head *bh = sbi->s_lvid_bh;
2374 		struct logicalVolIntegrityDesc *lvid;
2375 
2376 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377 		udf_finalize_lvid(lvid);
2378 
2379 		/*
2380 		 * Blockdevice will be synced later so we don't have to submit
2381 		 * the buffer for IO
2382 		 */
2383 		mark_buffer_dirty(bh);
2384 		sbi->s_lvid_dirty = 0;
2385 	}
2386 	mutex_unlock(&sbi->s_alloc_mutex);
2387 
2388 	return 0;
2389 }
2390 
2391 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2392 {
2393 	struct super_block *sb = dentry->d_sb;
2394 	struct udf_sb_info *sbi = UDF_SB(sb);
2395 	struct logicalVolIntegrityDescImpUse *lvidiu;
2396 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2397 
2398 	lvidiu = udf_sb_lvidiu(sb);
2399 	buf->f_type = UDF_SUPER_MAGIC;
2400 	buf->f_bsize = sb->s_blocksize;
2401 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402 	buf->f_bfree = udf_count_free(sb);
2403 	buf->f_bavail = buf->f_bfree;
2404 	/*
2405 	 * Let's pretend each free block is also a free 'inode' since UDF does
2406 	 * not have separate preallocated table of inodes.
2407 	 */
2408 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2410 			+ buf->f_bfree;
2411 	buf->f_ffree = buf->f_bfree;
2412 	buf->f_namelen = UDF_NAME_LEN;
2413 	buf->f_fsid = u64_to_fsid(id);
2414 
2415 	return 0;
2416 }
2417 
2418 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419 					  struct udf_bitmap *bitmap)
2420 {
2421 	struct buffer_head *bh = NULL;
2422 	unsigned int accum = 0;
2423 	int index;
2424 	udf_pblk_t block = 0, newblock;
2425 	struct kernel_lb_addr loc;
2426 	uint32_t bytes;
2427 	uint8_t *ptr;
2428 	uint16_t ident;
2429 	struct spaceBitmapDesc *bm;
2430 
2431 	loc.logicalBlockNum = bitmap->s_extPosition;
2432 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2434 
2435 	if (!bh) {
2436 		udf_err(sb, "udf_count_free failed\n");
2437 		goto out;
2438 	} else if (ident != TAG_IDENT_SBD) {
2439 		brelse(bh);
2440 		udf_err(sb, "udf_count_free failed\n");
2441 		goto out;
2442 	}
2443 
2444 	bm = (struct spaceBitmapDesc *)bh->b_data;
2445 	bytes = le32_to_cpu(bm->numOfBytes);
2446 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447 	ptr = (uint8_t *)bh->b_data;
2448 
2449 	while (bytes > 0) {
2450 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2452 					cur_bytes * 8);
2453 		bytes -= cur_bytes;
2454 		if (bytes) {
2455 			brelse(bh);
2456 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457 			bh = udf_tread(sb, newblock);
2458 			if (!bh) {
2459 				udf_debug("read failed\n");
2460 				goto out;
2461 			}
2462 			index = 0;
2463 			ptr = (uint8_t *)bh->b_data;
2464 		}
2465 	}
2466 	brelse(bh);
2467 out:
2468 	return accum;
2469 }
2470 
2471 static unsigned int udf_count_free_table(struct super_block *sb,
2472 					 struct inode *table)
2473 {
2474 	unsigned int accum = 0;
2475 	uint32_t elen;
2476 	struct kernel_lb_addr eloc;
2477 	struct extent_position epos;
2478 
2479 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2480 	epos.block = UDF_I(table)->i_location;
2481 	epos.offset = sizeof(struct unallocSpaceEntry);
2482 	epos.bh = NULL;
2483 
2484 	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2485 		accum += (elen >> table->i_sb->s_blocksize_bits);
2486 
2487 	brelse(epos.bh);
2488 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2489 
2490 	return accum;
2491 }
2492 
2493 static unsigned int udf_count_free(struct super_block *sb)
2494 {
2495 	unsigned int accum = 0;
2496 	struct udf_sb_info *sbi = UDF_SB(sb);
2497 	struct udf_part_map *map;
2498 	unsigned int part = sbi->s_partition;
2499 	int ptype = sbi->s_partmaps[part].s_partition_type;
2500 
2501 	if (ptype == UDF_METADATA_MAP25) {
2502 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2503 							s_phys_partition_ref;
2504 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2505 		/*
2506 		 * Filesystems with VAT are append-only and we cannot write to
2507  		 * them. Let's just report 0 here.
2508 		 */
2509 		return 0;
2510 	}
2511 
2512 	if (sbi->s_lvid_bh) {
2513 		struct logicalVolIntegrityDesc *lvid =
2514 			(struct logicalVolIntegrityDesc *)
2515 			sbi->s_lvid_bh->b_data;
2516 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2517 			accum = le32_to_cpu(
2518 					lvid->freeSpaceTable[part]);
2519 			if (accum == 0xFFFFFFFF)
2520 				accum = 0;
2521 		}
2522 	}
2523 
2524 	if (accum)
2525 		return accum;
2526 
2527 	map = &sbi->s_partmaps[part];
2528 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2529 		accum += udf_count_free_bitmap(sb,
2530 					       map->s_uspace.s_bitmap);
2531 	}
2532 	if (accum)
2533 		return accum;
2534 
2535 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2536 		accum += udf_count_free_table(sb,
2537 					      map->s_uspace.s_table);
2538 	}
2539 	return accum;
2540 }
2541 
2542 MODULE_AUTHOR("Ben Fennema");
2543 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2544 MODULE_LICENSE("GPL");
2545 module_init(init_udf_fs)
2546 module_exit(exit_udf_fs)
2547