xref: /openbmc/linux/fs/udf/super.c (revision 84764a41)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 	struct logicalVolIntegrityDesc *lvid =
100 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 	__u32 offset = number_of_partitions * 2 *
103 				sizeof(uint32_t)/sizeof(uint8_t);
104 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 		      int flags, const char *dev_name, void *data)
110 {
111 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115 	.owner		= THIS_MODULE,
116 	.name		= "udf",
117 	.mount		= udf_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 
122 static struct kmem_cache *udf_inode_cachep;
123 
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 	struct udf_inode_info *ei;
127 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 	if (!ei)
129 		return NULL;
130 
131 	ei->i_unique = 0;
132 	ei->i_lenExtents = 0;
133 	ei->i_next_alloc_block = 0;
134 	ei->i_next_alloc_goal = 0;
135 	ei->i_strat4096 = 0;
136 	init_rwsem(&ei->i_data_sem);
137 
138 	return &ei->vfs_inode;
139 }
140 
141 static void udf_i_callback(struct rcu_head *head)
142 {
143 	struct inode *inode = container_of(head, struct inode, i_rcu);
144 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146 
147 static void udf_destroy_inode(struct inode *inode)
148 {
149 	call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151 
152 static void init_once(void *foo)
153 {
154 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155 
156 	ei->i_ext.i_data = NULL;
157 	inode_init_once(&ei->vfs_inode);
158 }
159 
160 static int init_inodecache(void)
161 {
162 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 					     sizeof(struct udf_inode_info),
164 					     0, (SLAB_RECLAIM_ACCOUNT |
165 						 SLAB_MEM_SPREAD),
166 					     init_once);
167 	if (!udf_inode_cachep)
168 		return -ENOMEM;
169 	return 0;
170 }
171 
172 static void destroy_inodecache(void)
173 {
174 	/*
175 	 * Make sure all delayed rcu free inodes are flushed before we
176 	 * destroy cache.
177 	 */
178 	rcu_barrier();
179 	kmem_cache_destroy(udf_inode_cachep);
180 }
181 
182 /* Superblock operations */
183 static const struct super_operations udf_sb_ops = {
184 	.alloc_inode	= udf_alloc_inode,
185 	.destroy_inode	= udf_destroy_inode,
186 	.write_inode	= udf_write_inode,
187 	.evict_inode	= udf_evict_inode,
188 	.put_super	= udf_put_super,
189 	.sync_fs	= udf_sync_fs,
190 	.statfs		= udf_statfs,
191 	.remount_fs	= udf_remount_fs,
192 	.show_options	= udf_show_options,
193 };
194 
195 struct udf_options {
196 	unsigned char novrs;
197 	unsigned int blocksize;
198 	unsigned int session;
199 	unsigned int lastblock;
200 	unsigned int anchor;
201 	unsigned int volume;
202 	unsigned short partition;
203 	unsigned int fileset;
204 	unsigned int rootdir;
205 	unsigned int flags;
206 	umode_t umask;
207 	kgid_t gid;
208 	kuid_t uid;
209 	umode_t fmode;
210 	umode_t dmode;
211 	struct nls_table *nls_map;
212 };
213 
214 static int __init init_udf_fs(void)
215 {
216 	int err;
217 
218 	err = init_inodecache();
219 	if (err)
220 		goto out1;
221 	err = register_filesystem(&udf_fstype);
222 	if (err)
223 		goto out;
224 
225 	return 0;
226 
227 out:
228 	destroy_inodecache();
229 
230 out1:
231 	return err;
232 }
233 
234 static void __exit exit_udf_fs(void)
235 {
236 	unregister_filesystem(&udf_fstype);
237 	destroy_inodecache();
238 }
239 
240 module_init(init_udf_fs)
241 module_exit(exit_udf_fs)
242 
243 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
244 {
245 	struct udf_sb_info *sbi = UDF_SB(sb);
246 
247 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
248 				  GFP_KERNEL);
249 	if (!sbi->s_partmaps) {
250 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
251 			count);
252 		sbi->s_partitions = 0;
253 		return -ENOMEM;
254 	}
255 
256 	sbi->s_partitions = count;
257 	return 0;
258 }
259 
260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262 	int i;
263 	int nr_groups = bitmap->s_nr_groups;
264 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
265 						nr_groups);
266 
267 	for (i = 0; i < nr_groups; i++)
268 		if (bitmap->s_block_bitmap[i])
269 			brelse(bitmap->s_block_bitmap[i]);
270 
271 	if (size <= PAGE_SIZE)
272 		kfree(bitmap);
273 	else
274 		vfree(bitmap);
275 }
276 
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279 	int i;
280 	struct udf_meta_data *mdata;
281 
282 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 		iput(map->s_uspace.s_table);
284 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
285 		iput(map->s_fspace.s_table);
286 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
287 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
288 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
289 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
290 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
291 		for (i = 0; i < 4; i++)
292 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
293 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
294 		mdata = &map->s_type_specific.s_metadata;
295 		iput(mdata->s_metadata_fe);
296 		mdata->s_metadata_fe = NULL;
297 
298 		iput(mdata->s_mirror_fe);
299 		mdata->s_mirror_fe = NULL;
300 
301 		iput(mdata->s_bitmap_fe);
302 		mdata->s_bitmap_fe = NULL;
303 	}
304 }
305 
306 static void udf_sb_free_partitions(struct super_block *sb)
307 {
308 	struct udf_sb_info *sbi = UDF_SB(sb);
309 	int i;
310 
311 	for (i = 0; i < sbi->s_partitions; i++)
312 		udf_free_partition(&sbi->s_partmaps[i]);
313 	kfree(sbi->s_partmaps);
314 	sbi->s_partmaps = NULL;
315 }
316 
317 static int udf_show_options(struct seq_file *seq, struct dentry *root)
318 {
319 	struct super_block *sb = root->d_sb;
320 	struct udf_sb_info *sbi = UDF_SB(sb);
321 
322 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
323 		seq_puts(seq, ",nostrict");
324 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
325 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
327 		seq_puts(seq, ",unhide");
328 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
329 		seq_puts(seq, ",undelete");
330 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
331 		seq_puts(seq, ",noadinicb");
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
333 		seq_puts(seq, ",shortad");
334 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
335 		seq_puts(seq, ",uid=forget");
336 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
337 		seq_puts(seq, ",uid=ignore");
338 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
339 		seq_puts(seq, ",gid=forget");
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
341 		seq_puts(seq, ",gid=ignore");
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
343 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
344 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
345 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
346 	if (sbi->s_umask != 0)
347 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
348 	if (sbi->s_fmode != UDF_INVALID_MODE)
349 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
350 	if (sbi->s_dmode != UDF_INVALID_MODE)
351 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
353 		seq_printf(seq, ",session=%u", sbi->s_session);
354 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
355 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
356 	if (sbi->s_anchor != 0)
357 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
358 	/*
359 	 * volume, partition, fileset and rootdir seem to be ignored
360 	 * currently
361 	 */
362 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
363 		seq_puts(seq, ",utf8");
364 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
365 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
366 
367 	return 0;
368 }
369 
370 /*
371  * udf_parse_options
372  *
373  * PURPOSE
374  *	Parse mount options.
375  *
376  * DESCRIPTION
377  *	The following mount options are supported:
378  *
379  *	gid=		Set the default group.
380  *	umask=		Set the default umask.
381  *	mode=		Set the default file permissions.
382  *	dmode=		Set the default directory permissions.
383  *	uid=		Set the default user.
384  *	bs=		Set the block size.
385  *	unhide		Show otherwise hidden files.
386  *	undelete	Show deleted files in lists.
387  *	adinicb		Embed data in the inode (default)
388  *	noadinicb	Don't embed data in the inode
389  *	shortad		Use short ad's
390  *	longad		Use long ad's (default)
391  *	nostrict	Unset strict conformance
392  *	iocharset=	Set the NLS character set
393  *
394  *	The remaining are for debugging and disaster recovery:
395  *
396  *	novrs		Skip volume sequence recognition
397  *
398  *	The following expect a offset from 0.
399  *
400  *	session=	Set the CDROM session (default= last session)
401  *	anchor=		Override standard anchor location. (default= 256)
402  *	volume=		Override the VolumeDesc location. (unused)
403  *	partition=	Override the PartitionDesc location. (unused)
404  *	lastblock=	Set the last block of the filesystem/
405  *
406  *	The following expect a offset from the partition root.
407  *
408  *	fileset=	Override the fileset block location. (unused)
409  *	rootdir=	Override the root directory location. (unused)
410  *		WARNING: overriding the rootdir to a non-directory may
411  *		yield highly unpredictable results.
412  *
413  * PRE-CONDITIONS
414  *	options		Pointer to mount options string.
415  *	uopts		Pointer to mount options variable.
416  *
417  * POST-CONDITIONS
418  *	<return>	1	Mount options parsed okay.
419  *	<return>	0	Error parsing mount options.
420  *
421  * HISTORY
422  *	July 1, 1997 - Andrew E. Mileski
423  *	Written, tested, and released.
424  */
425 
426 enum {
427 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
428 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
429 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
430 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
431 	Opt_rootdir, Opt_utf8, Opt_iocharset,
432 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
433 	Opt_fmode, Opt_dmode
434 };
435 
436 static const match_table_t tokens = {
437 	{Opt_novrs,	"novrs"},
438 	{Opt_nostrict,	"nostrict"},
439 	{Opt_bs,	"bs=%u"},
440 	{Opt_unhide,	"unhide"},
441 	{Opt_undelete,	"undelete"},
442 	{Opt_noadinicb,	"noadinicb"},
443 	{Opt_adinicb,	"adinicb"},
444 	{Opt_shortad,	"shortad"},
445 	{Opt_longad,	"longad"},
446 	{Opt_uforget,	"uid=forget"},
447 	{Opt_uignore,	"uid=ignore"},
448 	{Opt_gforget,	"gid=forget"},
449 	{Opt_gignore,	"gid=ignore"},
450 	{Opt_gid,	"gid=%u"},
451 	{Opt_uid,	"uid=%u"},
452 	{Opt_umask,	"umask=%o"},
453 	{Opt_session,	"session=%u"},
454 	{Opt_lastblock,	"lastblock=%u"},
455 	{Opt_anchor,	"anchor=%u"},
456 	{Opt_volume,	"volume=%u"},
457 	{Opt_partition,	"partition=%u"},
458 	{Opt_fileset,	"fileset=%u"},
459 	{Opt_rootdir,	"rootdir=%u"},
460 	{Opt_utf8,	"utf8"},
461 	{Opt_iocharset,	"iocharset=%s"},
462 	{Opt_fmode,     "mode=%o"},
463 	{Opt_dmode,     "dmode=%o"},
464 	{Opt_err,	NULL}
465 };
466 
467 static int udf_parse_options(char *options, struct udf_options *uopt,
468 			     bool remount)
469 {
470 	char *p;
471 	int option;
472 
473 	uopt->novrs = 0;
474 	uopt->partition = 0xFFFF;
475 	uopt->session = 0xFFFFFFFF;
476 	uopt->lastblock = 0;
477 	uopt->anchor = 0;
478 	uopt->volume = 0xFFFFFFFF;
479 	uopt->rootdir = 0xFFFFFFFF;
480 	uopt->fileset = 0xFFFFFFFF;
481 	uopt->nls_map = NULL;
482 
483 	if (!options)
484 		return 1;
485 
486 	while ((p = strsep(&options, ",")) != NULL) {
487 		substring_t args[MAX_OPT_ARGS];
488 		int token;
489 		if (!*p)
490 			continue;
491 
492 		token = match_token(p, tokens, args);
493 		switch (token) {
494 		case Opt_novrs:
495 			uopt->novrs = 1;
496 			break;
497 		case Opt_bs:
498 			if (match_int(&args[0], &option))
499 				return 0;
500 			uopt->blocksize = option;
501 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
502 			break;
503 		case Opt_unhide:
504 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
505 			break;
506 		case Opt_undelete:
507 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
508 			break;
509 		case Opt_noadinicb:
510 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
511 			break;
512 		case Opt_adinicb:
513 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
514 			break;
515 		case Opt_shortad:
516 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
517 			break;
518 		case Opt_longad:
519 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
520 			break;
521 		case Opt_gid:
522 			if (match_int(args, &option))
523 				return 0;
524 			uopt->gid = make_kgid(current_user_ns(), option);
525 			if (!gid_valid(uopt->gid))
526 				return 0;
527 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
528 			break;
529 		case Opt_uid:
530 			if (match_int(args, &option))
531 				return 0;
532 			uopt->uid = make_kuid(current_user_ns(), option);
533 			if (!uid_valid(uopt->uid))
534 				return 0;
535 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
536 			break;
537 		case Opt_umask:
538 			if (match_octal(args, &option))
539 				return 0;
540 			uopt->umask = option;
541 			break;
542 		case Opt_nostrict:
543 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
544 			break;
545 		case Opt_session:
546 			if (match_int(args, &option))
547 				return 0;
548 			uopt->session = option;
549 			if (!remount)
550 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
551 			break;
552 		case Opt_lastblock:
553 			if (match_int(args, &option))
554 				return 0;
555 			uopt->lastblock = option;
556 			if (!remount)
557 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
558 			break;
559 		case Opt_anchor:
560 			if (match_int(args, &option))
561 				return 0;
562 			uopt->anchor = option;
563 			break;
564 		case Opt_volume:
565 			if (match_int(args, &option))
566 				return 0;
567 			uopt->volume = option;
568 			break;
569 		case Opt_partition:
570 			if (match_int(args, &option))
571 				return 0;
572 			uopt->partition = option;
573 			break;
574 		case Opt_fileset:
575 			if (match_int(args, &option))
576 				return 0;
577 			uopt->fileset = option;
578 			break;
579 		case Opt_rootdir:
580 			if (match_int(args, &option))
581 				return 0;
582 			uopt->rootdir = option;
583 			break;
584 		case Opt_utf8:
585 			uopt->flags |= (1 << UDF_FLAG_UTF8);
586 			break;
587 #ifdef CONFIG_UDF_NLS
588 		case Opt_iocharset:
589 			uopt->nls_map = load_nls(args[0].from);
590 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
591 			break;
592 #endif
593 		case Opt_uignore:
594 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
595 			break;
596 		case Opt_uforget:
597 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
598 			break;
599 		case Opt_gignore:
600 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
601 			break;
602 		case Opt_gforget:
603 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
604 			break;
605 		case Opt_fmode:
606 			if (match_octal(args, &option))
607 				return 0;
608 			uopt->fmode = option & 0777;
609 			break;
610 		case Opt_dmode:
611 			if (match_octal(args, &option))
612 				return 0;
613 			uopt->dmode = option & 0777;
614 			break;
615 		default:
616 			pr_err("bad mount option \"%s\" or missing value\n", p);
617 			return 0;
618 		}
619 	}
620 	return 1;
621 }
622 
623 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
624 {
625 	struct udf_options uopt;
626 	struct udf_sb_info *sbi = UDF_SB(sb);
627 	int error = 0;
628 
629 	uopt.flags = sbi->s_flags;
630 	uopt.uid   = sbi->s_uid;
631 	uopt.gid   = sbi->s_gid;
632 	uopt.umask = sbi->s_umask;
633 	uopt.fmode = sbi->s_fmode;
634 	uopt.dmode = sbi->s_dmode;
635 
636 	if (!udf_parse_options(options, &uopt, true))
637 		return -EINVAL;
638 
639 	write_lock(&sbi->s_cred_lock);
640 	sbi->s_flags = uopt.flags;
641 	sbi->s_uid   = uopt.uid;
642 	sbi->s_gid   = uopt.gid;
643 	sbi->s_umask = uopt.umask;
644 	sbi->s_fmode = uopt.fmode;
645 	sbi->s_dmode = uopt.dmode;
646 	write_unlock(&sbi->s_cred_lock);
647 
648 	if (sbi->s_lvid_bh) {
649 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
650 		if (write_rev > UDF_MAX_WRITE_VERSION)
651 			*flags |= MS_RDONLY;
652 	}
653 
654 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
655 		goto out_unlock;
656 
657 	if (*flags & MS_RDONLY)
658 		udf_close_lvid(sb);
659 	else
660 		udf_open_lvid(sb);
661 
662 out_unlock:
663 	return error;
664 }
665 
666 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
667 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
668 static loff_t udf_check_vsd(struct super_block *sb)
669 {
670 	struct volStructDesc *vsd = NULL;
671 	loff_t sector = 32768;
672 	int sectorsize;
673 	struct buffer_head *bh = NULL;
674 	int nsr02 = 0;
675 	int nsr03 = 0;
676 	struct udf_sb_info *sbi;
677 
678 	sbi = UDF_SB(sb);
679 	if (sb->s_blocksize < sizeof(struct volStructDesc))
680 		sectorsize = sizeof(struct volStructDesc);
681 	else
682 		sectorsize = sb->s_blocksize;
683 
684 	sector += (sbi->s_session << sb->s_blocksize_bits);
685 
686 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
687 		  (unsigned int)(sector >> sb->s_blocksize_bits),
688 		  sb->s_blocksize);
689 	/* Process the sequence (if applicable) */
690 	for (; !nsr02 && !nsr03; sector += sectorsize) {
691 		/* Read a block */
692 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
693 		if (!bh)
694 			break;
695 
696 		/* Look for ISO  descriptors */
697 		vsd = (struct volStructDesc *)(bh->b_data +
698 					      (sector & (sb->s_blocksize - 1)));
699 
700 		if (vsd->stdIdent[0] == 0) {
701 			brelse(bh);
702 			break;
703 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
704 				    VSD_STD_ID_LEN)) {
705 			switch (vsd->structType) {
706 			case 0:
707 				udf_debug("ISO9660 Boot Record found\n");
708 				break;
709 			case 1:
710 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
711 				break;
712 			case 2:
713 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
714 				break;
715 			case 3:
716 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
717 				break;
718 			case 255:
719 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
720 				break;
721 			default:
722 				udf_debug("ISO9660 VRS (%u) found\n",
723 					  vsd->structType);
724 				break;
725 			}
726 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
727 				    VSD_STD_ID_LEN))
728 			; /* nothing */
729 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
730 				    VSD_STD_ID_LEN)) {
731 			brelse(bh);
732 			break;
733 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
734 				    VSD_STD_ID_LEN))
735 			nsr02 = sector;
736 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
737 				    VSD_STD_ID_LEN))
738 			nsr03 = sector;
739 		brelse(bh);
740 	}
741 
742 	if (nsr03)
743 		return nsr03;
744 	else if (nsr02)
745 		return nsr02;
746 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
747 		return -1;
748 	else
749 		return 0;
750 }
751 
752 static int udf_find_fileset(struct super_block *sb,
753 			    struct kernel_lb_addr *fileset,
754 			    struct kernel_lb_addr *root)
755 {
756 	struct buffer_head *bh = NULL;
757 	long lastblock;
758 	uint16_t ident;
759 	struct udf_sb_info *sbi;
760 
761 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
762 	    fileset->partitionReferenceNum != 0xFFFF) {
763 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
764 
765 		if (!bh) {
766 			return 1;
767 		} else if (ident != TAG_IDENT_FSD) {
768 			brelse(bh);
769 			return 1;
770 		}
771 
772 	}
773 
774 	sbi = UDF_SB(sb);
775 	if (!bh) {
776 		/* Search backwards through the partitions */
777 		struct kernel_lb_addr newfileset;
778 
779 /* --> cvg: FIXME - is it reasonable? */
780 		return 1;
781 
782 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
783 		     (newfileset.partitionReferenceNum != 0xFFFF &&
784 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
785 		      fileset->partitionReferenceNum == 0xFFFF);
786 		     newfileset.partitionReferenceNum--) {
787 			lastblock = sbi->s_partmaps
788 					[newfileset.partitionReferenceNum]
789 						.s_partition_len;
790 			newfileset.logicalBlockNum = 0;
791 
792 			do {
793 				bh = udf_read_ptagged(sb, &newfileset, 0,
794 						      &ident);
795 				if (!bh) {
796 					newfileset.logicalBlockNum++;
797 					continue;
798 				}
799 
800 				switch (ident) {
801 				case TAG_IDENT_SBD:
802 				{
803 					struct spaceBitmapDesc *sp;
804 					sp = (struct spaceBitmapDesc *)
805 								bh->b_data;
806 					newfileset.logicalBlockNum += 1 +
807 						((le32_to_cpu(sp->numOfBytes) +
808 						  sizeof(struct spaceBitmapDesc)
809 						  - 1) >> sb->s_blocksize_bits);
810 					brelse(bh);
811 					break;
812 				}
813 				case TAG_IDENT_FSD:
814 					*fileset = newfileset;
815 					break;
816 				default:
817 					newfileset.logicalBlockNum++;
818 					brelse(bh);
819 					bh = NULL;
820 					break;
821 				}
822 			} while (newfileset.logicalBlockNum < lastblock &&
823 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
824 				 fileset->partitionReferenceNum == 0xFFFF);
825 		}
826 	}
827 
828 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
829 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
830 		udf_debug("Fileset at block=%d, partition=%d\n",
831 			  fileset->logicalBlockNum,
832 			  fileset->partitionReferenceNum);
833 
834 		sbi->s_partition = fileset->partitionReferenceNum;
835 		udf_load_fileset(sb, bh, root);
836 		brelse(bh);
837 		return 0;
838 	}
839 	return 1;
840 }
841 
842 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
843 {
844 	struct primaryVolDesc *pvoldesc;
845 	struct ustr *instr, *outstr;
846 	struct buffer_head *bh;
847 	uint16_t ident;
848 	int ret = 1;
849 
850 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
851 	if (!instr)
852 		return 1;
853 
854 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
855 	if (!outstr)
856 		goto out1;
857 
858 	bh = udf_read_tagged(sb, block, block, &ident);
859 	if (!bh)
860 		goto out2;
861 
862 	BUG_ON(ident != TAG_IDENT_PVD);
863 
864 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
865 
866 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
867 			      pvoldesc->recordingDateAndTime)) {
868 #ifdef UDFFS_DEBUG
869 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
870 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
871 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
872 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
873 #endif
874 	}
875 
876 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
877 		if (udf_CS0toUTF8(outstr, instr)) {
878 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
879 				outstr->u_len > 31 ? 31 : outstr->u_len);
880 			udf_debug("volIdent[] = '%s'\n",
881 				  UDF_SB(sb)->s_volume_ident);
882 		}
883 
884 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
885 		if (udf_CS0toUTF8(outstr, instr))
886 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
887 
888 	brelse(bh);
889 	ret = 0;
890 out2:
891 	kfree(outstr);
892 out1:
893 	kfree(instr);
894 	return ret;
895 }
896 
897 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
898 					u32 meta_file_loc, u32 partition_num)
899 {
900 	struct kernel_lb_addr addr;
901 	struct inode *metadata_fe;
902 
903 	addr.logicalBlockNum = meta_file_loc;
904 	addr.partitionReferenceNum = partition_num;
905 
906 	metadata_fe = udf_iget(sb, &addr);
907 
908 	if (metadata_fe == NULL)
909 		udf_warn(sb, "metadata inode efe not found\n");
910 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
911 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
912 		iput(metadata_fe);
913 		metadata_fe = NULL;
914 	}
915 
916 	return metadata_fe;
917 }
918 
919 static int udf_load_metadata_files(struct super_block *sb, int partition)
920 {
921 	struct udf_sb_info *sbi = UDF_SB(sb);
922 	struct udf_part_map *map;
923 	struct udf_meta_data *mdata;
924 	struct kernel_lb_addr addr;
925 
926 	map = &sbi->s_partmaps[partition];
927 	mdata = &map->s_type_specific.s_metadata;
928 
929 	/* metadata address */
930 	udf_debug("Metadata file location: block = %d part = %d\n",
931 		  mdata->s_meta_file_loc, map->s_partition_num);
932 
933 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
934 		mdata->s_meta_file_loc, map->s_partition_num);
935 
936 	if (mdata->s_metadata_fe == NULL) {
937 		/* mirror file entry */
938 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
939 			  mdata->s_mirror_file_loc, map->s_partition_num);
940 
941 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
942 			mdata->s_mirror_file_loc, map->s_partition_num);
943 
944 		if (mdata->s_mirror_fe == NULL) {
945 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
946 			goto error_exit;
947 		}
948 	}
949 
950 	/*
951 	 * bitmap file entry
952 	 * Note:
953 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
954 	*/
955 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
956 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
957 		addr.partitionReferenceNum = map->s_partition_num;
958 
959 		udf_debug("Bitmap file location: block = %d part = %d\n",
960 			  addr.logicalBlockNum, addr.partitionReferenceNum);
961 
962 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
963 
964 		if (mdata->s_bitmap_fe == NULL) {
965 			if (sb->s_flags & MS_RDONLY)
966 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
967 			else {
968 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
969 				goto error_exit;
970 			}
971 		}
972 	}
973 
974 	udf_debug("udf_load_metadata_files Ok\n");
975 
976 	return 0;
977 
978 error_exit:
979 	return 1;
980 }
981 
982 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
983 			     struct kernel_lb_addr *root)
984 {
985 	struct fileSetDesc *fset;
986 
987 	fset = (struct fileSetDesc *)bh->b_data;
988 
989 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
990 
991 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
992 
993 	udf_debug("Rootdir at block=%d, partition=%d\n",
994 		  root->logicalBlockNum, root->partitionReferenceNum);
995 }
996 
997 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
998 {
999 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1000 	return DIV_ROUND_UP(map->s_partition_len +
1001 			    (sizeof(struct spaceBitmapDesc) << 3),
1002 			    sb->s_blocksize * 8);
1003 }
1004 
1005 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1006 {
1007 	struct udf_bitmap *bitmap;
1008 	int nr_groups;
1009 	int size;
1010 
1011 	nr_groups = udf_compute_nr_groups(sb, index);
1012 	size = sizeof(struct udf_bitmap) +
1013 		(sizeof(struct buffer_head *) * nr_groups);
1014 
1015 	if (size <= PAGE_SIZE)
1016 		bitmap = kzalloc(size, GFP_KERNEL);
1017 	else
1018 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1019 
1020 	if (bitmap == NULL)
1021 		return NULL;
1022 
1023 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1024 	bitmap->s_nr_groups = nr_groups;
1025 	return bitmap;
1026 }
1027 
1028 static int udf_fill_partdesc_info(struct super_block *sb,
1029 		struct partitionDesc *p, int p_index)
1030 {
1031 	struct udf_part_map *map;
1032 	struct udf_sb_info *sbi = UDF_SB(sb);
1033 	struct partitionHeaderDesc *phd;
1034 
1035 	map = &sbi->s_partmaps[p_index];
1036 
1037 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1038 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1039 
1040 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1041 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1042 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1043 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1044 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1045 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1046 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1047 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1048 
1049 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1050 		  p_index, map->s_partition_type,
1051 		  map->s_partition_root, map->s_partition_len);
1052 
1053 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1054 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1055 		return 0;
1056 
1057 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1058 	if (phd->unallocSpaceTable.extLength) {
1059 		struct kernel_lb_addr loc = {
1060 			.logicalBlockNum = le32_to_cpu(
1061 				phd->unallocSpaceTable.extPosition),
1062 			.partitionReferenceNum = p_index,
1063 		};
1064 
1065 		map->s_uspace.s_table = udf_iget(sb, &loc);
1066 		if (!map->s_uspace.s_table) {
1067 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1068 				  p_index);
1069 			return 1;
1070 		}
1071 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1072 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1073 			  p_index, map->s_uspace.s_table->i_ino);
1074 	}
1075 
1076 	if (phd->unallocSpaceBitmap.extLength) {
1077 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1078 		if (!bitmap)
1079 			return 1;
1080 		map->s_uspace.s_bitmap = bitmap;
1081 		bitmap->s_extLength = le32_to_cpu(
1082 				phd->unallocSpaceBitmap.extLength);
1083 		bitmap->s_extPosition = le32_to_cpu(
1084 				phd->unallocSpaceBitmap.extPosition);
1085 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1086 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1087 			  p_index, bitmap->s_extPosition);
1088 	}
1089 
1090 	if (phd->partitionIntegrityTable.extLength)
1091 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1092 
1093 	if (phd->freedSpaceTable.extLength) {
1094 		struct kernel_lb_addr loc = {
1095 			.logicalBlockNum = le32_to_cpu(
1096 				phd->freedSpaceTable.extPosition),
1097 			.partitionReferenceNum = p_index,
1098 		};
1099 
1100 		map->s_fspace.s_table = udf_iget(sb, &loc);
1101 		if (!map->s_fspace.s_table) {
1102 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1103 				  p_index);
1104 			return 1;
1105 		}
1106 
1107 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1108 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1109 			  p_index, map->s_fspace.s_table->i_ino);
1110 	}
1111 
1112 	if (phd->freedSpaceBitmap.extLength) {
1113 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1114 		if (!bitmap)
1115 			return 1;
1116 		map->s_fspace.s_bitmap = bitmap;
1117 		bitmap->s_extLength = le32_to_cpu(
1118 				phd->freedSpaceBitmap.extLength);
1119 		bitmap->s_extPosition = le32_to_cpu(
1120 				phd->freedSpaceBitmap.extPosition);
1121 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1122 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1123 			  p_index, bitmap->s_extPosition);
1124 	}
1125 	return 0;
1126 }
1127 
1128 static void udf_find_vat_block(struct super_block *sb, int p_index,
1129 			       int type1_index, sector_t start_block)
1130 {
1131 	struct udf_sb_info *sbi = UDF_SB(sb);
1132 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1133 	sector_t vat_block;
1134 	struct kernel_lb_addr ino;
1135 
1136 	/*
1137 	 * VAT file entry is in the last recorded block. Some broken disks have
1138 	 * it a few blocks before so try a bit harder...
1139 	 */
1140 	ino.partitionReferenceNum = type1_index;
1141 	for (vat_block = start_block;
1142 	     vat_block >= map->s_partition_root &&
1143 	     vat_block >= start_block - 3 &&
1144 	     !sbi->s_vat_inode; vat_block--) {
1145 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1146 		sbi->s_vat_inode = udf_iget(sb, &ino);
1147 	}
1148 }
1149 
1150 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1151 {
1152 	struct udf_sb_info *sbi = UDF_SB(sb);
1153 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1154 	struct buffer_head *bh = NULL;
1155 	struct udf_inode_info *vati;
1156 	uint32_t pos;
1157 	struct virtualAllocationTable20 *vat20;
1158 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1159 
1160 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1161 	if (!sbi->s_vat_inode &&
1162 	    sbi->s_last_block != blocks - 1) {
1163 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1164 			  (unsigned long)sbi->s_last_block,
1165 			  (unsigned long)blocks - 1);
1166 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1167 	}
1168 	if (!sbi->s_vat_inode)
1169 		return 1;
1170 
1171 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1172 		map->s_type_specific.s_virtual.s_start_offset = 0;
1173 		map->s_type_specific.s_virtual.s_num_entries =
1174 			(sbi->s_vat_inode->i_size - 36) >> 2;
1175 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1176 		vati = UDF_I(sbi->s_vat_inode);
1177 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1178 			pos = udf_block_map(sbi->s_vat_inode, 0);
1179 			bh = sb_bread(sb, pos);
1180 			if (!bh)
1181 				return 1;
1182 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1183 		} else {
1184 			vat20 = (struct virtualAllocationTable20 *)
1185 							vati->i_ext.i_data;
1186 		}
1187 
1188 		map->s_type_specific.s_virtual.s_start_offset =
1189 			le16_to_cpu(vat20->lengthHeader);
1190 		map->s_type_specific.s_virtual.s_num_entries =
1191 			(sbi->s_vat_inode->i_size -
1192 				map->s_type_specific.s_virtual.
1193 					s_start_offset) >> 2;
1194 		brelse(bh);
1195 	}
1196 	return 0;
1197 }
1198 
1199 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1200 {
1201 	struct buffer_head *bh;
1202 	struct partitionDesc *p;
1203 	struct udf_part_map *map;
1204 	struct udf_sb_info *sbi = UDF_SB(sb);
1205 	int i, type1_idx;
1206 	uint16_t partitionNumber;
1207 	uint16_t ident;
1208 	int ret = 0;
1209 
1210 	bh = udf_read_tagged(sb, block, block, &ident);
1211 	if (!bh)
1212 		return 1;
1213 	if (ident != TAG_IDENT_PD)
1214 		goto out_bh;
1215 
1216 	p = (struct partitionDesc *)bh->b_data;
1217 	partitionNumber = le16_to_cpu(p->partitionNumber);
1218 
1219 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1220 	for (i = 0; i < sbi->s_partitions; i++) {
1221 		map = &sbi->s_partmaps[i];
1222 		udf_debug("Searching map: (%d == %d)\n",
1223 			  map->s_partition_num, partitionNumber);
1224 		if (map->s_partition_num == partitionNumber &&
1225 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1226 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1227 			break;
1228 	}
1229 
1230 	if (i >= sbi->s_partitions) {
1231 		udf_debug("Partition (%d) not found in partition map\n",
1232 			  partitionNumber);
1233 		goto out_bh;
1234 	}
1235 
1236 	ret = udf_fill_partdesc_info(sb, p, i);
1237 
1238 	/*
1239 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1240 	 * PHYSICAL partitions are already set up
1241 	 */
1242 	type1_idx = i;
1243 	for (i = 0; i < sbi->s_partitions; i++) {
1244 		map = &sbi->s_partmaps[i];
1245 
1246 		if (map->s_partition_num == partitionNumber &&
1247 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1248 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1249 		     map->s_partition_type == UDF_METADATA_MAP25))
1250 			break;
1251 	}
1252 
1253 	if (i >= sbi->s_partitions)
1254 		goto out_bh;
1255 
1256 	ret = udf_fill_partdesc_info(sb, p, i);
1257 	if (ret)
1258 		goto out_bh;
1259 
1260 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1261 		ret = udf_load_metadata_files(sb, i);
1262 		if (ret) {
1263 			udf_err(sb, "error loading MetaData partition map %d\n",
1264 				i);
1265 			goto out_bh;
1266 		}
1267 	} else {
1268 		ret = udf_load_vat(sb, i, type1_idx);
1269 		if (ret)
1270 			goto out_bh;
1271 		/*
1272 		 * Mark filesystem read-only if we have a partition with
1273 		 * virtual map since we don't handle writing to it (we
1274 		 * overwrite blocks instead of relocating them).
1275 		 */
1276 		sb->s_flags |= MS_RDONLY;
1277 		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1278 	}
1279 out_bh:
1280 	/* In case loading failed, we handle cleanup in udf_fill_super */
1281 	brelse(bh);
1282 	return ret;
1283 }
1284 
1285 static int udf_load_sparable_map(struct super_block *sb,
1286 				 struct udf_part_map *map,
1287 				 struct sparablePartitionMap *spm)
1288 {
1289 	uint32_t loc;
1290 	uint16_t ident;
1291 	struct sparingTable *st;
1292 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1293 	int i;
1294 	struct buffer_head *bh;
1295 
1296 	map->s_partition_type = UDF_SPARABLE_MAP15;
1297 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1298 	if (!is_power_of_2(sdata->s_packet_len)) {
1299 		udf_err(sb, "error loading logical volume descriptor: "
1300 			"Invalid packet length %u\n",
1301 			(unsigned)sdata->s_packet_len);
1302 		return -EIO;
1303 	}
1304 	if (spm->numSparingTables > 4) {
1305 		udf_err(sb, "error loading logical volume descriptor: "
1306 			"Too many sparing tables (%d)\n",
1307 			(int)spm->numSparingTables);
1308 		return -EIO;
1309 	}
1310 
1311 	for (i = 0; i < spm->numSparingTables; i++) {
1312 		loc = le32_to_cpu(spm->locSparingTable[i]);
1313 		bh = udf_read_tagged(sb, loc, loc, &ident);
1314 		if (!bh)
1315 			continue;
1316 
1317 		st = (struct sparingTable *)bh->b_data;
1318 		if (ident != 0 ||
1319 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1320 			    strlen(UDF_ID_SPARING)) ||
1321 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1322 							sb->s_blocksize) {
1323 			brelse(bh);
1324 			continue;
1325 		}
1326 
1327 		sdata->s_spar_map[i] = bh;
1328 	}
1329 	map->s_partition_func = udf_get_pblock_spar15;
1330 	return 0;
1331 }
1332 
1333 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1334 			       struct kernel_lb_addr *fileset)
1335 {
1336 	struct logicalVolDesc *lvd;
1337 	int i, offset;
1338 	uint8_t type;
1339 	struct udf_sb_info *sbi = UDF_SB(sb);
1340 	struct genericPartitionMap *gpm;
1341 	uint16_t ident;
1342 	struct buffer_head *bh;
1343 	unsigned int table_len;
1344 	int ret = 0;
1345 
1346 	bh = udf_read_tagged(sb, block, block, &ident);
1347 	if (!bh)
1348 		return 1;
1349 	BUG_ON(ident != TAG_IDENT_LVD);
1350 	lvd = (struct logicalVolDesc *)bh->b_data;
1351 	table_len = le32_to_cpu(lvd->mapTableLength);
1352 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1353 		udf_err(sb, "error loading logical volume descriptor: "
1354 			"Partition table too long (%u > %lu)\n", table_len,
1355 			sb->s_blocksize - sizeof(*lvd));
1356 		ret = 1;
1357 		goto out_bh;
1358 	}
1359 
1360 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1361 	if (ret)
1362 		goto out_bh;
1363 
1364 	for (i = 0, offset = 0;
1365 	     i < sbi->s_partitions && offset < table_len;
1366 	     i++, offset += gpm->partitionMapLength) {
1367 		struct udf_part_map *map = &sbi->s_partmaps[i];
1368 		gpm = (struct genericPartitionMap *)
1369 				&(lvd->partitionMaps[offset]);
1370 		type = gpm->partitionMapType;
1371 		if (type == 1) {
1372 			struct genericPartitionMap1 *gpm1 =
1373 				(struct genericPartitionMap1 *)gpm;
1374 			map->s_partition_type = UDF_TYPE1_MAP15;
1375 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1376 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1377 			map->s_partition_func = NULL;
1378 		} else if (type == 2) {
1379 			struct udfPartitionMap2 *upm2 =
1380 						(struct udfPartitionMap2 *)gpm;
1381 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1382 						strlen(UDF_ID_VIRTUAL))) {
1383 				u16 suf =
1384 					le16_to_cpu(((__le16 *)upm2->partIdent.
1385 							identSuffix)[0]);
1386 				if (suf < 0x0200) {
1387 					map->s_partition_type =
1388 							UDF_VIRTUAL_MAP15;
1389 					map->s_partition_func =
1390 							udf_get_pblock_virt15;
1391 				} else {
1392 					map->s_partition_type =
1393 							UDF_VIRTUAL_MAP20;
1394 					map->s_partition_func =
1395 							udf_get_pblock_virt20;
1396 				}
1397 			} else if (!strncmp(upm2->partIdent.ident,
1398 						UDF_ID_SPARABLE,
1399 						strlen(UDF_ID_SPARABLE))) {
1400 				if (udf_load_sparable_map(sb, map,
1401 				    (struct sparablePartitionMap *)gpm) < 0) {
1402 					ret = 1;
1403 					goto out_bh;
1404 				}
1405 			} else if (!strncmp(upm2->partIdent.ident,
1406 						UDF_ID_METADATA,
1407 						strlen(UDF_ID_METADATA))) {
1408 				struct udf_meta_data *mdata =
1409 					&map->s_type_specific.s_metadata;
1410 				struct metadataPartitionMap *mdm =
1411 						(struct metadataPartitionMap *)
1412 						&(lvd->partitionMaps[offset]);
1413 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1414 					  i, type, UDF_ID_METADATA);
1415 
1416 				map->s_partition_type = UDF_METADATA_MAP25;
1417 				map->s_partition_func = udf_get_pblock_meta25;
1418 
1419 				mdata->s_meta_file_loc   =
1420 					le32_to_cpu(mdm->metadataFileLoc);
1421 				mdata->s_mirror_file_loc =
1422 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1423 				mdata->s_bitmap_file_loc =
1424 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1425 				mdata->s_alloc_unit_size =
1426 					le32_to_cpu(mdm->allocUnitSize);
1427 				mdata->s_align_unit_size =
1428 					le16_to_cpu(mdm->alignUnitSize);
1429 				if (mdm->flags & 0x01)
1430 					mdata->s_flags |= MF_DUPLICATE_MD;
1431 
1432 				udf_debug("Metadata Ident suffix=0x%x\n",
1433 					  le16_to_cpu(*(__le16 *)
1434 						      mdm->partIdent.identSuffix));
1435 				udf_debug("Metadata part num=%d\n",
1436 					  le16_to_cpu(mdm->partitionNum));
1437 				udf_debug("Metadata part alloc unit size=%d\n",
1438 					  le32_to_cpu(mdm->allocUnitSize));
1439 				udf_debug("Metadata file loc=%d\n",
1440 					  le32_to_cpu(mdm->metadataFileLoc));
1441 				udf_debug("Mirror file loc=%d\n",
1442 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1443 				udf_debug("Bitmap file loc=%d\n",
1444 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1445 				udf_debug("Flags: %d %d\n",
1446 					  mdata->s_flags, mdm->flags);
1447 			} else {
1448 				udf_debug("Unknown ident: %s\n",
1449 					  upm2->partIdent.ident);
1450 				continue;
1451 			}
1452 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1453 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1454 		}
1455 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1456 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1457 	}
1458 
1459 	if (fileset) {
1460 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1461 
1462 		*fileset = lelb_to_cpu(la->extLocation);
1463 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1464 			  fileset->logicalBlockNum,
1465 			  fileset->partitionReferenceNum);
1466 	}
1467 	if (lvd->integritySeqExt.extLength)
1468 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1469 
1470 out_bh:
1471 	brelse(bh);
1472 	return ret;
1473 }
1474 
1475 /*
1476  * udf_load_logicalvolint
1477  *
1478  */
1479 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1480 {
1481 	struct buffer_head *bh = NULL;
1482 	uint16_t ident;
1483 	struct udf_sb_info *sbi = UDF_SB(sb);
1484 	struct logicalVolIntegrityDesc *lvid;
1485 
1486 	while (loc.extLength > 0 &&
1487 	       (bh = udf_read_tagged(sb, loc.extLocation,
1488 				     loc.extLocation, &ident)) &&
1489 	       ident == TAG_IDENT_LVID) {
1490 		sbi->s_lvid_bh = bh;
1491 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1492 
1493 		if (lvid->nextIntegrityExt.extLength)
1494 			udf_load_logicalvolint(sb,
1495 				leea_to_cpu(lvid->nextIntegrityExt));
1496 
1497 		if (sbi->s_lvid_bh != bh)
1498 			brelse(bh);
1499 		loc.extLength -= sb->s_blocksize;
1500 		loc.extLocation++;
1501 	}
1502 	if (sbi->s_lvid_bh != bh)
1503 		brelse(bh);
1504 }
1505 
1506 /*
1507  * udf_process_sequence
1508  *
1509  * PURPOSE
1510  *	Process a main/reserve volume descriptor sequence.
1511  *
1512  * PRE-CONDITIONS
1513  *	sb			Pointer to _locked_ superblock.
1514  *	block			First block of first extent of the sequence.
1515  *	lastblock		Lastblock of first extent of the sequence.
1516  *
1517  * HISTORY
1518  *	July 1, 1997 - Andrew E. Mileski
1519  *	Written, tested, and released.
1520  */
1521 static noinline int udf_process_sequence(struct super_block *sb, long block,
1522 				long lastblock, struct kernel_lb_addr *fileset)
1523 {
1524 	struct buffer_head *bh = NULL;
1525 	struct udf_vds_record vds[VDS_POS_LENGTH];
1526 	struct udf_vds_record *curr;
1527 	struct generic_desc *gd;
1528 	struct volDescPtr *vdp;
1529 	int done = 0;
1530 	uint32_t vdsn;
1531 	uint16_t ident;
1532 	long next_s = 0, next_e = 0;
1533 
1534 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1535 
1536 	/*
1537 	 * Read the main descriptor sequence and find which descriptors
1538 	 * are in it.
1539 	 */
1540 	for (; (!done && block <= lastblock); block++) {
1541 
1542 		bh = udf_read_tagged(sb, block, block, &ident);
1543 		if (!bh) {
1544 			udf_err(sb,
1545 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1546 				(unsigned long long)block);
1547 			return 1;
1548 		}
1549 
1550 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1551 		gd = (struct generic_desc *)bh->b_data;
1552 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1553 		switch (ident) {
1554 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1555 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1556 			if (vdsn >= curr->volDescSeqNum) {
1557 				curr->volDescSeqNum = vdsn;
1558 				curr->block = block;
1559 			}
1560 			break;
1561 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1562 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1563 			if (vdsn >= curr->volDescSeqNum) {
1564 				curr->volDescSeqNum = vdsn;
1565 				curr->block = block;
1566 
1567 				vdp = (struct volDescPtr *)bh->b_data;
1568 				next_s = le32_to_cpu(
1569 					vdp->nextVolDescSeqExt.extLocation);
1570 				next_e = le32_to_cpu(
1571 					vdp->nextVolDescSeqExt.extLength);
1572 				next_e = next_e >> sb->s_blocksize_bits;
1573 				next_e += next_s;
1574 			}
1575 			break;
1576 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1577 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1578 			if (vdsn >= curr->volDescSeqNum) {
1579 				curr->volDescSeqNum = vdsn;
1580 				curr->block = block;
1581 			}
1582 			break;
1583 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1584 			curr = &vds[VDS_POS_PARTITION_DESC];
1585 			if (!curr->block)
1586 				curr->block = block;
1587 			break;
1588 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1589 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1590 			if (vdsn >= curr->volDescSeqNum) {
1591 				curr->volDescSeqNum = vdsn;
1592 				curr->block = block;
1593 			}
1594 			break;
1595 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1596 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1597 			if (vdsn >= curr->volDescSeqNum) {
1598 				curr->volDescSeqNum = vdsn;
1599 				curr->block = block;
1600 			}
1601 			break;
1602 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1603 			vds[VDS_POS_TERMINATING_DESC].block = block;
1604 			if (next_e) {
1605 				block = next_s;
1606 				lastblock = next_e;
1607 				next_s = next_e = 0;
1608 			} else
1609 				done = 1;
1610 			break;
1611 		}
1612 		brelse(bh);
1613 	}
1614 	/*
1615 	 * Now read interesting descriptors again and process them
1616 	 * in a suitable order
1617 	 */
1618 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1619 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1620 		return 1;
1621 	}
1622 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1623 		return 1;
1624 
1625 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1626 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1627 		return 1;
1628 
1629 	if (vds[VDS_POS_PARTITION_DESC].block) {
1630 		/*
1631 		 * We rescan the whole descriptor sequence to find
1632 		 * partition descriptor blocks and process them.
1633 		 */
1634 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1635 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1636 		     block++)
1637 			if (udf_load_partdesc(sb, block))
1638 				return 1;
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1645 			     struct kernel_lb_addr *fileset)
1646 {
1647 	struct anchorVolDescPtr *anchor;
1648 	long main_s, main_e, reserve_s, reserve_e;
1649 
1650 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1651 
1652 	/* Locate the main sequence */
1653 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1654 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1655 	main_e = main_e >> sb->s_blocksize_bits;
1656 	main_e += main_s;
1657 
1658 	/* Locate the reserve sequence */
1659 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1660 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1661 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1662 	reserve_e += reserve_s;
1663 
1664 	/* Process the main & reserve sequences */
1665 	/* responsible for finding the PartitionDesc(s) */
1666 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1667 		return 1;
1668 	udf_sb_free_partitions(sb);
1669 	if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1670 		return 1;
1671 	udf_sb_free_partitions(sb);
1672 	return 0;
1673 }
1674 
1675 /*
1676  * Check whether there is an anchor block in the given block and
1677  * load Volume Descriptor Sequence if so.
1678  */
1679 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1680 				  struct kernel_lb_addr *fileset)
1681 {
1682 	struct buffer_head *bh;
1683 	uint16_t ident;
1684 	int ret;
1685 
1686 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1687 	    udf_fixed_to_variable(block) >=
1688 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1689 		return 0;
1690 
1691 	bh = udf_read_tagged(sb, block, block, &ident);
1692 	if (!bh)
1693 		return 0;
1694 	if (ident != TAG_IDENT_AVDP) {
1695 		brelse(bh);
1696 		return 0;
1697 	}
1698 	ret = udf_load_sequence(sb, bh, fileset);
1699 	brelse(bh);
1700 	return ret;
1701 }
1702 
1703 /* Search for an anchor volume descriptor pointer */
1704 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1705 				 struct kernel_lb_addr *fileset)
1706 {
1707 	sector_t last[6];
1708 	int i;
1709 	struct udf_sb_info *sbi = UDF_SB(sb);
1710 	int last_count = 0;
1711 
1712 	/* First try user provided anchor */
1713 	if (sbi->s_anchor) {
1714 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1715 			return lastblock;
1716 	}
1717 	/*
1718 	 * according to spec, anchor is in either:
1719 	 *     block 256
1720 	 *     lastblock-256
1721 	 *     lastblock
1722 	 *  however, if the disc isn't closed, it could be 512.
1723 	 */
1724 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1725 		return lastblock;
1726 	/*
1727 	 * The trouble is which block is the last one. Drives often misreport
1728 	 * this so we try various possibilities.
1729 	 */
1730 	last[last_count++] = lastblock;
1731 	if (lastblock >= 1)
1732 		last[last_count++] = lastblock - 1;
1733 	last[last_count++] = lastblock + 1;
1734 	if (lastblock >= 2)
1735 		last[last_count++] = lastblock - 2;
1736 	if (lastblock >= 150)
1737 		last[last_count++] = lastblock - 150;
1738 	if (lastblock >= 152)
1739 		last[last_count++] = lastblock - 152;
1740 
1741 	for (i = 0; i < last_count; i++) {
1742 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1743 				sb->s_blocksize_bits)
1744 			continue;
1745 		if (udf_check_anchor_block(sb, last[i], fileset))
1746 			return last[i];
1747 		if (last[i] < 256)
1748 			continue;
1749 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1750 			return last[i];
1751 	}
1752 
1753 	/* Finally try block 512 in case media is open */
1754 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1755 		return last[0];
1756 	return 0;
1757 }
1758 
1759 /*
1760  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1761  * area specified by it. The function expects sbi->s_lastblock to be the last
1762  * block on the media.
1763  *
1764  * Return 1 if ok, 0 if not found.
1765  *
1766  */
1767 static int udf_find_anchor(struct super_block *sb,
1768 			   struct kernel_lb_addr *fileset)
1769 {
1770 	sector_t lastblock;
1771 	struct udf_sb_info *sbi = UDF_SB(sb);
1772 
1773 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1774 	if (lastblock)
1775 		goto out;
1776 
1777 	/* No anchor found? Try VARCONV conversion of block numbers */
1778 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1779 	/* Firstly, we try to not convert number of the last block */
1780 	lastblock = udf_scan_anchors(sb,
1781 				udf_variable_to_fixed(sbi->s_last_block),
1782 				fileset);
1783 	if (lastblock)
1784 		goto out;
1785 
1786 	/* Secondly, we try with converted number of the last block */
1787 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1788 	if (!lastblock) {
1789 		/* VARCONV didn't help. Clear it. */
1790 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1791 		return 0;
1792 	}
1793 out:
1794 	sbi->s_last_block = lastblock;
1795 	return 1;
1796 }
1797 
1798 /*
1799  * Check Volume Structure Descriptor, find Anchor block and load Volume
1800  * Descriptor Sequence
1801  */
1802 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1803 			int silent, struct kernel_lb_addr *fileset)
1804 {
1805 	struct udf_sb_info *sbi = UDF_SB(sb);
1806 	loff_t nsr_off;
1807 
1808 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1809 		if (!silent)
1810 			udf_warn(sb, "Bad block size\n");
1811 		return 0;
1812 	}
1813 	sbi->s_last_block = uopt->lastblock;
1814 	if (!uopt->novrs) {
1815 		/* Check that it is NSR02 compliant */
1816 		nsr_off = udf_check_vsd(sb);
1817 		if (!nsr_off) {
1818 			if (!silent)
1819 				udf_warn(sb, "No VRS found\n");
1820 			return 0;
1821 		}
1822 		if (nsr_off == -1)
1823 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1824 		if (!sbi->s_last_block)
1825 			sbi->s_last_block = udf_get_last_block(sb);
1826 	} else {
1827 		udf_debug("Validity check skipped because of novrs option\n");
1828 	}
1829 
1830 	/* Look for anchor block and load Volume Descriptor Sequence */
1831 	sbi->s_anchor = uopt->anchor;
1832 	if (!udf_find_anchor(sb, fileset)) {
1833 		if (!silent)
1834 			udf_warn(sb, "No anchor found\n");
1835 		return 0;
1836 	}
1837 	return 1;
1838 }
1839 
1840 static void udf_open_lvid(struct super_block *sb)
1841 {
1842 	struct udf_sb_info *sbi = UDF_SB(sb);
1843 	struct buffer_head *bh = sbi->s_lvid_bh;
1844 	struct logicalVolIntegrityDesc *lvid;
1845 	struct logicalVolIntegrityDescImpUse *lvidiu;
1846 
1847 	if (!bh)
1848 		return;
1849 
1850 	mutex_lock(&sbi->s_alloc_mutex);
1851 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1852 	lvidiu = udf_sb_lvidiu(sbi);
1853 
1854 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1855 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1856 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1857 				CURRENT_TIME);
1858 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1859 
1860 	lvid->descTag.descCRC = cpu_to_le16(
1861 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1862 			le16_to_cpu(lvid->descTag.descCRCLength)));
1863 
1864 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1865 	mark_buffer_dirty(bh);
1866 	sbi->s_lvid_dirty = 0;
1867 	mutex_unlock(&sbi->s_alloc_mutex);
1868 }
1869 
1870 static void udf_close_lvid(struct super_block *sb)
1871 {
1872 	struct udf_sb_info *sbi = UDF_SB(sb);
1873 	struct buffer_head *bh = sbi->s_lvid_bh;
1874 	struct logicalVolIntegrityDesc *lvid;
1875 	struct logicalVolIntegrityDescImpUse *lvidiu;
1876 
1877 	if (!bh)
1878 		return;
1879 
1880 	mutex_lock(&sbi->s_alloc_mutex);
1881 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1882 	lvidiu = udf_sb_lvidiu(sbi);
1883 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1884 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1885 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1886 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1887 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1888 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1889 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1890 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1891 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1892 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1893 
1894 	lvid->descTag.descCRC = cpu_to_le16(
1895 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1896 				le16_to_cpu(lvid->descTag.descCRCLength)));
1897 
1898 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1899 	/*
1900 	 * We set buffer uptodate unconditionally here to avoid spurious
1901 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1902 	 * the buffer as !uptodate
1903 	 */
1904 	set_buffer_uptodate(bh);
1905 	mark_buffer_dirty(bh);
1906 	sbi->s_lvid_dirty = 0;
1907 	mutex_unlock(&sbi->s_alloc_mutex);
1908 }
1909 
1910 u64 lvid_get_unique_id(struct super_block *sb)
1911 {
1912 	struct buffer_head *bh;
1913 	struct udf_sb_info *sbi = UDF_SB(sb);
1914 	struct logicalVolIntegrityDesc *lvid;
1915 	struct logicalVolHeaderDesc *lvhd;
1916 	u64 uniqueID;
1917 	u64 ret;
1918 
1919 	bh = sbi->s_lvid_bh;
1920 	if (!bh)
1921 		return 0;
1922 
1923 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1924 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1925 
1926 	mutex_lock(&sbi->s_alloc_mutex);
1927 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1928 	if (!(++uniqueID & 0xFFFFFFFF))
1929 		uniqueID += 16;
1930 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1931 	mutex_unlock(&sbi->s_alloc_mutex);
1932 	mark_buffer_dirty(bh);
1933 
1934 	return ret;
1935 }
1936 
1937 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1938 {
1939 	int ret;
1940 	struct inode *inode = NULL;
1941 	struct udf_options uopt;
1942 	struct kernel_lb_addr rootdir, fileset;
1943 	struct udf_sb_info *sbi;
1944 
1945 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1946 	uopt.uid = INVALID_UID;
1947 	uopt.gid = INVALID_GID;
1948 	uopt.umask = 0;
1949 	uopt.fmode = UDF_INVALID_MODE;
1950 	uopt.dmode = UDF_INVALID_MODE;
1951 
1952 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1953 	if (!sbi)
1954 		return -ENOMEM;
1955 
1956 	sb->s_fs_info = sbi;
1957 
1958 	mutex_init(&sbi->s_alloc_mutex);
1959 
1960 	if (!udf_parse_options((char *)options, &uopt, false))
1961 		goto error_out;
1962 
1963 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1964 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1965 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1966 		goto error_out;
1967 	}
1968 #ifdef CONFIG_UDF_NLS
1969 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1970 		uopt.nls_map = load_nls_default();
1971 		if (!uopt.nls_map)
1972 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1973 		else
1974 			udf_debug("Using default NLS map\n");
1975 	}
1976 #endif
1977 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1978 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1979 
1980 	fileset.logicalBlockNum = 0xFFFFFFFF;
1981 	fileset.partitionReferenceNum = 0xFFFF;
1982 
1983 	sbi->s_flags = uopt.flags;
1984 	sbi->s_uid = uopt.uid;
1985 	sbi->s_gid = uopt.gid;
1986 	sbi->s_umask = uopt.umask;
1987 	sbi->s_fmode = uopt.fmode;
1988 	sbi->s_dmode = uopt.dmode;
1989 	sbi->s_nls_map = uopt.nls_map;
1990 	rwlock_init(&sbi->s_cred_lock);
1991 
1992 	if (uopt.session == 0xFFFFFFFF)
1993 		sbi->s_session = udf_get_last_session(sb);
1994 	else
1995 		sbi->s_session = uopt.session;
1996 
1997 	udf_debug("Multi-session=%d\n", sbi->s_session);
1998 
1999 	/* Fill in the rest of the superblock */
2000 	sb->s_op = &udf_sb_ops;
2001 	sb->s_export_op = &udf_export_ops;
2002 
2003 	sb->s_magic = UDF_SUPER_MAGIC;
2004 	sb->s_time_gran = 1000;
2005 
2006 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2007 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2008 	} else {
2009 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2010 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2011 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2012 			if (!silent)
2013 				pr_notice("Rescanning with blocksize %d\n",
2014 					  UDF_DEFAULT_BLOCKSIZE);
2015 			brelse(sbi->s_lvid_bh);
2016 			sbi->s_lvid_bh = NULL;
2017 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2018 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2019 		}
2020 	}
2021 	if (!ret) {
2022 		udf_warn(sb, "No partition found (1)\n");
2023 		goto error_out;
2024 	}
2025 
2026 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2027 
2028 	if (sbi->s_lvid_bh) {
2029 		struct logicalVolIntegrityDescImpUse *lvidiu =
2030 							udf_sb_lvidiu(sbi);
2031 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2032 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2033 		/* uint16_t maxUDFWriteRev =
2034 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2035 
2036 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2037 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2038 				le16_to_cpu(lvidiu->minUDFReadRev),
2039 				UDF_MAX_READ_VERSION);
2040 			goto error_out;
2041 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2042 			sb->s_flags |= MS_RDONLY;
2043 
2044 		sbi->s_udfrev = minUDFWriteRev;
2045 
2046 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2047 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2048 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2049 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2050 	}
2051 
2052 	if (!sbi->s_partitions) {
2053 		udf_warn(sb, "No partition found (2)\n");
2054 		goto error_out;
2055 	}
2056 
2057 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2058 			UDF_PART_FLAG_READ_ONLY) {
2059 		pr_notice("Partition marked readonly; forcing readonly mount\n");
2060 		sb->s_flags |= MS_RDONLY;
2061 	}
2062 
2063 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2064 		udf_warn(sb, "No fileset found\n");
2065 		goto error_out;
2066 	}
2067 
2068 	if (!silent) {
2069 		struct timestamp ts;
2070 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2071 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2072 			 sbi->s_volume_ident,
2073 			 le16_to_cpu(ts.year), ts.month, ts.day,
2074 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2075 	}
2076 	if (!(sb->s_flags & MS_RDONLY))
2077 		udf_open_lvid(sb);
2078 
2079 	/* Assign the root inode */
2080 	/* assign inodes by physical block number */
2081 	/* perhaps it's not extensible enough, but for now ... */
2082 	inode = udf_iget(sb, &rootdir);
2083 	if (!inode) {
2084 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2085 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2086 		goto error_out;
2087 	}
2088 
2089 	/* Allocate a dentry for the root inode */
2090 	sb->s_root = d_make_root(inode);
2091 	if (!sb->s_root) {
2092 		udf_err(sb, "Couldn't allocate root dentry\n");
2093 		goto error_out;
2094 	}
2095 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2096 	sb->s_max_links = UDF_MAX_LINKS;
2097 	return 0;
2098 
2099 error_out:
2100 	if (sbi->s_vat_inode)
2101 		iput(sbi->s_vat_inode);
2102 #ifdef CONFIG_UDF_NLS
2103 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2104 		unload_nls(sbi->s_nls_map);
2105 #endif
2106 	if (!(sb->s_flags & MS_RDONLY))
2107 		udf_close_lvid(sb);
2108 	brelse(sbi->s_lvid_bh);
2109 	udf_sb_free_partitions(sb);
2110 	kfree(sbi);
2111 	sb->s_fs_info = NULL;
2112 
2113 	return -EINVAL;
2114 }
2115 
2116 void _udf_err(struct super_block *sb, const char *function,
2117 	      const char *fmt, ...)
2118 {
2119 	struct va_format vaf;
2120 	va_list args;
2121 
2122 	va_start(args, fmt);
2123 
2124 	vaf.fmt = fmt;
2125 	vaf.va = &args;
2126 
2127 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2128 
2129 	va_end(args);
2130 }
2131 
2132 void _udf_warn(struct super_block *sb, const char *function,
2133 	       const char *fmt, ...)
2134 {
2135 	struct va_format vaf;
2136 	va_list args;
2137 
2138 	va_start(args, fmt);
2139 
2140 	vaf.fmt = fmt;
2141 	vaf.va = &args;
2142 
2143 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2144 
2145 	va_end(args);
2146 }
2147 
2148 static void udf_put_super(struct super_block *sb)
2149 {
2150 	struct udf_sb_info *sbi;
2151 
2152 	sbi = UDF_SB(sb);
2153 
2154 	if (sbi->s_vat_inode)
2155 		iput(sbi->s_vat_inode);
2156 #ifdef CONFIG_UDF_NLS
2157 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2158 		unload_nls(sbi->s_nls_map);
2159 #endif
2160 	if (!(sb->s_flags & MS_RDONLY))
2161 		udf_close_lvid(sb);
2162 	brelse(sbi->s_lvid_bh);
2163 	udf_sb_free_partitions(sb);
2164 	kfree(sb->s_fs_info);
2165 	sb->s_fs_info = NULL;
2166 }
2167 
2168 static int udf_sync_fs(struct super_block *sb, int wait)
2169 {
2170 	struct udf_sb_info *sbi = UDF_SB(sb);
2171 
2172 	mutex_lock(&sbi->s_alloc_mutex);
2173 	if (sbi->s_lvid_dirty) {
2174 		/*
2175 		 * Blockdevice will be synced later so we don't have to submit
2176 		 * the buffer for IO
2177 		 */
2178 		mark_buffer_dirty(sbi->s_lvid_bh);
2179 		sbi->s_lvid_dirty = 0;
2180 	}
2181 	mutex_unlock(&sbi->s_alloc_mutex);
2182 
2183 	return 0;
2184 }
2185 
2186 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2187 {
2188 	struct super_block *sb = dentry->d_sb;
2189 	struct udf_sb_info *sbi = UDF_SB(sb);
2190 	struct logicalVolIntegrityDescImpUse *lvidiu;
2191 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2192 
2193 	if (sbi->s_lvid_bh != NULL)
2194 		lvidiu = udf_sb_lvidiu(sbi);
2195 	else
2196 		lvidiu = NULL;
2197 
2198 	buf->f_type = UDF_SUPER_MAGIC;
2199 	buf->f_bsize = sb->s_blocksize;
2200 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2201 	buf->f_bfree = udf_count_free(sb);
2202 	buf->f_bavail = buf->f_bfree;
2203 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2204 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2205 			+ buf->f_bfree;
2206 	buf->f_ffree = buf->f_bfree;
2207 	buf->f_namelen = UDF_NAME_LEN - 2;
2208 	buf->f_fsid.val[0] = (u32)id;
2209 	buf->f_fsid.val[1] = (u32)(id >> 32);
2210 
2211 	return 0;
2212 }
2213 
2214 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2215 					  struct udf_bitmap *bitmap)
2216 {
2217 	struct buffer_head *bh = NULL;
2218 	unsigned int accum = 0;
2219 	int index;
2220 	int block = 0, newblock;
2221 	struct kernel_lb_addr loc;
2222 	uint32_t bytes;
2223 	uint8_t *ptr;
2224 	uint16_t ident;
2225 	struct spaceBitmapDesc *bm;
2226 
2227 	loc.logicalBlockNum = bitmap->s_extPosition;
2228 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2229 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2230 
2231 	if (!bh) {
2232 		udf_err(sb, "udf_count_free failed\n");
2233 		goto out;
2234 	} else if (ident != TAG_IDENT_SBD) {
2235 		brelse(bh);
2236 		udf_err(sb, "udf_count_free failed\n");
2237 		goto out;
2238 	}
2239 
2240 	bm = (struct spaceBitmapDesc *)bh->b_data;
2241 	bytes = le32_to_cpu(bm->numOfBytes);
2242 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2243 	ptr = (uint8_t *)bh->b_data;
2244 
2245 	while (bytes > 0) {
2246 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2247 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2248 					cur_bytes * 8);
2249 		bytes -= cur_bytes;
2250 		if (bytes) {
2251 			brelse(bh);
2252 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2253 			bh = udf_tread(sb, newblock);
2254 			if (!bh) {
2255 				udf_debug("read failed\n");
2256 				goto out;
2257 			}
2258 			index = 0;
2259 			ptr = (uint8_t *)bh->b_data;
2260 		}
2261 	}
2262 	brelse(bh);
2263 out:
2264 	return accum;
2265 }
2266 
2267 static unsigned int udf_count_free_table(struct super_block *sb,
2268 					 struct inode *table)
2269 {
2270 	unsigned int accum = 0;
2271 	uint32_t elen;
2272 	struct kernel_lb_addr eloc;
2273 	int8_t etype;
2274 	struct extent_position epos;
2275 
2276 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2277 	epos.block = UDF_I(table)->i_location;
2278 	epos.offset = sizeof(struct unallocSpaceEntry);
2279 	epos.bh = NULL;
2280 
2281 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2282 		accum += (elen >> table->i_sb->s_blocksize_bits);
2283 
2284 	brelse(epos.bh);
2285 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2286 
2287 	return accum;
2288 }
2289 
2290 static unsigned int udf_count_free(struct super_block *sb)
2291 {
2292 	unsigned int accum = 0;
2293 	struct udf_sb_info *sbi;
2294 	struct udf_part_map *map;
2295 
2296 	sbi = UDF_SB(sb);
2297 	if (sbi->s_lvid_bh) {
2298 		struct logicalVolIntegrityDesc *lvid =
2299 			(struct logicalVolIntegrityDesc *)
2300 			sbi->s_lvid_bh->b_data;
2301 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2302 			accum = le32_to_cpu(
2303 					lvid->freeSpaceTable[sbi->s_partition]);
2304 			if (accum == 0xFFFFFFFF)
2305 				accum = 0;
2306 		}
2307 	}
2308 
2309 	if (accum)
2310 		return accum;
2311 
2312 	map = &sbi->s_partmaps[sbi->s_partition];
2313 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2314 		accum += udf_count_free_bitmap(sb,
2315 					       map->s_uspace.s_bitmap);
2316 	}
2317 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2318 		accum += udf_count_free_bitmap(sb,
2319 					       map->s_fspace.s_bitmap);
2320 	}
2321 	if (accum)
2322 		return accum;
2323 
2324 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2325 		accum += udf_count_free_table(sb,
2326 					      map->s_uspace.s_table);
2327 	}
2328 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2329 		accum += udf_count_free_table(sb,
2330 					      map->s_fspace.s_table);
2331 	}
2332 
2333 	return accum;
2334 }
2335