1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 enum { UDF_MAX_LINKS = 0xffff }; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct dentry *); 96 97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 98 { 99 struct logicalVolIntegrityDesc *lvid = 100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 102 __u32 offset = number_of_partitions * 2 * 103 sizeof(uint32_t)/sizeof(uint8_t); 104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 105 } 106 107 /* UDF filesystem type */ 108 static struct dentry *udf_mount(struct file_system_type *fs_type, 109 int flags, const char *dev_name, void *data) 110 { 111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 112 } 113 114 static struct file_system_type udf_fstype = { 115 .owner = THIS_MODULE, 116 .name = "udf", 117 .mount = udf_mount, 118 .kill_sb = kill_block_super, 119 .fs_flags = FS_REQUIRES_DEV, 120 }; 121 122 static struct kmem_cache *udf_inode_cachep; 123 124 static struct inode *udf_alloc_inode(struct super_block *sb) 125 { 126 struct udf_inode_info *ei; 127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 128 if (!ei) 129 return NULL; 130 131 ei->i_unique = 0; 132 ei->i_lenExtents = 0; 133 ei->i_next_alloc_block = 0; 134 ei->i_next_alloc_goal = 0; 135 ei->i_strat4096 = 0; 136 init_rwsem(&ei->i_data_sem); 137 138 return &ei->vfs_inode; 139 } 140 141 static void udf_i_callback(struct rcu_head *head) 142 { 143 struct inode *inode = container_of(head, struct inode, i_rcu); 144 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 145 } 146 147 static void udf_destroy_inode(struct inode *inode) 148 { 149 call_rcu(&inode->i_rcu, udf_i_callback); 150 } 151 152 static void init_once(void *foo) 153 { 154 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 155 156 ei->i_ext.i_data = NULL; 157 inode_init_once(&ei->vfs_inode); 158 } 159 160 static int init_inodecache(void) 161 { 162 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 163 sizeof(struct udf_inode_info), 164 0, (SLAB_RECLAIM_ACCOUNT | 165 SLAB_MEM_SPREAD), 166 init_once); 167 if (!udf_inode_cachep) 168 return -ENOMEM; 169 return 0; 170 } 171 172 static void destroy_inodecache(void) 173 { 174 /* 175 * Make sure all delayed rcu free inodes are flushed before we 176 * destroy cache. 177 */ 178 rcu_barrier(); 179 kmem_cache_destroy(udf_inode_cachep); 180 } 181 182 /* Superblock operations */ 183 static const struct super_operations udf_sb_ops = { 184 .alloc_inode = udf_alloc_inode, 185 .destroy_inode = udf_destroy_inode, 186 .write_inode = udf_write_inode, 187 .evict_inode = udf_evict_inode, 188 .put_super = udf_put_super, 189 .sync_fs = udf_sync_fs, 190 .statfs = udf_statfs, 191 .remount_fs = udf_remount_fs, 192 .show_options = udf_show_options, 193 }; 194 195 struct udf_options { 196 unsigned char novrs; 197 unsigned int blocksize; 198 unsigned int session; 199 unsigned int lastblock; 200 unsigned int anchor; 201 unsigned int volume; 202 unsigned short partition; 203 unsigned int fileset; 204 unsigned int rootdir; 205 unsigned int flags; 206 umode_t umask; 207 kgid_t gid; 208 kuid_t uid; 209 umode_t fmode; 210 umode_t dmode; 211 struct nls_table *nls_map; 212 }; 213 214 static int __init init_udf_fs(void) 215 { 216 int err; 217 218 err = init_inodecache(); 219 if (err) 220 goto out1; 221 err = register_filesystem(&udf_fstype); 222 if (err) 223 goto out; 224 225 return 0; 226 227 out: 228 destroy_inodecache(); 229 230 out1: 231 return err; 232 } 233 234 static void __exit exit_udf_fs(void) 235 { 236 unregister_filesystem(&udf_fstype); 237 destroy_inodecache(); 238 } 239 240 module_init(init_udf_fs) 241 module_exit(exit_udf_fs) 242 243 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 244 { 245 struct udf_sb_info *sbi = UDF_SB(sb); 246 247 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 248 GFP_KERNEL); 249 if (!sbi->s_partmaps) { 250 udf_err(sb, "Unable to allocate space for %d partition maps\n", 251 count); 252 sbi->s_partitions = 0; 253 return -ENOMEM; 254 } 255 256 sbi->s_partitions = count; 257 return 0; 258 } 259 260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 261 { 262 int i; 263 int nr_groups = bitmap->s_nr_groups; 264 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 265 nr_groups); 266 267 for (i = 0; i < nr_groups; i++) 268 if (bitmap->s_block_bitmap[i]) 269 brelse(bitmap->s_block_bitmap[i]); 270 271 if (size <= PAGE_SIZE) 272 kfree(bitmap); 273 else 274 vfree(bitmap); 275 } 276 277 static void udf_free_partition(struct udf_part_map *map) 278 { 279 int i; 280 struct udf_meta_data *mdata; 281 282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 283 iput(map->s_uspace.s_table); 284 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 285 iput(map->s_fspace.s_table); 286 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 287 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 288 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 289 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 290 if (map->s_partition_type == UDF_SPARABLE_MAP15) 291 for (i = 0; i < 4; i++) 292 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 293 else if (map->s_partition_type == UDF_METADATA_MAP25) { 294 mdata = &map->s_type_specific.s_metadata; 295 iput(mdata->s_metadata_fe); 296 mdata->s_metadata_fe = NULL; 297 298 iput(mdata->s_mirror_fe); 299 mdata->s_mirror_fe = NULL; 300 301 iput(mdata->s_bitmap_fe); 302 mdata->s_bitmap_fe = NULL; 303 } 304 } 305 306 static void udf_sb_free_partitions(struct super_block *sb) 307 { 308 struct udf_sb_info *sbi = UDF_SB(sb); 309 int i; 310 311 for (i = 0; i < sbi->s_partitions; i++) 312 udf_free_partition(&sbi->s_partmaps[i]); 313 kfree(sbi->s_partmaps); 314 sbi->s_partmaps = NULL; 315 } 316 317 static int udf_show_options(struct seq_file *seq, struct dentry *root) 318 { 319 struct super_block *sb = root->d_sb; 320 struct udf_sb_info *sbi = UDF_SB(sb); 321 322 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 323 seq_puts(seq, ",nostrict"); 324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 325 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 327 seq_puts(seq, ",unhide"); 328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 329 seq_puts(seq, ",undelete"); 330 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 331 seq_puts(seq, ",noadinicb"); 332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 333 seq_puts(seq, ",shortad"); 334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 335 seq_puts(seq, ",uid=forget"); 336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 337 seq_puts(seq, ",uid=ignore"); 338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 339 seq_puts(seq, ",gid=forget"); 340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 341 seq_puts(seq, ",gid=ignore"); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 343 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 345 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 346 if (sbi->s_umask != 0) 347 seq_printf(seq, ",umask=%ho", sbi->s_umask); 348 if (sbi->s_fmode != UDF_INVALID_MODE) 349 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 350 if (sbi->s_dmode != UDF_INVALID_MODE) 351 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 353 seq_printf(seq, ",session=%u", sbi->s_session); 354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 355 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 356 if (sbi->s_anchor != 0) 357 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 358 /* 359 * volume, partition, fileset and rootdir seem to be ignored 360 * currently 361 */ 362 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 363 seq_puts(seq, ",utf8"); 364 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 365 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 366 367 return 0; 368 } 369 370 /* 371 * udf_parse_options 372 * 373 * PURPOSE 374 * Parse mount options. 375 * 376 * DESCRIPTION 377 * The following mount options are supported: 378 * 379 * gid= Set the default group. 380 * umask= Set the default umask. 381 * mode= Set the default file permissions. 382 * dmode= Set the default directory permissions. 383 * uid= Set the default user. 384 * bs= Set the block size. 385 * unhide Show otherwise hidden files. 386 * undelete Show deleted files in lists. 387 * adinicb Embed data in the inode (default) 388 * noadinicb Don't embed data in the inode 389 * shortad Use short ad's 390 * longad Use long ad's (default) 391 * nostrict Unset strict conformance 392 * iocharset= Set the NLS character set 393 * 394 * The remaining are for debugging and disaster recovery: 395 * 396 * novrs Skip volume sequence recognition 397 * 398 * The following expect a offset from 0. 399 * 400 * session= Set the CDROM session (default= last session) 401 * anchor= Override standard anchor location. (default= 256) 402 * volume= Override the VolumeDesc location. (unused) 403 * partition= Override the PartitionDesc location. (unused) 404 * lastblock= Set the last block of the filesystem/ 405 * 406 * The following expect a offset from the partition root. 407 * 408 * fileset= Override the fileset block location. (unused) 409 * rootdir= Override the root directory location. (unused) 410 * WARNING: overriding the rootdir to a non-directory may 411 * yield highly unpredictable results. 412 * 413 * PRE-CONDITIONS 414 * options Pointer to mount options string. 415 * uopts Pointer to mount options variable. 416 * 417 * POST-CONDITIONS 418 * <return> 1 Mount options parsed okay. 419 * <return> 0 Error parsing mount options. 420 * 421 * HISTORY 422 * July 1, 1997 - Andrew E. Mileski 423 * Written, tested, and released. 424 */ 425 426 enum { 427 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 428 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 429 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 430 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 431 Opt_rootdir, Opt_utf8, Opt_iocharset, 432 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 433 Opt_fmode, Opt_dmode 434 }; 435 436 static const match_table_t tokens = { 437 {Opt_novrs, "novrs"}, 438 {Opt_nostrict, "nostrict"}, 439 {Opt_bs, "bs=%u"}, 440 {Opt_unhide, "unhide"}, 441 {Opt_undelete, "undelete"}, 442 {Opt_noadinicb, "noadinicb"}, 443 {Opt_adinicb, "adinicb"}, 444 {Opt_shortad, "shortad"}, 445 {Opt_longad, "longad"}, 446 {Opt_uforget, "uid=forget"}, 447 {Opt_uignore, "uid=ignore"}, 448 {Opt_gforget, "gid=forget"}, 449 {Opt_gignore, "gid=ignore"}, 450 {Opt_gid, "gid=%u"}, 451 {Opt_uid, "uid=%u"}, 452 {Opt_umask, "umask=%o"}, 453 {Opt_session, "session=%u"}, 454 {Opt_lastblock, "lastblock=%u"}, 455 {Opt_anchor, "anchor=%u"}, 456 {Opt_volume, "volume=%u"}, 457 {Opt_partition, "partition=%u"}, 458 {Opt_fileset, "fileset=%u"}, 459 {Opt_rootdir, "rootdir=%u"}, 460 {Opt_utf8, "utf8"}, 461 {Opt_iocharset, "iocharset=%s"}, 462 {Opt_fmode, "mode=%o"}, 463 {Opt_dmode, "dmode=%o"}, 464 {Opt_err, NULL} 465 }; 466 467 static int udf_parse_options(char *options, struct udf_options *uopt, 468 bool remount) 469 { 470 char *p; 471 int option; 472 473 uopt->novrs = 0; 474 uopt->partition = 0xFFFF; 475 uopt->session = 0xFFFFFFFF; 476 uopt->lastblock = 0; 477 uopt->anchor = 0; 478 uopt->volume = 0xFFFFFFFF; 479 uopt->rootdir = 0xFFFFFFFF; 480 uopt->fileset = 0xFFFFFFFF; 481 uopt->nls_map = NULL; 482 483 if (!options) 484 return 1; 485 486 while ((p = strsep(&options, ",")) != NULL) { 487 substring_t args[MAX_OPT_ARGS]; 488 int token; 489 if (!*p) 490 continue; 491 492 token = match_token(p, tokens, args); 493 switch (token) { 494 case Opt_novrs: 495 uopt->novrs = 1; 496 break; 497 case Opt_bs: 498 if (match_int(&args[0], &option)) 499 return 0; 500 uopt->blocksize = option; 501 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 502 break; 503 case Opt_unhide: 504 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 505 break; 506 case Opt_undelete: 507 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 508 break; 509 case Opt_noadinicb: 510 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 511 break; 512 case Opt_adinicb: 513 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 514 break; 515 case Opt_shortad: 516 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 517 break; 518 case Opt_longad: 519 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 520 break; 521 case Opt_gid: 522 if (match_int(args, &option)) 523 return 0; 524 uopt->gid = make_kgid(current_user_ns(), option); 525 if (!gid_valid(uopt->gid)) 526 return 0; 527 uopt->flags |= (1 << UDF_FLAG_GID_SET); 528 break; 529 case Opt_uid: 530 if (match_int(args, &option)) 531 return 0; 532 uopt->uid = make_kuid(current_user_ns(), option); 533 if (!uid_valid(uopt->uid)) 534 return 0; 535 uopt->flags |= (1 << UDF_FLAG_UID_SET); 536 break; 537 case Opt_umask: 538 if (match_octal(args, &option)) 539 return 0; 540 uopt->umask = option; 541 break; 542 case Opt_nostrict: 543 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 544 break; 545 case Opt_session: 546 if (match_int(args, &option)) 547 return 0; 548 uopt->session = option; 549 if (!remount) 550 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 551 break; 552 case Opt_lastblock: 553 if (match_int(args, &option)) 554 return 0; 555 uopt->lastblock = option; 556 if (!remount) 557 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 558 break; 559 case Opt_anchor: 560 if (match_int(args, &option)) 561 return 0; 562 uopt->anchor = option; 563 break; 564 case Opt_volume: 565 if (match_int(args, &option)) 566 return 0; 567 uopt->volume = option; 568 break; 569 case Opt_partition: 570 if (match_int(args, &option)) 571 return 0; 572 uopt->partition = option; 573 break; 574 case Opt_fileset: 575 if (match_int(args, &option)) 576 return 0; 577 uopt->fileset = option; 578 break; 579 case Opt_rootdir: 580 if (match_int(args, &option)) 581 return 0; 582 uopt->rootdir = option; 583 break; 584 case Opt_utf8: 585 uopt->flags |= (1 << UDF_FLAG_UTF8); 586 break; 587 #ifdef CONFIG_UDF_NLS 588 case Opt_iocharset: 589 uopt->nls_map = load_nls(args[0].from); 590 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 591 break; 592 #endif 593 case Opt_uignore: 594 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 595 break; 596 case Opt_uforget: 597 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 598 break; 599 case Opt_gignore: 600 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 601 break; 602 case Opt_gforget: 603 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 604 break; 605 case Opt_fmode: 606 if (match_octal(args, &option)) 607 return 0; 608 uopt->fmode = option & 0777; 609 break; 610 case Opt_dmode: 611 if (match_octal(args, &option)) 612 return 0; 613 uopt->dmode = option & 0777; 614 break; 615 default: 616 pr_err("bad mount option \"%s\" or missing value\n", p); 617 return 0; 618 } 619 } 620 return 1; 621 } 622 623 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 624 { 625 struct udf_options uopt; 626 struct udf_sb_info *sbi = UDF_SB(sb); 627 int error = 0; 628 629 uopt.flags = sbi->s_flags; 630 uopt.uid = sbi->s_uid; 631 uopt.gid = sbi->s_gid; 632 uopt.umask = sbi->s_umask; 633 uopt.fmode = sbi->s_fmode; 634 uopt.dmode = sbi->s_dmode; 635 636 if (!udf_parse_options(options, &uopt, true)) 637 return -EINVAL; 638 639 write_lock(&sbi->s_cred_lock); 640 sbi->s_flags = uopt.flags; 641 sbi->s_uid = uopt.uid; 642 sbi->s_gid = uopt.gid; 643 sbi->s_umask = uopt.umask; 644 sbi->s_fmode = uopt.fmode; 645 sbi->s_dmode = uopt.dmode; 646 write_unlock(&sbi->s_cred_lock); 647 648 if (sbi->s_lvid_bh) { 649 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 650 if (write_rev > UDF_MAX_WRITE_VERSION) 651 *flags |= MS_RDONLY; 652 } 653 654 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 655 goto out_unlock; 656 657 if (*flags & MS_RDONLY) 658 udf_close_lvid(sb); 659 else 660 udf_open_lvid(sb); 661 662 out_unlock: 663 return error; 664 } 665 666 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 667 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 668 static loff_t udf_check_vsd(struct super_block *sb) 669 { 670 struct volStructDesc *vsd = NULL; 671 loff_t sector = 32768; 672 int sectorsize; 673 struct buffer_head *bh = NULL; 674 int nsr02 = 0; 675 int nsr03 = 0; 676 struct udf_sb_info *sbi; 677 678 sbi = UDF_SB(sb); 679 if (sb->s_blocksize < sizeof(struct volStructDesc)) 680 sectorsize = sizeof(struct volStructDesc); 681 else 682 sectorsize = sb->s_blocksize; 683 684 sector += (sbi->s_session << sb->s_blocksize_bits); 685 686 udf_debug("Starting at sector %u (%ld byte sectors)\n", 687 (unsigned int)(sector >> sb->s_blocksize_bits), 688 sb->s_blocksize); 689 /* Process the sequence (if applicable) */ 690 for (; !nsr02 && !nsr03; sector += sectorsize) { 691 /* Read a block */ 692 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 693 if (!bh) 694 break; 695 696 /* Look for ISO descriptors */ 697 vsd = (struct volStructDesc *)(bh->b_data + 698 (sector & (sb->s_blocksize - 1))); 699 700 if (vsd->stdIdent[0] == 0) { 701 brelse(bh); 702 break; 703 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 704 VSD_STD_ID_LEN)) { 705 switch (vsd->structType) { 706 case 0: 707 udf_debug("ISO9660 Boot Record found\n"); 708 break; 709 case 1: 710 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 711 break; 712 case 2: 713 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 714 break; 715 case 3: 716 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 717 break; 718 case 255: 719 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 720 break; 721 default: 722 udf_debug("ISO9660 VRS (%u) found\n", 723 vsd->structType); 724 break; 725 } 726 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 727 VSD_STD_ID_LEN)) 728 ; /* nothing */ 729 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 730 VSD_STD_ID_LEN)) { 731 brelse(bh); 732 break; 733 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 734 VSD_STD_ID_LEN)) 735 nsr02 = sector; 736 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 737 VSD_STD_ID_LEN)) 738 nsr03 = sector; 739 brelse(bh); 740 } 741 742 if (nsr03) 743 return nsr03; 744 else if (nsr02) 745 return nsr02; 746 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 747 return -1; 748 else 749 return 0; 750 } 751 752 static int udf_find_fileset(struct super_block *sb, 753 struct kernel_lb_addr *fileset, 754 struct kernel_lb_addr *root) 755 { 756 struct buffer_head *bh = NULL; 757 long lastblock; 758 uint16_t ident; 759 struct udf_sb_info *sbi; 760 761 if (fileset->logicalBlockNum != 0xFFFFFFFF || 762 fileset->partitionReferenceNum != 0xFFFF) { 763 bh = udf_read_ptagged(sb, fileset, 0, &ident); 764 765 if (!bh) { 766 return 1; 767 } else if (ident != TAG_IDENT_FSD) { 768 brelse(bh); 769 return 1; 770 } 771 772 } 773 774 sbi = UDF_SB(sb); 775 if (!bh) { 776 /* Search backwards through the partitions */ 777 struct kernel_lb_addr newfileset; 778 779 /* --> cvg: FIXME - is it reasonable? */ 780 return 1; 781 782 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 783 (newfileset.partitionReferenceNum != 0xFFFF && 784 fileset->logicalBlockNum == 0xFFFFFFFF && 785 fileset->partitionReferenceNum == 0xFFFF); 786 newfileset.partitionReferenceNum--) { 787 lastblock = sbi->s_partmaps 788 [newfileset.partitionReferenceNum] 789 .s_partition_len; 790 newfileset.logicalBlockNum = 0; 791 792 do { 793 bh = udf_read_ptagged(sb, &newfileset, 0, 794 &ident); 795 if (!bh) { 796 newfileset.logicalBlockNum++; 797 continue; 798 } 799 800 switch (ident) { 801 case TAG_IDENT_SBD: 802 { 803 struct spaceBitmapDesc *sp; 804 sp = (struct spaceBitmapDesc *) 805 bh->b_data; 806 newfileset.logicalBlockNum += 1 + 807 ((le32_to_cpu(sp->numOfBytes) + 808 sizeof(struct spaceBitmapDesc) 809 - 1) >> sb->s_blocksize_bits); 810 brelse(bh); 811 break; 812 } 813 case TAG_IDENT_FSD: 814 *fileset = newfileset; 815 break; 816 default: 817 newfileset.logicalBlockNum++; 818 brelse(bh); 819 bh = NULL; 820 break; 821 } 822 } while (newfileset.logicalBlockNum < lastblock && 823 fileset->logicalBlockNum == 0xFFFFFFFF && 824 fileset->partitionReferenceNum == 0xFFFF); 825 } 826 } 827 828 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 829 fileset->partitionReferenceNum != 0xFFFF) && bh) { 830 udf_debug("Fileset at block=%d, partition=%d\n", 831 fileset->logicalBlockNum, 832 fileset->partitionReferenceNum); 833 834 sbi->s_partition = fileset->partitionReferenceNum; 835 udf_load_fileset(sb, bh, root); 836 brelse(bh); 837 return 0; 838 } 839 return 1; 840 } 841 842 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 843 { 844 struct primaryVolDesc *pvoldesc; 845 struct ustr *instr, *outstr; 846 struct buffer_head *bh; 847 uint16_t ident; 848 int ret = 1; 849 850 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 851 if (!instr) 852 return 1; 853 854 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 855 if (!outstr) 856 goto out1; 857 858 bh = udf_read_tagged(sb, block, block, &ident); 859 if (!bh) 860 goto out2; 861 862 BUG_ON(ident != TAG_IDENT_PVD); 863 864 pvoldesc = (struct primaryVolDesc *)bh->b_data; 865 866 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 867 pvoldesc->recordingDateAndTime)) { 868 #ifdef UDFFS_DEBUG 869 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 870 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 871 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 872 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 873 #endif 874 } 875 876 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 877 if (udf_CS0toUTF8(outstr, instr)) { 878 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 879 outstr->u_len > 31 ? 31 : outstr->u_len); 880 udf_debug("volIdent[] = '%s'\n", 881 UDF_SB(sb)->s_volume_ident); 882 } 883 884 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 885 if (udf_CS0toUTF8(outstr, instr)) 886 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 887 888 brelse(bh); 889 ret = 0; 890 out2: 891 kfree(outstr); 892 out1: 893 kfree(instr); 894 return ret; 895 } 896 897 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 898 u32 meta_file_loc, u32 partition_num) 899 { 900 struct kernel_lb_addr addr; 901 struct inode *metadata_fe; 902 903 addr.logicalBlockNum = meta_file_loc; 904 addr.partitionReferenceNum = partition_num; 905 906 metadata_fe = udf_iget(sb, &addr); 907 908 if (metadata_fe == NULL) 909 udf_warn(sb, "metadata inode efe not found\n"); 910 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 911 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 912 iput(metadata_fe); 913 metadata_fe = NULL; 914 } 915 916 return metadata_fe; 917 } 918 919 static int udf_load_metadata_files(struct super_block *sb, int partition) 920 { 921 struct udf_sb_info *sbi = UDF_SB(sb); 922 struct udf_part_map *map; 923 struct udf_meta_data *mdata; 924 struct kernel_lb_addr addr; 925 926 map = &sbi->s_partmaps[partition]; 927 mdata = &map->s_type_specific.s_metadata; 928 929 /* metadata address */ 930 udf_debug("Metadata file location: block = %d part = %d\n", 931 mdata->s_meta_file_loc, map->s_partition_num); 932 933 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 934 mdata->s_meta_file_loc, map->s_partition_num); 935 936 if (mdata->s_metadata_fe == NULL) { 937 /* mirror file entry */ 938 udf_debug("Mirror metadata file location: block = %d part = %d\n", 939 mdata->s_mirror_file_loc, map->s_partition_num); 940 941 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 942 mdata->s_mirror_file_loc, map->s_partition_num); 943 944 if (mdata->s_mirror_fe == NULL) { 945 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 946 goto error_exit; 947 } 948 } 949 950 /* 951 * bitmap file entry 952 * Note: 953 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 954 */ 955 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 956 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 957 addr.partitionReferenceNum = map->s_partition_num; 958 959 udf_debug("Bitmap file location: block = %d part = %d\n", 960 addr.logicalBlockNum, addr.partitionReferenceNum); 961 962 mdata->s_bitmap_fe = udf_iget(sb, &addr); 963 964 if (mdata->s_bitmap_fe == NULL) { 965 if (sb->s_flags & MS_RDONLY) 966 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 967 else { 968 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 969 goto error_exit; 970 } 971 } 972 } 973 974 udf_debug("udf_load_metadata_files Ok\n"); 975 976 return 0; 977 978 error_exit: 979 return 1; 980 } 981 982 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 983 struct kernel_lb_addr *root) 984 { 985 struct fileSetDesc *fset; 986 987 fset = (struct fileSetDesc *)bh->b_data; 988 989 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 990 991 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 992 993 udf_debug("Rootdir at block=%d, partition=%d\n", 994 root->logicalBlockNum, root->partitionReferenceNum); 995 } 996 997 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 998 { 999 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1000 return DIV_ROUND_UP(map->s_partition_len + 1001 (sizeof(struct spaceBitmapDesc) << 3), 1002 sb->s_blocksize * 8); 1003 } 1004 1005 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1006 { 1007 struct udf_bitmap *bitmap; 1008 int nr_groups; 1009 int size; 1010 1011 nr_groups = udf_compute_nr_groups(sb, index); 1012 size = sizeof(struct udf_bitmap) + 1013 (sizeof(struct buffer_head *) * nr_groups); 1014 1015 if (size <= PAGE_SIZE) 1016 bitmap = kzalloc(size, GFP_KERNEL); 1017 else 1018 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1019 1020 if (bitmap == NULL) 1021 return NULL; 1022 1023 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 1024 bitmap->s_nr_groups = nr_groups; 1025 return bitmap; 1026 } 1027 1028 static int udf_fill_partdesc_info(struct super_block *sb, 1029 struct partitionDesc *p, int p_index) 1030 { 1031 struct udf_part_map *map; 1032 struct udf_sb_info *sbi = UDF_SB(sb); 1033 struct partitionHeaderDesc *phd; 1034 1035 map = &sbi->s_partmaps[p_index]; 1036 1037 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1038 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1039 1040 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1041 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1042 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1043 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1044 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1045 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1046 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1047 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1048 1049 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1050 p_index, map->s_partition_type, 1051 map->s_partition_root, map->s_partition_len); 1052 1053 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1054 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1055 return 0; 1056 1057 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1058 if (phd->unallocSpaceTable.extLength) { 1059 struct kernel_lb_addr loc = { 1060 .logicalBlockNum = le32_to_cpu( 1061 phd->unallocSpaceTable.extPosition), 1062 .partitionReferenceNum = p_index, 1063 }; 1064 1065 map->s_uspace.s_table = udf_iget(sb, &loc); 1066 if (!map->s_uspace.s_table) { 1067 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1068 p_index); 1069 return 1; 1070 } 1071 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1072 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1073 p_index, map->s_uspace.s_table->i_ino); 1074 } 1075 1076 if (phd->unallocSpaceBitmap.extLength) { 1077 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1078 if (!bitmap) 1079 return 1; 1080 map->s_uspace.s_bitmap = bitmap; 1081 bitmap->s_extLength = le32_to_cpu( 1082 phd->unallocSpaceBitmap.extLength); 1083 bitmap->s_extPosition = le32_to_cpu( 1084 phd->unallocSpaceBitmap.extPosition); 1085 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1086 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1087 p_index, bitmap->s_extPosition); 1088 } 1089 1090 if (phd->partitionIntegrityTable.extLength) 1091 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1092 1093 if (phd->freedSpaceTable.extLength) { 1094 struct kernel_lb_addr loc = { 1095 .logicalBlockNum = le32_to_cpu( 1096 phd->freedSpaceTable.extPosition), 1097 .partitionReferenceNum = p_index, 1098 }; 1099 1100 map->s_fspace.s_table = udf_iget(sb, &loc); 1101 if (!map->s_fspace.s_table) { 1102 udf_debug("cannot load freedSpaceTable (part %d)\n", 1103 p_index); 1104 return 1; 1105 } 1106 1107 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1108 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1109 p_index, map->s_fspace.s_table->i_ino); 1110 } 1111 1112 if (phd->freedSpaceBitmap.extLength) { 1113 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1114 if (!bitmap) 1115 return 1; 1116 map->s_fspace.s_bitmap = bitmap; 1117 bitmap->s_extLength = le32_to_cpu( 1118 phd->freedSpaceBitmap.extLength); 1119 bitmap->s_extPosition = le32_to_cpu( 1120 phd->freedSpaceBitmap.extPosition); 1121 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1122 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1123 p_index, bitmap->s_extPosition); 1124 } 1125 return 0; 1126 } 1127 1128 static void udf_find_vat_block(struct super_block *sb, int p_index, 1129 int type1_index, sector_t start_block) 1130 { 1131 struct udf_sb_info *sbi = UDF_SB(sb); 1132 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1133 sector_t vat_block; 1134 struct kernel_lb_addr ino; 1135 1136 /* 1137 * VAT file entry is in the last recorded block. Some broken disks have 1138 * it a few blocks before so try a bit harder... 1139 */ 1140 ino.partitionReferenceNum = type1_index; 1141 for (vat_block = start_block; 1142 vat_block >= map->s_partition_root && 1143 vat_block >= start_block - 3 && 1144 !sbi->s_vat_inode; vat_block--) { 1145 ino.logicalBlockNum = vat_block - map->s_partition_root; 1146 sbi->s_vat_inode = udf_iget(sb, &ino); 1147 } 1148 } 1149 1150 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1151 { 1152 struct udf_sb_info *sbi = UDF_SB(sb); 1153 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1154 struct buffer_head *bh = NULL; 1155 struct udf_inode_info *vati; 1156 uint32_t pos; 1157 struct virtualAllocationTable20 *vat20; 1158 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1159 1160 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1161 if (!sbi->s_vat_inode && 1162 sbi->s_last_block != blocks - 1) { 1163 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1164 (unsigned long)sbi->s_last_block, 1165 (unsigned long)blocks - 1); 1166 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1167 } 1168 if (!sbi->s_vat_inode) 1169 return 1; 1170 1171 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1172 map->s_type_specific.s_virtual.s_start_offset = 0; 1173 map->s_type_specific.s_virtual.s_num_entries = 1174 (sbi->s_vat_inode->i_size - 36) >> 2; 1175 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1176 vati = UDF_I(sbi->s_vat_inode); 1177 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1178 pos = udf_block_map(sbi->s_vat_inode, 0); 1179 bh = sb_bread(sb, pos); 1180 if (!bh) 1181 return 1; 1182 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1183 } else { 1184 vat20 = (struct virtualAllocationTable20 *) 1185 vati->i_ext.i_data; 1186 } 1187 1188 map->s_type_specific.s_virtual.s_start_offset = 1189 le16_to_cpu(vat20->lengthHeader); 1190 map->s_type_specific.s_virtual.s_num_entries = 1191 (sbi->s_vat_inode->i_size - 1192 map->s_type_specific.s_virtual. 1193 s_start_offset) >> 2; 1194 brelse(bh); 1195 } 1196 return 0; 1197 } 1198 1199 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1200 { 1201 struct buffer_head *bh; 1202 struct partitionDesc *p; 1203 struct udf_part_map *map; 1204 struct udf_sb_info *sbi = UDF_SB(sb); 1205 int i, type1_idx; 1206 uint16_t partitionNumber; 1207 uint16_t ident; 1208 int ret = 0; 1209 1210 bh = udf_read_tagged(sb, block, block, &ident); 1211 if (!bh) 1212 return 1; 1213 if (ident != TAG_IDENT_PD) 1214 goto out_bh; 1215 1216 p = (struct partitionDesc *)bh->b_data; 1217 partitionNumber = le16_to_cpu(p->partitionNumber); 1218 1219 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1220 for (i = 0; i < sbi->s_partitions; i++) { 1221 map = &sbi->s_partmaps[i]; 1222 udf_debug("Searching map: (%d == %d)\n", 1223 map->s_partition_num, partitionNumber); 1224 if (map->s_partition_num == partitionNumber && 1225 (map->s_partition_type == UDF_TYPE1_MAP15 || 1226 map->s_partition_type == UDF_SPARABLE_MAP15)) 1227 break; 1228 } 1229 1230 if (i >= sbi->s_partitions) { 1231 udf_debug("Partition (%d) not found in partition map\n", 1232 partitionNumber); 1233 goto out_bh; 1234 } 1235 1236 ret = udf_fill_partdesc_info(sb, p, i); 1237 1238 /* 1239 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1240 * PHYSICAL partitions are already set up 1241 */ 1242 type1_idx = i; 1243 for (i = 0; i < sbi->s_partitions; i++) { 1244 map = &sbi->s_partmaps[i]; 1245 1246 if (map->s_partition_num == partitionNumber && 1247 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1248 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1249 map->s_partition_type == UDF_METADATA_MAP25)) 1250 break; 1251 } 1252 1253 if (i >= sbi->s_partitions) 1254 goto out_bh; 1255 1256 ret = udf_fill_partdesc_info(sb, p, i); 1257 if (ret) 1258 goto out_bh; 1259 1260 if (map->s_partition_type == UDF_METADATA_MAP25) { 1261 ret = udf_load_metadata_files(sb, i); 1262 if (ret) { 1263 udf_err(sb, "error loading MetaData partition map %d\n", 1264 i); 1265 goto out_bh; 1266 } 1267 } else { 1268 ret = udf_load_vat(sb, i, type1_idx); 1269 if (ret) 1270 goto out_bh; 1271 /* 1272 * Mark filesystem read-only if we have a partition with 1273 * virtual map since we don't handle writing to it (we 1274 * overwrite blocks instead of relocating them). 1275 */ 1276 sb->s_flags |= MS_RDONLY; 1277 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); 1278 } 1279 out_bh: 1280 /* In case loading failed, we handle cleanup in udf_fill_super */ 1281 brelse(bh); 1282 return ret; 1283 } 1284 1285 static int udf_load_sparable_map(struct super_block *sb, 1286 struct udf_part_map *map, 1287 struct sparablePartitionMap *spm) 1288 { 1289 uint32_t loc; 1290 uint16_t ident; 1291 struct sparingTable *st; 1292 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1293 int i; 1294 struct buffer_head *bh; 1295 1296 map->s_partition_type = UDF_SPARABLE_MAP15; 1297 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1298 if (!is_power_of_2(sdata->s_packet_len)) { 1299 udf_err(sb, "error loading logical volume descriptor: " 1300 "Invalid packet length %u\n", 1301 (unsigned)sdata->s_packet_len); 1302 return -EIO; 1303 } 1304 if (spm->numSparingTables > 4) { 1305 udf_err(sb, "error loading logical volume descriptor: " 1306 "Too many sparing tables (%d)\n", 1307 (int)spm->numSparingTables); 1308 return -EIO; 1309 } 1310 1311 for (i = 0; i < spm->numSparingTables; i++) { 1312 loc = le32_to_cpu(spm->locSparingTable[i]); 1313 bh = udf_read_tagged(sb, loc, loc, &ident); 1314 if (!bh) 1315 continue; 1316 1317 st = (struct sparingTable *)bh->b_data; 1318 if (ident != 0 || 1319 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1320 strlen(UDF_ID_SPARING)) || 1321 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1322 sb->s_blocksize) { 1323 brelse(bh); 1324 continue; 1325 } 1326 1327 sdata->s_spar_map[i] = bh; 1328 } 1329 map->s_partition_func = udf_get_pblock_spar15; 1330 return 0; 1331 } 1332 1333 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1334 struct kernel_lb_addr *fileset) 1335 { 1336 struct logicalVolDesc *lvd; 1337 int i, offset; 1338 uint8_t type; 1339 struct udf_sb_info *sbi = UDF_SB(sb); 1340 struct genericPartitionMap *gpm; 1341 uint16_t ident; 1342 struct buffer_head *bh; 1343 unsigned int table_len; 1344 int ret = 0; 1345 1346 bh = udf_read_tagged(sb, block, block, &ident); 1347 if (!bh) 1348 return 1; 1349 BUG_ON(ident != TAG_IDENT_LVD); 1350 lvd = (struct logicalVolDesc *)bh->b_data; 1351 table_len = le32_to_cpu(lvd->mapTableLength); 1352 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1353 udf_err(sb, "error loading logical volume descriptor: " 1354 "Partition table too long (%u > %lu)\n", table_len, 1355 sb->s_blocksize - sizeof(*lvd)); 1356 ret = 1; 1357 goto out_bh; 1358 } 1359 1360 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1361 if (ret) 1362 goto out_bh; 1363 1364 for (i = 0, offset = 0; 1365 i < sbi->s_partitions && offset < table_len; 1366 i++, offset += gpm->partitionMapLength) { 1367 struct udf_part_map *map = &sbi->s_partmaps[i]; 1368 gpm = (struct genericPartitionMap *) 1369 &(lvd->partitionMaps[offset]); 1370 type = gpm->partitionMapType; 1371 if (type == 1) { 1372 struct genericPartitionMap1 *gpm1 = 1373 (struct genericPartitionMap1 *)gpm; 1374 map->s_partition_type = UDF_TYPE1_MAP15; 1375 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1376 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1377 map->s_partition_func = NULL; 1378 } else if (type == 2) { 1379 struct udfPartitionMap2 *upm2 = 1380 (struct udfPartitionMap2 *)gpm; 1381 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1382 strlen(UDF_ID_VIRTUAL))) { 1383 u16 suf = 1384 le16_to_cpu(((__le16 *)upm2->partIdent. 1385 identSuffix)[0]); 1386 if (suf < 0x0200) { 1387 map->s_partition_type = 1388 UDF_VIRTUAL_MAP15; 1389 map->s_partition_func = 1390 udf_get_pblock_virt15; 1391 } else { 1392 map->s_partition_type = 1393 UDF_VIRTUAL_MAP20; 1394 map->s_partition_func = 1395 udf_get_pblock_virt20; 1396 } 1397 } else if (!strncmp(upm2->partIdent.ident, 1398 UDF_ID_SPARABLE, 1399 strlen(UDF_ID_SPARABLE))) { 1400 if (udf_load_sparable_map(sb, map, 1401 (struct sparablePartitionMap *)gpm) < 0) { 1402 ret = 1; 1403 goto out_bh; 1404 } 1405 } else if (!strncmp(upm2->partIdent.ident, 1406 UDF_ID_METADATA, 1407 strlen(UDF_ID_METADATA))) { 1408 struct udf_meta_data *mdata = 1409 &map->s_type_specific.s_metadata; 1410 struct metadataPartitionMap *mdm = 1411 (struct metadataPartitionMap *) 1412 &(lvd->partitionMaps[offset]); 1413 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1414 i, type, UDF_ID_METADATA); 1415 1416 map->s_partition_type = UDF_METADATA_MAP25; 1417 map->s_partition_func = udf_get_pblock_meta25; 1418 1419 mdata->s_meta_file_loc = 1420 le32_to_cpu(mdm->metadataFileLoc); 1421 mdata->s_mirror_file_loc = 1422 le32_to_cpu(mdm->metadataMirrorFileLoc); 1423 mdata->s_bitmap_file_loc = 1424 le32_to_cpu(mdm->metadataBitmapFileLoc); 1425 mdata->s_alloc_unit_size = 1426 le32_to_cpu(mdm->allocUnitSize); 1427 mdata->s_align_unit_size = 1428 le16_to_cpu(mdm->alignUnitSize); 1429 if (mdm->flags & 0x01) 1430 mdata->s_flags |= MF_DUPLICATE_MD; 1431 1432 udf_debug("Metadata Ident suffix=0x%x\n", 1433 le16_to_cpu(*(__le16 *) 1434 mdm->partIdent.identSuffix)); 1435 udf_debug("Metadata part num=%d\n", 1436 le16_to_cpu(mdm->partitionNum)); 1437 udf_debug("Metadata part alloc unit size=%d\n", 1438 le32_to_cpu(mdm->allocUnitSize)); 1439 udf_debug("Metadata file loc=%d\n", 1440 le32_to_cpu(mdm->metadataFileLoc)); 1441 udf_debug("Mirror file loc=%d\n", 1442 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1443 udf_debug("Bitmap file loc=%d\n", 1444 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1445 udf_debug("Flags: %d %d\n", 1446 mdata->s_flags, mdm->flags); 1447 } else { 1448 udf_debug("Unknown ident: %s\n", 1449 upm2->partIdent.ident); 1450 continue; 1451 } 1452 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1453 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1454 } 1455 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1456 i, map->s_partition_num, type, map->s_volumeseqnum); 1457 } 1458 1459 if (fileset) { 1460 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1461 1462 *fileset = lelb_to_cpu(la->extLocation); 1463 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1464 fileset->logicalBlockNum, 1465 fileset->partitionReferenceNum); 1466 } 1467 if (lvd->integritySeqExt.extLength) 1468 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1469 1470 out_bh: 1471 brelse(bh); 1472 return ret; 1473 } 1474 1475 /* 1476 * udf_load_logicalvolint 1477 * 1478 */ 1479 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1480 { 1481 struct buffer_head *bh = NULL; 1482 uint16_t ident; 1483 struct udf_sb_info *sbi = UDF_SB(sb); 1484 struct logicalVolIntegrityDesc *lvid; 1485 1486 while (loc.extLength > 0 && 1487 (bh = udf_read_tagged(sb, loc.extLocation, 1488 loc.extLocation, &ident)) && 1489 ident == TAG_IDENT_LVID) { 1490 sbi->s_lvid_bh = bh; 1491 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1492 1493 if (lvid->nextIntegrityExt.extLength) 1494 udf_load_logicalvolint(sb, 1495 leea_to_cpu(lvid->nextIntegrityExt)); 1496 1497 if (sbi->s_lvid_bh != bh) 1498 brelse(bh); 1499 loc.extLength -= sb->s_blocksize; 1500 loc.extLocation++; 1501 } 1502 if (sbi->s_lvid_bh != bh) 1503 brelse(bh); 1504 } 1505 1506 /* 1507 * udf_process_sequence 1508 * 1509 * PURPOSE 1510 * Process a main/reserve volume descriptor sequence. 1511 * 1512 * PRE-CONDITIONS 1513 * sb Pointer to _locked_ superblock. 1514 * block First block of first extent of the sequence. 1515 * lastblock Lastblock of first extent of the sequence. 1516 * 1517 * HISTORY 1518 * July 1, 1997 - Andrew E. Mileski 1519 * Written, tested, and released. 1520 */ 1521 static noinline int udf_process_sequence(struct super_block *sb, long block, 1522 long lastblock, struct kernel_lb_addr *fileset) 1523 { 1524 struct buffer_head *bh = NULL; 1525 struct udf_vds_record vds[VDS_POS_LENGTH]; 1526 struct udf_vds_record *curr; 1527 struct generic_desc *gd; 1528 struct volDescPtr *vdp; 1529 int done = 0; 1530 uint32_t vdsn; 1531 uint16_t ident; 1532 long next_s = 0, next_e = 0; 1533 1534 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1535 1536 /* 1537 * Read the main descriptor sequence and find which descriptors 1538 * are in it. 1539 */ 1540 for (; (!done && block <= lastblock); block++) { 1541 1542 bh = udf_read_tagged(sb, block, block, &ident); 1543 if (!bh) { 1544 udf_err(sb, 1545 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1546 (unsigned long long)block); 1547 return 1; 1548 } 1549 1550 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1551 gd = (struct generic_desc *)bh->b_data; 1552 vdsn = le32_to_cpu(gd->volDescSeqNum); 1553 switch (ident) { 1554 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1555 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1556 if (vdsn >= curr->volDescSeqNum) { 1557 curr->volDescSeqNum = vdsn; 1558 curr->block = block; 1559 } 1560 break; 1561 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1562 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1563 if (vdsn >= curr->volDescSeqNum) { 1564 curr->volDescSeqNum = vdsn; 1565 curr->block = block; 1566 1567 vdp = (struct volDescPtr *)bh->b_data; 1568 next_s = le32_to_cpu( 1569 vdp->nextVolDescSeqExt.extLocation); 1570 next_e = le32_to_cpu( 1571 vdp->nextVolDescSeqExt.extLength); 1572 next_e = next_e >> sb->s_blocksize_bits; 1573 next_e += next_s; 1574 } 1575 break; 1576 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1577 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1578 if (vdsn >= curr->volDescSeqNum) { 1579 curr->volDescSeqNum = vdsn; 1580 curr->block = block; 1581 } 1582 break; 1583 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1584 curr = &vds[VDS_POS_PARTITION_DESC]; 1585 if (!curr->block) 1586 curr->block = block; 1587 break; 1588 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1589 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1590 if (vdsn >= curr->volDescSeqNum) { 1591 curr->volDescSeqNum = vdsn; 1592 curr->block = block; 1593 } 1594 break; 1595 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1596 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1597 if (vdsn >= curr->volDescSeqNum) { 1598 curr->volDescSeqNum = vdsn; 1599 curr->block = block; 1600 } 1601 break; 1602 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1603 vds[VDS_POS_TERMINATING_DESC].block = block; 1604 if (next_e) { 1605 block = next_s; 1606 lastblock = next_e; 1607 next_s = next_e = 0; 1608 } else 1609 done = 1; 1610 break; 1611 } 1612 brelse(bh); 1613 } 1614 /* 1615 * Now read interesting descriptors again and process them 1616 * in a suitable order 1617 */ 1618 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1619 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1620 return 1; 1621 } 1622 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1623 return 1; 1624 1625 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1626 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1627 return 1; 1628 1629 if (vds[VDS_POS_PARTITION_DESC].block) { 1630 /* 1631 * We rescan the whole descriptor sequence to find 1632 * partition descriptor blocks and process them. 1633 */ 1634 for (block = vds[VDS_POS_PARTITION_DESC].block; 1635 block < vds[VDS_POS_TERMINATING_DESC].block; 1636 block++) 1637 if (udf_load_partdesc(sb, block)) 1638 return 1; 1639 } 1640 1641 return 0; 1642 } 1643 1644 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1645 struct kernel_lb_addr *fileset) 1646 { 1647 struct anchorVolDescPtr *anchor; 1648 long main_s, main_e, reserve_s, reserve_e; 1649 1650 anchor = (struct anchorVolDescPtr *)bh->b_data; 1651 1652 /* Locate the main sequence */ 1653 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1654 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1655 main_e = main_e >> sb->s_blocksize_bits; 1656 main_e += main_s; 1657 1658 /* Locate the reserve sequence */ 1659 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1660 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1661 reserve_e = reserve_e >> sb->s_blocksize_bits; 1662 reserve_e += reserve_s; 1663 1664 /* Process the main & reserve sequences */ 1665 /* responsible for finding the PartitionDesc(s) */ 1666 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1667 return 1; 1668 udf_sb_free_partitions(sb); 1669 if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset)) 1670 return 1; 1671 udf_sb_free_partitions(sb); 1672 return 0; 1673 } 1674 1675 /* 1676 * Check whether there is an anchor block in the given block and 1677 * load Volume Descriptor Sequence if so. 1678 */ 1679 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1680 struct kernel_lb_addr *fileset) 1681 { 1682 struct buffer_head *bh; 1683 uint16_t ident; 1684 int ret; 1685 1686 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1687 udf_fixed_to_variable(block) >= 1688 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1689 return 0; 1690 1691 bh = udf_read_tagged(sb, block, block, &ident); 1692 if (!bh) 1693 return 0; 1694 if (ident != TAG_IDENT_AVDP) { 1695 brelse(bh); 1696 return 0; 1697 } 1698 ret = udf_load_sequence(sb, bh, fileset); 1699 brelse(bh); 1700 return ret; 1701 } 1702 1703 /* Search for an anchor volume descriptor pointer */ 1704 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1705 struct kernel_lb_addr *fileset) 1706 { 1707 sector_t last[6]; 1708 int i; 1709 struct udf_sb_info *sbi = UDF_SB(sb); 1710 int last_count = 0; 1711 1712 /* First try user provided anchor */ 1713 if (sbi->s_anchor) { 1714 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1715 return lastblock; 1716 } 1717 /* 1718 * according to spec, anchor is in either: 1719 * block 256 1720 * lastblock-256 1721 * lastblock 1722 * however, if the disc isn't closed, it could be 512. 1723 */ 1724 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1725 return lastblock; 1726 /* 1727 * The trouble is which block is the last one. Drives often misreport 1728 * this so we try various possibilities. 1729 */ 1730 last[last_count++] = lastblock; 1731 if (lastblock >= 1) 1732 last[last_count++] = lastblock - 1; 1733 last[last_count++] = lastblock + 1; 1734 if (lastblock >= 2) 1735 last[last_count++] = lastblock - 2; 1736 if (lastblock >= 150) 1737 last[last_count++] = lastblock - 150; 1738 if (lastblock >= 152) 1739 last[last_count++] = lastblock - 152; 1740 1741 for (i = 0; i < last_count; i++) { 1742 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1743 sb->s_blocksize_bits) 1744 continue; 1745 if (udf_check_anchor_block(sb, last[i], fileset)) 1746 return last[i]; 1747 if (last[i] < 256) 1748 continue; 1749 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1750 return last[i]; 1751 } 1752 1753 /* Finally try block 512 in case media is open */ 1754 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1755 return last[0]; 1756 return 0; 1757 } 1758 1759 /* 1760 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1761 * area specified by it. The function expects sbi->s_lastblock to be the last 1762 * block on the media. 1763 * 1764 * Return 1 if ok, 0 if not found. 1765 * 1766 */ 1767 static int udf_find_anchor(struct super_block *sb, 1768 struct kernel_lb_addr *fileset) 1769 { 1770 sector_t lastblock; 1771 struct udf_sb_info *sbi = UDF_SB(sb); 1772 1773 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1774 if (lastblock) 1775 goto out; 1776 1777 /* No anchor found? Try VARCONV conversion of block numbers */ 1778 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1779 /* Firstly, we try to not convert number of the last block */ 1780 lastblock = udf_scan_anchors(sb, 1781 udf_variable_to_fixed(sbi->s_last_block), 1782 fileset); 1783 if (lastblock) 1784 goto out; 1785 1786 /* Secondly, we try with converted number of the last block */ 1787 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1788 if (!lastblock) { 1789 /* VARCONV didn't help. Clear it. */ 1790 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1791 return 0; 1792 } 1793 out: 1794 sbi->s_last_block = lastblock; 1795 return 1; 1796 } 1797 1798 /* 1799 * Check Volume Structure Descriptor, find Anchor block and load Volume 1800 * Descriptor Sequence 1801 */ 1802 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1803 int silent, struct kernel_lb_addr *fileset) 1804 { 1805 struct udf_sb_info *sbi = UDF_SB(sb); 1806 loff_t nsr_off; 1807 1808 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1809 if (!silent) 1810 udf_warn(sb, "Bad block size\n"); 1811 return 0; 1812 } 1813 sbi->s_last_block = uopt->lastblock; 1814 if (!uopt->novrs) { 1815 /* Check that it is NSR02 compliant */ 1816 nsr_off = udf_check_vsd(sb); 1817 if (!nsr_off) { 1818 if (!silent) 1819 udf_warn(sb, "No VRS found\n"); 1820 return 0; 1821 } 1822 if (nsr_off == -1) 1823 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1824 if (!sbi->s_last_block) 1825 sbi->s_last_block = udf_get_last_block(sb); 1826 } else { 1827 udf_debug("Validity check skipped because of novrs option\n"); 1828 } 1829 1830 /* Look for anchor block and load Volume Descriptor Sequence */ 1831 sbi->s_anchor = uopt->anchor; 1832 if (!udf_find_anchor(sb, fileset)) { 1833 if (!silent) 1834 udf_warn(sb, "No anchor found\n"); 1835 return 0; 1836 } 1837 return 1; 1838 } 1839 1840 static void udf_open_lvid(struct super_block *sb) 1841 { 1842 struct udf_sb_info *sbi = UDF_SB(sb); 1843 struct buffer_head *bh = sbi->s_lvid_bh; 1844 struct logicalVolIntegrityDesc *lvid; 1845 struct logicalVolIntegrityDescImpUse *lvidiu; 1846 1847 if (!bh) 1848 return; 1849 1850 mutex_lock(&sbi->s_alloc_mutex); 1851 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1852 lvidiu = udf_sb_lvidiu(sbi); 1853 1854 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1855 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1856 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1857 CURRENT_TIME); 1858 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1859 1860 lvid->descTag.descCRC = cpu_to_le16( 1861 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1862 le16_to_cpu(lvid->descTag.descCRCLength))); 1863 1864 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1865 mark_buffer_dirty(bh); 1866 sbi->s_lvid_dirty = 0; 1867 mutex_unlock(&sbi->s_alloc_mutex); 1868 } 1869 1870 static void udf_close_lvid(struct super_block *sb) 1871 { 1872 struct udf_sb_info *sbi = UDF_SB(sb); 1873 struct buffer_head *bh = sbi->s_lvid_bh; 1874 struct logicalVolIntegrityDesc *lvid; 1875 struct logicalVolIntegrityDescImpUse *lvidiu; 1876 1877 if (!bh) 1878 return; 1879 1880 mutex_lock(&sbi->s_alloc_mutex); 1881 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1882 lvidiu = udf_sb_lvidiu(sbi); 1883 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1884 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1885 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1886 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1887 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1888 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1889 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1890 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1891 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1892 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1893 1894 lvid->descTag.descCRC = cpu_to_le16( 1895 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1896 le16_to_cpu(lvid->descTag.descCRCLength))); 1897 1898 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1899 /* 1900 * We set buffer uptodate unconditionally here to avoid spurious 1901 * warnings from mark_buffer_dirty() when previous EIO has marked 1902 * the buffer as !uptodate 1903 */ 1904 set_buffer_uptodate(bh); 1905 mark_buffer_dirty(bh); 1906 sbi->s_lvid_dirty = 0; 1907 mutex_unlock(&sbi->s_alloc_mutex); 1908 } 1909 1910 u64 lvid_get_unique_id(struct super_block *sb) 1911 { 1912 struct buffer_head *bh; 1913 struct udf_sb_info *sbi = UDF_SB(sb); 1914 struct logicalVolIntegrityDesc *lvid; 1915 struct logicalVolHeaderDesc *lvhd; 1916 u64 uniqueID; 1917 u64 ret; 1918 1919 bh = sbi->s_lvid_bh; 1920 if (!bh) 1921 return 0; 1922 1923 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1924 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1925 1926 mutex_lock(&sbi->s_alloc_mutex); 1927 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1928 if (!(++uniqueID & 0xFFFFFFFF)) 1929 uniqueID += 16; 1930 lvhd->uniqueID = cpu_to_le64(uniqueID); 1931 mutex_unlock(&sbi->s_alloc_mutex); 1932 mark_buffer_dirty(bh); 1933 1934 return ret; 1935 } 1936 1937 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1938 { 1939 int ret; 1940 struct inode *inode = NULL; 1941 struct udf_options uopt; 1942 struct kernel_lb_addr rootdir, fileset; 1943 struct udf_sb_info *sbi; 1944 1945 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1946 uopt.uid = INVALID_UID; 1947 uopt.gid = INVALID_GID; 1948 uopt.umask = 0; 1949 uopt.fmode = UDF_INVALID_MODE; 1950 uopt.dmode = UDF_INVALID_MODE; 1951 1952 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1953 if (!sbi) 1954 return -ENOMEM; 1955 1956 sb->s_fs_info = sbi; 1957 1958 mutex_init(&sbi->s_alloc_mutex); 1959 1960 if (!udf_parse_options((char *)options, &uopt, false)) 1961 goto error_out; 1962 1963 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1964 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1965 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 1966 goto error_out; 1967 } 1968 #ifdef CONFIG_UDF_NLS 1969 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1970 uopt.nls_map = load_nls_default(); 1971 if (!uopt.nls_map) 1972 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1973 else 1974 udf_debug("Using default NLS map\n"); 1975 } 1976 #endif 1977 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1978 uopt.flags |= (1 << UDF_FLAG_UTF8); 1979 1980 fileset.logicalBlockNum = 0xFFFFFFFF; 1981 fileset.partitionReferenceNum = 0xFFFF; 1982 1983 sbi->s_flags = uopt.flags; 1984 sbi->s_uid = uopt.uid; 1985 sbi->s_gid = uopt.gid; 1986 sbi->s_umask = uopt.umask; 1987 sbi->s_fmode = uopt.fmode; 1988 sbi->s_dmode = uopt.dmode; 1989 sbi->s_nls_map = uopt.nls_map; 1990 rwlock_init(&sbi->s_cred_lock); 1991 1992 if (uopt.session == 0xFFFFFFFF) 1993 sbi->s_session = udf_get_last_session(sb); 1994 else 1995 sbi->s_session = uopt.session; 1996 1997 udf_debug("Multi-session=%d\n", sbi->s_session); 1998 1999 /* Fill in the rest of the superblock */ 2000 sb->s_op = &udf_sb_ops; 2001 sb->s_export_op = &udf_export_ops; 2002 2003 sb->s_magic = UDF_SUPER_MAGIC; 2004 sb->s_time_gran = 1000; 2005 2006 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2007 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2008 } else { 2009 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2010 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2011 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2012 if (!silent) 2013 pr_notice("Rescanning with blocksize %d\n", 2014 UDF_DEFAULT_BLOCKSIZE); 2015 brelse(sbi->s_lvid_bh); 2016 sbi->s_lvid_bh = NULL; 2017 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2018 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2019 } 2020 } 2021 if (!ret) { 2022 udf_warn(sb, "No partition found (1)\n"); 2023 goto error_out; 2024 } 2025 2026 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2027 2028 if (sbi->s_lvid_bh) { 2029 struct logicalVolIntegrityDescImpUse *lvidiu = 2030 udf_sb_lvidiu(sbi); 2031 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2032 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2033 /* uint16_t maxUDFWriteRev = 2034 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 2035 2036 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2037 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2038 le16_to_cpu(lvidiu->minUDFReadRev), 2039 UDF_MAX_READ_VERSION); 2040 goto error_out; 2041 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 2042 sb->s_flags |= MS_RDONLY; 2043 2044 sbi->s_udfrev = minUDFWriteRev; 2045 2046 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2047 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2048 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2049 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2050 } 2051 2052 if (!sbi->s_partitions) { 2053 udf_warn(sb, "No partition found (2)\n"); 2054 goto error_out; 2055 } 2056 2057 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2058 UDF_PART_FLAG_READ_ONLY) { 2059 pr_notice("Partition marked readonly; forcing readonly mount\n"); 2060 sb->s_flags |= MS_RDONLY; 2061 } 2062 2063 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2064 udf_warn(sb, "No fileset found\n"); 2065 goto error_out; 2066 } 2067 2068 if (!silent) { 2069 struct timestamp ts; 2070 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2071 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2072 sbi->s_volume_ident, 2073 le16_to_cpu(ts.year), ts.month, ts.day, 2074 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2075 } 2076 if (!(sb->s_flags & MS_RDONLY)) 2077 udf_open_lvid(sb); 2078 2079 /* Assign the root inode */ 2080 /* assign inodes by physical block number */ 2081 /* perhaps it's not extensible enough, but for now ... */ 2082 inode = udf_iget(sb, &rootdir); 2083 if (!inode) { 2084 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2085 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2086 goto error_out; 2087 } 2088 2089 /* Allocate a dentry for the root inode */ 2090 sb->s_root = d_make_root(inode); 2091 if (!sb->s_root) { 2092 udf_err(sb, "Couldn't allocate root dentry\n"); 2093 goto error_out; 2094 } 2095 sb->s_maxbytes = MAX_LFS_FILESIZE; 2096 sb->s_max_links = UDF_MAX_LINKS; 2097 return 0; 2098 2099 error_out: 2100 if (sbi->s_vat_inode) 2101 iput(sbi->s_vat_inode); 2102 #ifdef CONFIG_UDF_NLS 2103 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2104 unload_nls(sbi->s_nls_map); 2105 #endif 2106 if (!(sb->s_flags & MS_RDONLY)) 2107 udf_close_lvid(sb); 2108 brelse(sbi->s_lvid_bh); 2109 udf_sb_free_partitions(sb); 2110 kfree(sbi); 2111 sb->s_fs_info = NULL; 2112 2113 return -EINVAL; 2114 } 2115 2116 void _udf_err(struct super_block *sb, const char *function, 2117 const char *fmt, ...) 2118 { 2119 struct va_format vaf; 2120 va_list args; 2121 2122 va_start(args, fmt); 2123 2124 vaf.fmt = fmt; 2125 vaf.va = &args; 2126 2127 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2128 2129 va_end(args); 2130 } 2131 2132 void _udf_warn(struct super_block *sb, const char *function, 2133 const char *fmt, ...) 2134 { 2135 struct va_format vaf; 2136 va_list args; 2137 2138 va_start(args, fmt); 2139 2140 vaf.fmt = fmt; 2141 vaf.va = &args; 2142 2143 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2144 2145 va_end(args); 2146 } 2147 2148 static void udf_put_super(struct super_block *sb) 2149 { 2150 struct udf_sb_info *sbi; 2151 2152 sbi = UDF_SB(sb); 2153 2154 if (sbi->s_vat_inode) 2155 iput(sbi->s_vat_inode); 2156 #ifdef CONFIG_UDF_NLS 2157 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2158 unload_nls(sbi->s_nls_map); 2159 #endif 2160 if (!(sb->s_flags & MS_RDONLY)) 2161 udf_close_lvid(sb); 2162 brelse(sbi->s_lvid_bh); 2163 udf_sb_free_partitions(sb); 2164 kfree(sb->s_fs_info); 2165 sb->s_fs_info = NULL; 2166 } 2167 2168 static int udf_sync_fs(struct super_block *sb, int wait) 2169 { 2170 struct udf_sb_info *sbi = UDF_SB(sb); 2171 2172 mutex_lock(&sbi->s_alloc_mutex); 2173 if (sbi->s_lvid_dirty) { 2174 /* 2175 * Blockdevice will be synced later so we don't have to submit 2176 * the buffer for IO 2177 */ 2178 mark_buffer_dirty(sbi->s_lvid_bh); 2179 sbi->s_lvid_dirty = 0; 2180 } 2181 mutex_unlock(&sbi->s_alloc_mutex); 2182 2183 return 0; 2184 } 2185 2186 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2187 { 2188 struct super_block *sb = dentry->d_sb; 2189 struct udf_sb_info *sbi = UDF_SB(sb); 2190 struct logicalVolIntegrityDescImpUse *lvidiu; 2191 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2192 2193 if (sbi->s_lvid_bh != NULL) 2194 lvidiu = udf_sb_lvidiu(sbi); 2195 else 2196 lvidiu = NULL; 2197 2198 buf->f_type = UDF_SUPER_MAGIC; 2199 buf->f_bsize = sb->s_blocksize; 2200 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2201 buf->f_bfree = udf_count_free(sb); 2202 buf->f_bavail = buf->f_bfree; 2203 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2204 le32_to_cpu(lvidiu->numDirs)) : 0) 2205 + buf->f_bfree; 2206 buf->f_ffree = buf->f_bfree; 2207 buf->f_namelen = UDF_NAME_LEN - 2; 2208 buf->f_fsid.val[0] = (u32)id; 2209 buf->f_fsid.val[1] = (u32)(id >> 32); 2210 2211 return 0; 2212 } 2213 2214 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2215 struct udf_bitmap *bitmap) 2216 { 2217 struct buffer_head *bh = NULL; 2218 unsigned int accum = 0; 2219 int index; 2220 int block = 0, newblock; 2221 struct kernel_lb_addr loc; 2222 uint32_t bytes; 2223 uint8_t *ptr; 2224 uint16_t ident; 2225 struct spaceBitmapDesc *bm; 2226 2227 loc.logicalBlockNum = bitmap->s_extPosition; 2228 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2229 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2230 2231 if (!bh) { 2232 udf_err(sb, "udf_count_free failed\n"); 2233 goto out; 2234 } else if (ident != TAG_IDENT_SBD) { 2235 brelse(bh); 2236 udf_err(sb, "udf_count_free failed\n"); 2237 goto out; 2238 } 2239 2240 bm = (struct spaceBitmapDesc *)bh->b_data; 2241 bytes = le32_to_cpu(bm->numOfBytes); 2242 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2243 ptr = (uint8_t *)bh->b_data; 2244 2245 while (bytes > 0) { 2246 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2247 accum += bitmap_weight((const unsigned long *)(ptr + index), 2248 cur_bytes * 8); 2249 bytes -= cur_bytes; 2250 if (bytes) { 2251 brelse(bh); 2252 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2253 bh = udf_tread(sb, newblock); 2254 if (!bh) { 2255 udf_debug("read failed\n"); 2256 goto out; 2257 } 2258 index = 0; 2259 ptr = (uint8_t *)bh->b_data; 2260 } 2261 } 2262 brelse(bh); 2263 out: 2264 return accum; 2265 } 2266 2267 static unsigned int udf_count_free_table(struct super_block *sb, 2268 struct inode *table) 2269 { 2270 unsigned int accum = 0; 2271 uint32_t elen; 2272 struct kernel_lb_addr eloc; 2273 int8_t etype; 2274 struct extent_position epos; 2275 2276 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2277 epos.block = UDF_I(table)->i_location; 2278 epos.offset = sizeof(struct unallocSpaceEntry); 2279 epos.bh = NULL; 2280 2281 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2282 accum += (elen >> table->i_sb->s_blocksize_bits); 2283 2284 brelse(epos.bh); 2285 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2286 2287 return accum; 2288 } 2289 2290 static unsigned int udf_count_free(struct super_block *sb) 2291 { 2292 unsigned int accum = 0; 2293 struct udf_sb_info *sbi; 2294 struct udf_part_map *map; 2295 2296 sbi = UDF_SB(sb); 2297 if (sbi->s_lvid_bh) { 2298 struct logicalVolIntegrityDesc *lvid = 2299 (struct logicalVolIntegrityDesc *) 2300 sbi->s_lvid_bh->b_data; 2301 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2302 accum = le32_to_cpu( 2303 lvid->freeSpaceTable[sbi->s_partition]); 2304 if (accum == 0xFFFFFFFF) 2305 accum = 0; 2306 } 2307 } 2308 2309 if (accum) 2310 return accum; 2311 2312 map = &sbi->s_partmaps[sbi->s_partition]; 2313 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2314 accum += udf_count_free_bitmap(sb, 2315 map->s_uspace.s_bitmap); 2316 } 2317 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2318 accum += udf_count_free_bitmap(sb, 2319 map->s_fspace.s_bitmap); 2320 } 2321 if (accum) 2322 return accum; 2323 2324 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2325 accum += udf_count_free_table(sb, 2326 map->s_uspace.s_table); 2327 } 2328 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2329 accum += udf_count_free_table(sb, 2330 map->s_fspace.s_table); 2331 } 2332 2333 return accum; 2334 } 2335