xref: /openbmc/linux/fs/udf/super.c (revision 83268fa6)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 			    struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 			     struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104 
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 	struct logicalVolIntegrityDesc *lvid;
108 	unsigned int partnum;
109 	unsigned int offset;
110 
111 	if (!UDF_SB(sb)->s_lvid_bh)
112 		return NULL;
113 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 	partnum = le32_to_cpu(lvid->numOfPartitions);
115 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 	     (2 * sizeof(uint32_t)) < partnum) {
118 		udf_err(sb, "Logical volume integrity descriptor corrupted "
119 			"(numOfPartitions = %u)!\n", partnum);
120 		return NULL;
121 	}
122 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
123 	offset = partnum * 2 * sizeof(uint32_t);
124 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126 
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 		      int flags, const char *dev_name, void *data)
130 {
131 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133 
134 static struct file_system_type udf_fstype = {
135 	.owner		= THIS_MODULE,
136 	.name		= "udf",
137 	.mount		= udf_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142 
143 static struct kmem_cache *udf_inode_cachep;
144 
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147 	struct udf_inode_info *ei;
148 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 	if (!ei)
150 		return NULL;
151 
152 	ei->i_unique = 0;
153 	ei->i_lenExtents = 0;
154 	ei->i_next_alloc_block = 0;
155 	ei->i_next_alloc_goal = 0;
156 	ei->i_strat4096 = 0;
157 	init_rwsem(&ei->i_data_sem);
158 	ei->cached_extent.lstart = -1;
159 	spin_lock_init(&ei->i_extent_cache_lock);
160 
161 	return &ei->vfs_inode;
162 }
163 
164 static void udf_i_callback(struct rcu_head *head)
165 {
166 	struct inode *inode = container_of(head, struct inode, i_rcu);
167 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169 
170 static void udf_destroy_inode(struct inode *inode)
171 {
172 	call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174 
175 static void init_once(void *foo)
176 {
177 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178 
179 	ei->i_ext.i_data = NULL;
180 	inode_init_once(&ei->vfs_inode);
181 }
182 
183 static int __init init_inodecache(void)
184 {
185 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 					     sizeof(struct udf_inode_info),
187 					     0, (SLAB_RECLAIM_ACCOUNT |
188 						 SLAB_MEM_SPREAD |
189 						 SLAB_ACCOUNT),
190 					     init_once);
191 	if (!udf_inode_cachep)
192 		return -ENOMEM;
193 	return 0;
194 }
195 
196 static void destroy_inodecache(void)
197 {
198 	/*
199 	 * Make sure all delayed rcu free inodes are flushed before we
200 	 * destroy cache.
201 	 */
202 	rcu_barrier();
203 	kmem_cache_destroy(udf_inode_cachep);
204 }
205 
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 	.alloc_inode	= udf_alloc_inode,
209 	.destroy_inode	= udf_destroy_inode,
210 	.write_inode	= udf_write_inode,
211 	.evict_inode	= udf_evict_inode,
212 	.put_super	= udf_put_super,
213 	.sync_fs	= udf_sync_fs,
214 	.statfs		= udf_statfs,
215 	.remount_fs	= udf_remount_fs,
216 	.show_options	= udf_show_options,
217 };
218 
219 struct udf_options {
220 	unsigned char novrs;
221 	unsigned int blocksize;
222 	unsigned int session;
223 	unsigned int lastblock;
224 	unsigned int anchor;
225 	unsigned int flags;
226 	umode_t umask;
227 	kgid_t gid;
228 	kuid_t uid;
229 	umode_t fmode;
230 	umode_t dmode;
231 	struct nls_table *nls_map;
232 };
233 
234 static int __init init_udf_fs(void)
235 {
236 	int err;
237 
238 	err = init_inodecache();
239 	if (err)
240 		goto out1;
241 	err = register_filesystem(&udf_fstype);
242 	if (err)
243 		goto out;
244 
245 	return 0;
246 
247 out:
248 	destroy_inodecache();
249 
250 out1:
251 	return err;
252 }
253 
254 static void __exit exit_udf_fs(void)
255 {
256 	unregister_filesystem(&udf_fstype);
257 	destroy_inodecache();
258 }
259 
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 	struct udf_sb_info *sbi = UDF_SB(sb);
263 
264 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 	if (!sbi->s_partmaps) {
266 		sbi->s_partitions = 0;
267 		return -ENOMEM;
268 	}
269 
270 	sbi->s_partitions = count;
271 	return 0;
272 }
273 
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276 	int i;
277 	int nr_groups = bitmap->s_nr_groups;
278 
279 	for (i = 0; i < nr_groups; i++)
280 		if (bitmap->s_block_bitmap[i])
281 			brelse(bitmap->s_block_bitmap[i]);
282 
283 	kvfree(bitmap);
284 }
285 
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288 	int i;
289 	struct udf_meta_data *mdata;
290 
291 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 		iput(map->s_uspace.s_table);
293 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
294 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
295 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
296 		for (i = 0; i < 4; i++)
297 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
298 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
299 		mdata = &map->s_type_specific.s_metadata;
300 		iput(mdata->s_metadata_fe);
301 		mdata->s_metadata_fe = NULL;
302 
303 		iput(mdata->s_mirror_fe);
304 		mdata->s_mirror_fe = NULL;
305 
306 		iput(mdata->s_bitmap_fe);
307 		mdata->s_bitmap_fe = NULL;
308 	}
309 }
310 
311 static void udf_sb_free_partitions(struct super_block *sb)
312 {
313 	struct udf_sb_info *sbi = UDF_SB(sb);
314 	int i;
315 
316 	if (!sbi->s_partmaps)
317 		return;
318 	for (i = 0; i < sbi->s_partitions; i++)
319 		udf_free_partition(&sbi->s_partmaps[i]);
320 	kfree(sbi->s_partmaps);
321 	sbi->s_partmaps = NULL;
322 }
323 
324 static int udf_show_options(struct seq_file *seq, struct dentry *root)
325 {
326 	struct super_block *sb = root->d_sb;
327 	struct udf_sb_info *sbi = UDF_SB(sb);
328 
329 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
330 		seq_puts(seq, ",nostrict");
331 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
332 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
334 		seq_puts(seq, ",unhide");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
336 		seq_puts(seq, ",undelete");
337 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
338 		seq_puts(seq, ",noadinicb");
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
340 		seq_puts(seq, ",shortad");
341 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
342 		seq_puts(seq, ",uid=forget");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
344 		seq_puts(seq, ",gid=forget");
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349 	if (sbi->s_umask != 0)
350 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
351 	if (sbi->s_fmode != UDF_INVALID_MODE)
352 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353 	if (sbi->s_dmode != UDF_INVALID_MODE)
354 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356 		seq_printf(seq, ",session=%d", sbi->s_session);
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359 	if (sbi->s_anchor != 0)
360 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
362 		seq_puts(seq, ",utf8");
363 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
364 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
365 
366 	return 0;
367 }
368 
369 /*
370  * udf_parse_options
371  *
372  * PURPOSE
373  *	Parse mount options.
374  *
375  * DESCRIPTION
376  *	The following mount options are supported:
377  *
378  *	gid=		Set the default group.
379  *	umask=		Set the default umask.
380  *	mode=		Set the default file permissions.
381  *	dmode=		Set the default directory permissions.
382  *	uid=		Set the default user.
383  *	bs=		Set the block size.
384  *	unhide		Show otherwise hidden files.
385  *	undelete	Show deleted files in lists.
386  *	adinicb		Embed data in the inode (default)
387  *	noadinicb	Don't embed data in the inode
388  *	shortad		Use short ad's
389  *	longad		Use long ad's (default)
390  *	nostrict	Unset strict conformance
391  *	iocharset=	Set the NLS character set
392  *
393  *	The remaining are for debugging and disaster recovery:
394  *
395  *	novrs		Skip volume sequence recognition
396  *
397  *	The following expect a offset from 0.
398  *
399  *	session=	Set the CDROM session (default= last session)
400  *	anchor=		Override standard anchor location. (default= 256)
401  *	volume=		Override the VolumeDesc location. (unused)
402  *	partition=	Override the PartitionDesc location. (unused)
403  *	lastblock=	Set the last block of the filesystem/
404  *
405  *	The following expect a offset from the partition root.
406  *
407  *	fileset=	Override the fileset block location. (unused)
408  *	rootdir=	Override the root directory location. (unused)
409  *		WARNING: overriding the rootdir to a non-directory may
410  *		yield highly unpredictable results.
411  *
412  * PRE-CONDITIONS
413  *	options		Pointer to mount options string.
414  *	uopts		Pointer to mount options variable.
415  *
416  * POST-CONDITIONS
417  *	<return>	1	Mount options parsed okay.
418  *	<return>	0	Error parsing mount options.
419  *
420  * HISTORY
421  *	July 1, 1997 - Andrew E. Mileski
422  *	Written, tested, and released.
423  */
424 
425 enum {
426 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
427 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
428 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
429 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
430 	Opt_rootdir, Opt_utf8, Opt_iocharset,
431 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
432 	Opt_fmode, Opt_dmode
433 };
434 
435 static const match_table_t tokens = {
436 	{Opt_novrs,	"novrs"},
437 	{Opt_nostrict,	"nostrict"},
438 	{Opt_bs,	"bs=%u"},
439 	{Opt_unhide,	"unhide"},
440 	{Opt_undelete,	"undelete"},
441 	{Opt_noadinicb,	"noadinicb"},
442 	{Opt_adinicb,	"adinicb"},
443 	{Opt_shortad,	"shortad"},
444 	{Opt_longad,	"longad"},
445 	{Opt_uforget,	"uid=forget"},
446 	{Opt_uignore,	"uid=ignore"},
447 	{Opt_gforget,	"gid=forget"},
448 	{Opt_gignore,	"gid=ignore"},
449 	{Opt_gid,	"gid=%u"},
450 	{Opt_uid,	"uid=%u"},
451 	{Opt_umask,	"umask=%o"},
452 	{Opt_session,	"session=%u"},
453 	{Opt_lastblock,	"lastblock=%u"},
454 	{Opt_anchor,	"anchor=%u"},
455 	{Opt_volume,	"volume=%u"},
456 	{Opt_partition,	"partition=%u"},
457 	{Opt_fileset,	"fileset=%u"},
458 	{Opt_rootdir,	"rootdir=%u"},
459 	{Opt_utf8,	"utf8"},
460 	{Opt_iocharset,	"iocharset=%s"},
461 	{Opt_fmode,     "mode=%o"},
462 	{Opt_dmode,     "dmode=%o"},
463 	{Opt_err,	NULL}
464 };
465 
466 static int udf_parse_options(char *options, struct udf_options *uopt,
467 			     bool remount)
468 {
469 	char *p;
470 	int option;
471 
472 	uopt->novrs = 0;
473 	uopt->session = 0xFFFFFFFF;
474 	uopt->lastblock = 0;
475 	uopt->anchor = 0;
476 
477 	if (!options)
478 		return 1;
479 
480 	while ((p = strsep(&options, ",")) != NULL) {
481 		substring_t args[MAX_OPT_ARGS];
482 		int token;
483 		unsigned n;
484 		if (!*p)
485 			continue;
486 
487 		token = match_token(p, tokens, args);
488 		switch (token) {
489 		case Opt_novrs:
490 			uopt->novrs = 1;
491 			break;
492 		case Opt_bs:
493 			if (match_int(&args[0], &option))
494 				return 0;
495 			n = option;
496 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
497 				return 0;
498 			uopt->blocksize = n;
499 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
500 			break;
501 		case Opt_unhide:
502 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
503 			break;
504 		case Opt_undelete:
505 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
506 			break;
507 		case Opt_noadinicb:
508 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
509 			break;
510 		case Opt_adinicb:
511 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
512 			break;
513 		case Opt_shortad:
514 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
515 			break;
516 		case Opt_longad:
517 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
518 			break;
519 		case Opt_gid:
520 			if (match_int(args, &option))
521 				return 0;
522 			uopt->gid = make_kgid(current_user_ns(), option);
523 			if (!gid_valid(uopt->gid))
524 				return 0;
525 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
526 			break;
527 		case Opt_uid:
528 			if (match_int(args, &option))
529 				return 0;
530 			uopt->uid = make_kuid(current_user_ns(), option);
531 			if (!uid_valid(uopt->uid))
532 				return 0;
533 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
534 			break;
535 		case Opt_umask:
536 			if (match_octal(args, &option))
537 				return 0;
538 			uopt->umask = option;
539 			break;
540 		case Opt_nostrict:
541 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
542 			break;
543 		case Opt_session:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->session = option;
547 			if (!remount)
548 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
549 			break;
550 		case Opt_lastblock:
551 			if (match_int(args, &option))
552 				return 0;
553 			uopt->lastblock = option;
554 			if (!remount)
555 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
556 			break;
557 		case Opt_anchor:
558 			if (match_int(args, &option))
559 				return 0;
560 			uopt->anchor = option;
561 			break;
562 		case Opt_volume:
563 		case Opt_partition:
564 		case Opt_fileset:
565 		case Opt_rootdir:
566 			/* Ignored (never implemented properly) */
567 			break;
568 		case Opt_utf8:
569 			uopt->flags |= (1 << UDF_FLAG_UTF8);
570 			break;
571 		case Opt_iocharset:
572 			if (!remount) {
573 				if (uopt->nls_map)
574 					unload_nls(uopt->nls_map);
575 				uopt->nls_map = load_nls(args[0].from);
576 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
577 			}
578 			break;
579 		case Opt_uforget:
580 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
581 			break;
582 		case Opt_uignore:
583 		case Opt_gignore:
584 			/* These options are superseeded by uid=<number> */
585 			break;
586 		case Opt_gforget:
587 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
588 			break;
589 		case Opt_fmode:
590 			if (match_octal(args, &option))
591 				return 0;
592 			uopt->fmode = option & 0777;
593 			break;
594 		case Opt_dmode:
595 			if (match_octal(args, &option))
596 				return 0;
597 			uopt->dmode = option & 0777;
598 			break;
599 		default:
600 			pr_err("bad mount option \"%s\" or missing value\n", p);
601 			return 0;
602 		}
603 	}
604 	return 1;
605 }
606 
607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
608 {
609 	struct udf_options uopt;
610 	struct udf_sb_info *sbi = UDF_SB(sb);
611 	int error = 0;
612 
613 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
614 		return -EACCES;
615 
616 	sync_filesystem(sb);
617 
618 	uopt.flags = sbi->s_flags;
619 	uopt.uid   = sbi->s_uid;
620 	uopt.gid   = sbi->s_gid;
621 	uopt.umask = sbi->s_umask;
622 	uopt.fmode = sbi->s_fmode;
623 	uopt.dmode = sbi->s_dmode;
624 	uopt.nls_map = NULL;
625 
626 	if (!udf_parse_options(options, &uopt, true))
627 		return -EINVAL;
628 
629 	write_lock(&sbi->s_cred_lock);
630 	sbi->s_flags = uopt.flags;
631 	sbi->s_uid   = uopt.uid;
632 	sbi->s_gid   = uopt.gid;
633 	sbi->s_umask = uopt.umask;
634 	sbi->s_fmode = uopt.fmode;
635 	sbi->s_dmode = uopt.dmode;
636 	write_unlock(&sbi->s_cred_lock);
637 
638 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
639 		goto out_unlock;
640 
641 	if (*flags & SB_RDONLY)
642 		udf_close_lvid(sb);
643 	else
644 		udf_open_lvid(sb);
645 
646 out_unlock:
647 	return error;
648 }
649 
650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
652 static loff_t udf_check_vsd(struct super_block *sb)
653 {
654 	struct volStructDesc *vsd = NULL;
655 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
656 	int sectorsize;
657 	struct buffer_head *bh = NULL;
658 	int nsr02 = 0;
659 	int nsr03 = 0;
660 	struct udf_sb_info *sbi;
661 
662 	sbi = UDF_SB(sb);
663 	if (sb->s_blocksize < sizeof(struct volStructDesc))
664 		sectorsize = sizeof(struct volStructDesc);
665 	else
666 		sectorsize = sb->s_blocksize;
667 
668 	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
669 
670 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
671 		  (unsigned int)(sector >> sb->s_blocksize_bits),
672 		  sb->s_blocksize);
673 	/* Process the sequence (if applicable). The hard limit on the sector
674 	 * offset is arbitrary, hopefully large enough so that all valid UDF
675 	 * filesystems will be recognised. There is no mention of an upper
676 	 * bound to the size of the volume recognition area in the standard.
677 	 *  The limit will prevent the code to read all the sectors of a
678 	 * specially crafted image (like a bluray disc full of CD001 sectors),
679 	 * potentially causing minutes or even hours of uninterruptible I/O
680 	 * activity. This actually happened with uninitialised SSD partitions
681 	 * (all 0xFF) before the check for the limit and all valid IDs were
682 	 * added */
683 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
684 	     sector += sectorsize) {
685 		/* Read a block */
686 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
687 		if (!bh)
688 			break;
689 
690 		/* Look for ISO  descriptors */
691 		vsd = (struct volStructDesc *)(bh->b_data +
692 					      (sector & (sb->s_blocksize - 1)));
693 
694 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695 				    VSD_STD_ID_LEN)) {
696 			switch (vsd->structType) {
697 			case 0:
698 				udf_debug("ISO9660 Boot Record found\n");
699 				break;
700 			case 1:
701 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
702 				break;
703 			case 2:
704 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705 				break;
706 			case 3:
707 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
708 				break;
709 			case 255:
710 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711 				break;
712 			default:
713 				udf_debug("ISO9660 VRS (%u) found\n",
714 					  vsd->structType);
715 				break;
716 			}
717 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718 				    VSD_STD_ID_LEN))
719 			; /* nothing */
720 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721 				    VSD_STD_ID_LEN)) {
722 			brelse(bh);
723 			break;
724 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725 				    VSD_STD_ID_LEN))
726 			nsr02 = sector;
727 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728 				    VSD_STD_ID_LEN))
729 			nsr03 = sector;
730 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
731 				    VSD_STD_ID_LEN))
732 			; /* nothing */
733 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
734 				    VSD_STD_ID_LEN))
735 			; /* nothing */
736 		else {
737 			/* invalid id : end of volume recognition area */
738 			brelse(bh);
739 			break;
740 		}
741 		brelse(bh);
742 	}
743 
744 	if (nsr03)
745 		return nsr03;
746 	else if (nsr02)
747 		return nsr02;
748 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
749 			VSD_FIRST_SECTOR_OFFSET)
750 		return -1;
751 	else
752 		return 0;
753 }
754 
755 static int udf_find_fileset(struct super_block *sb,
756 			    struct kernel_lb_addr *fileset,
757 			    struct kernel_lb_addr *root)
758 {
759 	struct buffer_head *bh = NULL;
760 	uint16_t ident;
761 
762 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763 	    fileset->partitionReferenceNum != 0xFFFF) {
764 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
765 
766 		if (!bh) {
767 			return 1;
768 		} else if (ident != TAG_IDENT_FSD) {
769 			brelse(bh);
770 			return 1;
771 		}
772 
773 		udf_debug("Fileset at block=%u, partition=%u\n",
774 			  fileset->logicalBlockNum,
775 			  fileset->partitionReferenceNum);
776 
777 		UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
778 		udf_load_fileset(sb, bh, root);
779 		brelse(bh);
780 		return 0;
781 	}
782 	return 1;
783 }
784 
785 /*
786  * Load primary Volume Descriptor Sequence
787  *
788  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
789  * should be tried.
790  */
791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
792 {
793 	struct primaryVolDesc *pvoldesc;
794 	uint8_t *outstr;
795 	struct buffer_head *bh;
796 	uint16_t ident;
797 	int ret = -ENOMEM;
798 #ifdef UDFFS_DEBUG
799 	struct timestamp *ts;
800 #endif
801 
802 	outstr = kmalloc(128, GFP_NOFS);
803 	if (!outstr)
804 		return -ENOMEM;
805 
806 	bh = udf_read_tagged(sb, block, block, &ident);
807 	if (!bh) {
808 		ret = -EAGAIN;
809 		goto out2;
810 	}
811 
812 	if (ident != TAG_IDENT_PVD) {
813 		ret = -EIO;
814 		goto out_bh;
815 	}
816 
817 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
818 
819 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
820 			      pvoldesc->recordingDateAndTime);
821 #ifdef UDFFS_DEBUG
822 	ts = &pvoldesc->recordingDateAndTime;
823 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
824 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
825 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
826 #endif
827 
828 
829 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
830 	if (ret < 0)
831 		goto out_bh;
832 
833 	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
834 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
835 
836 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
837 	if (ret < 0)
838 		goto out_bh;
839 
840 	outstr[ret] = 0;
841 	udf_debug("volSetIdent[] = '%s'\n", outstr);
842 
843 	ret = 0;
844 out_bh:
845 	brelse(bh);
846 out2:
847 	kfree(outstr);
848 	return ret;
849 }
850 
851 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
852 					u32 meta_file_loc, u32 partition_ref)
853 {
854 	struct kernel_lb_addr addr;
855 	struct inode *metadata_fe;
856 
857 	addr.logicalBlockNum = meta_file_loc;
858 	addr.partitionReferenceNum = partition_ref;
859 
860 	metadata_fe = udf_iget_special(sb, &addr);
861 
862 	if (IS_ERR(metadata_fe)) {
863 		udf_warn(sb, "metadata inode efe not found\n");
864 		return metadata_fe;
865 	}
866 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
867 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
868 		iput(metadata_fe);
869 		return ERR_PTR(-EIO);
870 	}
871 
872 	return metadata_fe;
873 }
874 
875 static int udf_load_metadata_files(struct super_block *sb, int partition,
876 				   int type1_index)
877 {
878 	struct udf_sb_info *sbi = UDF_SB(sb);
879 	struct udf_part_map *map;
880 	struct udf_meta_data *mdata;
881 	struct kernel_lb_addr addr;
882 	struct inode *fe;
883 
884 	map = &sbi->s_partmaps[partition];
885 	mdata = &map->s_type_specific.s_metadata;
886 	mdata->s_phys_partition_ref = type1_index;
887 
888 	/* metadata address */
889 	udf_debug("Metadata file location: block = %u part = %u\n",
890 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
891 
892 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
893 					 mdata->s_phys_partition_ref);
894 	if (IS_ERR(fe)) {
895 		/* mirror file entry */
896 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
897 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
898 
899 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
900 						 mdata->s_phys_partition_ref);
901 
902 		if (IS_ERR(fe)) {
903 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
904 			return PTR_ERR(fe);
905 		}
906 		mdata->s_mirror_fe = fe;
907 	} else
908 		mdata->s_metadata_fe = fe;
909 
910 
911 	/*
912 	 * bitmap file entry
913 	 * Note:
914 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
915 	*/
916 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
917 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
918 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
919 
920 		udf_debug("Bitmap file location: block = %u part = %u\n",
921 			  addr.logicalBlockNum, addr.partitionReferenceNum);
922 
923 		fe = udf_iget_special(sb, &addr);
924 		if (IS_ERR(fe)) {
925 			if (sb_rdonly(sb))
926 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
927 			else {
928 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
929 				return PTR_ERR(fe);
930 			}
931 		} else
932 			mdata->s_bitmap_fe = fe;
933 	}
934 
935 	udf_debug("udf_load_metadata_files Ok\n");
936 	return 0;
937 }
938 
939 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
940 			     struct kernel_lb_addr *root)
941 {
942 	struct fileSetDesc *fset;
943 
944 	fset = (struct fileSetDesc *)bh->b_data;
945 
946 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
947 
948 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
949 
950 	udf_debug("Rootdir at block=%u, partition=%u\n",
951 		  root->logicalBlockNum, root->partitionReferenceNum);
952 }
953 
954 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
955 {
956 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
957 	return DIV_ROUND_UP(map->s_partition_len +
958 			    (sizeof(struct spaceBitmapDesc) << 3),
959 			    sb->s_blocksize * 8);
960 }
961 
962 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
963 {
964 	struct udf_bitmap *bitmap;
965 	int nr_groups;
966 	int size;
967 
968 	nr_groups = udf_compute_nr_groups(sb, index);
969 	size = sizeof(struct udf_bitmap) +
970 		(sizeof(struct buffer_head *) * nr_groups);
971 
972 	if (size <= PAGE_SIZE)
973 		bitmap = kzalloc(size, GFP_KERNEL);
974 	else
975 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
976 
977 	if (!bitmap)
978 		return NULL;
979 
980 	bitmap->s_nr_groups = nr_groups;
981 	return bitmap;
982 }
983 
984 static int check_partition_desc(struct super_block *sb,
985 				struct partitionDesc *p,
986 				struct udf_part_map *map)
987 {
988 	bool umap, utable, fmap, ftable;
989 	struct partitionHeaderDesc *phd;
990 
991 	switch (le32_to_cpu(p->accessType)) {
992 	case PD_ACCESS_TYPE_READ_ONLY:
993 	case PD_ACCESS_TYPE_WRITE_ONCE:
994 	case PD_ACCESS_TYPE_REWRITABLE:
995 	case PD_ACCESS_TYPE_NONE:
996 		goto force_ro;
997 	}
998 
999 	/* No Partition Header Descriptor? */
1000 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1001 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1002 		goto force_ro;
1003 
1004 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1005 	utable = phd->unallocSpaceTable.extLength;
1006 	umap = phd->unallocSpaceBitmap.extLength;
1007 	ftable = phd->freedSpaceTable.extLength;
1008 	fmap = phd->freedSpaceBitmap.extLength;
1009 
1010 	/* No allocation info? */
1011 	if (!utable && !umap && !ftable && !fmap)
1012 		goto force_ro;
1013 
1014 	/* We don't support blocks that require erasing before overwrite */
1015 	if (ftable || fmap)
1016 		goto force_ro;
1017 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1018 	if (utable && umap)
1019 		goto force_ro;
1020 
1021 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1022 	    map->s_partition_type == UDF_VIRTUAL_MAP20)
1023 		goto force_ro;
1024 
1025 	return 0;
1026 force_ro:
1027 	if (!sb_rdonly(sb))
1028 		return -EACCES;
1029 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1030 	return 0;
1031 }
1032 
1033 static int udf_fill_partdesc_info(struct super_block *sb,
1034 		struct partitionDesc *p, int p_index)
1035 {
1036 	struct udf_part_map *map;
1037 	struct udf_sb_info *sbi = UDF_SB(sb);
1038 	struct partitionHeaderDesc *phd;
1039 	int err;
1040 
1041 	map = &sbi->s_partmaps[p_index];
1042 
1043 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1044 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1045 
1046 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1047 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1048 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1049 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1050 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1051 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1052 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1053 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1054 
1055 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1056 		  p_index, map->s_partition_type,
1057 		  map->s_partition_root, map->s_partition_len);
1058 
1059 	err = check_partition_desc(sb, p, map);
1060 	if (err)
1061 		return err;
1062 
1063 	/*
1064 	 * Skip loading allocation info it we cannot ever write to the fs.
1065 	 * This is a correctness thing as we may have decided to force ro mount
1066 	 * to avoid allocation info we don't support.
1067 	 */
1068 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1069 		return 0;
1070 
1071 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1072 	if (phd->unallocSpaceTable.extLength) {
1073 		struct kernel_lb_addr loc = {
1074 			.logicalBlockNum = le32_to_cpu(
1075 				phd->unallocSpaceTable.extPosition),
1076 			.partitionReferenceNum = p_index,
1077 		};
1078 		struct inode *inode;
1079 
1080 		inode = udf_iget_special(sb, &loc);
1081 		if (IS_ERR(inode)) {
1082 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1083 				  p_index);
1084 			return PTR_ERR(inode);
1085 		}
1086 		map->s_uspace.s_table = inode;
1087 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1088 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1089 			  p_index, map->s_uspace.s_table->i_ino);
1090 	}
1091 
1092 	if (phd->unallocSpaceBitmap.extLength) {
1093 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1094 		if (!bitmap)
1095 			return -ENOMEM;
1096 		map->s_uspace.s_bitmap = bitmap;
1097 		bitmap->s_extPosition = le32_to_cpu(
1098 				phd->unallocSpaceBitmap.extPosition);
1099 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1100 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1101 			  p_index, bitmap->s_extPosition);
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static void udf_find_vat_block(struct super_block *sb, int p_index,
1108 			       int type1_index, sector_t start_block)
1109 {
1110 	struct udf_sb_info *sbi = UDF_SB(sb);
1111 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1112 	sector_t vat_block;
1113 	struct kernel_lb_addr ino;
1114 	struct inode *inode;
1115 
1116 	/*
1117 	 * VAT file entry is in the last recorded block. Some broken disks have
1118 	 * it a few blocks before so try a bit harder...
1119 	 */
1120 	ino.partitionReferenceNum = type1_index;
1121 	for (vat_block = start_block;
1122 	     vat_block >= map->s_partition_root &&
1123 	     vat_block >= start_block - 3; vat_block--) {
1124 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1125 		inode = udf_iget_special(sb, &ino);
1126 		if (!IS_ERR(inode)) {
1127 			sbi->s_vat_inode = inode;
1128 			break;
1129 		}
1130 	}
1131 }
1132 
1133 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1134 {
1135 	struct udf_sb_info *sbi = UDF_SB(sb);
1136 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1137 	struct buffer_head *bh = NULL;
1138 	struct udf_inode_info *vati;
1139 	uint32_t pos;
1140 	struct virtualAllocationTable20 *vat20;
1141 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1142 			  sb->s_blocksize_bits;
1143 
1144 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1145 	if (!sbi->s_vat_inode &&
1146 	    sbi->s_last_block != blocks - 1) {
1147 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1148 			  (unsigned long)sbi->s_last_block,
1149 			  (unsigned long)blocks - 1);
1150 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1151 	}
1152 	if (!sbi->s_vat_inode)
1153 		return -EIO;
1154 
1155 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1156 		map->s_type_specific.s_virtual.s_start_offset = 0;
1157 		map->s_type_specific.s_virtual.s_num_entries =
1158 			(sbi->s_vat_inode->i_size - 36) >> 2;
1159 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1160 		vati = UDF_I(sbi->s_vat_inode);
1161 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1162 			pos = udf_block_map(sbi->s_vat_inode, 0);
1163 			bh = sb_bread(sb, pos);
1164 			if (!bh)
1165 				return -EIO;
1166 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1167 		} else {
1168 			vat20 = (struct virtualAllocationTable20 *)
1169 							vati->i_ext.i_data;
1170 		}
1171 
1172 		map->s_type_specific.s_virtual.s_start_offset =
1173 			le16_to_cpu(vat20->lengthHeader);
1174 		map->s_type_specific.s_virtual.s_num_entries =
1175 			(sbi->s_vat_inode->i_size -
1176 				map->s_type_specific.s_virtual.
1177 					s_start_offset) >> 2;
1178 		brelse(bh);
1179 	}
1180 	return 0;
1181 }
1182 
1183 /*
1184  * Load partition descriptor block
1185  *
1186  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1187  * sequence.
1188  */
1189 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1190 {
1191 	struct buffer_head *bh;
1192 	struct partitionDesc *p;
1193 	struct udf_part_map *map;
1194 	struct udf_sb_info *sbi = UDF_SB(sb);
1195 	int i, type1_idx;
1196 	uint16_t partitionNumber;
1197 	uint16_t ident;
1198 	int ret;
1199 
1200 	bh = udf_read_tagged(sb, block, block, &ident);
1201 	if (!bh)
1202 		return -EAGAIN;
1203 	if (ident != TAG_IDENT_PD) {
1204 		ret = 0;
1205 		goto out_bh;
1206 	}
1207 
1208 	p = (struct partitionDesc *)bh->b_data;
1209 	partitionNumber = le16_to_cpu(p->partitionNumber);
1210 
1211 	/* First scan for TYPE1 and SPARABLE partitions */
1212 	for (i = 0; i < sbi->s_partitions; i++) {
1213 		map = &sbi->s_partmaps[i];
1214 		udf_debug("Searching map: (%u == %u)\n",
1215 			  map->s_partition_num, partitionNumber);
1216 		if (map->s_partition_num == partitionNumber &&
1217 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1218 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1219 			break;
1220 	}
1221 
1222 	if (i >= sbi->s_partitions) {
1223 		udf_debug("Partition (%u) not found in partition map\n",
1224 			  partitionNumber);
1225 		ret = 0;
1226 		goto out_bh;
1227 	}
1228 
1229 	ret = udf_fill_partdesc_info(sb, p, i);
1230 	if (ret < 0)
1231 		goto out_bh;
1232 
1233 	/*
1234 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1235 	 * PHYSICAL partitions are already set up
1236 	 */
1237 	type1_idx = i;
1238 #ifdef UDFFS_DEBUG
1239 	map = NULL; /* supress 'maybe used uninitialized' warning */
1240 #endif
1241 	for (i = 0; i < sbi->s_partitions; i++) {
1242 		map = &sbi->s_partmaps[i];
1243 
1244 		if (map->s_partition_num == partitionNumber &&
1245 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1246 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1247 		     map->s_partition_type == UDF_METADATA_MAP25))
1248 			break;
1249 	}
1250 
1251 	if (i >= sbi->s_partitions) {
1252 		ret = 0;
1253 		goto out_bh;
1254 	}
1255 
1256 	ret = udf_fill_partdesc_info(sb, p, i);
1257 	if (ret < 0)
1258 		goto out_bh;
1259 
1260 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1261 		ret = udf_load_metadata_files(sb, i, type1_idx);
1262 		if (ret < 0) {
1263 			udf_err(sb, "error loading MetaData partition map %d\n",
1264 				i);
1265 			goto out_bh;
1266 		}
1267 	} else {
1268 		/*
1269 		 * If we have a partition with virtual map, we don't handle
1270 		 * writing to it (we overwrite blocks instead of relocating
1271 		 * them).
1272 		 */
1273 		if (!sb_rdonly(sb)) {
1274 			ret = -EACCES;
1275 			goto out_bh;
1276 		}
1277 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1278 		ret = udf_load_vat(sb, i, type1_idx);
1279 		if (ret < 0)
1280 			goto out_bh;
1281 	}
1282 	ret = 0;
1283 out_bh:
1284 	/* In case loading failed, we handle cleanup in udf_fill_super */
1285 	brelse(bh);
1286 	return ret;
1287 }
1288 
1289 static int udf_load_sparable_map(struct super_block *sb,
1290 				 struct udf_part_map *map,
1291 				 struct sparablePartitionMap *spm)
1292 {
1293 	uint32_t loc;
1294 	uint16_t ident;
1295 	struct sparingTable *st;
1296 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1297 	int i;
1298 	struct buffer_head *bh;
1299 
1300 	map->s_partition_type = UDF_SPARABLE_MAP15;
1301 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1302 	if (!is_power_of_2(sdata->s_packet_len)) {
1303 		udf_err(sb, "error loading logical volume descriptor: "
1304 			"Invalid packet length %u\n",
1305 			(unsigned)sdata->s_packet_len);
1306 		return -EIO;
1307 	}
1308 	if (spm->numSparingTables > 4) {
1309 		udf_err(sb, "error loading logical volume descriptor: "
1310 			"Too many sparing tables (%d)\n",
1311 			(int)spm->numSparingTables);
1312 		return -EIO;
1313 	}
1314 
1315 	for (i = 0; i < spm->numSparingTables; i++) {
1316 		loc = le32_to_cpu(spm->locSparingTable[i]);
1317 		bh = udf_read_tagged(sb, loc, loc, &ident);
1318 		if (!bh)
1319 			continue;
1320 
1321 		st = (struct sparingTable *)bh->b_data;
1322 		if (ident != 0 ||
1323 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1324 			    strlen(UDF_ID_SPARING)) ||
1325 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1326 							sb->s_blocksize) {
1327 			brelse(bh);
1328 			continue;
1329 		}
1330 
1331 		sdata->s_spar_map[i] = bh;
1332 	}
1333 	map->s_partition_func = udf_get_pblock_spar15;
1334 	return 0;
1335 }
1336 
1337 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1338 			       struct kernel_lb_addr *fileset)
1339 {
1340 	struct logicalVolDesc *lvd;
1341 	int i, offset;
1342 	uint8_t type;
1343 	struct udf_sb_info *sbi = UDF_SB(sb);
1344 	struct genericPartitionMap *gpm;
1345 	uint16_t ident;
1346 	struct buffer_head *bh;
1347 	unsigned int table_len;
1348 	int ret;
1349 
1350 	bh = udf_read_tagged(sb, block, block, &ident);
1351 	if (!bh)
1352 		return -EAGAIN;
1353 	BUG_ON(ident != TAG_IDENT_LVD);
1354 	lvd = (struct logicalVolDesc *)bh->b_data;
1355 	table_len = le32_to_cpu(lvd->mapTableLength);
1356 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1357 		udf_err(sb, "error loading logical volume descriptor: "
1358 			"Partition table too long (%u > %lu)\n", table_len,
1359 			sb->s_blocksize - sizeof(*lvd));
1360 		ret = -EIO;
1361 		goto out_bh;
1362 	}
1363 
1364 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1365 	if (ret)
1366 		goto out_bh;
1367 
1368 	for (i = 0, offset = 0;
1369 	     i < sbi->s_partitions && offset < table_len;
1370 	     i++, offset += gpm->partitionMapLength) {
1371 		struct udf_part_map *map = &sbi->s_partmaps[i];
1372 		gpm = (struct genericPartitionMap *)
1373 				&(lvd->partitionMaps[offset]);
1374 		type = gpm->partitionMapType;
1375 		if (type == 1) {
1376 			struct genericPartitionMap1 *gpm1 =
1377 				(struct genericPartitionMap1 *)gpm;
1378 			map->s_partition_type = UDF_TYPE1_MAP15;
1379 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1380 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1381 			map->s_partition_func = NULL;
1382 		} else if (type == 2) {
1383 			struct udfPartitionMap2 *upm2 =
1384 						(struct udfPartitionMap2 *)gpm;
1385 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1386 						strlen(UDF_ID_VIRTUAL))) {
1387 				u16 suf =
1388 					le16_to_cpu(((__le16 *)upm2->partIdent.
1389 							identSuffix)[0]);
1390 				if (suf < 0x0200) {
1391 					map->s_partition_type =
1392 							UDF_VIRTUAL_MAP15;
1393 					map->s_partition_func =
1394 							udf_get_pblock_virt15;
1395 				} else {
1396 					map->s_partition_type =
1397 							UDF_VIRTUAL_MAP20;
1398 					map->s_partition_func =
1399 							udf_get_pblock_virt20;
1400 				}
1401 			} else if (!strncmp(upm2->partIdent.ident,
1402 						UDF_ID_SPARABLE,
1403 						strlen(UDF_ID_SPARABLE))) {
1404 				ret = udf_load_sparable_map(sb, map,
1405 					(struct sparablePartitionMap *)gpm);
1406 				if (ret < 0)
1407 					goto out_bh;
1408 			} else if (!strncmp(upm2->partIdent.ident,
1409 						UDF_ID_METADATA,
1410 						strlen(UDF_ID_METADATA))) {
1411 				struct udf_meta_data *mdata =
1412 					&map->s_type_specific.s_metadata;
1413 				struct metadataPartitionMap *mdm =
1414 						(struct metadataPartitionMap *)
1415 						&(lvd->partitionMaps[offset]);
1416 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1417 					  i, type, UDF_ID_METADATA);
1418 
1419 				map->s_partition_type = UDF_METADATA_MAP25;
1420 				map->s_partition_func = udf_get_pblock_meta25;
1421 
1422 				mdata->s_meta_file_loc   =
1423 					le32_to_cpu(mdm->metadataFileLoc);
1424 				mdata->s_mirror_file_loc =
1425 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1426 				mdata->s_bitmap_file_loc =
1427 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1428 				mdata->s_alloc_unit_size =
1429 					le32_to_cpu(mdm->allocUnitSize);
1430 				mdata->s_align_unit_size =
1431 					le16_to_cpu(mdm->alignUnitSize);
1432 				if (mdm->flags & 0x01)
1433 					mdata->s_flags |= MF_DUPLICATE_MD;
1434 
1435 				udf_debug("Metadata Ident suffix=0x%x\n",
1436 					  le16_to_cpu(*(__le16 *)
1437 						      mdm->partIdent.identSuffix));
1438 				udf_debug("Metadata part num=%u\n",
1439 					  le16_to_cpu(mdm->partitionNum));
1440 				udf_debug("Metadata part alloc unit size=%u\n",
1441 					  le32_to_cpu(mdm->allocUnitSize));
1442 				udf_debug("Metadata file loc=%u\n",
1443 					  le32_to_cpu(mdm->metadataFileLoc));
1444 				udf_debug("Mirror file loc=%u\n",
1445 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1446 				udf_debug("Bitmap file loc=%u\n",
1447 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1448 				udf_debug("Flags: %d %u\n",
1449 					  mdata->s_flags, mdm->flags);
1450 			} else {
1451 				udf_debug("Unknown ident: %s\n",
1452 					  upm2->partIdent.ident);
1453 				continue;
1454 			}
1455 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1456 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1457 		}
1458 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1459 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1460 	}
1461 
1462 	if (fileset) {
1463 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1464 
1465 		*fileset = lelb_to_cpu(la->extLocation);
1466 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1467 			  fileset->logicalBlockNum,
1468 			  fileset->partitionReferenceNum);
1469 	}
1470 	if (lvd->integritySeqExt.extLength)
1471 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1472 	ret = 0;
1473 out_bh:
1474 	brelse(bh);
1475 	return ret;
1476 }
1477 
1478 /*
1479  * Find the prevailing Logical Volume Integrity Descriptor.
1480  */
1481 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1482 {
1483 	struct buffer_head *bh, *final_bh;
1484 	uint16_t ident;
1485 	struct udf_sb_info *sbi = UDF_SB(sb);
1486 	struct logicalVolIntegrityDesc *lvid;
1487 	int indirections = 0;
1488 
1489 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1490 		final_bh = NULL;
1491 		while (loc.extLength > 0 &&
1492 			(bh = udf_read_tagged(sb, loc.extLocation,
1493 					loc.extLocation, &ident))) {
1494 			if (ident != TAG_IDENT_LVID) {
1495 				brelse(bh);
1496 				break;
1497 			}
1498 
1499 			brelse(final_bh);
1500 			final_bh = bh;
1501 
1502 			loc.extLength -= sb->s_blocksize;
1503 			loc.extLocation++;
1504 		}
1505 
1506 		if (!final_bh)
1507 			return;
1508 
1509 		brelse(sbi->s_lvid_bh);
1510 		sbi->s_lvid_bh = final_bh;
1511 
1512 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1513 		if (lvid->nextIntegrityExt.extLength == 0)
1514 			return;
1515 
1516 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1517 	}
1518 
1519 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1520 		UDF_MAX_LVID_NESTING);
1521 	brelse(sbi->s_lvid_bh);
1522 	sbi->s_lvid_bh = NULL;
1523 }
1524 
1525 /*
1526  * Step for reallocation of table of partition descriptor sequence numbers.
1527  * Must be power of 2.
1528  */
1529 #define PART_DESC_ALLOC_STEP 32
1530 
1531 struct part_desc_seq_scan_data {
1532 	struct udf_vds_record rec;
1533 	u32 partnum;
1534 };
1535 
1536 struct desc_seq_scan_data {
1537 	struct udf_vds_record vds[VDS_POS_LENGTH];
1538 	unsigned int size_part_descs;
1539 	unsigned int num_part_descs;
1540 	struct part_desc_seq_scan_data *part_descs_loc;
1541 };
1542 
1543 static struct udf_vds_record *handle_partition_descriptor(
1544 				struct buffer_head *bh,
1545 				struct desc_seq_scan_data *data)
1546 {
1547 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1548 	int partnum;
1549 	int i;
1550 
1551 	partnum = le16_to_cpu(desc->partitionNumber);
1552 	for (i = 0; i < data->num_part_descs; i++)
1553 		if (partnum == data->part_descs_loc[i].partnum)
1554 			return &(data->part_descs_loc[i].rec);
1555 	if (data->num_part_descs >= data->size_part_descs) {
1556 		struct part_desc_seq_scan_data *new_loc;
1557 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1558 
1559 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1560 		if (!new_loc)
1561 			return ERR_PTR(-ENOMEM);
1562 		memcpy(new_loc, data->part_descs_loc,
1563 		       data->size_part_descs * sizeof(*new_loc));
1564 		kfree(data->part_descs_loc);
1565 		data->part_descs_loc = new_loc;
1566 		data->size_part_descs = new_size;
1567 	}
1568 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1569 }
1570 
1571 
1572 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1573 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1574 {
1575 	switch (ident) {
1576 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1577 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1578 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1579 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1580 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1581 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1582 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1583 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1584 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1585 		return handle_partition_descriptor(bh, data);
1586 	}
1587 	return NULL;
1588 }
1589 
1590 /*
1591  * Process a main/reserve volume descriptor sequence.
1592  *   @block		First block of first extent of the sequence.
1593  *   @lastblock		Lastblock of first extent of the sequence.
1594  *   @fileset		There we store extent containing root fileset
1595  *
1596  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1597  * sequence
1598  */
1599 static noinline int udf_process_sequence(
1600 		struct super_block *sb,
1601 		sector_t block, sector_t lastblock,
1602 		struct kernel_lb_addr *fileset)
1603 {
1604 	struct buffer_head *bh = NULL;
1605 	struct udf_vds_record *curr;
1606 	struct generic_desc *gd;
1607 	struct volDescPtr *vdp;
1608 	bool done = false;
1609 	uint32_t vdsn;
1610 	uint16_t ident;
1611 	int ret;
1612 	unsigned int indirections = 0;
1613 	struct desc_seq_scan_data data;
1614 	unsigned int i;
1615 
1616 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1617 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1618 	data.num_part_descs = 0;
1619 	data.part_descs_loc = kcalloc(data.size_part_descs,
1620 				      sizeof(*data.part_descs_loc),
1621 				      GFP_KERNEL);
1622 	if (!data.part_descs_loc)
1623 		return -ENOMEM;
1624 
1625 	/*
1626 	 * Read the main descriptor sequence and find which descriptors
1627 	 * are in it.
1628 	 */
1629 	for (; (!done && block <= lastblock); block++) {
1630 		bh = udf_read_tagged(sb, block, block, &ident);
1631 		if (!bh)
1632 			break;
1633 
1634 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1635 		gd = (struct generic_desc *)bh->b_data;
1636 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1637 		switch (ident) {
1638 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1639 			if (++indirections > UDF_MAX_TD_NESTING) {
1640 				udf_err(sb, "too many Volume Descriptor "
1641 					"Pointers (max %u supported)\n",
1642 					UDF_MAX_TD_NESTING);
1643 				brelse(bh);
1644 				return -EIO;
1645 			}
1646 
1647 			vdp = (struct volDescPtr *)bh->b_data;
1648 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1649 			lastblock = le32_to_cpu(
1650 				vdp->nextVolDescSeqExt.extLength) >>
1651 				sb->s_blocksize_bits;
1652 			lastblock += block - 1;
1653 			/* For loop is going to increment 'block' again */
1654 			block--;
1655 			break;
1656 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1657 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1658 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1659 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1660 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1661 			curr = get_volume_descriptor_record(ident, bh, &data);
1662 			if (IS_ERR(curr)) {
1663 				brelse(bh);
1664 				return PTR_ERR(curr);
1665 			}
1666 			/* Descriptor we don't care about? */
1667 			if (!curr)
1668 				break;
1669 			if (vdsn >= curr->volDescSeqNum) {
1670 				curr->volDescSeqNum = vdsn;
1671 				curr->block = block;
1672 			}
1673 			break;
1674 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1675 			done = true;
1676 			break;
1677 		}
1678 		brelse(bh);
1679 	}
1680 	/*
1681 	 * Now read interesting descriptors again and process them
1682 	 * in a suitable order
1683 	 */
1684 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1685 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1686 		return -EAGAIN;
1687 	}
1688 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1689 	if (ret < 0)
1690 		return ret;
1691 
1692 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1693 		ret = udf_load_logicalvol(sb,
1694 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1695 				fileset);
1696 		if (ret < 0)
1697 			return ret;
1698 	}
1699 
1700 	/* Now handle prevailing Partition Descriptors */
1701 	for (i = 0; i < data.num_part_descs; i++) {
1702 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1703 		if (ret < 0)
1704 			return ret;
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Load Volume Descriptor Sequence described by anchor in bh
1712  *
1713  * Returns <0 on error, 0 on success
1714  */
1715 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1716 			     struct kernel_lb_addr *fileset)
1717 {
1718 	struct anchorVolDescPtr *anchor;
1719 	sector_t main_s, main_e, reserve_s, reserve_e;
1720 	int ret;
1721 
1722 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1723 
1724 	/* Locate the main sequence */
1725 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1726 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1727 	main_e = main_e >> sb->s_blocksize_bits;
1728 	main_e += main_s - 1;
1729 
1730 	/* Locate the reserve sequence */
1731 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1732 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1733 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1734 	reserve_e += reserve_s - 1;
1735 
1736 	/* Process the main & reserve sequences */
1737 	/* responsible for finding the PartitionDesc(s) */
1738 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1739 	if (ret != -EAGAIN)
1740 		return ret;
1741 	udf_sb_free_partitions(sb);
1742 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1743 	if (ret < 0) {
1744 		udf_sb_free_partitions(sb);
1745 		/* No sequence was OK, return -EIO */
1746 		if (ret == -EAGAIN)
1747 			ret = -EIO;
1748 	}
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Check whether there is an anchor block in the given block and
1754  * load Volume Descriptor Sequence if so.
1755  *
1756  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1757  * block
1758  */
1759 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1760 				  struct kernel_lb_addr *fileset)
1761 {
1762 	struct buffer_head *bh;
1763 	uint16_t ident;
1764 	int ret;
1765 
1766 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1767 	    udf_fixed_to_variable(block) >=
1768 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1769 		return -EAGAIN;
1770 
1771 	bh = udf_read_tagged(sb, block, block, &ident);
1772 	if (!bh)
1773 		return -EAGAIN;
1774 	if (ident != TAG_IDENT_AVDP) {
1775 		brelse(bh);
1776 		return -EAGAIN;
1777 	}
1778 	ret = udf_load_sequence(sb, bh, fileset);
1779 	brelse(bh);
1780 	return ret;
1781 }
1782 
1783 /*
1784  * Search for an anchor volume descriptor pointer.
1785  *
1786  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1787  * of anchors.
1788  */
1789 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1790 			    struct kernel_lb_addr *fileset)
1791 {
1792 	sector_t last[6];
1793 	int i;
1794 	struct udf_sb_info *sbi = UDF_SB(sb);
1795 	int last_count = 0;
1796 	int ret;
1797 
1798 	/* First try user provided anchor */
1799 	if (sbi->s_anchor) {
1800 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1801 		if (ret != -EAGAIN)
1802 			return ret;
1803 	}
1804 	/*
1805 	 * according to spec, anchor is in either:
1806 	 *     block 256
1807 	 *     lastblock-256
1808 	 *     lastblock
1809 	 *  however, if the disc isn't closed, it could be 512.
1810 	 */
1811 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1812 	if (ret != -EAGAIN)
1813 		return ret;
1814 	/*
1815 	 * The trouble is which block is the last one. Drives often misreport
1816 	 * this so we try various possibilities.
1817 	 */
1818 	last[last_count++] = *lastblock;
1819 	if (*lastblock >= 1)
1820 		last[last_count++] = *lastblock - 1;
1821 	last[last_count++] = *lastblock + 1;
1822 	if (*lastblock >= 2)
1823 		last[last_count++] = *lastblock - 2;
1824 	if (*lastblock >= 150)
1825 		last[last_count++] = *lastblock - 150;
1826 	if (*lastblock >= 152)
1827 		last[last_count++] = *lastblock - 152;
1828 
1829 	for (i = 0; i < last_count; i++) {
1830 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1831 				sb->s_blocksize_bits)
1832 			continue;
1833 		ret = udf_check_anchor_block(sb, last[i], fileset);
1834 		if (ret != -EAGAIN) {
1835 			if (!ret)
1836 				*lastblock = last[i];
1837 			return ret;
1838 		}
1839 		if (last[i] < 256)
1840 			continue;
1841 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1842 		if (ret != -EAGAIN) {
1843 			if (!ret)
1844 				*lastblock = last[i];
1845 			return ret;
1846 		}
1847 	}
1848 
1849 	/* Finally try block 512 in case media is open */
1850 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1851 }
1852 
1853 /*
1854  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1855  * area specified by it. The function expects sbi->s_lastblock to be the last
1856  * block on the media.
1857  *
1858  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1859  * was not found.
1860  */
1861 static int udf_find_anchor(struct super_block *sb,
1862 			   struct kernel_lb_addr *fileset)
1863 {
1864 	struct udf_sb_info *sbi = UDF_SB(sb);
1865 	sector_t lastblock = sbi->s_last_block;
1866 	int ret;
1867 
1868 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1869 	if (ret != -EAGAIN)
1870 		goto out;
1871 
1872 	/* No anchor found? Try VARCONV conversion of block numbers */
1873 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1874 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1875 	/* Firstly, we try to not convert number of the last block */
1876 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1877 	if (ret != -EAGAIN)
1878 		goto out;
1879 
1880 	lastblock = sbi->s_last_block;
1881 	/* Secondly, we try with converted number of the last block */
1882 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1883 	if (ret < 0) {
1884 		/* VARCONV didn't help. Clear it. */
1885 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1886 	}
1887 out:
1888 	if (ret == 0)
1889 		sbi->s_last_block = lastblock;
1890 	return ret;
1891 }
1892 
1893 /*
1894  * Check Volume Structure Descriptor, find Anchor block and load Volume
1895  * Descriptor Sequence.
1896  *
1897  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1898  * block was not found.
1899  */
1900 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1901 			int silent, struct kernel_lb_addr *fileset)
1902 {
1903 	struct udf_sb_info *sbi = UDF_SB(sb);
1904 	loff_t nsr_off;
1905 	int ret;
1906 
1907 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1908 		if (!silent)
1909 			udf_warn(sb, "Bad block size\n");
1910 		return -EINVAL;
1911 	}
1912 	sbi->s_last_block = uopt->lastblock;
1913 	if (!uopt->novrs) {
1914 		/* Check that it is NSR02 compliant */
1915 		nsr_off = udf_check_vsd(sb);
1916 		if (!nsr_off) {
1917 			if (!silent)
1918 				udf_warn(sb, "No VRS found\n");
1919 			return -EINVAL;
1920 		}
1921 		if (nsr_off == -1)
1922 			udf_debug("Failed to read sector at offset %d. "
1923 				  "Assuming open disc. Skipping validity "
1924 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1925 		if (!sbi->s_last_block)
1926 			sbi->s_last_block = udf_get_last_block(sb);
1927 	} else {
1928 		udf_debug("Validity check skipped because of novrs option\n");
1929 	}
1930 
1931 	/* Look for anchor block and load Volume Descriptor Sequence */
1932 	sbi->s_anchor = uopt->anchor;
1933 	ret = udf_find_anchor(sb, fileset);
1934 	if (ret < 0) {
1935 		if (!silent && ret == -EAGAIN)
1936 			udf_warn(sb, "No anchor found\n");
1937 		return ret;
1938 	}
1939 	return 0;
1940 }
1941 
1942 static void udf_open_lvid(struct super_block *sb)
1943 {
1944 	struct udf_sb_info *sbi = UDF_SB(sb);
1945 	struct buffer_head *bh = sbi->s_lvid_bh;
1946 	struct logicalVolIntegrityDesc *lvid;
1947 	struct logicalVolIntegrityDescImpUse *lvidiu;
1948 	struct timespec64 ts;
1949 
1950 	if (!bh)
1951 		return;
1952 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1953 	lvidiu = udf_sb_lvidiu(sb);
1954 	if (!lvidiu)
1955 		return;
1956 
1957 	mutex_lock(&sbi->s_alloc_mutex);
1958 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1959 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1960 	ktime_get_real_ts64(&ts);
1961 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1962 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1963 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1964 	else
1965 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1966 
1967 	lvid->descTag.descCRC = cpu_to_le16(
1968 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1969 			le16_to_cpu(lvid->descTag.descCRCLength)));
1970 
1971 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1972 	mark_buffer_dirty(bh);
1973 	sbi->s_lvid_dirty = 0;
1974 	mutex_unlock(&sbi->s_alloc_mutex);
1975 	/* Make opening of filesystem visible on the media immediately */
1976 	sync_dirty_buffer(bh);
1977 }
1978 
1979 static void udf_close_lvid(struct super_block *sb)
1980 {
1981 	struct udf_sb_info *sbi = UDF_SB(sb);
1982 	struct buffer_head *bh = sbi->s_lvid_bh;
1983 	struct logicalVolIntegrityDesc *lvid;
1984 	struct logicalVolIntegrityDescImpUse *lvidiu;
1985 	struct timespec64 ts;
1986 
1987 	if (!bh)
1988 		return;
1989 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1990 	lvidiu = udf_sb_lvidiu(sb);
1991 	if (!lvidiu)
1992 		return;
1993 
1994 	mutex_lock(&sbi->s_alloc_mutex);
1995 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1996 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1997 	ktime_get_real_ts64(&ts);
1998 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1999 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2000 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2001 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2002 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2003 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2004 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2005 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2006 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2007 
2008 	lvid->descTag.descCRC = cpu_to_le16(
2009 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2010 				le16_to_cpu(lvid->descTag.descCRCLength)));
2011 
2012 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2013 	/*
2014 	 * We set buffer uptodate unconditionally here to avoid spurious
2015 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2016 	 * the buffer as !uptodate
2017 	 */
2018 	set_buffer_uptodate(bh);
2019 	mark_buffer_dirty(bh);
2020 	sbi->s_lvid_dirty = 0;
2021 	mutex_unlock(&sbi->s_alloc_mutex);
2022 	/* Make closing of filesystem visible on the media immediately */
2023 	sync_dirty_buffer(bh);
2024 }
2025 
2026 u64 lvid_get_unique_id(struct super_block *sb)
2027 {
2028 	struct buffer_head *bh;
2029 	struct udf_sb_info *sbi = UDF_SB(sb);
2030 	struct logicalVolIntegrityDesc *lvid;
2031 	struct logicalVolHeaderDesc *lvhd;
2032 	u64 uniqueID;
2033 	u64 ret;
2034 
2035 	bh = sbi->s_lvid_bh;
2036 	if (!bh)
2037 		return 0;
2038 
2039 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2040 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2041 
2042 	mutex_lock(&sbi->s_alloc_mutex);
2043 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2044 	if (!(++uniqueID & 0xFFFFFFFF))
2045 		uniqueID += 16;
2046 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2047 	mutex_unlock(&sbi->s_alloc_mutex);
2048 	mark_buffer_dirty(bh);
2049 
2050 	return ret;
2051 }
2052 
2053 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2054 {
2055 	int ret = -EINVAL;
2056 	struct inode *inode = NULL;
2057 	struct udf_options uopt;
2058 	struct kernel_lb_addr rootdir, fileset;
2059 	struct udf_sb_info *sbi;
2060 	bool lvid_open = false;
2061 
2062 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2063 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2064 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2065 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2066 	uopt.umask = 0;
2067 	uopt.fmode = UDF_INVALID_MODE;
2068 	uopt.dmode = UDF_INVALID_MODE;
2069 	uopt.nls_map = NULL;
2070 
2071 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2072 	if (!sbi)
2073 		return -ENOMEM;
2074 
2075 	sb->s_fs_info = sbi;
2076 
2077 	mutex_init(&sbi->s_alloc_mutex);
2078 
2079 	if (!udf_parse_options((char *)options, &uopt, false))
2080 		goto parse_options_failure;
2081 
2082 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2083 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2084 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2085 		goto parse_options_failure;
2086 	}
2087 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2088 		uopt.nls_map = load_nls_default();
2089 		if (!uopt.nls_map)
2090 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2091 		else
2092 			udf_debug("Using default NLS map\n");
2093 	}
2094 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2095 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2096 
2097 	fileset.logicalBlockNum = 0xFFFFFFFF;
2098 	fileset.partitionReferenceNum = 0xFFFF;
2099 
2100 	sbi->s_flags = uopt.flags;
2101 	sbi->s_uid = uopt.uid;
2102 	sbi->s_gid = uopt.gid;
2103 	sbi->s_umask = uopt.umask;
2104 	sbi->s_fmode = uopt.fmode;
2105 	sbi->s_dmode = uopt.dmode;
2106 	sbi->s_nls_map = uopt.nls_map;
2107 	rwlock_init(&sbi->s_cred_lock);
2108 
2109 	if (uopt.session == 0xFFFFFFFF)
2110 		sbi->s_session = udf_get_last_session(sb);
2111 	else
2112 		sbi->s_session = uopt.session;
2113 
2114 	udf_debug("Multi-session=%d\n", sbi->s_session);
2115 
2116 	/* Fill in the rest of the superblock */
2117 	sb->s_op = &udf_sb_ops;
2118 	sb->s_export_op = &udf_export_ops;
2119 
2120 	sb->s_magic = UDF_SUPER_MAGIC;
2121 	sb->s_time_gran = 1000;
2122 
2123 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2124 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2125 	} else {
2126 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2127 		while (uopt.blocksize <= 4096) {
2128 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2129 			if (ret < 0) {
2130 				if (!silent && ret != -EACCES) {
2131 					pr_notice("Scanning with blocksize %u failed\n",
2132 						  uopt.blocksize);
2133 				}
2134 				brelse(sbi->s_lvid_bh);
2135 				sbi->s_lvid_bh = NULL;
2136 				/*
2137 				 * EACCES is special - we want to propagate to
2138 				 * upper layers that we cannot handle RW mount.
2139 				 */
2140 				if (ret == -EACCES)
2141 					break;
2142 			} else
2143 				break;
2144 
2145 			uopt.blocksize <<= 1;
2146 		}
2147 	}
2148 	if (ret < 0) {
2149 		if (ret == -EAGAIN) {
2150 			udf_warn(sb, "No partition found (1)\n");
2151 			ret = -EINVAL;
2152 		}
2153 		goto error_out;
2154 	}
2155 
2156 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2157 
2158 	if (sbi->s_lvid_bh) {
2159 		struct logicalVolIntegrityDescImpUse *lvidiu =
2160 							udf_sb_lvidiu(sb);
2161 		uint16_t minUDFReadRev;
2162 		uint16_t minUDFWriteRev;
2163 
2164 		if (!lvidiu) {
2165 			ret = -EINVAL;
2166 			goto error_out;
2167 		}
2168 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2169 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2170 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2171 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2172 				minUDFReadRev,
2173 				UDF_MAX_READ_VERSION);
2174 			ret = -EINVAL;
2175 			goto error_out;
2176 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2177 			if (!sb_rdonly(sb)) {
2178 				ret = -EACCES;
2179 				goto error_out;
2180 			}
2181 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2182 		}
2183 
2184 		sbi->s_udfrev = minUDFWriteRev;
2185 
2186 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2187 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2188 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2189 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2190 	}
2191 
2192 	if (!sbi->s_partitions) {
2193 		udf_warn(sb, "No partition found (2)\n");
2194 		ret = -EINVAL;
2195 		goto error_out;
2196 	}
2197 
2198 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2199 			UDF_PART_FLAG_READ_ONLY) {
2200 		if (!sb_rdonly(sb)) {
2201 			ret = -EACCES;
2202 			goto error_out;
2203 		}
2204 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2205 	}
2206 
2207 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2208 		udf_warn(sb, "No fileset found\n");
2209 		ret = -EINVAL;
2210 		goto error_out;
2211 	}
2212 
2213 	if (!silent) {
2214 		struct timestamp ts;
2215 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2216 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2217 			 sbi->s_volume_ident,
2218 			 le16_to_cpu(ts.year), ts.month, ts.day,
2219 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2220 	}
2221 	if (!sb_rdonly(sb)) {
2222 		udf_open_lvid(sb);
2223 		lvid_open = true;
2224 	}
2225 
2226 	/* Assign the root inode */
2227 	/* assign inodes by physical block number */
2228 	/* perhaps it's not extensible enough, but for now ... */
2229 	inode = udf_iget(sb, &rootdir);
2230 	if (IS_ERR(inode)) {
2231 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2232 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2233 		ret = PTR_ERR(inode);
2234 		goto error_out;
2235 	}
2236 
2237 	/* Allocate a dentry for the root inode */
2238 	sb->s_root = d_make_root(inode);
2239 	if (!sb->s_root) {
2240 		udf_err(sb, "Couldn't allocate root dentry\n");
2241 		ret = -ENOMEM;
2242 		goto error_out;
2243 	}
2244 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2245 	sb->s_max_links = UDF_MAX_LINKS;
2246 	return 0;
2247 
2248 error_out:
2249 	iput(sbi->s_vat_inode);
2250 parse_options_failure:
2251 	if (uopt.nls_map)
2252 		unload_nls(uopt.nls_map);
2253 	if (lvid_open)
2254 		udf_close_lvid(sb);
2255 	brelse(sbi->s_lvid_bh);
2256 	udf_sb_free_partitions(sb);
2257 	kfree(sbi);
2258 	sb->s_fs_info = NULL;
2259 
2260 	return ret;
2261 }
2262 
2263 void _udf_err(struct super_block *sb, const char *function,
2264 	      const char *fmt, ...)
2265 {
2266 	struct va_format vaf;
2267 	va_list args;
2268 
2269 	va_start(args, fmt);
2270 
2271 	vaf.fmt = fmt;
2272 	vaf.va = &args;
2273 
2274 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2275 
2276 	va_end(args);
2277 }
2278 
2279 void _udf_warn(struct super_block *sb, const char *function,
2280 	       const char *fmt, ...)
2281 {
2282 	struct va_format vaf;
2283 	va_list args;
2284 
2285 	va_start(args, fmt);
2286 
2287 	vaf.fmt = fmt;
2288 	vaf.va = &args;
2289 
2290 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2291 
2292 	va_end(args);
2293 }
2294 
2295 static void udf_put_super(struct super_block *sb)
2296 {
2297 	struct udf_sb_info *sbi;
2298 
2299 	sbi = UDF_SB(sb);
2300 
2301 	iput(sbi->s_vat_inode);
2302 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2303 		unload_nls(sbi->s_nls_map);
2304 	if (!sb_rdonly(sb))
2305 		udf_close_lvid(sb);
2306 	brelse(sbi->s_lvid_bh);
2307 	udf_sb_free_partitions(sb);
2308 	mutex_destroy(&sbi->s_alloc_mutex);
2309 	kfree(sb->s_fs_info);
2310 	sb->s_fs_info = NULL;
2311 }
2312 
2313 static int udf_sync_fs(struct super_block *sb, int wait)
2314 {
2315 	struct udf_sb_info *sbi = UDF_SB(sb);
2316 
2317 	mutex_lock(&sbi->s_alloc_mutex);
2318 	if (sbi->s_lvid_dirty) {
2319 		/*
2320 		 * Blockdevice will be synced later so we don't have to submit
2321 		 * the buffer for IO
2322 		 */
2323 		mark_buffer_dirty(sbi->s_lvid_bh);
2324 		sbi->s_lvid_dirty = 0;
2325 	}
2326 	mutex_unlock(&sbi->s_alloc_mutex);
2327 
2328 	return 0;
2329 }
2330 
2331 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2332 {
2333 	struct super_block *sb = dentry->d_sb;
2334 	struct udf_sb_info *sbi = UDF_SB(sb);
2335 	struct logicalVolIntegrityDescImpUse *lvidiu;
2336 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2337 
2338 	lvidiu = udf_sb_lvidiu(sb);
2339 	buf->f_type = UDF_SUPER_MAGIC;
2340 	buf->f_bsize = sb->s_blocksize;
2341 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2342 	buf->f_bfree = udf_count_free(sb);
2343 	buf->f_bavail = buf->f_bfree;
2344 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2345 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2346 			+ buf->f_bfree;
2347 	buf->f_ffree = buf->f_bfree;
2348 	buf->f_namelen = UDF_NAME_LEN;
2349 	buf->f_fsid.val[0] = (u32)id;
2350 	buf->f_fsid.val[1] = (u32)(id >> 32);
2351 
2352 	return 0;
2353 }
2354 
2355 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2356 					  struct udf_bitmap *bitmap)
2357 {
2358 	struct buffer_head *bh = NULL;
2359 	unsigned int accum = 0;
2360 	int index;
2361 	udf_pblk_t block = 0, newblock;
2362 	struct kernel_lb_addr loc;
2363 	uint32_t bytes;
2364 	uint8_t *ptr;
2365 	uint16_t ident;
2366 	struct spaceBitmapDesc *bm;
2367 
2368 	loc.logicalBlockNum = bitmap->s_extPosition;
2369 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2370 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2371 
2372 	if (!bh) {
2373 		udf_err(sb, "udf_count_free failed\n");
2374 		goto out;
2375 	} else if (ident != TAG_IDENT_SBD) {
2376 		brelse(bh);
2377 		udf_err(sb, "udf_count_free failed\n");
2378 		goto out;
2379 	}
2380 
2381 	bm = (struct spaceBitmapDesc *)bh->b_data;
2382 	bytes = le32_to_cpu(bm->numOfBytes);
2383 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2384 	ptr = (uint8_t *)bh->b_data;
2385 
2386 	while (bytes > 0) {
2387 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2388 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2389 					cur_bytes * 8);
2390 		bytes -= cur_bytes;
2391 		if (bytes) {
2392 			brelse(bh);
2393 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2394 			bh = udf_tread(sb, newblock);
2395 			if (!bh) {
2396 				udf_debug("read failed\n");
2397 				goto out;
2398 			}
2399 			index = 0;
2400 			ptr = (uint8_t *)bh->b_data;
2401 		}
2402 	}
2403 	brelse(bh);
2404 out:
2405 	return accum;
2406 }
2407 
2408 static unsigned int udf_count_free_table(struct super_block *sb,
2409 					 struct inode *table)
2410 {
2411 	unsigned int accum = 0;
2412 	uint32_t elen;
2413 	struct kernel_lb_addr eloc;
2414 	int8_t etype;
2415 	struct extent_position epos;
2416 
2417 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2418 	epos.block = UDF_I(table)->i_location;
2419 	epos.offset = sizeof(struct unallocSpaceEntry);
2420 	epos.bh = NULL;
2421 
2422 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2423 		accum += (elen >> table->i_sb->s_blocksize_bits);
2424 
2425 	brelse(epos.bh);
2426 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2427 
2428 	return accum;
2429 }
2430 
2431 static unsigned int udf_count_free(struct super_block *sb)
2432 {
2433 	unsigned int accum = 0;
2434 	struct udf_sb_info *sbi;
2435 	struct udf_part_map *map;
2436 
2437 	sbi = UDF_SB(sb);
2438 	if (sbi->s_lvid_bh) {
2439 		struct logicalVolIntegrityDesc *lvid =
2440 			(struct logicalVolIntegrityDesc *)
2441 			sbi->s_lvid_bh->b_data;
2442 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2443 			accum = le32_to_cpu(
2444 					lvid->freeSpaceTable[sbi->s_partition]);
2445 			if (accum == 0xFFFFFFFF)
2446 				accum = 0;
2447 		}
2448 	}
2449 
2450 	if (accum)
2451 		return accum;
2452 
2453 	map = &sbi->s_partmaps[sbi->s_partition];
2454 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2455 		accum += udf_count_free_bitmap(sb,
2456 					       map->s_uspace.s_bitmap);
2457 	}
2458 	if (accum)
2459 		return accum;
2460 
2461 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2462 		accum += udf_count_free_table(sb,
2463 					      map->s_uspace.s_table);
2464 	}
2465 	return accum;
2466 }
2467 
2468 MODULE_AUTHOR("Ben Fennema");
2469 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2470 MODULE_LICENSE("GPL");
2471 module_init(init_udf_fs)
2472 module_exit(exit_udf_fs)
2473