1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * super.c 4 * 5 * PURPOSE 6 * Super block routines for the OSTA-UDF(tm) filesystem. 7 * 8 * DESCRIPTION 9 * OSTA-UDF(tm) = Optical Storage Technology Association 10 * Universal Disk Format. 11 * 12 * This code is based on version 2.00 of the UDF specification, 13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 14 * http://www.osta.org/ 15 * https://www.ecma.ch/ 16 * https://www.iso.org/ 17 * 18 * COPYRIGHT 19 * (C) 1998 Dave Boynton 20 * (C) 1998-2004 Ben Fennema 21 * (C) 2000 Stelias Computing Inc 22 * 23 * HISTORY 24 * 25 * 09/24/98 dgb changed to allow compiling outside of kernel, and 26 * added some debugging. 27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 28 * 10/16/98 attempting some multi-session support 29 * 10/17/98 added freespace count for "df" 30 * 11/11/98 gr added novrs option 31 * 11/26/98 dgb added fileset,anchor mount options 32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 33 * vol descs. rewrote option handling based on isofs 34 * 12/20/98 find the free space bitmap (if it exists) 35 */ 36 37 #include "udfdecl.h" 38 39 #include <linux/blkdev.h> 40 #include <linux/slab.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/parser.h> 44 #include <linux/stat.h> 45 #include <linux/cdrom.h> 46 #include <linux/nls.h> 47 #include <linux/vfs.h> 48 #include <linux/vmalloc.h> 49 #include <linux/errno.h> 50 #include <linux/mount.h> 51 #include <linux/seq_file.h> 52 #include <linux/bitmap.h> 53 #include <linux/crc-itu-t.h> 54 #include <linux/log2.h> 55 #include <asm/byteorder.h> 56 #include <linux/iversion.h> 57 58 #include "udf_sb.h" 59 #include "udf_i.h" 60 61 #include <linux/init.h> 62 #include <linux/uaccess.h> 63 64 enum { 65 VDS_POS_PRIMARY_VOL_DESC, 66 VDS_POS_UNALLOC_SPACE_DESC, 67 VDS_POS_LOGICAL_VOL_DESC, 68 VDS_POS_IMP_USE_VOL_DESC, 69 VDS_POS_LENGTH 70 }; 71 72 #define VSD_FIRST_SECTOR_OFFSET 32768 73 #define VSD_MAX_SECTOR_OFFSET 0x800000 74 75 /* 76 * Maximum number of Terminating Descriptor / Logical Volume Integrity 77 * Descriptor redirections. The chosen numbers are arbitrary - just that we 78 * hopefully don't limit any real use of rewritten inode on write-once media 79 * but avoid looping for too long on corrupted media. 80 */ 81 #define UDF_MAX_TD_NESTING 64 82 #define UDF_MAX_LVID_NESTING 1000 83 84 enum { UDF_MAX_LINKS = 0xffff }; 85 /* 86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports 87 * more but because the file space is described by a linked list of extents, 88 * each of which can have at most 1GB, the creation and handling of extents 89 * gets unusably slow beyond certain point... 90 */ 91 #define UDF_MAX_FILESIZE (1ULL << 42) 92 93 /* These are the "meat" - everything else is stuffing */ 94 static int udf_fill_super(struct super_block *, void *, int); 95 static void udf_put_super(struct super_block *); 96 static int udf_sync_fs(struct super_block *, int); 97 static int udf_remount_fs(struct super_block *, int *, char *); 98 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 116 offset = partnum * 2 * sizeof(uint32_t); 117 return (struct logicalVolIntegrityDescImpUse *) 118 (((uint8_t *)(lvid + 1)) + offset); 119 } 120 121 /* UDF filesystem type */ 122 static struct dentry *udf_mount(struct file_system_type *fs_type, 123 int flags, const char *dev_name, void *data) 124 { 125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 126 } 127 128 static struct file_system_type udf_fstype = { 129 .owner = THIS_MODULE, 130 .name = "udf", 131 .mount = udf_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("udf"); 136 137 static struct kmem_cache *udf_inode_cachep; 138 139 static struct inode *udf_alloc_inode(struct super_block *sb) 140 { 141 struct udf_inode_info *ei; 142 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL); 143 if (!ei) 144 return NULL; 145 146 ei->i_unique = 0; 147 ei->i_lenExtents = 0; 148 ei->i_lenStreams = 0; 149 ei->i_next_alloc_block = 0; 150 ei->i_next_alloc_goal = 0; 151 ei->i_strat4096 = 0; 152 ei->i_streamdir = 0; 153 ei->i_hidden = 0; 154 init_rwsem(&ei->i_data_sem); 155 ei->cached_extent.lstart = -1; 156 spin_lock_init(&ei->i_extent_cache_lock); 157 inode_set_iversion(&ei->vfs_inode, 1); 158 159 return &ei->vfs_inode; 160 } 161 162 static void udf_free_in_core_inode(struct inode *inode) 163 { 164 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 165 } 166 167 static void init_once(void *foo) 168 { 169 struct udf_inode_info *ei = foo; 170 171 ei->i_data = NULL; 172 inode_init_once(&ei->vfs_inode); 173 } 174 175 static int __init init_inodecache(void) 176 { 177 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 178 sizeof(struct udf_inode_info), 179 0, (SLAB_RECLAIM_ACCOUNT | 180 SLAB_MEM_SPREAD | 181 SLAB_ACCOUNT), 182 init_once); 183 if (!udf_inode_cachep) 184 return -ENOMEM; 185 return 0; 186 } 187 188 static void destroy_inodecache(void) 189 { 190 /* 191 * Make sure all delayed rcu free inodes are flushed before we 192 * destroy cache. 193 */ 194 rcu_barrier(); 195 kmem_cache_destroy(udf_inode_cachep); 196 } 197 198 /* Superblock operations */ 199 static const struct super_operations udf_sb_ops = { 200 .alloc_inode = udf_alloc_inode, 201 .free_inode = udf_free_in_core_inode, 202 .write_inode = udf_write_inode, 203 .evict_inode = udf_evict_inode, 204 .put_super = udf_put_super, 205 .sync_fs = udf_sync_fs, 206 .statfs = udf_statfs, 207 .remount_fs = udf_remount_fs, 208 .show_options = udf_show_options, 209 }; 210 211 struct udf_options { 212 unsigned char novrs; 213 unsigned int blocksize; 214 unsigned int session; 215 unsigned int lastblock; 216 unsigned int anchor; 217 unsigned int flags; 218 umode_t umask; 219 kgid_t gid; 220 kuid_t uid; 221 umode_t fmode; 222 umode_t dmode; 223 struct nls_table *nls_map; 224 }; 225 226 static int __init init_udf_fs(void) 227 { 228 int err; 229 230 err = init_inodecache(); 231 if (err) 232 goto out1; 233 err = register_filesystem(&udf_fstype); 234 if (err) 235 goto out; 236 237 return 0; 238 239 out: 240 destroy_inodecache(); 241 242 out1: 243 return err; 244 } 245 246 static void __exit exit_udf_fs(void) 247 { 248 unregister_filesystem(&udf_fstype); 249 destroy_inodecache(); 250 } 251 252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 253 { 254 struct udf_sb_info *sbi = UDF_SB(sb); 255 256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 257 if (!sbi->s_partmaps) { 258 sbi->s_partitions = 0; 259 return -ENOMEM; 260 } 261 262 sbi->s_partitions = count; 263 return 0; 264 } 265 266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 267 { 268 int i; 269 int nr_groups = bitmap->s_nr_groups; 270 271 for (i = 0; i < nr_groups; i++) 272 if (!IS_ERR_OR_NULL(bitmap->s_block_bitmap[i])) 273 brelse(bitmap->s_block_bitmap[i]); 274 275 kvfree(bitmap); 276 } 277 278 static void udf_free_partition(struct udf_part_map *map) 279 { 280 int i; 281 struct udf_meta_data *mdata; 282 283 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 284 iput(map->s_uspace.s_table); 285 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 286 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 287 if (map->s_partition_type == UDF_SPARABLE_MAP15) 288 for (i = 0; i < 4; i++) 289 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 290 else if (map->s_partition_type == UDF_METADATA_MAP25) { 291 mdata = &map->s_type_specific.s_metadata; 292 iput(mdata->s_metadata_fe); 293 mdata->s_metadata_fe = NULL; 294 295 iput(mdata->s_mirror_fe); 296 mdata->s_mirror_fe = NULL; 297 298 iput(mdata->s_bitmap_fe); 299 mdata->s_bitmap_fe = NULL; 300 } 301 } 302 303 static void udf_sb_free_partitions(struct super_block *sb) 304 { 305 struct udf_sb_info *sbi = UDF_SB(sb); 306 int i; 307 308 if (!sbi->s_partmaps) 309 return; 310 for (i = 0; i < sbi->s_partitions; i++) 311 udf_free_partition(&sbi->s_partmaps[i]); 312 kfree(sbi->s_partmaps); 313 sbi->s_partmaps = NULL; 314 } 315 316 static int udf_show_options(struct seq_file *seq, struct dentry *root) 317 { 318 struct super_block *sb = root->d_sb; 319 struct udf_sb_info *sbi = UDF_SB(sb); 320 321 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 322 seq_puts(seq, ",nostrict"); 323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 324 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 326 seq_puts(seq, ",unhide"); 327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 328 seq_puts(seq, ",undelete"); 329 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 330 seq_puts(seq, ",noadinicb"); 331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 332 seq_puts(seq, ",shortad"); 333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 334 seq_puts(seq, ",uid=forget"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 336 seq_puts(seq, ",gid=forget"); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 338 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 340 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 341 if (sbi->s_umask != 0) 342 seq_printf(seq, ",umask=%ho", sbi->s_umask); 343 if (sbi->s_fmode != UDF_INVALID_MODE) 344 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 345 if (sbi->s_dmode != UDF_INVALID_MODE) 346 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 348 seq_printf(seq, ",session=%d", sbi->s_session); 349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 350 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 351 if (sbi->s_anchor != 0) 352 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 353 if (sbi->s_nls_map) 354 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 355 else 356 seq_puts(seq, ",iocharset=utf8"); 357 358 return 0; 359 } 360 361 /* 362 * udf_parse_options 363 * 364 * PURPOSE 365 * Parse mount options. 366 * 367 * DESCRIPTION 368 * The following mount options are supported: 369 * 370 * gid= Set the default group. 371 * umask= Set the default umask. 372 * mode= Set the default file permissions. 373 * dmode= Set the default directory permissions. 374 * uid= Set the default user. 375 * bs= Set the block size. 376 * unhide Show otherwise hidden files. 377 * undelete Show deleted files in lists. 378 * adinicb Embed data in the inode (default) 379 * noadinicb Don't embed data in the inode 380 * shortad Use short ad's 381 * longad Use long ad's (default) 382 * nostrict Unset strict conformance 383 * iocharset= Set the NLS character set 384 * 385 * The remaining are for debugging and disaster recovery: 386 * 387 * novrs Skip volume sequence recognition 388 * 389 * The following expect a offset from 0. 390 * 391 * session= Set the CDROM session (default= last session) 392 * anchor= Override standard anchor location. (default= 256) 393 * volume= Override the VolumeDesc location. (unused) 394 * partition= Override the PartitionDesc location. (unused) 395 * lastblock= Set the last block of the filesystem/ 396 * 397 * The following expect a offset from the partition root. 398 * 399 * fileset= Override the fileset block location. (unused) 400 * rootdir= Override the root directory location. (unused) 401 * WARNING: overriding the rootdir to a non-directory may 402 * yield highly unpredictable results. 403 * 404 * PRE-CONDITIONS 405 * options Pointer to mount options string. 406 * uopts Pointer to mount options variable. 407 * 408 * POST-CONDITIONS 409 * <return> 1 Mount options parsed okay. 410 * <return> 0 Error parsing mount options. 411 * 412 * HISTORY 413 * July 1, 1997 - Andrew E. Mileski 414 * Written, tested, and released. 415 */ 416 417 enum { 418 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 419 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 420 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 421 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 422 Opt_rootdir, Opt_utf8, Opt_iocharset, 423 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 424 Opt_fmode, Opt_dmode 425 }; 426 427 static const match_table_t tokens = { 428 {Opt_novrs, "novrs"}, 429 {Opt_nostrict, "nostrict"}, 430 {Opt_bs, "bs=%u"}, 431 {Opt_unhide, "unhide"}, 432 {Opt_undelete, "undelete"}, 433 {Opt_noadinicb, "noadinicb"}, 434 {Opt_adinicb, "adinicb"}, 435 {Opt_shortad, "shortad"}, 436 {Opt_longad, "longad"}, 437 {Opt_uforget, "uid=forget"}, 438 {Opt_uignore, "uid=ignore"}, 439 {Opt_gforget, "gid=forget"}, 440 {Opt_gignore, "gid=ignore"}, 441 {Opt_gid, "gid=%u"}, 442 {Opt_uid, "uid=%u"}, 443 {Opt_umask, "umask=%o"}, 444 {Opt_session, "session=%u"}, 445 {Opt_lastblock, "lastblock=%u"}, 446 {Opt_anchor, "anchor=%u"}, 447 {Opt_volume, "volume=%u"}, 448 {Opt_partition, "partition=%u"}, 449 {Opt_fileset, "fileset=%u"}, 450 {Opt_rootdir, "rootdir=%u"}, 451 {Opt_utf8, "utf8"}, 452 {Opt_iocharset, "iocharset=%s"}, 453 {Opt_fmode, "mode=%o"}, 454 {Opt_dmode, "dmode=%o"}, 455 {Opt_err, NULL} 456 }; 457 458 static int udf_parse_options(char *options, struct udf_options *uopt, 459 bool remount) 460 { 461 char *p; 462 int option; 463 unsigned int uv; 464 465 uopt->novrs = 0; 466 uopt->session = 0xFFFFFFFF; 467 uopt->lastblock = 0; 468 uopt->anchor = 0; 469 470 if (!options) 471 return 1; 472 473 while ((p = strsep(&options, ",")) != NULL) { 474 substring_t args[MAX_OPT_ARGS]; 475 int token; 476 unsigned n; 477 if (!*p) 478 continue; 479 480 token = match_token(p, tokens, args); 481 switch (token) { 482 case Opt_novrs: 483 uopt->novrs = 1; 484 break; 485 case Opt_bs: 486 if (match_int(&args[0], &option)) 487 return 0; 488 n = option; 489 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 490 return 0; 491 uopt->blocksize = n; 492 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 493 break; 494 case Opt_unhide: 495 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 496 break; 497 case Opt_undelete: 498 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 499 break; 500 case Opt_noadinicb: 501 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 502 break; 503 case Opt_adinicb: 504 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 505 break; 506 case Opt_shortad: 507 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 508 break; 509 case Opt_longad: 510 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 511 break; 512 case Opt_gid: 513 if (match_uint(args, &uv)) 514 return 0; 515 uopt->gid = make_kgid(current_user_ns(), uv); 516 if (!gid_valid(uopt->gid)) 517 return 0; 518 uopt->flags |= (1 << UDF_FLAG_GID_SET); 519 break; 520 case Opt_uid: 521 if (match_uint(args, &uv)) 522 return 0; 523 uopt->uid = make_kuid(current_user_ns(), uv); 524 if (!uid_valid(uopt->uid)) 525 return 0; 526 uopt->flags |= (1 << UDF_FLAG_UID_SET); 527 break; 528 case Opt_umask: 529 if (match_octal(args, &option)) 530 return 0; 531 uopt->umask = option; 532 break; 533 case Opt_nostrict: 534 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 535 break; 536 case Opt_session: 537 if (match_int(args, &option)) 538 return 0; 539 uopt->session = option; 540 if (!remount) 541 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 542 break; 543 case Opt_lastblock: 544 if (match_int(args, &option)) 545 return 0; 546 uopt->lastblock = option; 547 if (!remount) 548 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 549 break; 550 case Opt_anchor: 551 if (match_int(args, &option)) 552 return 0; 553 uopt->anchor = option; 554 break; 555 case Opt_volume: 556 case Opt_partition: 557 case Opt_fileset: 558 case Opt_rootdir: 559 /* Ignored (never implemented properly) */ 560 break; 561 case Opt_utf8: 562 if (!remount) { 563 unload_nls(uopt->nls_map); 564 uopt->nls_map = NULL; 565 } 566 break; 567 case Opt_iocharset: 568 if (!remount) { 569 unload_nls(uopt->nls_map); 570 uopt->nls_map = NULL; 571 } 572 /* When nls_map is not loaded then UTF-8 is used */ 573 if (!remount && strcmp(args[0].from, "utf8") != 0) { 574 uopt->nls_map = load_nls(args[0].from); 575 if (!uopt->nls_map) { 576 pr_err("iocharset %s not found\n", 577 args[0].from); 578 return 0; 579 } 580 } 581 break; 582 case Opt_uforget: 583 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 584 break; 585 case Opt_uignore: 586 case Opt_gignore: 587 /* These options are superseeded by uid=<number> */ 588 break; 589 case Opt_gforget: 590 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 591 break; 592 case Opt_fmode: 593 if (match_octal(args, &option)) 594 return 0; 595 uopt->fmode = option & 0777; 596 break; 597 case Opt_dmode: 598 if (match_octal(args, &option)) 599 return 0; 600 uopt->dmode = option & 0777; 601 break; 602 default: 603 pr_err("bad mount option \"%s\" or missing value\n", p); 604 return 0; 605 } 606 } 607 return 1; 608 } 609 610 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 611 { 612 struct udf_options uopt; 613 struct udf_sb_info *sbi = UDF_SB(sb); 614 int error = 0; 615 616 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 617 return -EACCES; 618 619 sync_filesystem(sb); 620 621 uopt.flags = sbi->s_flags; 622 uopt.uid = sbi->s_uid; 623 uopt.gid = sbi->s_gid; 624 uopt.umask = sbi->s_umask; 625 uopt.fmode = sbi->s_fmode; 626 uopt.dmode = sbi->s_dmode; 627 uopt.nls_map = NULL; 628 629 if (!udf_parse_options(options, &uopt, true)) 630 return -EINVAL; 631 632 write_lock(&sbi->s_cred_lock); 633 sbi->s_flags = uopt.flags; 634 sbi->s_uid = uopt.uid; 635 sbi->s_gid = uopt.gid; 636 sbi->s_umask = uopt.umask; 637 sbi->s_fmode = uopt.fmode; 638 sbi->s_dmode = uopt.dmode; 639 write_unlock(&sbi->s_cred_lock); 640 641 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 642 goto out_unlock; 643 644 if (*flags & SB_RDONLY) 645 udf_close_lvid(sb); 646 else 647 udf_open_lvid(sb); 648 649 out_unlock: 650 return error; 651 } 652 653 /* 654 * Check VSD descriptor. Returns -1 in case we are at the end of volume 655 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 656 * we found one of NSR descriptors we are looking for. 657 */ 658 static int identify_vsd(const struct volStructDesc *vsd) 659 { 660 int ret = 0; 661 662 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 663 switch (vsd->structType) { 664 case 0: 665 udf_debug("ISO9660 Boot Record found\n"); 666 break; 667 case 1: 668 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 669 break; 670 case 2: 671 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 672 break; 673 case 3: 674 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 675 break; 676 case 255: 677 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 678 break; 679 default: 680 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 681 break; 682 } 683 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 684 ; /* ret = 0 */ 685 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 686 ret = 1; 687 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 688 ret = 1; 689 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 690 ; /* ret = 0 */ 691 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 692 ; /* ret = 0 */ 693 else { 694 /* TEA01 or invalid id : end of volume recognition area */ 695 ret = -1; 696 } 697 698 return ret; 699 } 700 701 /* 702 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 703 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 704 * @return 1 if NSR02 or NSR03 found, 705 * -1 if first sector read error, 0 otherwise 706 */ 707 static int udf_check_vsd(struct super_block *sb) 708 { 709 struct volStructDesc *vsd = NULL; 710 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 711 int sectorsize; 712 struct buffer_head *bh = NULL; 713 int nsr = 0; 714 struct udf_sb_info *sbi; 715 loff_t session_offset; 716 717 sbi = UDF_SB(sb); 718 if (sb->s_blocksize < sizeof(struct volStructDesc)) 719 sectorsize = sizeof(struct volStructDesc); 720 else 721 sectorsize = sb->s_blocksize; 722 723 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; 724 sector += session_offset; 725 726 udf_debug("Starting at sector %u (%lu byte sectors)\n", 727 (unsigned int)(sector >> sb->s_blocksize_bits), 728 sb->s_blocksize); 729 /* Process the sequence (if applicable). The hard limit on the sector 730 * offset is arbitrary, hopefully large enough so that all valid UDF 731 * filesystems will be recognised. There is no mention of an upper 732 * bound to the size of the volume recognition area in the standard. 733 * The limit will prevent the code to read all the sectors of a 734 * specially crafted image (like a bluray disc full of CD001 sectors), 735 * potentially causing minutes or even hours of uninterruptible I/O 736 * activity. This actually happened with uninitialised SSD partitions 737 * (all 0xFF) before the check for the limit and all valid IDs were 738 * added */ 739 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 740 /* Read a block */ 741 bh = sb_bread(sb, sector >> sb->s_blocksize_bits); 742 if (!bh) 743 break; 744 745 vsd = (struct volStructDesc *)(bh->b_data + 746 (sector & (sb->s_blocksize - 1))); 747 nsr = identify_vsd(vsd); 748 /* Found NSR or end? */ 749 if (nsr) { 750 brelse(bh); 751 break; 752 } 753 /* 754 * Special handling for improperly formatted VRS (e.g., Win10) 755 * where components are separated by 2048 bytes even though 756 * sectors are 4K 757 */ 758 if (sb->s_blocksize == 4096) { 759 nsr = identify_vsd(vsd + 1); 760 /* Ignore unknown IDs... */ 761 if (nsr < 0) 762 nsr = 0; 763 } 764 brelse(bh); 765 } 766 767 if (nsr > 0) 768 return 1; 769 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) 770 return -1; 771 else 772 return 0; 773 } 774 775 static int udf_verify_domain_identifier(struct super_block *sb, 776 struct regid *ident, char *dname) 777 { 778 struct domainIdentSuffix *suffix; 779 780 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 781 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 782 goto force_ro; 783 } 784 if (ident->flags & ENTITYID_FLAGS_DIRTY) { 785 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 786 dname); 787 goto force_ro; 788 } 789 suffix = (struct domainIdentSuffix *)ident->identSuffix; 790 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || 791 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { 792 if (!sb_rdonly(sb)) { 793 udf_warn(sb, "Descriptor for %s marked write protected." 794 " Forcing read only mount.\n", dname); 795 } 796 goto force_ro; 797 } 798 return 0; 799 800 force_ro: 801 if (!sb_rdonly(sb)) 802 return -EACCES; 803 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 804 return 0; 805 } 806 807 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 808 struct kernel_lb_addr *root) 809 { 810 int ret; 811 812 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 813 if (ret < 0) 814 return ret; 815 816 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 817 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 818 819 udf_debug("Rootdir at block=%u, partition=%u\n", 820 root->logicalBlockNum, root->partitionReferenceNum); 821 return 0; 822 } 823 824 static int udf_find_fileset(struct super_block *sb, 825 struct kernel_lb_addr *fileset, 826 struct kernel_lb_addr *root) 827 { 828 struct buffer_head *bh; 829 uint16_t ident; 830 int ret; 831 832 if (fileset->logicalBlockNum == 0xFFFFFFFF && 833 fileset->partitionReferenceNum == 0xFFFF) 834 return -EINVAL; 835 836 bh = udf_read_ptagged(sb, fileset, 0, &ident); 837 if (!bh) 838 return -EIO; 839 if (ident != TAG_IDENT_FSD) { 840 brelse(bh); 841 return -EINVAL; 842 } 843 844 udf_debug("Fileset at block=%u, partition=%u\n", 845 fileset->logicalBlockNum, fileset->partitionReferenceNum); 846 847 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 848 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 849 brelse(bh); 850 return ret; 851 } 852 853 /* 854 * Load primary Volume Descriptor Sequence 855 * 856 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 857 * should be tried. 858 */ 859 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 860 { 861 struct primaryVolDesc *pvoldesc; 862 uint8_t *outstr; 863 struct buffer_head *bh; 864 uint16_t ident; 865 int ret; 866 struct timestamp *ts; 867 868 outstr = kmalloc(128, GFP_NOFS); 869 if (!outstr) 870 return -ENOMEM; 871 872 bh = udf_read_tagged(sb, block, block, &ident); 873 if (!bh) { 874 ret = -EAGAIN; 875 goto out2; 876 } 877 878 if (ident != TAG_IDENT_PVD) { 879 ret = -EIO; 880 goto out_bh; 881 } 882 883 pvoldesc = (struct primaryVolDesc *)bh->b_data; 884 885 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 886 pvoldesc->recordingDateAndTime); 887 ts = &pvoldesc->recordingDateAndTime; 888 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 889 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 890 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 891 892 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 893 if (ret < 0) { 894 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 895 pr_warn("incorrect volume identification, setting to " 896 "'InvalidName'\n"); 897 } else { 898 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 899 } 900 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 901 902 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 903 if (ret < 0) { 904 ret = 0; 905 goto out_bh; 906 } 907 outstr[ret] = 0; 908 udf_debug("volSetIdent[] = '%s'\n", outstr); 909 910 ret = 0; 911 out_bh: 912 brelse(bh); 913 out2: 914 kfree(outstr); 915 return ret; 916 } 917 918 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 919 u32 meta_file_loc, u32 partition_ref) 920 { 921 struct kernel_lb_addr addr; 922 struct inode *metadata_fe; 923 924 addr.logicalBlockNum = meta_file_loc; 925 addr.partitionReferenceNum = partition_ref; 926 927 metadata_fe = udf_iget_special(sb, &addr); 928 929 if (IS_ERR(metadata_fe)) { 930 udf_warn(sb, "metadata inode efe not found\n"); 931 return metadata_fe; 932 } 933 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 934 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 935 iput(metadata_fe); 936 return ERR_PTR(-EIO); 937 } 938 939 return metadata_fe; 940 } 941 942 static int udf_load_metadata_files(struct super_block *sb, int partition, 943 int type1_index) 944 { 945 struct udf_sb_info *sbi = UDF_SB(sb); 946 struct udf_part_map *map; 947 struct udf_meta_data *mdata; 948 struct kernel_lb_addr addr; 949 struct inode *fe; 950 951 map = &sbi->s_partmaps[partition]; 952 mdata = &map->s_type_specific.s_metadata; 953 mdata->s_phys_partition_ref = type1_index; 954 955 /* metadata address */ 956 udf_debug("Metadata file location: block = %u part = %u\n", 957 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 958 959 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 960 mdata->s_phys_partition_ref); 961 if (IS_ERR(fe)) { 962 /* mirror file entry */ 963 udf_debug("Mirror metadata file location: block = %u part = %u\n", 964 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 965 966 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 967 mdata->s_phys_partition_ref); 968 969 if (IS_ERR(fe)) { 970 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 971 return PTR_ERR(fe); 972 } 973 mdata->s_mirror_fe = fe; 974 } else 975 mdata->s_metadata_fe = fe; 976 977 978 /* 979 * bitmap file entry 980 * Note: 981 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 982 */ 983 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 984 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 985 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 986 987 udf_debug("Bitmap file location: block = %u part = %u\n", 988 addr.logicalBlockNum, addr.partitionReferenceNum); 989 990 fe = udf_iget_special(sb, &addr); 991 if (IS_ERR(fe)) { 992 if (sb_rdonly(sb)) 993 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 994 else { 995 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 996 return PTR_ERR(fe); 997 } 998 } else 999 mdata->s_bitmap_fe = fe; 1000 } 1001 1002 udf_debug("udf_load_metadata_files Ok\n"); 1003 return 0; 1004 } 1005 1006 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1007 { 1008 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1009 return DIV_ROUND_UP(map->s_partition_len + 1010 (sizeof(struct spaceBitmapDesc) << 3), 1011 sb->s_blocksize * 8); 1012 } 1013 1014 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1015 { 1016 struct udf_bitmap *bitmap; 1017 int nr_groups = udf_compute_nr_groups(sb, index); 1018 1019 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), 1020 GFP_KERNEL); 1021 if (!bitmap) 1022 return NULL; 1023 1024 bitmap->s_nr_groups = nr_groups; 1025 return bitmap; 1026 } 1027 1028 static int check_partition_desc(struct super_block *sb, 1029 struct partitionDesc *p, 1030 struct udf_part_map *map) 1031 { 1032 bool umap, utable, fmap, ftable; 1033 struct partitionHeaderDesc *phd; 1034 1035 switch (le32_to_cpu(p->accessType)) { 1036 case PD_ACCESS_TYPE_READ_ONLY: 1037 case PD_ACCESS_TYPE_WRITE_ONCE: 1038 case PD_ACCESS_TYPE_NONE: 1039 goto force_ro; 1040 } 1041 1042 /* No Partition Header Descriptor? */ 1043 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1044 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1045 goto force_ro; 1046 1047 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1048 utable = phd->unallocSpaceTable.extLength; 1049 umap = phd->unallocSpaceBitmap.extLength; 1050 ftable = phd->freedSpaceTable.extLength; 1051 fmap = phd->freedSpaceBitmap.extLength; 1052 1053 /* No allocation info? */ 1054 if (!utable && !umap && !ftable && !fmap) 1055 goto force_ro; 1056 1057 /* We don't support blocks that require erasing before overwrite */ 1058 if (ftable || fmap) 1059 goto force_ro; 1060 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1061 if (utable && umap) 1062 goto force_ro; 1063 1064 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1065 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1066 map->s_partition_type == UDF_METADATA_MAP25) 1067 goto force_ro; 1068 1069 return 0; 1070 force_ro: 1071 if (!sb_rdonly(sb)) 1072 return -EACCES; 1073 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1074 return 0; 1075 } 1076 1077 static int udf_fill_partdesc_info(struct super_block *sb, 1078 struct partitionDesc *p, int p_index) 1079 { 1080 struct udf_part_map *map; 1081 struct udf_sb_info *sbi = UDF_SB(sb); 1082 struct partitionHeaderDesc *phd; 1083 int err; 1084 1085 map = &sbi->s_partmaps[p_index]; 1086 1087 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1088 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1089 1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1091 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1093 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1094 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1095 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1097 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1098 1099 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1100 p_index, map->s_partition_type, 1101 map->s_partition_root, map->s_partition_len); 1102 1103 err = check_partition_desc(sb, p, map); 1104 if (err) 1105 return err; 1106 1107 /* 1108 * Skip loading allocation info it we cannot ever write to the fs. 1109 * This is a correctness thing as we may have decided to force ro mount 1110 * to avoid allocation info we don't support. 1111 */ 1112 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1113 return 0; 1114 1115 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1116 if (phd->unallocSpaceTable.extLength) { 1117 struct kernel_lb_addr loc = { 1118 .logicalBlockNum = le32_to_cpu( 1119 phd->unallocSpaceTable.extPosition), 1120 .partitionReferenceNum = p_index, 1121 }; 1122 struct inode *inode; 1123 1124 inode = udf_iget_special(sb, &loc); 1125 if (IS_ERR(inode)) { 1126 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1127 p_index); 1128 return PTR_ERR(inode); 1129 } 1130 map->s_uspace.s_table = inode; 1131 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1132 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1133 p_index, map->s_uspace.s_table->i_ino); 1134 } 1135 1136 if (phd->unallocSpaceBitmap.extLength) { 1137 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1138 if (!bitmap) 1139 return -ENOMEM; 1140 map->s_uspace.s_bitmap = bitmap; 1141 bitmap->s_extPosition = le32_to_cpu( 1142 phd->unallocSpaceBitmap.extPosition); 1143 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1144 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1145 p_index, bitmap->s_extPosition); 1146 } 1147 1148 return 0; 1149 } 1150 1151 static void udf_find_vat_block(struct super_block *sb, int p_index, 1152 int type1_index, sector_t start_block) 1153 { 1154 struct udf_sb_info *sbi = UDF_SB(sb); 1155 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1156 sector_t vat_block; 1157 struct kernel_lb_addr ino; 1158 struct inode *inode; 1159 1160 /* 1161 * VAT file entry is in the last recorded block. Some broken disks have 1162 * it a few blocks before so try a bit harder... 1163 */ 1164 ino.partitionReferenceNum = type1_index; 1165 for (vat_block = start_block; 1166 vat_block >= map->s_partition_root && 1167 vat_block >= start_block - 3; vat_block--) { 1168 ino.logicalBlockNum = vat_block - map->s_partition_root; 1169 inode = udf_iget_special(sb, &ino); 1170 if (!IS_ERR(inode)) { 1171 sbi->s_vat_inode = inode; 1172 break; 1173 } 1174 } 1175 } 1176 1177 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1178 { 1179 struct udf_sb_info *sbi = UDF_SB(sb); 1180 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1181 struct buffer_head *bh = NULL; 1182 struct udf_inode_info *vati; 1183 struct virtualAllocationTable20 *vat20; 1184 sector_t blocks = sb_bdev_nr_blocks(sb); 1185 1186 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1187 if (!sbi->s_vat_inode && 1188 sbi->s_last_block != blocks - 1) { 1189 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1190 (unsigned long)sbi->s_last_block, 1191 (unsigned long)blocks - 1); 1192 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1193 } 1194 if (!sbi->s_vat_inode) 1195 return -EIO; 1196 1197 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1198 map->s_type_specific.s_virtual.s_start_offset = 0; 1199 map->s_type_specific.s_virtual.s_num_entries = 1200 (sbi->s_vat_inode->i_size - 36) >> 2; 1201 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1202 vati = UDF_I(sbi->s_vat_inode); 1203 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1204 int err = 0; 1205 1206 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err); 1207 if (!bh) { 1208 if (!err) 1209 err = -EFSCORRUPTED; 1210 return err; 1211 } 1212 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1213 } else { 1214 vat20 = (struct virtualAllocationTable20 *) 1215 vati->i_data; 1216 } 1217 1218 map->s_type_specific.s_virtual.s_start_offset = 1219 le16_to_cpu(vat20->lengthHeader); 1220 map->s_type_specific.s_virtual.s_num_entries = 1221 (sbi->s_vat_inode->i_size - 1222 map->s_type_specific.s_virtual. 1223 s_start_offset) >> 2; 1224 brelse(bh); 1225 } 1226 return 0; 1227 } 1228 1229 /* 1230 * Load partition descriptor block 1231 * 1232 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1233 * sequence. 1234 */ 1235 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1236 { 1237 struct buffer_head *bh; 1238 struct partitionDesc *p; 1239 struct udf_part_map *map; 1240 struct udf_sb_info *sbi = UDF_SB(sb); 1241 int i, type1_idx; 1242 uint16_t partitionNumber; 1243 uint16_t ident; 1244 int ret; 1245 1246 bh = udf_read_tagged(sb, block, block, &ident); 1247 if (!bh) 1248 return -EAGAIN; 1249 if (ident != TAG_IDENT_PD) { 1250 ret = 0; 1251 goto out_bh; 1252 } 1253 1254 p = (struct partitionDesc *)bh->b_data; 1255 partitionNumber = le16_to_cpu(p->partitionNumber); 1256 1257 /* First scan for TYPE1 and SPARABLE partitions */ 1258 for (i = 0; i < sbi->s_partitions; i++) { 1259 map = &sbi->s_partmaps[i]; 1260 udf_debug("Searching map: (%u == %u)\n", 1261 map->s_partition_num, partitionNumber); 1262 if (map->s_partition_num == partitionNumber && 1263 (map->s_partition_type == UDF_TYPE1_MAP15 || 1264 map->s_partition_type == UDF_SPARABLE_MAP15)) 1265 break; 1266 } 1267 1268 if (i >= sbi->s_partitions) { 1269 udf_debug("Partition (%u) not found in partition map\n", 1270 partitionNumber); 1271 ret = 0; 1272 goto out_bh; 1273 } 1274 1275 ret = udf_fill_partdesc_info(sb, p, i); 1276 if (ret < 0) 1277 goto out_bh; 1278 1279 /* 1280 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1281 * PHYSICAL partitions are already set up 1282 */ 1283 type1_idx = i; 1284 map = NULL; /* supress 'maybe used uninitialized' warning */ 1285 for (i = 0; i < sbi->s_partitions; i++) { 1286 map = &sbi->s_partmaps[i]; 1287 1288 if (map->s_partition_num == partitionNumber && 1289 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1290 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1291 map->s_partition_type == UDF_METADATA_MAP25)) 1292 break; 1293 } 1294 1295 if (i >= sbi->s_partitions) { 1296 ret = 0; 1297 goto out_bh; 1298 } 1299 1300 ret = udf_fill_partdesc_info(sb, p, i); 1301 if (ret < 0) 1302 goto out_bh; 1303 1304 if (map->s_partition_type == UDF_METADATA_MAP25) { 1305 ret = udf_load_metadata_files(sb, i, type1_idx); 1306 if (ret < 0) { 1307 udf_err(sb, "error loading MetaData partition map %d\n", 1308 i); 1309 goto out_bh; 1310 } 1311 } else { 1312 /* 1313 * If we have a partition with virtual map, we don't handle 1314 * writing to it (we overwrite blocks instead of relocating 1315 * them). 1316 */ 1317 if (!sb_rdonly(sb)) { 1318 ret = -EACCES; 1319 goto out_bh; 1320 } 1321 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1322 ret = udf_load_vat(sb, i, type1_idx); 1323 if (ret < 0) 1324 goto out_bh; 1325 } 1326 ret = 0; 1327 out_bh: 1328 /* In case loading failed, we handle cleanup in udf_fill_super */ 1329 brelse(bh); 1330 return ret; 1331 } 1332 1333 static int udf_load_sparable_map(struct super_block *sb, 1334 struct udf_part_map *map, 1335 struct sparablePartitionMap *spm) 1336 { 1337 uint32_t loc; 1338 uint16_t ident; 1339 struct sparingTable *st; 1340 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1341 int i; 1342 struct buffer_head *bh; 1343 1344 map->s_partition_type = UDF_SPARABLE_MAP15; 1345 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1346 if (!is_power_of_2(sdata->s_packet_len)) { 1347 udf_err(sb, "error loading logical volume descriptor: " 1348 "Invalid packet length %u\n", 1349 (unsigned)sdata->s_packet_len); 1350 return -EIO; 1351 } 1352 if (spm->numSparingTables > 4) { 1353 udf_err(sb, "error loading logical volume descriptor: " 1354 "Too many sparing tables (%d)\n", 1355 (int)spm->numSparingTables); 1356 return -EIO; 1357 } 1358 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { 1359 udf_err(sb, "error loading logical volume descriptor: " 1360 "Too big sparing table size (%u)\n", 1361 le32_to_cpu(spm->sizeSparingTable)); 1362 return -EIO; 1363 } 1364 1365 for (i = 0; i < spm->numSparingTables; i++) { 1366 loc = le32_to_cpu(spm->locSparingTable[i]); 1367 bh = udf_read_tagged(sb, loc, loc, &ident); 1368 if (!bh) 1369 continue; 1370 1371 st = (struct sparingTable *)bh->b_data; 1372 if (ident != 0 || 1373 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1374 strlen(UDF_ID_SPARING)) || 1375 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1376 sb->s_blocksize) { 1377 brelse(bh); 1378 continue; 1379 } 1380 1381 sdata->s_spar_map[i] = bh; 1382 } 1383 map->s_partition_func = udf_get_pblock_spar15; 1384 return 0; 1385 } 1386 1387 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1388 struct kernel_lb_addr *fileset) 1389 { 1390 struct logicalVolDesc *lvd; 1391 int i, offset; 1392 uint8_t type; 1393 struct udf_sb_info *sbi = UDF_SB(sb); 1394 struct genericPartitionMap *gpm; 1395 uint16_t ident; 1396 struct buffer_head *bh; 1397 unsigned int table_len; 1398 int ret; 1399 1400 bh = udf_read_tagged(sb, block, block, &ident); 1401 if (!bh) 1402 return -EAGAIN; 1403 BUG_ON(ident != TAG_IDENT_LVD); 1404 lvd = (struct logicalVolDesc *)bh->b_data; 1405 table_len = le32_to_cpu(lvd->mapTableLength); 1406 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1407 udf_err(sb, "error loading logical volume descriptor: " 1408 "Partition table too long (%u > %lu)\n", table_len, 1409 sb->s_blocksize - sizeof(*lvd)); 1410 ret = -EIO; 1411 goto out_bh; 1412 } 1413 1414 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1415 "logical volume"); 1416 if (ret) 1417 goto out_bh; 1418 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1419 if (ret) 1420 goto out_bh; 1421 1422 for (i = 0, offset = 0; 1423 i < sbi->s_partitions && offset < table_len; 1424 i++, offset += gpm->partitionMapLength) { 1425 struct udf_part_map *map = &sbi->s_partmaps[i]; 1426 gpm = (struct genericPartitionMap *) 1427 &(lvd->partitionMaps[offset]); 1428 type = gpm->partitionMapType; 1429 if (type == 1) { 1430 struct genericPartitionMap1 *gpm1 = 1431 (struct genericPartitionMap1 *)gpm; 1432 map->s_partition_type = UDF_TYPE1_MAP15; 1433 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1434 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1435 map->s_partition_func = NULL; 1436 } else if (type == 2) { 1437 struct udfPartitionMap2 *upm2 = 1438 (struct udfPartitionMap2 *)gpm; 1439 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1440 strlen(UDF_ID_VIRTUAL))) { 1441 u16 suf = 1442 le16_to_cpu(((__le16 *)upm2->partIdent. 1443 identSuffix)[0]); 1444 if (suf < 0x0200) { 1445 map->s_partition_type = 1446 UDF_VIRTUAL_MAP15; 1447 map->s_partition_func = 1448 udf_get_pblock_virt15; 1449 } else { 1450 map->s_partition_type = 1451 UDF_VIRTUAL_MAP20; 1452 map->s_partition_func = 1453 udf_get_pblock_virt20; 1454 } 1455 } else if (!strncmp(upm2->partIdent.ident, 1456 UDF_ID_SPARABLE, 1457 strlen(UDF_ID_SPARABLE))) { 1458 ret = udf_load_sparable_map(sb, map, 1459 (struct sparablePartitionMap *)gpm); 1460 if (ret < 0) 1461 goto out_bh; 1462 } else if (!strncmp(upm2->partIdent.ident, 1463 UDF_ID_METADATA, 1464 strlen(UDF_ID_METADATA))) { 1465 struct udf_meta_data *mdata = 1466 &map->s_type_specific.s_metadata; 1467 struct metadataPartitionMap *mdm = 1468 (struct metadataPartitionMap *) 1469 &(lvd->partitionMaps[offset]); 1470 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1471 i, type, UDF_ID_METADATA); 1472 1473 map->s_partition_type = UDF_METADATA_MAP25; 1474 map->s_partition_func = udf_get_pblock_meta25; 1475 1476 mdata->s_meta_file_loc = 1477 le32_to_cpu(mdm->metadataFileLoc); 1478 mdata->s_mirror_file_loc = 1479 le32_to_cpu(mdm->metadataMirrorFileLoc); 1480 mdata->s_bitmap_file_loc = 1481 le32_to_cpu(mdm->metadataBitmapFileLoc); 1482 mdata->s_alloc_unit_size = 1483 le32_to_cpu(mdm->allocUnitSize); 1484 mdata->s_align_unit_size = 1485 le16_to_cpu(mdm->alignUnitSize); 1486 if (mdm->flags & 0x01) 1487 mdata->s_flags |= MF_DUPLICATE_MD; 1488 1489 udf_debug("Metadata Ident suffix=0x%x\n", 1490 le16_to_cpu(*(__le16 *) 1491 mdm->partIdent.identSuffix)); 1492 udf_debug("Metadata part num=%u\n", 1493 le16_to_cpu(mdm->partitionNum)); 1494 udf_debug("Metadata part alloc unit size=%u\n", 1495 le32_to_cpu(mdm->allocUnitSize)); 1496 udf_debug("Metadata file loc=%u\n", 1497 le32_to_cpu(mdm->metadataFileLoc)); 1498 udf_debug("Mirror file loc=%u\n", 1499 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1500 udf_debug("Bitmap file loc=%u\n", 1501 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1502 udf_debug("Flags: %d %u\n", 1503 mdata->s_flags, mdm->flags); 1504 } else { 1505 udf_debug("Unknown ident: %s\n", 1506 upm2->partIdent.ident); 1507 continue; 1508 } 1509 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1510 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1511 } 1512 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1513 i, map->s_partition_num, type, map->s_volumeseqnum); 1514 } 1515 1516 if (fileset) { 1517 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1518 1519 *fileset = lelb_to_cpu(la->extLocation); 1520 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1521 fileset->logicalBlockNum, 1522 fileset->partitionReferenceNum); 1523 } 1524 if (lvd->integritySeqExt.extLength) 1525 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1526 ret = 0; 1527 1528 if (!sbi->s_lvid_bh) { 1529 /* We can't generate unique IDs without a valid LVID */ 1530 if (sb_rdonly(sb)) { 1531 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1532 } else { 1533 udf_warn(sb, "Damaged or missing LVID, forcing " 1534 "readonly mount\n"); 1535 ret = -EACCES; 1536 } 1537 } 1538 out_bh: 1539 brelse(bh); 1540 return ret; 1541 } 1542 1543 /* 1544 * Find the prevailing Logical Volume Integrity Descriptor. 1545 */ 1546 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1547 { 1548 struct buffer_head *bh, *final_bh; 1549 uint16_t ident; 1550 struct udf_sb_info *sbi = UDF_SB(sb); 1551 struct logicalVolIntegrityDesc *lvid; 1552 int indirections = 0; 1553 u32 parts, impuselen; 1554 1555 while (++indirections <= UDF_MAX_LVID_NESTING) { 1556 final_bh = NULL; 1557 while (loc.extLength > 0 && 1558 (bh = udf_read_tagged(sb, loc.extLocation, 1559 loc.extLocation, &ident))) { 1560 if (ident != TAG_IDENT_LVID) { 1561 brelse(bh); 1562 break; 1563 } 1564 1565 brelse(final_bh); 1566 final_bh = bh; 1567 1568 loc.extLength -= sb->s_blocksize; 1569 loc.extLocation++; 1570 } 1571 1572 if (!final_bh) 1573 return; 1574 1575 brelse(sbi->s_lvid_bh); 1576 sbi->s_lvid_bh = final_bh; 1577 1578 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1579 if (lvid->nextIntegrityExt.extLength == 0) 1580 goto check; 1581 1582 loc = leea_to_cpu(lvid->nextIntegrityExt); 1583 } 1584 1585 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1586 UDF_MAX_LVID_NESTING); 1587 out_err: 1588 brelse(sbi->s_lvid_bh); 1589 sbi->s_lvid_bh = NULL; 1590 return; 1591 check: 1592 parts = le32_to_cpu(lvid->numOfPartitions); 1593 impuselen = le32_to_cpu(lvid->lengthOfImpUse); 1594 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize || 1595 sizeof(struct logicalVolIntegrityDesc) + impuselen + 1596 2 * parts * sizeof(u32) > sb->s_blocksize) { 1597 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), " 1598 "ignoring.\n", parts, impuselen); 1599 goto out_err; 1600 } 1601 } 1602 1603 /* 1604 * Step for reallocation of table of partition descriptor sequence numbers. 1605 * Must be power of 2. 1606 */ 1607 #define PART_DESC_ALLOC_STEP 32 1608 1609 struct part_desc_seq_scan_data { 1610 struct udf_vds_record rec; 1611 u32 partnum; 1612 }; 1613 1614 struct desc_seq_scan_data { 1615 struct udf_vds_record vds[VDS_POS_LENGTH]; 1616 unsigned int size_part_descs; 1617 unsigned int num_part_descs; 1618 struct part_desc_seq_scan_data *part_descs_loc; 1619 }; 1620 1621 static struct udf_vds_record *handle_partition_descriptor( 1622 struct buffer_head *bh, 1623 struct desc_seq_scan_data *data) 1624 { 1625 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1626 int partnum; 1627 int i; 1628 1629 partnum = le16_to_cpu(desc->partitionNumber); 1630 for (i = 0; i < data->num_part_descs; i++) 1631 if (partnum == data->part_descs_loc[i].partnum) 1632 return &(data->part_descs_loc[i].rec); 1633 if (data->num_part_descs >= data->size_part_descs) { 1634 struct part_desc_seq_scan_data *new_loc; 1635 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1636 1637 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1638 if (!new_loc) 1639 return ERR_PTR(-ENOMEM); 1640 memcpy(new_loc, data->part_descs_loc, 1641 data->size_part_descs * sizeof(*new_loc)); 1642 kfree(data->part_descs_loc); 1643 data->part_descs_loc = new_loc; 1644 data->size_part_descs = new_size; 1645 } 1646 return &(data->part_descs_loc[data->num_part_descs++].rec); 1647 } 1648 1649 1650 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1651 struct buffer_head *bh, struct desc_seq_scan_data *data) 1652 { 1653 switch (ident) { 1654 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1655 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1656 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1657 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1658 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1659 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1660 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1661 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1662 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1663 return handle_partition_descriptor(bh, data); 1664 } 1665 return NULL; 1666 } 1667 1668 /* 1669 * Process a main/reserve volume descriptor sequence. 1670 * @block First block of first extent of the sequence. 1671 * @lastblock Lastblock of first extent of the sequence. 1672 * @fileset There we store extent containing root fileset 1673 * 1674 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1675 * sequence 1676 */ 1677 static noinline int udf_process_sequence( 1678 struct super_block *sb, 1679 sector_t block, sector_t lastblock, 1680 struct kernel_lb_addr *fileset) 1681 { 1682 struct buffer_head *bh = NULL; 1683 struct udf_vds_record *curr; 1684 struct generic_desc *gd; 1685 struct volDescPtr *vdp; 1686 bool done = false; 1687 uint32_t vdsn; 1688 uint16_t ident; 1689 int ret; 1690 unsigned int indirections = 0; 1691 struct desc_seq_scan_data data; 1692 unsigned int i; 1693 1694 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1695 data.size_part_descs = PART_DESC_ALLOC_STEP; 1696 data.num_part_descs = 0; 1697 data.part_descs_loc = kcalloc(data.size_part_descs, 1698 sizeof(*data.part_descs_loc), 1699 GFP_KERNEL); 1700 if (!data.part_descs_loc) 1701 return -ENOMEM; 1702 1703 /* 1704 * Read the main descriptor sequence and find which descriptors 1705 * are in it. 1706 */ 1707 for (; (!done && block <= lastblock); block++) { 1708 bh = udf_read_tagged(sb, block, block, &ident); 1709 if (!bh) 1710 break; 1711 1712 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1713 gd = (struct generic_desc *)bh->b_data; 1714 vdsn = le32_to_cpu(gd->volDescSeqNum); 1715 switch (ident) { 1716 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1717 if (++indirections > UDF_MAX_TD_NESTING) { 1718 udf_err(sb, "too many Volume Descriptor " 1719 "Pointers (max %u supported)\n", 1720 UDF_MAX_TD_NESTING); 1721 brelse(bh); 1722 ret = -EIO; 1723 goto out; 1724 } 1725 1726 vdp = (struct volDescPtr *)bh->b_data; 1727 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1728 lastblock = le32_to_cpu( 1729 vdp->nextVolDescSeqExt.extLength) >> 1730 sb->s_blocksize_bits; 1731 lastblock += block - 1; 1732 /* For loop is going to increment 'block' again */ 1733 block--; 1734 break; 1735 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1736 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1737 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1738 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1739 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1740 curr = get_volume_descriptor_record(ident, bh, &data); 1741 if (IS_ERR(curr)) { 1742 brelse(bh); 1743 ret = PTR_ERR(curr); 1744 goto out; 1745 } 1746 /* Descriptor we don't care about? */ 1747 if (!curr) 1748 break; 1749 if (vdsn >= curr->volDescSeqNum) { 1750 curr->volDescSeqNum = vdsn; 1751 curr->block = block; 1752 } 1753 break; 1754 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1755 done = true; 1756 break; 1757 } 1758 brelse(bh); 1759 } 1760 /* 1761 * Now read interesting descriptors again and process them 1762 * in a suitable order 1763 */ 1764 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1765 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1766 ret = -EAGAIN; 1767 goto out; 1768 } 1769 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1770 if (ret < 0) 1771 goto out; 1772 1773 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1774 ret = udf_load_logicalvol(sb, 1775 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1776 fileset); 1777 if (ret < 0) 1778 goto out; 1779 } 1780 1781 /* Now handle prevailing Partition Descriptors */ 1782 for (i = 0; i < data.num_part_descs; i++) { 1783 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1784 if (ret < 0) 1785 goto out; 1786 } 1787 ret = 0; 1788 out: 1789 kfree(data.part_descs_loc); 1790 return ret; 1791 } 1792 1793 /* 1794 * Load Volume Descriptor Sequence described by anchor in bh 1795 * 1796 * Returns <0 on error, 0 on success 1797 */ 1798 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1799 struct kernel_lb_addr *fileset) 1800 { 1801 struct anchorVolDescPtr *anchor; 1802 sector_t main_s, main_e, reserve_s, reserve_e; 1803 int ret; 1804 1805 anchor = (struct anchorVolDescPtr *)bh->b_data; 1806 1807 /* Locate the main sequence */ 1808 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1809 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1810 main_e = main_e >> sb->s_blocksize_bits; 1811 main_e += main_s - 1; 1812 1813 /* Locate the reserve sequence */ 1814 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1815 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1816 reserve_e = reserve_e >> sb->s_blocksize_bits; 1817 reserve_e += reserve_s - 1; 1818 1819 /* Process the main & reserve sequences */ 1820 /* responsible for finding the PartitionDesc(s) */ 1821 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1822 if (ret != -EAGAIN) 1823 return ret; 1824 udf_sb_free_partitions(sb); 1825 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1826 if (ret < 0) { 1827 udf_sb_free_partitions(sb); 1828 /* No sequence was OK, return -EIO */ 1829 if (ret == -EAGAIN) 1830 ret = -EIO; 1831 } 1832 return ret; 1833 } 1834 1835 /* 1836 * Check whether there is an anchor block in the given block and 1837 * load Volume Descriptor Sequence if so. 1838 * 1839 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1840 * block 1841 */ 1842 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1843 struct kernel_lb_addr *fileset) 1844 { 1845 struct buffer_head *bh; 1846 uint16_t ident; 1847 int ret; 1848 1849 bh = udf_read_tagged(sb, block, block, &ident); 1850 if (!bh) 1851 return -EAGAIN; 1852 if (ident != TAG_IDENT_AVDP) { 1853 brelse(bh); 1854 return -EAGAIN; 1855 } 1856 ret = udf_load_sequence(sb, bh, fileset); 1857 brelse(bh); 1858 return ret; 1859 } 1860 1861 /* 1862 * Search for an anchor volume descriptor pointer. 1863 * 1864 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1865 * of anchors. 1866 */ 1867 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock, 1868 struct kernel_lb_addr *fileset) 1869 { 1870 udf_pblk_t last[6]; 1871 int i; 1872 struct udf_sb_info *sbi = UDF_SB(sb); 1873 int last_count = 0; 1874 int ret; 1875 1876 /* First try user provided anchor */ 1877 if (sbi->s_anchor) { 1878 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1879 if (ret != -EAGAIN) 1880 return ret; 1881 } 1882 /* 1883 * according to spec, anchor is in either: 1884 * block 256 1885 * lastblock-256 1886 * lastblock 1887 * however, if the disc isn't closed, it could be 512. 1888 */ 1889 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1890 if (ret != -EAGAIN) 1891 return ret; 1892 /* 1893 * The trouble is which block is the last one. Drives often misreport 1894 * this so we try various possibilities. 1895 */ 1896 last[last_count++] = *lastblock; 1897 if (*lastblock >= 1) 1898 last[last_count++] = *lastblock - 1; 1899 last[last_count++] = *lastblock + 1; 1900 if (*lastblock >= 2) 1901 last[last_count++] = *lastblock - 2; 1902 if (*lastblock >= 150) 1903 last[last_count++] = *lastblock - 150; 1904 if (*lastblock >= 152) 1905 last[last_count++] = *lastblock - 152; 1906 1907 for (i = 0; i < last_count; i++) { 1908 if (last[i] >= sb_bdev_nr_blocks(sb)) 1909 continue; 1910 ret = udf_check_anchor_block(sb, last[i], fileset); 1911 if (ret != -EAGAIN) { 1912 if (!ret) 1913 *lastblock = last[i]; 1914 return ret; 1915 } 1916 if (last[i] < 256) 1917 continue; 1918 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1919 if (ret != -EAGAIN) { 1920 if (!ret) 1921 *lastblock = last[i]; 1922 return ret; 1923 } 1924 } 1925 1926 /* Finally try block 512 in case media is open */ 1927 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1928 } 1929 1930 /* 1931 * Check Volume Structure Descriptor, find Anchor block and load Volume 1932 * Descriptor Sequence. 1933 * 1934 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1935 * block was not found. 1936 */ 1937 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1938 int silent, struct kernel_lb_addr *fileset) 1939 { 1940 struct udf_sb_info *sbi = UDF_SB(sb); 1941 int nsr = 0; 1942 int ret; 1943 1944 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1945 if (!silent) 1946 udf_warn(sb, "Bad block size\n"); 1947 return -EINVAL; 1948 } 1949 sbi->s_last_block = uopt->lastblock; 1950 if (!uopt->novrs) { 1951 /* Check that it is NSR02 compliant */ 1952 nsr = udf_check_vsd(sb); 1953 if (!nsr) { 1954 if (!silent) 1955 udf_warn(sb, "No VRS found\n"); 1956 return -EINVAL; 1957 } 1958 if (nsr == -1) 1959 udf_debug("Failed to read sector at offset %d. " 1960 "Assuming open disc. Skipping validity " 1961 "check\n", VSD_FIRST_SECTOR_OFFSET); 1962 if (!sbi->s_last_block) 1963 sbi->s_last_block = udf_get_last_block(sb); 1964 } else { 1965 udf_debug("Validity check skipped because of novrs option\n"); 1966 } 1967 1968 /* Look for anchor block and load Volume Descriptor Sequence */ 1969 sbi->s_anchor = uopt->anchor; 1970 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset); 1971 if (ret < 0) { 1972 if (!silent && ret == -EAGAIN) 1973 udf_warn(sb, "No anchor found\n"); 1974 return ret; 1975 } 1976 return 0; 1977 } 1978 1979 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 1980 { 1981 struct timespec64 ts; 1982 1983 ktime_get_real_ts64(&ts); 1984 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1985 lvid->descTag.descCRC = cpu_to_le16( 1986 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1987 le16_to_cpu(lvid->descTag.descCRCLength))); 1988 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1989 } 1990 1991 static void udf_open_lvid(struct super_block *sb) 1992 { 1993 struct udf_sb_info *sbi = UDF_SB(sb); 1994 struct buffer_head *bh = sbi->s_lvid_bh; 1995 struct logicalVolIntegrityDesc *lvid; 1996 struct logicalVolIntegrityDescImpUse *lvidiu; 1997 1998 if (!bh) 1999 return; 2000 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2001 lvidiu = udf_sb_lvidiu(sb); 2002 if (!lvidiu) 2003 return; 2004 2005 mutex_lock(&sbi->s_alloc_mutex); 2006 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2007 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2008 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2009 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2010 else 2011 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2012 2013 udf_finalize_lvid(lvid); 2014 mark_buffer_dirty(bh); 2015 sbi->s_lvid_dirty = 0; 2016 mutex_unlock(&sbi->s_alloc_mutex); 2017 /* Make opening of filesystem visible on the media immediately */ 2018 sync_dirty_buffer(bh); 2019 } 2020 2021 static void udf_close_lvid(struct super_block *sb) 2022 { 2023 struct udf_sb_info *sbi = UDF_SB(sb); 2024 struct buffer_head *bh = sbi->s_lvid_bh; 2025 struct logicalVolIntegrityDesc *lvid; 2026 struct logicalVolIntegrityDescImpUse *lvidiu; 2027 2028 if (!bh) 2029 return; 2030 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2031 lvidiu = udf_sb_lvidiu(sb); 2032 if (!lvidiu) 2033 return; 2034 2035 mutex_lock(&sbi->s_alloc_mutex); 2036 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2037 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2038 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2039 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2040 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2041 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2042 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2043 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2044 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2045 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2046 2047 /* 2048 * We set buffer uptodate unconditionally here to avoid spurious 2049 * warnings from mark_buffer_dirty() when previous EIO has marked 2050 * the buffer as !uptodate 2051 */ 2052 set_buffer_uptodate(bh); 2053 udf_finalize_lvid(lvid); 2054 mark_buffer_dirty(bh); 2055 sbi->s_lvid_dirty = 0; 2056 mutex_unlock(&sbi->s_alloc_mutex); 2057 /* Make closing of filesystem visible on the media immediately */ 2058 sync_dirty_buffer(bh); 2059 } 2060 2061 u64 lvid_get_unique_id(struct super_block *sb) 2062 { 2063 struct buffer_head *bh; 2064 struct udf_sb_info *sbi = UDF_SB(sb); 2065 struct logicalVolIntegrityDesc *lvid; 2066 struct logicalVolHeaderDesc *lvhd; 2067 u64 uniqueID; 2068 u64 ret; 2069 2070 bh = sbi->s_lvid_bh; 2071 if (!bh) 2072 return 0; 2073 2074 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2075 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2076 2077 mutex_lock(&sbi->s_alloc_mutex); 2078 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2079 if (!(++uniqueID & 0xFFFFFFFF)) 2080 uniqueID += 16; 2081 lvhd->uniqueID = cpu_to_le64(uniqueID); 2082 udf_updated_lvid(sb); 2083 mutex_unlock(&sbi->s_alloc_mutex); 2084 2085 return ret; 2086 } 2087 2088 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2089 { 2090 int ret = -EINVAL; 2091 struct inode *inode = NULL; 2092 struct udf_options uopt; 2093 struct kernel_lb_addr rootdir, fileset; 2094 struct udf_sb_info *sbi; 2095 bool lvid_open = false; 2096 2097 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2098 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2099 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2100 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2101 uopt.umask = 0; 2102 uopt.fmode = UDF_INVALID_MODE; 2103 uopt.dmode = UDF_INVALID_MODE; 2104 uopt.nls_map = NULL; 2105 2106 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2107 if (!sbi) 2108 return -ENOMEM; 2109 2110 sb->s_fs_info = sbi; 2111 2112 mutex_init(&sbi->s_alloc_mutex); 2113 2114 if (!udf_parse_options((char *)options, &uopt, false)) 2115 goto parse_options_failure; 2116 2117 fileset.logicalBlockNum = 0xFFFFFFFF; 2118 fileset.partitionReferenceNum = 0xFFFF; 2119 2120 sbi->s_flags = uopt.flags; 2121 sbi->s_uid = uopt.uid; 2122 sbi->s_gid = uopt.gid; 2123 sbi->s_umask = uopt.umask; 2124 sbi->s_fmode = uopt.fmode; 2125 sbi->s_dmode = uopt.dmode; 2126 sbi->s_nls_map = uopt.nls_map; 2127 rwlock_init(&sbi->s_cred_lock); 2128 2129 if (uopt.session == 0xFFFFFFFF) 2130 sbi->s_session = udf_get_last_session(sb); 2131 else 2132 sbi->s_session = uopt.session; 2133 2134 udf_debug("Multi-session=%d\n", sbi->s_session); 2135 2136 /* Fill in the rest of the superblock */ 2137 sb->s_op = &udf_sb_ops; 2138 sb->s_export_op = &udf_export_ops; 2139 2140 sb->s_magic = UDF_SUPER_MAGIC; 2141 sb->s_time_gran = 1000; 2142 2143 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2144 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2145 } else { 2146 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2147 while (uopt.blocksize <= 4096) { 2148 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2149 if (ret < 0) { 2150 if (!silent && ret != -EACCES) { 2151 pr_notice("Scanning with blocksize %u failed\n", 2152 uopt.blocksize); 2153 } 2154 brelse(sbi->s_lvid_bh); 2155 sbi->s_lvid_bh = NULL; 2156 /* 2157 * EACCES is special - we want to propagate to 2158 * upper layers that we cannot handle RW mount. 2159 */ 2160 if (ret == -EACCES) 2161 break; 2162 } else 2163 break; 2164 2165 uopt.blocksize <<= 1; 2166 } 2167 } 2168 if (ret < 0) { 2169 if (ret == -EAGAIN) { 2170 udf_warn(sb, "No partition found (1)\n"); 2171 ret = -EINVAL; 2172 } 2173 goto error_out; 2174 } 2175 2176 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2177 2178 if (sbi->s_lvid_bh) { 2179 struct logicalVolIntegrityDescImpUse *lvidiu = 2180 udf_sb_lvidiu(sb); 2181 uint16_t minUDFReadRev; 2182 uint16_t minUDFWriteRev; 2183 2184 if (!lvidiu) { 2185 ret = -EINVAL; 2186 goto error_out; 2187 } 2188 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2189 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2190 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2191 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2192 minUDFReadRev, 2193 UDF_MAX_READ_VERSION); 2194 ret = -EINVAL; 2195 goto error_out; 2196 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2197 if (!sb_rdonly(sb)) { 2198 ret = -EACCES; 2199 goto error_out; 2200 } 2201 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2202 } 2203 2204 sbi->s_udfrev = minUDFWriteRev; 2205 2206 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2207 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2208 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2209 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2210 } 2211 2212 if (!sbi->s_partitions) { 2213 udf_warn(sb, "No partition found (2)\n"); 2214 ret = -EINVAL; 2215 goto error_out; 2216 } 2217 2218 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2219 UDF_PART_FLAG_READ_ONLY) { 2220 if (!sb_rdonly(sb)) { 2221 ret = -EACCES; 2222 goto error_out; 2223 } 2224 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2225 } 2226 2227 ret = udf_find_fileset(sb, &fileset, &rootdir); 2228 if (ret < 0) { 2229 udf_warn(sb, "No fileset found\n"); 2230 goto error_out; 2231 } 2232 2233 if (!silent) { 2234 struct timestamp ts; 2235 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2236 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2237 sbi->s_volume_ident, 2238 le16_to_cpu(ts.year), ts.month, ts.day, 2239 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2240 } 2241 if (!sb_rdonly(sb)) { 2242 udf_open_lvid(sb); 2243 lvid_open = true; 2244 } 2245 2246 /* Assign the root inode */ 2247 /* assign inodes by physical block number */ 2248 /* perhaps it's not extensible enough, but for now ... */ 2249 inode = udf_iget(sb, &rootdir); 2250 if (IS_ERR(inode)) { 2251 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2252 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2253 ret = PTR_ERR(inode); 2254 goto error_out; 2255 } 2256 2257 /* Allocate a dentry for the root inode */ 2258 sb->s_root = d_make_root(inode); 2259 if (!sb->s_root) { 2260 udf_err(sb, "Couldn't allocate root dentry\n"); 2261 ret = -ENOMEM; 2262 goto error_out; 2263 } 2264 sb->s_maxbytes = UDF_MAX_FILESIZE; 2265 sb->s_max_links = UDF_MAX_LINKS; 2266 return 0; 2267 2268 error_out: 2269 iput(sbi->s_vat_inode); 2270 parse_options_failure: 2271 unload_nls(uopt.nls_map); 2272 if (lvid_open) 2273 udf_close_lvid(sb); 2274 brelse(sbi->s_lvid_bh); 2275 udf_sb_free_partitions(sb); 2276 kfree(sbi); 2277 sb->s_fs_info = NULL; 2278 2279 return ret; 2280 } 2281 2282 void _udf_err(struct super_block *sb, const char *function, 2283 const char *fmt, ...) 2284 { 2285 struct va_format vaf; 2286 va_list args; 2287 2288 va_start(args, fmt); 2289 2290 vaf.fmt = fmt; 2291 vaf.va = &args; 2292 2293 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2294 2295 va_end(args); 2296 } 2297 2298 void _udf_warn(struct super_block *sb, const char *function, 2299 const char *fmt, ...) 2300 { 2301 struct va_format vaf; 2302 va_list args; 2303 2304 va_start(args, fmt); 2305 2306 vaf.fmt = fmt; 2307 vaf.va = &args; 2308 2309 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2310 2311 va_end(args); 2312 } 2313 2314 static void udf_put_super(struct super_block *sb) 2315 { 2316 struct udf_sb_info *sbi; 2317 2318 sbi = UDF_SB(sb); 2319 2320 iput(sbi->s_vat_inode); 2321 unload_nls(sbi->s_nls_map); 2322 if (!sb_rdonly(sb)) 2323 udf_close_lvid(sb); 2324 brelse(sbi->s_lvid_bh); 2325 udf_sb_free_partitions(sb); 2326 mutex_destroy(&sbi->s_alloc_mutex); 2327 kfree(sb->s_fs_info); 2328 sb->s_fs_info = NULL; 2329 } 2330 2331 static int udf_sync_fs(struct super_block *sb, int wait) 2332 { 2333 struct udf_sb_info *sbi = UDF_SB(sb); 2334 2335 mutex_lock(&sbi->s_alloc_mutex); 2336 if (sbi->s_lvid_dirty) { 2337 struct buffer_head *bh = sbi->s_lvid_bh; 2338 struct logicalVolIntegrityDesc *lvid; 2339 2340 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2341 udf_finalize_lvid(lvid); 2342 2343 /* 2344 * Blockdevice will be synced later so we don't have to submit 2345 * the buffer for IO 2346 */ 2347 mark_buffer_dirty(bh); 2348 sbi->s_lvid_dirty = 0; 2349 } 2350 mutex_unlock(&sbi->s_alloc_mutex); 2351 2352 return 0; 2353 } 2354 2355 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2356 { 2357 struct super_block *sb = dentry->d_sb; 2358 struct udf_sb_info *sbi = UDF_SB(sb); 2359 struct logicalVolIntegrityDescImpUse *lvidiu; 2360 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2361 2362 lvidiu = udf_sb_lvidiu(sb); 2363 buf->f_type = UDF_SUPER_MAGIC; 2364 buf->f_bsize = sb->s_blocksize; 2365 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2366 buf->f_bfree = udf_count_free(sb); 2367 buf->f_bavail = buf->f_bfree; 2368 /* 2369 * Let's pretend each free block is also a free 'inode' since UDF does 2370 * not have separate preallocated table of inodes. 2371 */ 2372 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2373 le32_to_cpu(lvidiu->numDirs)) : 0) 2374 + buf->f_bfree; 2375 buf->f_ffree = buf->f_bfree; 2376 buf->f_namelen = UDF_NAME_LEN; 2377 buf->f_fsid = u64_to_fsid(id); 2378 2379 return 0; 2380 } 2381 2382 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2383 struct udf_bitmap *bitmap) 2384 { 2385 struct buffer_head *bh = NULL; 2386 unsigned int accum = 0; 2387 int index; 2388 udf_pblk_t block = 0, newblock; 2389 struct kernel_lb_addr loc; 2390 uint32_t bytes; 2391 uint8_t *ptr; 2392 uint16_t ident; 2393 struct spaceBitmapDesc *bm; 2394 2395 loc.logicalBlockNum = bitmap->s_extPosition; 2396 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2397 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2398 2399 if (!bh) { 2400 udf_err(sb, "udf_count_free failed\n"); 2401 goto out; 2402 } else if (ident != TAG_IDENT_SBD) { 2403 brelse(bh); 2404 udf_err(sb, "udf_count_free failed\n"); 2405 goto out; 2406 } 2407 2408 bm = (struct spaceBitmapDesc *)bh->b_data; 2409 bytes = le32_to_cpu(bm->numOfBytes); 2410 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2411 ptr = (uint8_t *)bh->b_data; 2412 2413 while (bytes > 0) { 2414 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2415 accum += bitmap_weight((const unsigned long *)(ptr + index), 2416 cur_bytes * 8); 2417 bytes -= cur_bytes; 2418 if (bytes) { 2419 brelse(bh); 2420 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2421 bh = sb_bread(sb, newblock); 2422 if (!bh) { 2423 udf_debug("read failed\n"); 2424 goto out; 2425 } 2426 index = 0; 2427 ptr = (uint8_t *)bh->b_data; 2428 } 2429 } 2430 brelse(bh); 2431 out: 2432 return accum; 2433 } 2434 2435 static unsigned int udf_count_free_table(struct super_block *sb, 2436 struct inode *table) 2437 { 2438 unsigned int accum = 0; 2439 uint32_t elen; 2440 struct kernel_lb_addr eloc; 2441 struct extent_position epos; 2442 2443 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2444 epos.block = UDF_I(table)->i_location; 2445 epos.offset = sizeof(struct unallocSpaceEntry); 2446 epos.bh = NULL; 2447 2448 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1) 2449 accum += (elen >> table->i_sb->s_blocksize_bits); 2450 2451 brelse(epos.bh); 2452 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2453 2454 return accum; 2455 } 2456 2457 static unsigned int udf_count_free(struct super_block *sb) 2458 { 2459 unsigned int accum = 0; 2460 struct udf_sb_info *sbi = UDF_SB(sb); 2461 struct udf_part_map *map; 2462 unsigned int part = sbi->s_partition; 2463 int ptype = sbi->s_partmaps[part].s_partition_type; 2464 2465 if (ptype == UDF_METADATA_MAP25) { 2466 part = sbi->s_partmaps[part].s_type_specific.s_metadata. 2467 s_phys_partition_ref; 2468 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { 2469 /* 2470 * Filesystems with VAT are append-only and we cannot write to 2471 * them. Let's just report 0 here. 2472 */ 2473 return 0; 2474 } 2475 2476 if (sbi->s_lvid_bh) { 2477 struct logicalVolIntegrityDesc *lvid = 2478 (struct logicalVolIntegrityDesc *) 2479 sbi->s_lvid_bh->b_data; 2480 if (le32_to_cpu(lvid->numOfPartitions) > part) { 2481 accum = le32_to_cpu( 2482 lvid->freeSpaceTable[part]); 2483 if (accum == 0xFFFFFFFF) 2484 accum = 0; 2485 } 2486 } 2487 2488 if (accum) 2489 return accum; 2490 2491 map = &sbi->s_partmaps[part]; 2492 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2493 accum += udf_count_free_bitmap(sb, 2494 map->s_uspace.s_bitmap); 2495 } 2496 if (accum) 2497 return accum; 2498 2499 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2500 accum += udf_count_free_table(sb, 2501 map->s_uspace.s_table); 2502 } 2503 return accum; 2504 } 2505 2506 MODULE_AUTHOR("Ben Fennema"); 2507 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2508 MODULE_LICENSE("GPL"); 2509 module_init(init_udf_fs) 2510 module_exit(exit_udf_fs) 2511