1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/smp_lock.h> 52 #include <linux/buffer_head.h> 53 #include <linux/vfs.h> 54 #include <linux/vmalloc.h> 55 #include <linux/errno.h> 56 #include <linux/mount.h> 57 #include <linux/seq_file.h> 58 #include <linux/bitmap.h> 59 #include <linux/crc-itu-t.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 static char error_buf[1024]; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct vfsmount *); 96 static void udf_error(struct super_block *sb, const char *function, 97 const char *fmt, ...); 98 99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 100 { 101 struct logicalVolIntegrityDesc *lvid = 102 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 103 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 104 __u32 offset = number_of_partitions * 2 * 105 sizeof(uint32_t)/sizeof(uint8_t); 106 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 107 } 108 109 /* UDF filesystem type */ 110 static int udf_get_sb(struct file_system_type *fs_type, 111 int flags, const char *dev_name, void *data, 112 struct vfsmount *mnt) 113 { 114 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt); 115 } 116 117 static struct file_system_type udf_fstype = { 118 .owner = THIS_MODULE, 119 .name = "udf", 120 .get_sb = udf_get_sb, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 125 static struct kmem_cache *udf_inode_cachep; 126 127 static struct inode *udf_alloc_inode(struct super_block *sb) 128 { 129 struct udf_inode_info *ei; 130 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 131 if (!ei) 132 return NULL; 133 134 ei->i_unique = 0; 135 ei->i_lenExtents = 0; 136 ei->i_next_alloc_block = 0; 137 ei->i_next_alloc_goal = 0; 138 ei->i_strat4096 = 0; 139 140 return &ei->vfs_inode; 141 } 142 143 static void udf_destroy_inode(struct inode *inode) 144 { 145 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 146 } 147 148 static void init_once(void *foo) 149 { 150 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 151 152 ei->i_ext.i_data = NULL; 153 inode_init_once(&ei->vfs_inode); 154 } 155 156 static int init_inodecache(void) 157 { 158 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 159 sizeof(struct udf_inode_info), 160 0, (SLAB_RECLAIM_ACCOUNT | 161 SLAB_MEM_SPREAD), 162 init_once); 163 if (!udf_inode_cachep) 164 return -ENOMEM; 165 return 0; 166 } 167 168 static void destroy_inodecache(void) 169 { 170 kmem_cache_destroy(udf_inode_cachep); 171 } 172 173 /* Superblock operations */ 174 static const struct super_operations udf_sb_ops = { 175 .alloc_inode = udf_alloc_inode, 176 .destroy_inode = udf_destroy_inode, 177 .write_inode = udf_write_inode, 178 .delete_inode = udf_delete_inode, 179 .clear_inode = udf_clear_inode, 180 .put_super = udf_put_super, 181 .sync_fs = udf_sync_fs, 182 .statfs = udf_statfs, 183 .remount_fs = udf_remount_fs, 184 .show_options = udf_show_options, 185 }; 186 187 struct udf_options { 188 unsigned char novrs; 189 unsigned int blocksize; 190 unsigned int session; 191 unsigned int lastblock; 192 unsigned int anchor; 193 unsigned int volume; 194 unsigned short partition; 195 unsigned int fileset; 196 unsigned int rootdir; 197 unsigned int flags; 198 mode_t umask; 199 gid_t gid; 200 uid_t uid; 201 mode_t fmode; 202 mode_t dmode; 203 struct nls_table *nls_map; 204 }; 205 206 static int __init init_udf_fs(void) 207 { 208 int err; 209 210 err = init_inodecache(); 211 if (err) 212 goto out1; 213 err = register_filesystem(&udf_fstype); 214 if (err) 215 goto out; 216 217 return 0; 218 219 out: 220 destroy_inodecache(); 221 222 out1: 223 return err; 224 } 225 226 static void __exit exit_udf_fs(void) 227 { 228 unregister_filesystem(&udf_fstype); 229 destroy_inodecache(); 230 } 231 232 module_init(init_udf_fs) 233 module_exit(exit_udf_fs) 234 235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 236 { 237 struct udf_sb_info *sbi = UDF_SB(sb); 238 239 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 240 GFP_KERNEL); 241 if (!sbi->s_partmaps) { 242 udf_error(sb, __func__, 243 "Unable to allocate space for %d partition maps", 244 count); 245 sbi->s_partitions = 0; 246 return -ENOMEM; 247 } 248 249 sbi->s_partitions = count; 250 return 0; 251 } 252 253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt) 254 { 255 struct super_block *sb = mnt->mnt_sb; 256 struct udf_sb_info *sbi = UDF_SB(sb); 257 258 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 259 seq_puts(seq, ",nostrict"); 260 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 261 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 263 seq_puts(seq, ",unhide"); 264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 265 seq_puts(seq, ",undelete"); 266 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 267 seq_puts(seq, ",noadinicb"); 268 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 269 seq_puts(seq, ",shortad"); 270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 271 seq_puts(seq, ",uid=forget"); 272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 273 seq_puts(seq, ",uid=ignore"); 274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 275 seq_puts(seq, ",gid=forget"); 276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 277 seq_puts(seq, ",gid=ignore"); 278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 279 seq_printf(seq, ",uid=%u", sbi->s_uid); 280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 281 seq_printf(seq, ",gid=%u", sbi->s_gid); 282 if (sbi->s_umask != 0) 283 seq_printf(seq, ",umask=%o", sbi->s_umask); 284 if (sbi->s_fmode != UDF_INVALID_MODE) 285 seq_printf(seq, ",mode=%o", sbi->s_fmode); 286 if (sbi->s_dmode != UDF_INVALID_MODE) 287 seq_printf(seq, ",dmode=%o", sbi->s_dmode); 288 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 289 seq_printf(seq, ",session=%u", sbi->s_session); 290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 291 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 292 if (sbi->s_anchor != 0) 293 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 294 /* 295 * volume, partition, fileset and rootdir seem to be ignored 296 * currently 297 */ 298 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 299 seq_puts(seq, ",utf8"); 300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 301 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 302 303 return 0; 304 } 305 306 /* 307 * udf_parse_options 308 * 309 * PURPOSE 310 * Parse mount options. 311 * 312 * DESCRIPTION 313 * The following mount options are supported: 314 * 315 * gid= Set the default group. 316 * umask= Set the default umask. 317 * mode= Set the default file permissions. 318 * dmode= Set the default directory permissions. 319 * uid= Set the default user. 320 * bs= Set the block size. 321 * unhide Show otherwise hidden files. 322 * undelete Show deleted files in lists. 323 * adinicb Embed data in the inode (default) 324 * noadinicb Don't embed data in the inode 325 * shortad Use short ad's 326 * longad Use long ad's (default) 327 * nostrict Unset strict conformance 328 * iocharset= Set the NLS character set 329 * 330 * The remaining are for debugging and disaster recovery: 331 * 332 * novrs Skip volume sequence recognition 333 * 334 * The following expect a offset from 0. 335 * 336 * session= Set the CDROM session (default= last session) 337 * anchor= Override standard anchor location. (default= 256) 338 * volume= Override the VolumeDesc location. (unused) 339 * partition= Override the PartitionDesc location. (unused) 340 * lastblock= Set the last block of the filesystem/ 341 * 342 * The following expect a offset from the partition root. 343 * 344 * fileset= Override the fileset block location. (unused) 345 * rootdir= Override the root directory location. (unused) 346 * WARNING: overriding the rootdir to a non-directory may 347 * yield highly unpredictable results. 348 * 349 * PRE-CONDITIONS 350 * options Pointer to mount options string. 351 * uopts Pointer to mount options variable. 352 * 353 * POST-CONDITIONS 354 * <return> 1 Mount options parsed okay. 355 * <return> 0 Error parsing mount options. 356 * 357 * HISTORY 358 * July 1, 1997 - Andrew E. Mileski 359 * Written, tested, and released. 360 */ 361 362 enum { 363 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 364 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 365 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 366 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 367 Opt_rootdir, Opt_utf8, Opt_iocharset, 368 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 369 Opt_fmode, Opt_dmode 370 }; 371 372 static const match_table_t tokens = { 373 {Opt_novrs, "novrs"}, 374 {Opt_nostrict, "nostrict"}, 375 {Opt_bs, "bs=%u"}, 376 {Opt_unhide, "unhide"}, 377 {Opt_undelete, "undelete"}, 378 {Opt_noadinicb, "noadinicb"}, 379 {Opt_adinicb, "adinicb"}, 380 {Opt_shortad, "shortad"}, 381 {Opt_longad, "longad"}, 382 {Opt_uforget, "uid=forget"}, 383 {Opt_uignore, "uid=ignore"}, 384 {Opt_gforget, "gid=forget"}, 385 {Opt_gignore, "gid=ignore"}, 386 {Opt_gid, "gid=%u"}, 387 {Opt_uid, "uid=%u"}, 388 {Opt_umask, "umask=%o"}, 389 {Opt_session, "session=%u"}, 390 {Opt_lastblock, "lastblock=%u"}, 391 {Opt_anchor, "anchor=%u"}, 392 {Opt_volume, "volume=%u"}, 393 {Opt_partition, "partition=%u"}, 394 {Opt_fileset, "fileset=%u"}, 395 {Opt_rootdir, "rootdir=%u"}, 396 {Opt_utf8, "utf8"}, 397 {Opt_iocharset, "iocharset=%s"}, 398 {Opt_fmode, "mode=%o"}, 399 {Opt_dmode, "dmode=%o"}, 400 {Opt_err, NULL} 401 }; 402 403 static int udf_parse_options(char *options, struct udf_options *uopt, 404 bool remount) 405 { 406 char *p; 407 int option; 408 409 uopt->novrs = 0; 410 uopt->partition = 0xFFFF; 411 uopt->session = 0xFFFFFFFF; 412 uopt->lastblock = 0; 413 uopt->anchor = 0; 414 uopt->volume = 0xFFFFFFFF; 415 uopt->rootdir = 0xFFFFFFFF; 416 uopt->fileset = 0xFFFFFFFF; 417 uopt->nls_map = NULL; 418 419 if (!options) 420 return 1; 421 422 while ((p = strsep(&options, ",")) != NULL) { 423 substring_t args[MAX_OPT_ARGS]; 424 int token; 425 if (!*p) 426 continue; 427 428 token = match_token(p, tokens, args); 429 switch (token) { 430 case Opt_novrs: 431 uopt->novrs = 1; 432 break; 433 case Opt_bs: 434 if (match_int(&args[0], &option)) 435 return 0; 436 uopt->blocksize = option; 437 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 438 break; 439 case Opt_unhide: 440 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 441 break; 442 case Opt_undelete: 443 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 444 break; 445 case Opt_noadinicb: 446 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 447 break; 448 case Opt_adinicb: 449 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 450 break; 451 case Opt_shortad: 452 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 453 break; 454 case Opt_longad: 455 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 456 break; 457 case Opt_gid: 458 if (match_int(args, &option)) 459 return 0; 460 uopt->gid = option; 461 uopt->flags |= (1 << UDF_FLAG_GID_SET); 462 break; 463 case Opt_uid: 464 if (match_int(args, &option)) 465 return 0; 466 uopt->uid = option; 467 uopt->flags |= (1 << UDF_FLAG_UID_SET); 468 break; 469 case Opt_umask: 470 if (match_octal(args, &option)) 471 return 0; 472 uopt->umask = option; 473 break; 474 case Opt_nostrict: 475 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 476 break; 477 case Opt_session: 478 if (match_int(args, &option)) 479 return 0; 480 uopt->session = option; 481 if (!remount) 482 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 483 break; 484 case Opt_lastblock: 485 if (match_int(args, &option)) 486 return 0; 487 uopt->lastblock = option; 488 if (!remount) 489 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 490 break; 491 case Opt_anchor: 492 if (match_int(args, &option)) 493 return 0; 494 uopt->anchor = option; 495 break; 496 case Opt_volume: 497 if (match_int(args, &option)) 498 return 0; 499 uopt->volume = option; 500 break; 501 case Opt_partition: 502 if (match_int(args, &option)) 503 return 0; 504 uopt->partition = option; 505 break; 506 case Opt_fileset: 507 if (match_int(args, &option)) 508 return 0; 509 uopt->fileset = option; 510 break; 511 case Opt_rootdir: 512 if (match_int(args, &option)) 513 return 0; 514 uopt->rootdir = option; 515 break; 516 case Opt_utf8: 517 uopt->flags |= (1 << UDF_FLAG_UTF8); 518 break; 519 #ifdef CONFIG_UDF_NLS 520 case Opt_iocharset: 521 uopt->nls_map = load_nls(args[0].from); 522 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 523 break; 524 #endif 525 case Opt_uignore: 526 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 527 break; 528 case Opt_uforget: 529 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 530 break; 531 case Opt_gignore: 532 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 533 break; 534 case Opt_gforget: 535 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 536 break; 537 case Opt_fmode: 538 if (match_octal(args, &option)) 539 return 0; 540 uopt->fmode = option & 0777; 541 break; 542 case Opt_dmode: 543 if (match_octal(args, &option)) 544 return 0; 545 uopt->dmode = option & 0777; 546 break; 547 default: 548 printk(KERN_ERR "udf: bad mount option \"%s\" " 549 "or missing value\n", p); 550 return 0; 551 } 552 } 553 return 1; 554 } 555 556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 557 { 558 struct udf_options uopt; 559 struct udf_sb_info *sbi = UDF_SB(sb); 560 561 uopt.flags = sbi->s_flags; 562 uopt.uid = sbi->s_uid; 563 uopt.gid = sbi->s_gid; 564 uopt.umask = sbi->s_umask; 565 uopt.fmode = sbi->s_fmode; 566 uopt.dmode = sbi->s_dmode; 567 568 if (!udf_parse_options(options, &uopt, true)) 569 return -EINVAL; 570 571 sbi->s_flags = uopt.flags; 572 sbi->s_uid = uopt.uid; 573 sbi->s_gid = uopt.gid; 574 sbi->s_umask = uopt.umask; 575 sbi->s_fmode = uopt.fmode; 576 sbi->s_dmode = uopt.dmode; 577 578 if (sbi->s_lvid_bh) { 579 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 580 if (write_rev > UDF_MAX_WRITE_VERSION) 581 *flags |= MS_RDONLY; 582 } 583 584 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 585 return 0; 586 if (*flags & MS_RDONLY) 587 udf_close_lvid(sb); 588 else 589 udf_open_lvid(sb); 590 591 return 0; 592 } 593 594 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 595 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 596 static loff_t udf_check_vsd(struct super_block *sb) 597 { 598 struct volStructDesc *vsd = NULL; 599 loff_t sector = 32768; 600 int sectorsize; 601 struct buffer_head *bh = NULL; 602 int nsr02 = 0; 603 int nsr03 = 0; 604 struct udf_sb_info *sbi; 605 606 sbi = UDF_SB(sb); 607 if (sb->s_blocksize < sizeof(struct volStructDesc)) 608 sectorsize = sizeof(struct volStructDesc); 609 else 610 sectorsize = sb->s_blocksize; 611 612 sector += (sbi->s_session << sb->s_blocksize_bits); 613 614 udf_debug("Starting at sector %u (%ld byte sectors)\n", 615 (unsigned int)(sector >> sb->s_blocksize_bits), 616 sb->s_blocksize); 617 /* Process the sequence (if applicable) */ 618 for (; !nsr02 && !nsr03; sector += sectorsize) { 619 /* Read a block */ 620 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 621 if (!bh) 622 break; 623 624 /* Look for ISO descriptors */ 625 vsd = (struct volStructDesc *)(bh->b_data + 626 (sector & (sb->s_blocksize - 1))); 627 628 if (vsd->stdIdent[0] == 0) { 629 brelse(bh); 630 break; 631 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 632 VSD_STD_ID_LEN)) { 633 switch (vsd->structType) { 634 case 0: 635 udf_debug("ISO9660 Boot Record found\n"); 636 break; 637 case 1: 638 udf_debug("ISO9660 Primary Volume Descriptor " 639 "found\n"); 640 break; 641 case 2: 642 udf_debug("ISO9660 Supplementary Volume " 643 "Descriptor found\n"); 644 break; 645 case 3: 646 udf_debug("ISO9660 Volume Partition Descriptor " 647 "found\n"); 648 break; 649 case 255: 650 udf_debug("ISO9660 Volume Descriptor Set " 651 "Terminator found\n"); 652 break; 653 default: 654 udf_debug("ISO9660 VRS (%u) found\n", 655 vsd->structType); 656 break; 657 } 658 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 659 VSD_STD_ID_LEN)) 660 ; /* nothing */ 661 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 662 VSD_STD_ID_LEN)) { 663 brelse(bh); 664 break; 665 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 666 VSD_STD_ID_LEN)) 667 nsr02 = sector; 668 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 669 VSD_STD_ID_LEN)) 670 nsr03 = sector; 671 brelse(bh); 672 } 673 674 if (nsr03) 675 return nsr03; 676 else if (nsr02) 677 return nsr02; 678 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 679 return -1; 680 else 681 return 0; 682 } 683 684 static int udf_find_fileset(struct super_block *sb, 685 struct kernel_lb_addr *fileset, 686 struct kernel_lb_addr *root) 687 { 688 struct buffer_head *bh = NULL; 689 long lastblock; 690 uint16_t ident; 691 struct udf_sb_info *sbi; 692 693 if (fileset->logicalBlockNum != 0xFFFFFFFF || 694 fileset->partitionReferenceNum != 0xFFFF) { 695 bh = udf_read_ptagged(sb, fileset, 0, &ident); 696 697 if (!bh) { 698 return 1; 699 } else if (ident != TAG_IDENT_FSD) { 700 brelse(bh); 701 return 1; 702 } 703 704 } 705 706 sbi = UDF_SB(sb); 707 if (!bh) { 708 /* Search backwards through the partitions */ 709 struct kernel_lb_addr newfileset; 710 711 /* --> cvg: FIXME - is it reasonable? */ 712 return 1; 713 714 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 715 (newfileset.partitionReferenceNum != 0xFFFF && 716 fileset->logicalBlockNum == 0xFFFFFFFF && 717 fileset->partitionReferenceNum == 0xFFFF); 718 newfileset.partitionReferenceNum--) { 719 lastblock = sbi->s_partmaps 720 [newfileset.partitionReferenceNum] 721 .s_partition_len; 722 newfileset.logicalBlockNum = 0; 723 724 do { 725 bh = udf_read_ptagged(sb, &newfileset, 0, 726 &ident); 727 if (!bh) { 728 newfileset.logicalBlockNum++; 729 continue; 730 } 731 732 switch (ident) { 733 case TAG_IDENT_SBD: 734 { 735 struct spaceBitmapDesc *sp; 736 sp = (struct spaceBitmapDesc *) 737 bh->b_data; 738 newfileset.logicalBlockNum += 1 + 739 ((le32_to_cpu(sp->numOfBytes) + 740 sizeof(struct spaceBitmapDesc) 741 - 1) >> sb->s_blocksize_bits); 742 brelse(bh); 743 break; 744 } 745 case TAG_IDENT_FSD: 746 *fileset = newfileset; 747 break; 748 default: 749 newfileset.logicalBlockNum++; 750 brelse(bh); 751 bh = NULL; 752 break; 753 } 754 } while (newfileset.logicalBlockNum < lastblock && 755 fileset->logicalBlockNum == 0xFFFFFFFF && 756 fileset->partitionReferenceNum == 0xFFFF); 757 } 758 } 759 760 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 761 fileset->partitionReferenceNum != 0xFFFF) && bh) { 762 udf_debug("Fileset at block=%d, partition=%d\n", 763 fileset->logicalBlockNum, 764 fileset->partitionReferenceNum); 765 766 sbi->s_partition = fileset->partitionReferenceNum; 767 udf_load_fileset(sb, bh, root); 768 brelse(bh); 769 return 0; 770 } 771 return 1; 772 } 773 774 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 775 { 776 struct primaryVolDesc *pvoldesc; 777 struct ustr *instr, *outstr; 778 struct buffer_head *bh; 779 uint16_t ident; 780 int ret = 1; 781 782 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 783 if (!instr) 784 return 1; 785 786 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 787 if (!outstr) 788 goto out1; 789 790 bh = udf_read_tagged(sb, block, block, &ident); 791 if (!bh) 792 goto out2; 793 794 BUG_ON(ident != TAG_IDENT_PVD); 795 796 pvoldesc = (struct primaryVolDesc *)bh->b_data; 797 798 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 799 pvoldesc->recordingDateAndTime)) { 800 #ifdef UDFFS_DEBUG 801 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 802 udf_debug("recording time %04u/%02u/%02u" 803 " %02u:%02u (%x)\n", 804 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 805 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 806 #endif 807 } 808 809 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 810 if (udf_CS0toUTF8(outstr, instr)) { 811 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 812 outstr->u_len > 31 ? 31 : outstr->u_len); 813 udf_debug("volIdent[] = '%s'\n", 814 UDF_SB(sb)->s_volume_ident); 815 } 816 817 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 818 if (udf_CS0toUTF8(outstr, instr)) 819 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 820 821 brelse(bh); 822 ret = 0; 823 out2: 824 kfree(outstr); 825 out1: 826 kfree(instr); 827 return ret; 828 } 829 830 static int udf_load_metadata_files(struct super_block *sb, int partition) 831 { 832 struct udf_sb_info *sbi = UDF_SB(sb); 833 struct udf_part_map *map; 834 struct udf_meta_data *mdata; 835 struct kernel_lb_addr addr; 836 int fe_error = 0; 837 838 map = &sbi->s_partmaps[partition]; 839 mdata = &map->s_type_specific.s_metadata; 840 841 /* metadata address */ 842 addr.logicalBlockNum = mdata->s_meta_file_loc; 843 addr.partitionReferenceNum = map->s_partition_num; 844 845 udf_debug("Metadata file location: block = %d part = %d\n", 846 addr.logicalBlockNum, addr.partitionReferenceNum); 847 848 mdata->s_metadata_fe = udf_iget(sb, &addr); 849 850 if (mdata->s_metadata_fe == NULL) { 851 udf_warning(sb, __func__, "metadata inode efe not found, " 852 "will try mirror inode."); 853 fe_error = 1; 854 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type != 855 ICBTAG_FLAG_AD_SHORT) { 856 udf_warning(sb, __func__, "metadata inode efe does not have " 857 "short allocation descriptors!"); 858 fe_error = 1; 859 iput(mdata->s_metadata_fe); 860 mdata->s_metadata_fe = NULL; 861 } 862 863 /* mirror file entry */ 864 addr.logicalBlockNum = mdata->s_mirror_file_loc; 865 addr.partitionReferenceNum = map->s_partition_num; 866 867 udf_debug("Mirror metadata file location: block = %d part = %d\n", 868 addr.logicalBlockNum, addr.partitionReferenceNum); 869 870 mdata->s_mirror_fe = udf_iget(sb, &addr); 871 872 if (mdata->s_mirror_fe == NULL) { 873 if (fe_error) { 874 udf_error(sb, __func__, "mirror inode efe not found " 875 "and metadata inode is missing too, exiting..."); 876 goto error_exit; 877 } else 878 udf_warning(sb, __func__, "mirror inode efe not found," 879 " but metadata inode is OK"); 880 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type != 881 ICBTAG_FLAG_AD_SHORT) { 882 udf_warning(sb, __func__, "mirror inode efe does not have " 883 "short allocation descriptors!"); 884 iput(mdata->s_mirror_fe); 885 mdata->s_mirror_fe = NULL; 886 if (fe_error) 887 goto error_exit; 888 } 889 890 /* 891 * bitmap file entry 892 * Note: 893 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 894 */ 895 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 896 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 897 addr.partitionReferenceNum = map->s_partition_num; 898 899 udf_debug("Bitmap file location: block = %d part = %d\n", 900 addr.logicalBlockNum, addr.partitionReferenceNum); 901 902 mdata->s_bitmap_fe = udf_iget(sb, &addr); 903 904 if (mdata->s_bitmap_fe == NULL) { 905 if (sb->s_flags & MS_RDONLY) 906 udf_warning(sb, __func__, "bitmap inode efe " 907 "not found but it's ok since the disc" 908 " is mounted read-only"); 909 else { 910 udf_error(sb, __func__, "bitmap inode efe not " 911 "found and attempted read-write mount"); 912 goto error_exit; 913 } 914 } 915 } 916 917 udf_debug("udf_load_metadata_files Ok\n"); 918 919 return 0; 920 921 error_exit: 922 return 1; 923 } 924 925 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 926 struct kernel_lb_addr *root) 927 { 928 struct fileSetDesc *fset; 929 930 fset = (struct fileSetDesc *)bh->b_data; 931 932 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 933 934 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 935 936 udf_debug("Rootdir at block=%d, partition=%d\n", 937 root->logicalBlockNum, root->partitionReferenceNum); 938 } 939 940 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 941 { 942 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 943 return DIV_ROUND_UP(map->s_partition_len + 944 (sizeof(struct spaceBitmapDesc) << 3), 945 sb->s_blocksize * 8); 946 } 947 948 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 949 { 950 struct udf_bitmap *bitmap; 951 int nr_groups; 952 int size; 953 954 nr_groups = udf_compute_nr_groups(sb, index); 955 size = sizeof(struct udf_bitmap) + 956 (sizeof(struct buffer_head *) * nr_groups); 957 958 if (size <= PAGE_SIZE) 959 bitmap = kmalloc(size, GFP_KERNEL); 960 else 961 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */ 962 963 if (bitmap == NULL) { 964 udf_error(sb, __func__, 965 "Unable to allocate space for bitmap " 966 "and %d buffer_head pointers", nr_groups); 967 return NULL; 968 } 969 970 memset(bitmap, 0x00, size); 971 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 972 bitmap->s_nr_groups = nr_groups; 973 return bitmap; 974 } 975 976 static int udf_fill_partdesc_info(struct super_block *sb, 977 struct partitionDesc *p, int p_index) 978 { 979 struct udf_part_map *map; 980 struct udf_sb_info *sbi = UDF_SB(sb); 981 struct partitionHeaderDesc *phd; 982 983 map = &sbi->s_partmaps[p_index]; 984 985 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 986 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 987 988 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 989 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 990 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 991 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 992 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 993 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 994 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 995 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 996 997 udf_debug("Partition (%d type %x) starts at physical %d, " 998 "block length %d\n", p_index, 999 map->s_partition_type, map->s_partition_root, 1000 map->s_partition_len); 1001 1002 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1003 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1004 return 0; 1005 1006 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1007 if (phd->unallocSpaceTable.extLength) { 1008 struct kernel_lb_addr loc = { 1009 .logicalBlockNum = le32_to_cpu( 1010 phd->unallocSpaceTable.extPosition), 1011 .partitionReferenceNum = p_index, 1012 }; 1013 1014 map->s_uspace.s_table = udf_iget(sb, &loc); 1015 if (!map->s_uspace.s_table) { 1016 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1017 p_index); 1018 return 1; 1019 } 1020 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1021 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1022 p_index, map->s_uspace.s_table->i_ino); 1023 } 1024 1025 if (phd->unallocSpaceBitmap.extLength) { 1026 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1027 if (!bitmap) 1028 return 1; 1029 map->s_uspace.s_bitmap = bitmap; 1030 bitmap->s_extLength = le32_to_cpu( 1031 phd->unallocSpaceBitmap.extLength); 1032 bitmap->s_extPosition = le32_to_cpu( 1033 phd->unallocSpaceBitmap.extPosition); 1034 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1035 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index, 1036 bitmap->s_extPosition); 1037 } 1038 1039 if (phd->partitionIntegrityTable.extLength) 1040 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1041 1042 if (phd->freedSpaceTable.extLength) { 1043 struct kernel_lb_addr loc = { 1044 .logicalBlockNum = le32_to_cpu( 1045 phd->freedSpaceTable.extPosition), 1046 .partitionReferenceNum = p_index, 1047 }; 1048 1049 map->s_fspace.s_table = udf_iget(sb, &loc); 1050 if (!map->s_fspace.s_table) { 1051 udf_debug("cannot load freedSpaceTable (part %d)\n", 1052 p_index); 1053 return 1; 1054 } 1055 1056 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1057 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1058 p_index, map->s_fspace.s_table->i_ino); 1059 } 1060 1061 if (phd->freedSpaceBitmap.extLength) { 1062 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1063 if (!bitmap) 1064 return 1; 1065 map->s_fspace.s_bitmap = bitmap; 1066 bitmap->s_extLength = le32_to_cpu( 1067 phd->freedSpaceBitmap.extLength); 1068 bitmap->s_extPosition = le32_to_cpu( 1069 phd->freedSpaceBitmap.extPosition); 1070 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1071 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index, 1072 bitmap->s_extPosition); 1073 } 1074 return 0; 1075 } 1076 1077 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1078 { 1079 struct udf_sb_info *sbi = UDF_SB(sb); 1080 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1081 struct kernel_lb_addr ino; 1082 struct buffer_head *bh = NULL; 1083 struct udf_inode_info *vati; 1084 uint32_t pos; 1085 struct virtualAllocationTable20 *vat20; 1086 1087 /* VAT file entry is in the last recorded block */ 1088 ino.partitionReferenceNum = type1_index; 1089 ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root; 1090 sbi->s_vat_inode = udf_iget(sb, &ino); 1091 if (!sbi->s_vat_inode) 1092 return 1; 1093 1094 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1095 map->s_type_specific.s_virtual.s_start_offset = 0; 1096 map->s_type_specific.s_virtual.s_num_entries = 1097 (sbi->s_vat_inode->i_size - 36) >> 2; 1098 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1099 vati = UDF_I(sbi->s_vat_inode); 1100 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1101 pos = udf_block_map(sbi->s_vat_inode, 0); 1102 bh = sb_bread(sb, pos); 1103 if (!bh) 1104 return 1; 1105 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1106 } else { 1107 vat20 = (struct virtualAllocationTable20 *) 1108 vati->i_ext.i_data; 1109 } 1110 1111 map->s_type_specific.s_virtual.s_start_offset = 1112 le16_to_cpu(vat20->lengthHeader); 1113 map->s_type_specific.s_virtual.s_num_entries = 1114 (sbi->s_vat_inode->i_size - 1115 map->s_type_specific.s_virtual. 1116 s_start_offset) >> 2; 1117 brelse(bh); 1118 } 1119 return 0; 1120 } 1121 1122 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1123 { 1124 struct buffer_head *bh; 1125 struct partitionDesc *p; 1126 struct udf_part_map *map; 1127 struct udf_sb_info *sbi = UDF_SB(sb); 1128 int i, type1_idx; 1129 uint16_t partitionNumber; 1130 uint16_t ident; 1131 int ret = 0; 1132 1133 bh = udf_read_tagged(sb, block, block, &ident); 1134 if (!bh) 1135 return 1; 1136 if (ident != TAG_IDENT_PD) 1137 goto out_bh; 1138 1139 p = (struct partitionDesc *)bh->b_data; 1140 partitionNumber = le16_to_cpu(p->partitionNumber); 1141 1142 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1143 for (i = 0; i < sbi->s_partitions; i++) { 1144 map = &sbi->s_partmaps[i]; 1145 udf_debug("Searching map: (%d == %d)\n", 1146 map->s_partition_num, partitionNumber); 1147 if (map->s_partition_num == partitionNumber && 1148 (map->s_partition_type == UDF_TYPE1_MAP15 || 1149 map->s_partition_type == UDF_SPARABLE_MAP15)) 1150 break; 1151 } 1152 1153 if (i >= sbi->s_partitions) { 1154 udf_debug("Partition (%d) not found in partition map\n", 1155 partitionNumber); 1156 goto out_bh; 1157 } 1158 1159 ret = udf_fill_partdesc_info(sb, p, i); 1160 1161 /* 1162 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1163 * PHYSICAL partitions are already set up 1164 */ 1165 type1_idx = i; 1166 for (i = 0; i < sbi->s_partitions; i++) { 1167 map = &sbi->s_partmaps[i]; 1168 1169 if (map->s_partition_num == partitionNumber && 1170 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1171 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1172 map->s_partition_type == UDF_METADATA_MAP25)) 1173 break; 1174 } 1175 1176 if (i >= sbi->s_partitions) 1177 goto out_bh; 1178 1179 ret = udf_fill_partdesc_info(sb, p, i); 1180 if (ret) 1181 goto out_bh; 1182 1183 if (map->s_partition_type == UDF_METADATA_MAP25) { 1184 ret = udf_load_metadata_files(sb, i); 1185 if (ret) { 1186 printk(KERN_ERR "UDF-fs: error loading MetaData " 1187 "partition map %d\n", i); 1188 goto out_bh; 1189 } 1190 } else { 1191 ret = udf_load_vat(sb, i, type1_idx); 1192 if (ret) 1193 goto out_bh; 1194 /* 1195 * Mark filesystem read-only if we have a partition with 1196 * virtual map since we don't handle writing to it (we 1197 * overwrite blocks instead of relocating them). 1198 */ 1199 sb->s_flags |= MS_RDONLY; 1200 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only " 1201 "because writing to pseudooverwrite partition is " 1202 "not implemented.\n"); 1203 } 1204 out_bh: 1205 /* In case loading failed, we handle cleanup in udf_fill_super */ 1206 brelse(bh); 1207 return ret; 1208 } 1209 1210 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1211 struct kernel_lb_addr *fileset) 1212 { 1213 struct logicalVolDesc *lvd; 1214 int i, j, offset; 1215 uint8_t type; 1216 struct udf_sb_info *sbi = UDF_SB(sb); 1217 struct genericPartitionMap *gpm; 1218 uint16_t ident; 1219 struct buffer_head *bh; 1220 int ret = 0; 1221 1222 bh = udf_read_tagged(sb, block, block, &ident); 1223 if (!bh) 1224 return 1; 1225 BUG_ON(ident != TAG_IDENT_LVD); 1226 lvd = (struct logicalVolDesc *)bh->b_data; 1227 1228 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1229 if (i != 0) { 1230 ret = i; 1231 goto out_bh; 1232 } 1233 1234 for (i = 0, offset = 0; 1235 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1236 i++, offset += gpm->partitionMapLength) { 1237 struct udf_part_map *map = &sbi->s_partmaps[i]; 1238 gpm = (struct genericPartitionMap *) 1239 &(lvd->partitionMaps[offset]); 1240 type = gpm->partitionMapType; 1241 if (type == 1) { 1242 struct genericPartitionMap1 *gpm1 = 1243 (struct genericPartitionMap1 *)gpm; 1244 map->s_partition_type = UDF_TYPE1_MAP15; 1245 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1246 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1247 map->s_partition_func = NULL; 1248 } else if (type == 2) { 1249 struct udfPartitionMap2 *upm2 = 1250 (struct udfPartitionMap2 *)gpm; 1251 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1252 strlen(UDF_ID_VIRTUAL))) { 1253 u16 suf = 1254 le16_to_cpu(((__le16 *)upm2->partIdent. 1255 identSuffix)[0]); 1256 if (suf < 0x0200) { 1257 map->s_partition_type = 1258 UDF_VIRTUAL_MAP15; 1259 map->s_partition_func = 1260 udf_get_pblock_virt15; 1261 } else { 1262 map->s_partition_type = 1263 UDF_VIRTUAL_MAP20; 1264 map->s_partition_func = 1265 udf_get_pblock_virt20; 1266 } 1267 } else if (!strncmp(upm2->partIdent.ident, 1268 UDF_ID_SPARABLE, 1269 strlen(UDF_ID_SPARABLE))) { 1270 uint32_t loc; 1271 struct sparingTable *st; 1272 struct sparablePartitionMap *spm = 1273 (struct sparablePartitionMap *)gpm; 1274 1275 map->s_partition_type = UDF_SPARABLE_MAP15; 1276 map->s_type_specific.s_sparing.s_packet_len = 1277 le16_to_cpu(spm->packetLength); 1278 for (j = 0; j < spm->numSparingTables; j++) { 1279 struct buffer_head *bh2; 1280 1281 loc = le32_to_cpu( 1282 spm->locSparingTable[j]); 1283 bh2 = udf_read_tagged(sb, loc, loc, 1284 &ident); 1285 map->s_type_specific.s_sparing. 1286 s_spar_map[j] = bh2; 1287 1288 if (bh2 == NULL) 1289 continue; 1290 1291 st = (struct sparingTable *)bh2->b_data; 1292 if (ident != 0 || strncmp( 1293 st->sparingIdent.ident, 1294 UDF_ID_SPARING, 1295 strlen(UDF_ID_SPARING))) { 1296 brelse(bh2); 1297 map->s_type_specific.s_sparing. 1298 s_spar_map[j] = NULL; 1299 } 1300 } 1301 map->s_partition_func = udf_get_pblock_spar15; 1302 } else if (!strncmp(upm2->partIdent.ident, 1303 UDF_ID_METADATA, 1304 strlen(UDF_ID_METADATA))) { 1305 struct udf_meta_data *mdata = 1306 &map->s_type_specific.s_metadata; 1307 struct metadataPartitionMap *mdm = 1308 (struct metadataPartitionMap *) 1309 &(lvd->partitionMaps[offset]); 1310 udf_debug("Parsing Logical vol part %d " 1311 "type %d id=%s\n", i, type, 1312 UDF_ID_METADATA); 1313 1314 map->s_partition_type = UDF_METADATA_MAP25; 1315 map->s_partition_func = udf_get_pblock_meta25; 1316 1317 mdata->s_meta_file_loc = 1318 le32_to_cpu(mdm->metadataFileLoc); 1319 mdata->s_mirror_file_loc = 1320 le32_to_cpu(mdm->metadataMirrorFileLoc); 1321 mdata->s_bitmap_file_loc = 1322 le32_to_cpu(mdm->metadataBitmapFileLoc); 1323 mdata->s_alloc_unit_size = 1324 le32_to_cpu(mdm->allocUnitSize); 1325 mdata->s_align_unit_size = 1326 le16_to_cpu(mdm->alignUnitSize); 1327 mdata->s_dup_md_flag = 1328 mdm->flags & 0x01; 1329 1330 udf_debug("Metadata Ident suffix=0x%x\n", 1331 (le16_to_cpu( 1332 ((__le16 *) 1333 mdm->partIdent.identSuffix)[0]))); 1334 udf_debug("Metadata part num=%d\n", 1335 le16_to_cpu(mdm->partitionNum)); 1336 udf_debug("Metadata part alloc unit size=%d\n", 1337 le32_to_cpu(mdm->allocUnitSize)); 1338 udf_debug("Metadata file loc=%d\n", 1339 le32_to_cpu(mdm->metadataFileLoc)); 1340 udf_debug("Mirror file loc=%d\n", 1341 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1342 udf_debug("Bitmap file loc=%d\n", 1343 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1344 udf_debug("Duplicate Flag: %d %d\n", 1345 mdata->s_dup_md_flag, mdm->flags); 1346 } else { 1347 udf_debug("Unknown ident: %s\n", 1348 upm2->partIdent.ident); 1349 continue; 1350 } 1351 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1352 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1353 } 1354 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1355 i, map->s_partition_num, type, 1356 map->s_volumeseqnum); 1357 } 1358 1359 if (fileset) { 1360 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1361 1362 *fileset = lelb_to_cpu(la->extLocation); 1363 udf_debug("FileSet found in LogicalVolDesc at block=%d, " 1364 "partition=%d\n", fileset->logicalBlockNum, 1365 fileset->partitionReferenceNum); 1366 } 1367 if (lvd->integritySeqExt.extLength) 1368 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1369 1370 out_bh: 1371 brelse(bh); 1372 return ret; 1373 } 1374 1375 /* 1376 * udf_load_logicalvolint 1377 * 1378 */ 1379 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1380 { 1381 struct buffer_head *bh = NULL; 1382 uint16_t ident; 1383 struct udf_sb_info *sbi = UDF_SB(sb); 1384 struct logicalVolIntegrityDesc *lvid; 1385 1386 while (loc.extLength > 0 && 1387 (bh = udf_read_tagged(sb, loc.extLocation, 1388 loc.extLocation, &ident)) && 1389 ident == TAG_IDENT_LVID) { 1390 sbi->s_lvid_bh = bh; 1391 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1392 1393 if (lvid->nextIntegrityExt.extLength) 1394 udf_load_logicalvolint(sb, 1395 leea_to_cpu(lvid->nextIntegrityExt)); 1396 1397 if (sbi->s_lvid_bh != bh) 1398 brelse(bh); 1399 loc.extLength -= sb->s_blocksize; 1400 loc.extLocation++; 1401 } 1402 if (sbi->s_lvid_bh != bh) 1403 brelse(bh); 1404 } 1405 1406 /* 1407 * udf_process_sequence 1408 * 1409 * PURPOSE 1410 * Process a main/reserve volume descriptor sequence. 1411 * 1412 * PRE-CONDITIONS 1413 * sb Pointer to _locked_ superblock. 1414 * block First block of first extent of the sequence. 1415 * lastblock Lastblock of first extent of the sequence. 1416 * 1417 * HISTORY 1418 * July 1, 1997 - Andrew E. Mileski 1419 * Written, tested, and released. 1420 */ 1421 static noinline int udf_process_sequence(struct super_block *sb, long block, 1422 long lastblock, struct kernel_lb_addr *fileset) 1423 { 1424 struct buffer_head *bh = NULL; 1425 struct udf_vds_record vds[VDS_POS_LENGTH]; 1426 struct udf_vds_record *curr; 1427 struct generic_desc *gd; 1428 struct volDescPtr *vdp; 1429 int done = 0; 1430 uint32_t vdsn; 1431 uint16_t ident; 1432 long next_s = 0, next_e = 0; 1433 1434 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1435 1436 /* 1437 * Read the main descriptor sequence and find which descriptors 1438 * are in it. 1439 */ 1440 for (; (!done && block <= lastblock); block++) { 1441 1442 bh = udf_read_tagged(sb, block, block, &ident); 1443 if (!bh) { 1444 printk(KERN_ERR "udf: Block %Lu of volume descriptor " 1445 "sequence is corrupted or we could not read " 1446 "it.\n", (unsigned long long)block); 1447 return 1; 1448 } 1449 1450 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1451 gd = (struct generic_desc *)bh->b_data; 1452 vdsn = le32_to_cpu(gd->volDescSeqNum); 1453 switch (ident) { 1454 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1455 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1456 if (vdsn >= curr->volDescSeqNum) { 1457 curr->volDescSeqNum = vdsn; 1458 curr->block = block; 1459 } 1460 break; 1461 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1462 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1463 if (vdsn >= curr->volDescSeqNum) { 1464 curr->volDescSeqNum = vdsn; 1465 curr->block = block; 1466 1467 vdp = (struct volDescPtr *)bh->b_data; 1468 next_s = le32_to_cpu( 1469 vdp->nextVolDescSeqExt.extLocation); 1470 next_e = le32_to_cpu( 1471 vdp->nextVolDescSeqExt.extLength); 1472 next_e = next_e >> sb->s_blocksize_bits; 1473 next_e += next_s; 1474 } 1475 break; 1476 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1477 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1478 if (vdsn >= curr->volDescSeqNum) { 1479 curr->volDescSeqNum = vdsn; 1480 curr->block = block; 1481 } 1482 break; 1483 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1484 curr = &vds[VDS_POS_PARTITION_DESC]; 1485 if (!curr->block) 1486 curr->block = block; 1487 break; 1488 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1489 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1490 if (vdsn >= curr->volDescSeqNum) { 1491 curr->volDescSeqNum = vdsn; 1492 curr->block = block; 1493 } 1494 break; 1495 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1496 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1497 if (vdsn >= curr->volDescSeqNum) { 1498 curr->volDescSeqNum = vdsn; 1499 curr->block = block; 1500 } 1501 break; 1502 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1503 vds[VDS_POS_TERMINATING_DESC].block = block; 1504 if (next_e) { 1505 block = next_s; 1506 lastblock = next_e; 1507 next_s = next_e = 0; 1508 } else 1509 done = 1; 1510 break; 1511 } 1512 brelse(bh); 1513 } 1514 /* 1515 * Now read interesting descriptors again and process them 1516 * in a suitable order 1517 */ 1518 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1519 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n"); 1520 return 1; 1521 } 1522 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1523 return 1; 1524 1525 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1526 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1527 return 1; 1528 1529 if (vds[VDS_POS_PARTITION_DESC].block) { 1530 /* 1531 * We rescan the whole descriptor sequence to find 1532 * partition descriptor blocks and process them. 1533 */ 1534 for (block = vds[VDS_POS_PARTITION_DESC].block; 1535 block < vds[VDS_POS_TERMINATING_DESC].block; 1536 block++) 1537 if (udf_load_partdesc(sb, block)) 1538 return 1; 1539 } 1540 1541 return 0; 1542 } 1543 1544 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1545 struct kernel_lb_addr *fileset) 1546 { 1547 struct anchorVolDescPtr *anchor; 1548 long main_s, main_e, reserve_s, reserve_e; 1549 struct udf_sb_info *sbi; 1550 1551 sbi = UDF_SB(sb); 1552 anchor = (struct anchorVolDescPtr *)bh->b_data; 1553 1554 /* Locate the main sequence */ 1555 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1556 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1557 main_e = main_e >> sb->s_blocksize_bits; 1558 main_e += main_s; 1559 1560 /* Locate the reserve sequence */ 1561 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1562 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1563 reserve_e = reserve_e >> sb->s_blocksize_bits; 1564 reserve_e += reserve_s; 1565 1566 /* Process the main & reserve sequences */ 1567 /* responsible for finding the PartitionDesc(s) */ 1568 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1569 return 1; 1570 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1571 } 1572 1573 /* 1574 * Check whether there is an anchor block in the given block and 1575 * load Volume Descriptor Sequence if so. 1576 */ 1577 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1578 struct kernel_lb_addr *fileset) 1579 { 1580 struct buffer_head *bh; 1581 uint16_t ident; 1582 int ret; 1583 1584 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1585 udf_fixed_to_variable(block) >= 1586 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1587 return 0; 1588 1589 bh = udf_read_tagged(sb, block, block, &ident); 1590 if (!bh) 1591 return 0; 1592 if (ident != TAG_IDENT_AVDP) { 1593 brelse(bh); 1594 return 0; 1595 } 1596 ret = udf_load_sequence(sb, bh, fileset); 1597 brelse(bh); 1598 return ret; 1599 } 1600 1601 /* Search for an anchor volume descriptor pointer */ 1602 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1603 struct kernel_lb_addr *fileset) 1604 { 1605 sector_t last[6]; 1606 int i; 1607 struct udf_sb_info *sbi = UDF_SB(sb); 1608 int last_count = 0; 1609 1610 /* First try user provided anchor */ 1611 if (sbi->s_anchor) { 1612 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1613 return lastblock; 1614 } 1615 /* 1616 * according to spec, anchor is in either: 1617 * block 256 1618 * lastblock-256 1619 * lastblock 1620 * however, if the disc isn't closed, it could be 512. 1621 */ 1622 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1623 return lastblock; 1624 /* 1625 * The trouble is which block is the last one. Drives often misreport 1626 * this so we try various possibilities. 1627 */ 1628 last[last_count++] = lastblock; 1629 if (lastblock >= 1) 1630 last[last_count++] = lastblock - 1; 1631 last[last_count++] = lastblock + 1; 1632 if (lastblock >= 2) 1633 last[last_count++] = lastblock - 2; 1634 if (lastblock >= 150) 1635 last[last_count++] = lastblock - 150; 1636 if (lastblock >= 152) 1637 last[last_count++] = lastblock - 152; 1638 1639 for (i = 0; i < last_count; i++) { 1640 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1641 sb->s_blocksize_bits) 1642 continue; 1643 if (udf_check_anchor_block(sb, last[i], fileset)) 1644 return last[i]; 1645 if (last[i] < 256) 1646 continue; 1647 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1648 return last[i]; 1649 } 1650 1651 /* Finally try block 512 in case media is open */ 1652 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1653 return last[0]; 1654 return 0; 1655 } 1656 1657 /* 1658 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1659 * area specified by it. The function expects sbi->s_lastblock to be the last 1660 * block on the media. 1661 * 1662 * Return 1 if ok, 0 if not found. 1663 * 1664 */ 1665 static int udf_find_anchor(struct super_block *sb, 1666 struct kernel_lb_addr *fileset) 1667 { 1668 sector_t lastblock; 1669 struct udf_sb_info *sbi = UDF_SB(sb); 1670 1671 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1672 if (lastblock) 1673 goto out; 1674 1675 /* No anchor found? Try VARCONV conversion of block numbers */ 1676 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1677 /* Firstly, we try to not convert number of the last block */ 1678 lastblock = udf_scan_anchors(sb, 1679 udf_variable_to_fixed(sbi->s_last_block), 1680 fileset); 1681 if (lastblock) 1682 goto out; 1683 1684 /* Secondly, we try with converted number of the last block */ 1685 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1686 if (!lastblock) { 1687 /* VARCONV didn't help. Clear it. */ 1688 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1689 return 0; 1690 } 1691 out: 1692 sbi->s_last_block = lastblock; 1693 return 1; 1694 } 1695 1696 /* 1697 * Check Volume Structure Descriptor, find Anchor block and load Volume 1698 * Descriptor Sequence 1699 */ 1700 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1701 int silent, struct kernel_lb_addr *fileset) 1702 { 1703 struct udf_sb_info *sbi = UDF_SB(sb); 1704 loff_t nsr_off; 1705 1706 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1707 if (!silent) 1708 printk(KERN_WARNING "UDF-fs: Bad block size\n"); 1709 return 0; 1710 } 1711 sbi->s_last_block = uopt->lastblock; 1712 if (!uopt->novrs) { 1713 /* Check that it is NSR02 compliant */ 1714 nsr_off = udf_check_vsd(sb); 1715 if (!nsr_off) { 1716 if (!silent) 1717 printk(KERN_WARNING "UDF-fs: No VRS found\n"); 1718 return 0; 1719 } 1720 if (nsr_off == -1) 1721 udf_debug("Failed to read byte 32768. Assuming open " 1722 "disc. Skipping validity check\n"); 1723 if (!sbi->s_last_block) 1724 sbi->s_last_block = udf_get_last_block(sb); 1725 } else { 1726 udf_debug("Validity check skipped because of novrs option\n"); 1727 } 1728 1729 /* Look for anchor block and load Volume Descriptor Sequence */ 1730 sbi->s_anchor = uopt->anchor; 1731 if (!udf_find_anchor(sb, fileset)) { 1732 if (!silent) 1733 printk(KERN_WARNING "UDF-fs: No anchor found\n"); 1734 return 0; 1735 } 1736 return 1; 1737 } 1738 1739 static void udf_open_lvid(struct super_block *sb) 1740 { 1741 struct udf_sb_info *sbi = UDF_SB(sb); 1742 struct buffer_head *bh = sbi->s_lvid_bh; 1743 struct logicalVolIntegrityDesc *lvid; 1744 struct logicalVolIntegrityDescImpUse *lvidiu; 1745 1746 if (!bh) 1747 return; 1748 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1749 lvidiu = udf_sb_lvidiu(sbi); 1750 1751 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1752 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1753 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1754 CURRENT_TIME); 1755 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1756 1757 lvid->descTag.descCRC = cpu_to_le16( 1758 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1759 le16_to_cpu(lvid->descTag.descCRCLength))); 1760 1761 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1762 mark_buffer_dirty(bh); 1763 sbi->s_lvid_dirty = 0; 1764 } 1765 1766 static void udf_close_lvid(struct super_block *sb) 1767 { 1768 struct udf_sb_info *sbi = UDF_SB(sb); 1769 struct buffer_head *bh = sbi->s_lvid_bh; 1770 struct logicalVolIntegrityDesc *lvid; 1771 struct logicalVolIntegrityDescImpUse *lvidiu; 1772 1773 if (!bh) 1774 return; 1775 1776 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1777 lvidiu = udf_sb_lvidiu(sbi); 1778 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1779 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1780 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1781 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1782 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1783 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1784 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1785 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1786 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1787 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1788 1789 lvid->descTag.descCRC = cpu_to_le16( 1790 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1791 le16_to_cpu(lvid->descTag.descCRCLength))); 1792 1793 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1794 mark_buffer_dirty(bh); 1795 sbi->s_lvid_dirty = 0; 1796 } 1797 1798 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1799 { 1800 int i; 1801 int nr_groups = bitmap->s_nr_groups; 1802 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1803 nr_groups); 1804 1805 for (i = 0; i < nr_groups; i++) 1806 if (bitmap->s_block_bitmap[i]) 1807 brelse(bitmap->s_block_bitmap[i]); 1808 1809 if (size <= PAGE_SIZE) 1810 kfree(bitmap); 1811 else 1812 vfree(bitmap); 1813 } 1814 1815 static void udf_free_partition(struct udf_part_map *map) 1816 { 1817 int i; 1818 struct udf_meta_data *mdata; 1819 1820 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1821 iput(map->s_uspace.s_table); 1822 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1823 iput(map->s_fspace.s_table); 1824 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1825 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1826 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1827 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1828 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1829 for (i = 0; i < 4; i++) 1830 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1831 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1832 mdata = &map->s_type_specific.s_metadata; 1833 iput(mdata->s_metadata_fe); 1834 mdata->s_metadata_fe = NULL; 1835 1836 iput(mdata->s_mirror_fe); 1837 mdata->s_mirror_fe = NULL; 1838 1839 iput(mdata->s_bitmap_fe); 1840 mdata->s_bitmap_fe = NULL; 1841 } 1842 } 1843 1844 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1845 { 1846 int i; 1847 int ret; 1848 struct inode *inode = NULL; 1849 struct udf_options uopt; 1850 struct kernel_lb_addr rootdir, fileset; 1851 struct udf_sb_info *sbi; 1852 1853 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1854 uopt.uid = -1; 1855 uopt.gid = -1; 1856 uopt.umask = 0; 1857 uopt.fmode = UDF_INVALID_MODE; 1858 uopt.dmode = UDF_INVALID_MODE; 1859 1860 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1861 if (!sbi) 1862 return -ENOMEM; 1863 1864 sb->s_fs_info = sbi; 1865 1866 mutex_init(&sbi->s_alloc_mutex); 1867 1868 if (!udf_parse_options((char *)options, &uopt, false)) 1869 goto error_out; 1870 1871 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1872 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1873 udf_error(sb, "udf_read_super", 1874 "utf8 cannot be combined with iocharset\n"); 1875 goto error_out; 1876 } 1877 #ifdef CONFIG_UDF_NLS 1878 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1879 uopt.nls_map = load_nls_default(); 1880 if (!uopt.nls_map) 1881 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1882 else 1883 udf_debug("Using default NLS map\n"); 1884 } 1885 #endif 1886 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1887 uopt.flags |= (1 << UDF_FLAG_UTF8); 1888 1889 fileset.logicalBlockNum = 0xFFFFFFFF; 1890 fileset.partitionReferenceNum = 0xFFFF; 1891 1892 sbi->s_flags = uopt.flags; 1893 sbi->s_uid = uopt.uid; 1894 sbi->s_gid = uopt.gid; 1895 sbi->s_umask = uopt.umask; 1896 sbi->s_fmode = uopt.fmode; 1897 sbi->s_dmode = uopt.dmode; 1898 sbi->s_nls_map = uopt.nls_map; 1899 1900 if (uopt.session == 0xFFFFFFFF) 1901 sbi->s_session = udf_get_last_session(sb); 1902 else 1903 sbi->s_session = uopt.session; 1904 1905 udf_debug("Multi-session=%d\n", sbi->s_session); 1906 1907 /* Fill in the rest of the superblock */ 1908 sb->s_op = &udf_sb_ops; 1909 sb->s_export_op = &udf_export_ops; 1910 sb->dq_op = NULL; 1911 sb->s_dirt = 0; 1912 sb->s_magic = UDF_SUPER_MAGIC; 1913 sb->s_time_gran = 1000; 1914 1915 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1916 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1917 } else { 1918 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 1919 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1920 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 1921 if (!silent) 1922 printk(KERN_NOTICE 1923 "UDF-fs: Rescanning with blocksize " 1924 "%d\n", UDF_DEFAULT_BLOCKSIZE); 1925 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 1926 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1927 } 1928 } 1929 if (!ret) { 1930 printk(KERN_WARNING "UDF-fs: No partition found (1)\n"); 1931 goto error_out; 1932 } 1933 1934 udf_debug("Lastblock=%d\n", sbi->s_last_block); 1935 1936 if (sbi->s_lvid_bh) { 1937 struct logicalVolIntegrityDescImpUse *lvidiu = 1938 udf_sb_lvidiu(sbi); 1939 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 1940 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 1941 /* uint16_t maxUDFWriteRev = 1942 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 1943 1944 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 1945 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x " 1946 "(max is %x)\n", 1947 le16_to_cpu(lvidiu->minUDFReadRev), 1948 UDF_MAX_READ_VERSION); 1949 goto error_out; 1950 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 1951 sb->s_flags |= MS_RDONLY; 1952 1953 sbi->s_udfrev = minUDFWriteRev; 1954 1955 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 1956 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 1957 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 1958 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 1959 } 1960 1961 if (!sbi->s_partitions) { 1962 printk(KERN_WARNING "UDF-fs: No partition found (2)\n"); 1963 goto error_out; 1964 } 1965 1966 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 1967 UDF_PART_FLAG_READ_ONLY) { 1968 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; " 1969 "forcing readonly mount\n"); 1970 sb->s_flags |= MS_RDONLY; 1971 } 1972 1973 if (udf_find_fileset(sb, &fileset, &rootdir)) { 1974 printk(KERN_WARNING "UDF-fs: No fileset found\n"); 1975 goto error_out; 1976 } 1977 1978 if (!silent) { 1979 struct timestamp ts; 1980 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 1981 udf_info("UDF: Mounting volume '%s', " 1982 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 1983 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day, 1984 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 1985 } 1986 if (!(sb->s_flags & MS_RDONLY)) 1987 udf_open_lvid(sb); 1988 1989 /* Assign the root inode */ 1990 /* assign inodes by physical block number */ 1991 /* perhaps it's not extensible enough, but for now ... */ 1992 inode = udf_iget(sb, &rootdir); 1993 if (!inode) { 1994 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, " 1995 "partition=%d\n", 1996 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 1997 goto error_out; 1998 } 1999 2000 /* Allocate a dentry for the root inode */ 2001 sb->s_root = d_alloc_root(inode); 2002 if (!sb->s_root) { 2003 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n"); 2004 iput(inode); 2005 goto error_out; 2006 } 2007 sb->s_maxbytes = MAX_LFS_FILESIZE; 2008 return 0; 2009 2010 error_out: 2011 if (sbi->s_vat_inode) 2012 iput(sbi->s_vat_inode); 2013 if (sbi->s_partitions) 2014 for (i = 0; i < sbi->s_partitions; i++) 2015 udf_free_partition(&sbi->s_partmaps[i]); 2016 #ifdef CONFIG_UDF_NLS 2017 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2018 unload_nls(sbi->s_nls_map); 2019 #endif 2020 if (!(sb->s_flags & MS_RDONLY)) 2021 udf_close_lvid(sb); 2022 brelse(sbi->s_lvid_bh); 2023 2024 kfree(sbi->s_partmaps); 2025 kfree(sbi); 2026 sb->s_fs_info = NULL; 2027 2028 return -EINVAL; 2029 } 2030 2031 static void udf_error(struct super_block *sb, const char *function, 2032 const char *fmt, ...) 2033 { 2034 va_list args; 2035 2036 if (!(sb->s_flags & MS_RDONLY)) { 2037 /* mark sb error */ 2038 sb->s_dirt = 1; 2039 } 2040 va_start(args, fmt); 2041 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2042 va_end(args); 2043 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n", 2044 sb->s_id, function, error_buf); 2045 } 2046 2047 void udf_warning(struct super_block *sb, const char *function, 2048 const char *fmt, ...) 2049 { 2050 va_list args; 2051 2052 va_start(args, fmt); 2053 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2054 va_end(args); 2055 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n", 2056 sb->s_id, function, error_buf); 2057 } 2058 2059 static void udf_put_super(struct super_block *sb) 2060 { 2061 int i; 2062 struct udf_sb_info *sbi; 2063 2064 sbi = UDF_SB(sb); 2065 if (sbi->s_vat_inode) 2066 iput(sbi->s_vat_inode); 2067 if (sbi->s_partitions) 2068 for (i = 0; i < sbi->s_partitions; i++) 2069 udf_free_partition(&sbi->s_partmaps[i]); 2070 #ifdef CONFIG_UDF_NLS 2071 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2072 unload_nls(sbi->s_nls_map); 2073 #endif 2074 if (!(sb->s_flags & MS_RDONLY)) 2075 udf_close_lvid(sb); 2076 brelse(sbi->s_lvid_bh); 2077 kfree(sbi->s_partmaps); 2078 kfree(sb->s_fs_info); 2079 sb->s_fs_info = NULL; 2080 } 2081 2082 static int udf_sync_fs(struct super_block *sb, int wait) 2083 { 2084 struct udf_sb_info *sbi = UDF_SB(sb); 2085 2086 mutex_lock(&sbi->s_alloc_mutex); 2087 if (sbi->s_lvid_dirty) { 2088 /* 2089 * Blockdevice will be synced later so we don't have to submit 2090 * the buffer for IO 2091 */ 2092 mark_buffer_dirty(sbi->s_lvid_bh); 2093 sb->s_dirt = 0; 2094 sbi->s_lvid_dirty = 0; 2095 } 2096 mutex_unlock(&sbi->s_alloc_mutex); 2097 2098 return 0; 2099 } 2100 2101 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2102 { 2103 struct super_block *sb = dentry->d_sb; 2104 struct udf_sb_info *sbi = UDF_SB(sb); 2105 struct logicalVolIntegrityDescImpUse *lvidiu; 2106 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2107 2108 if (sbi->s_lvid_bh != NULL) 2109 lvidiu = udf_sb_lvidiu(sbi); 2110 else 2111 lvidiu = NULL; 2112 2113 buf->f_type = UDF_SUPER_MAGIC; 2114 buf->f_bsize = sb->s_blocksize; 2115 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2116 buf->f_bfree = udf_count_free(sb); 2117 buf->f_bavail = buf->f_bfree; 2118 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2119 le32_to_cpu(lvidiu->numDirs)) : 0) 2120 + buf->f_bfree; 2121 buf->f_ffree = buf->f_bfree; 2122 buf->f_namelen = UDF_NAME_LEN - 2; 2123 buf->f_fsid.val[0] = (u32)id; 2124 buf->f_fsid.val[1] = (u32)(id >> 32); 2125 2126 return 0; 2127 } 2128 2129 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2130 struct udf_bitmap *bitmap) 2131 { 2132 struct buffer_head *bh = NULL; 2133 unsigned int accum = 0; 2134 int index; 2135 int block = 0, newblock; 2136 struct kernel_lb_addr loc; 2137 uint32_t bytes; 2138 uint8_t *ptr; 2139 uint16_t ident; 2140 struct spaceBitmapDesc *bm; 2141 2142 lock_kernel(); 2143 2144 loc.logicalBlockNum = bitmap->s_extPosition; 2145 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2146 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2147 2148 if (!bh) { 2149 printk(KERN_ERR "udf: udf_count_free failed\n"); 2150 goto out; 2151 } else if (ident != TAG_IDENT_SBD) { 2152 brelse(bh); 2153 printk(KERN_ERR "udf: udf_count_free failed\n"); 2154 goto out; 2155 } 2156 2157 bm = (struct spaceBitmapDesc *)bh->b_data; 2158 bytes = le32_to_cpu(bm->numOfBytes); 2159 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2160 ptr = (uint8_t *)bh->b_data; 2161 2162 while (bytes > 0) { 2163 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2164 accum += bitmap_weight((const unsigned long *)(ptr + index), 2165 cur_bytes * 8); 2166 bytes -= cur_bytes; 2167 if (bytes) { 2168 brelse(bh); 2169 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2170 bh = udf_tread(sb, newblock); 2171 if (!bh) { 2172 udf_debug("read failed\n"); 2173 goto out; 2174 } 2175 index = 0; 2176 ptr = (uint8_t *)bh->b_data; 2177 } 2178 } 2179 brelse(bh); 2180 2181 out: 2182 unlock_kernel(); 2183 2184 return accum; 2185 } 2186 2187 static unsigned int udf_count_free_table(struct super_block *sb, 2188 struct inode *table) 2189 { 2190 unsigned int accum = 0; 2191 uint32_t elen; 2192 struct kernel_lb_addr eloc; 2193 int8_t etype; 2194 struct extent_position epos; 2195 2196 lock_kernel(); 2197 2198 epos.block = UDF_I(table)->i_location; 2199 epos.offset = sizeof(struct unallocSpaceEntry); 2200 epos.bh = NULL; 2201 2202 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2203 accum += (elen >> table->i_sb->s_blocksize_bits); 2204 2205 brelse(epos.bh); 2206 2207 unlock_kernel(); 2208 2209 return accum; 2210 } 2211 2212 static unsigned int udf_count_free(struct super_block *sb) 2213 { 2214 unsigned int accum = 0; 2215 struct udf_sb_info *sbi; 2216 struct udf_part_map *map; 2217 2218 sbi = UDF_SB(sb); 2219 if (sbi->s_lvid_bh) { 2220 struct logicalVolIntegrityDesc *lvid = 2221 (struct logicalVolIntegrityDesc *) 2222 sbi->s_lvid_bh->b_data; 2223 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2224 accum = le32_to_cpu( 2225 lvid->freeSpaceTable[sbi->s_partition]); 2226 if (accum == 0xFFFFFFFF) 2227 accum = 0; 2228 } 2229 } 2230 2231 if (accum) 2232 return accum; 2233 2234 map = &sbi->s_partmaps[sbi->s_partition]; 2235 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2236 accum += udf_count_free_bitmap(sb, 2237 map->s_uspace.s_bitmap); 2238 } 2239 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2240 accum += udf_count_free_bitmap(sb, 2241 map->s_fspace.s_bitmap); 2242 } 2243 if (accum) 2244 return accum; 2245 2246 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2247 accum += udf_count_free_table(sb, 2248 map->s_uspace.s_table); 2249 } 2250 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2251 accum += udf_count_free_table(sb, 2252 map->s_fspace.s_table); 2253 } 2254 2255 return accum; 2256 } 2257