xref: /openbmc/linux/fs/udf/super.c (revision 78c99ba1)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 static char error_buf[1024];
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct vfsmount *);
96 static void udf_error(struct super_block *sb, const char *function,
97 		      const char *fmt, ...);
98 
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
100 {
101 	struct logicalVolIntegrityDesc *lvid =
102 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
104 	__u32 offset = number_of_partitions * 2 *
105 				sizeof(uint32_t)/sizeof(uint8_t);
106 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
107 }
108 
109 /* UDF filesystem type */
110 static int udf_get_sb(struct file_system_type *fs_type,
111 		      int flags, const char *dev_name, void *data,
112 		      struct vfsmount *mnt)
113 {
114 	return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
115 }
116 
117 static struct file_system_type udf_fstype = {
118 	.owner		= THIS_MODULE,
119 	.name		= "udf",
120 	.get_sb		= udf_get_sb,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 
125 static struct kmem_cache *udf_inode_cachep;
126 
127 static struct inode *udf_alloc_inode(struct super_block *sb)
128 {
129 	struct udf_inode_info *ei;
130 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
131 	if (!ei)
132 		return NULL;
133 
134 	ei->i_unique = 0;
135 	ei->i_lenExtents = 0;
136 	ei->i_next_alloc_block = 0;
137 	ei->i_next_alloc_goal = 0;
138 	ei->i_strat4096 = 0;
139 
140 	return &ei->vfs_inode;
141 }
142 
143 static void udf_destroy_inode(struct inode *inode)
144 {
145 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
146 }
147 
148 static void init_once(void *foo)
149 {
150 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
151 
152 	ei->i_ext.i_data = NULL;
153 	inode_init_once(&ei->vfs_inode);
154 }
155 
156 static int init_inodecache(void)
157 {
158 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
159 					     sizeof(struct udf_inode_info),
160 					     0, (SLAB_RECLAIM_ACCOUNT |
161 						 SLAB_MEM_SPREAD),
162 					     init_once);
163 	if (!udf_inode_cachep)
164 		return -ENOMEM;
165 	return 0;
166 }
167 
168 static void destroy_inodecache(void)
169 {
170 	kmem_cache_destroy(udf_inode_cachep);
171 }
172 
173 /* Superblock operations */
174 static const struct super_operations udf_sb_ops = {
175 	.alloc_inode	= udf_alloc_inode,
176 	.destroy_inode	= udf_destroy_inode,
177 	.write_inode	= udf_write_inode,
178 	.delete_inode	= udf_delete_inode,
179 	.clear_inode	= udf_clear_inode,
180 	.put_super	= udf_put_super,
181 	.sync_fs	= udf_sync_fs,
182 	.statfs		= udf_statfs,
183 	.remount_fs	= udf_remount_fs,
184 	.show_options	= udf_show_options,
185 };
186 
187 struct udf_options {
188 	unsigned char novrs;
189 	unsigned int blocksize;
190 	unsigned int session;
191 	unsigned int lastblock;
192 	unsigned int anchor;
193 	unsigned int volume;
194 	unsigned short partition;
195 	unsigned int fileset;
196 	unsigned int rootdir;
197 	unsigned int flags;
198 	mode_t umask;
199 	gid_t gid;
200 	uid_t uid;
201 	mode_t fmode;
202 	mode_t dmode;
203 	struct nls_table *nls_map;
204 };
205 
206 static int __init init_udf_fs(void)
207 {
208 	int err;
209 
210 	err = init_inodecache();
211 	if (err)
212 		goto out1;
213 	err = register_filesystem(&udf_fstype);
214 	if (err)
215 		goto out;
216 
217 	return 0;
218 
219 out:
220 	destroy_inodecache();
221 
222 out1:
223 	return err;
224 }
225 
226 static void __exit exit_udf_fs(void)
227 {
228 	unregister_filesystem(&udf_fstype);
229 	destroy_inodecache();
230 }
231 
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
234 
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
236 {
237 	struct udf_sb_info *sbi = UDF_SB(sb);
238 
239 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240 				  GFP_KERNEL);
241 	if (!sbi->s_partmaps) {
242 		udf_error(sb, __func__,
243 			  "Unable to allocate space for %d partition maps",
244 			  count);
245 		sbi->s_partitions = 0;
246 		return -ENOMEM;
247 	}
248 
249 	sbi->s_partitions = count;
250 	return 0;
251 }
252 
253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
254 {
255 	struct super_block *sb = mnt->mnt_sb;
256 	struct udf_sb_info *sbi = UDF_SB(sb);
257 
258 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
259 		seq_puts(seq, ",nostrict");
260 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
261 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
262 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
263 		seq_puts(seq, ",unhide");
264 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
265 		seq_puts(seq, ",undelete");
266 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
267 		seq_puts(seq, ",noadinicb");
268 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
269 		seq_puts(seq, ",shortad");
270 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
271 		seq_puts(seq, ",uid=forget");
272 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
273 		seq_puts(seq, ",uid=ignore");
274 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
275 		seq_puts(seq, ",gid=forget");
276 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
277 		seq_puts(seq, ",gid=ignore");
278 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
279 		seq_printf(seq, ",uid=%u", sbi->s_uid);
280 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
281 		seq_printf(seq, ",gid=%u", sbi->s_gid);
282 	if (sbi->s_umask != 0)
283 		seq_printf(seq, ",umask=%o", sbi->s_umask);
284 	if (sbi->s_fmode != UDF_INVALID_MODE)
285 		seq_printf(seq, ",mode=%o", sbi->s_fmode);
286 	if (sbi->s_dmode != UDF_INVALID_MODE)
287 		seq_printf(seq, ",dmode=%o", sbi->s_dmode);
288 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
289 		seq_printf(seq, ",session=%u", sbi->s_session);
290 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
291 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
292 	if (sbi->s_anchor != 0)
293 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
294 	/*
295 	 * volume, partition, fileset and rootdir seem to be ignored
296 	 * currently
297 	 */
298 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
299 		seq_puts(seq, ",utf8");
300 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
301 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
302 
303 	return 0;
304 }
305 
306 /*
307  * udf_parse_options
308  *
309  * PURPOSE
310  *	Parse mount options.
311  *
312  * DESCRIPTION
313  *	The following mount options are supported:
314  *
315  *	gid=		Set the default group.
316  *	umask=		Set the default umask.
317  *	mode=		Set the default file permissions.
318  *	dmode=		Set the default directory permissions.
319  *	uid=		Set the default user.
320  *	bs=		Set the block size.
321  *	unhide		Show otherwise hidden files.
322  *	undelete	Show deleted files in lists.
323  *	adinicb		Embed data in the inode (default)
324  *	noadinicb	Don't embed data in the inode
325  *	shortad		Use short ad's
326  *	longad		Use long ad's (default)
327  *	nostrict	Unset strict conformance
328  *	iocharset=	Set the NLS character set
329  *
330  *	The remaining are for debugging and disaster recovery:
331  *
332  *	novrs		Skip volume sequence recognition
333  *
334  *	The following expect a offset from 0.
335  *
336  *	session=	Set the CDROM session (default= last session)
337  *	anchor=		Override standard anchor location. (default= 256)
338  *	volume=		Override the VolumeDesc location. (unused)
339  *	partition=	Override the PartitionDesc location. (unused)
340  *	lastblock=	Set the last block of the filesystem/
341  *
342  *	The following expect a offset from the partition root.
343  *
344  *	fileset=	Override the fileset block location. (unused)
345  *	rootdir=	Override the root directory location. (unused)
346  *		WARNING: overriding the rootdir to a non-directory may
347  *		yield highly unpredictable results.
348  *
349  * PRE-CONDITIONS
350  *	options		Pointer to mount options string.
351  *	uopts		Pointer to mount options variable.
352  *
353  * POST-CONDITIONS
354  *	<return>	1	Mount options parsed okay.
355  *	<return>	0	Error parsing mount options.
356  *
357  * HISTORY
358  *	July 1, 1997 - Andrew E. Mileski
359  *	Written, tested, and released.
360  */
361 
362 enum {
363 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
364 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
365 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
366 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
367 	Opt_rootdir, Opt_utf8, Opt_iocharset,
368 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
369 	Opt_fmode, Opt_dmode
370 };
371 
372 static const match_table_t tokens = {
373 	{Opt_novrs,	"novrs"},
374 	{Opt_nostrict,	"nostrict"},
375 	{Opt_bs,	"bs=%u"},
376 	{Opt_unhide,	"unhide"},
377 	{Opt_undelete,	"undelete"},
378 	{Opt_noadinicb,	"noadinicb"},
379 	{Opt_adinicb,	"adinicb"},
380 	{Opt_shortad,	"shortad"},
381 	{Opt_longad,	"longad"},
382 	{Opt_uforget,	"uid=forget"},
383 	{Opt_uignore,	"uid=ignore"},
384 	{Opt_gforget,	"gid=forget"},
385 	{Opt_gignore,	"gid=ignore"},
386 	{Opt_gid,	"gid=%u"},
387 	{Opt_uid,	"uid=%u"},
388 	{Opt_umask,	"umask=%o"},
389 	{Opt_session,	"session=%u"},
390 	{Opt_lastblock,	"lastblock=%u"},
391 	{Opt_anchor,	"anchor=%u"},
392 	{Opt_volume,	"volume=%u"},
393 	{Opt_partition,	"partition=%u"},
394 	{Opt_fileset,	"fileset=%u"},
395 	{Opt_rootdir,	"rootdir=%u"},
396 	{Opt_utf8,	"utf8"},
397 	{Opt_iocharset,	"iocharset=%s"},
398 	{Opt_fmode,     "mode=%o"},
399 	{Opt_dmode,     "dmode=%o"},
400 	{Opt_err,	NULL}
401 };
402 
403 static int udf_parse_options(char *options, struct udf_options *uopt,
404 			     bool remount)
405 {
406 	char *p;
407 	int option;
408 
409 	uopt->novrs = 0;
410 	uopt->partition = 0xFFFF;
411 	uopt->session = 0xFFFFFFFF;
412 	uopt->lastblock = 0;
413 	uopt->anchor = 0;
414 	uopt->volume = 0xFFFFFFFF;
415 	uopt->rootdir = 0xFFFFFFFF;
416 	uopt->fileset = 0xFFFFFFFF;
417 	uopt->nls_map = NULL;
418 
419 	if (!options)
420 		return 1;
421 
422 	while ((p = strsep(&options, ",")) != NULL) {
423 		substring_t args[MAX_OPT_ARGS];
424 		int token;
425 		if (!*p)
426 			continue;
427 
428 		token = match_token(p, tokens, args);
429 		switch (token) {
430 		case Opt_novrs:
431 			uopt->novrs = 1;
432 			break;
433 		case Opt_bs:
434 			if (match_int(&args[0], &option))
435 				return 0;
436 			uopt->blocksize = option;
437 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
438 			break;
439 		case Opt_unhide:
440 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
441 			break;
442 		case Opt_undelete:
443 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
444 			break;
445 		case Opt_noadinicb:
446 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
447 			break;
448 		case Opt_adinicb:
449 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
450 			break;
451 		case Opt_shortad:
452 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
453 			break;
454 		case Opt_longad:
455 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
456 			break;
457 		case Opt_gid:
458 			if (match_int(args, &option))
459 				return 0;
460 			uopt->gid = option;
461 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
462 			break;
463 		case Opt_uid:
464 			if (match_int(args, &option))
465 				return 0;
466 			uopt->uid = option;
467 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
468 			break;
469 		case Opt_umask:
470 			if (match_octal(args, &option))
471 				return 0;
472 			uopt->umask = option;
473 			break;
474 		case Opt_nostrict:
475 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
476 			break;
477 		case Opt_session:
478 			if (match_int(args, &option))
479 				return 0;
480 			uopt->session = option;
481 			if (!remount)
482 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
483 			break;
484 		case Opt_lastblock:
485 			if (match_int(args, &option))
486 				return 0;
487 			uopt->lastblock = option;
488 			if (!remount)
489 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
490 			break;
491 		case Opt_anchor:
492 			if (match_int(args, &option))
493 				return 0;
494 			uopt->anchor = option;
495 			break;
496 		case Opt_volume:
497 			if (match_int(args, &option))
498 				return 0;
499 			uopt->volume = option;
500 			break;
501 		case Opt_partition:
502 			if (match_int(args, &option))
503 				return 0;
504 			uopt->partition = option;
505 			break;
506 		case Opt_fileset:
507 			if (match_int(args, &option))
508 				return 0;
509 			uopt->fileset = option;
510 			break;
511 		case Opt_rootdir:
512 			if (match_int(args, &option))
513 				return 0;
514 			uopt->rootdir = option;
515 			break;
516 		case Opt_utf8:
517 			uopt->flags |= (1 << UDF_FLAG_UTF8);
518 			break;
519 #ifdef CONFIG_UDF_NLS
520 		case Opt_iocharset:
521 			uopt->nls_map = load_nls(args[0].from);
522 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
523 			break;
524 #endif
525 		case Opt_uignore:
526 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
527 			break;
528 		case Opt_uforget:
529 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
530 			break;
531 		case Opt_gignore:
532 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
533 			break;
534 		case Opt_gforget:
535 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
536 			break;
537 		case Opt_fmode:
538 			if (match_octal(args, &option))
539 				return 0;
540 			uopt->fmode = option & 0777;
541 			break;
542 		case Opt_dmode:
543 			if (match_octal(args, &option))
544 				return 0;
545 			uopt->dmode = option & 0777;
546 			break;
547 		default:
548 			printk(KERN_ERR "udf: bad mount option \"%s\" "
549 			       "or missing value\n", p);
550 			return 0;
551 		}
552 	}
553 	return 1;
554 }
555 
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558 	struct udf_options uopt;
559 	struct udf_sb_info *sbi = UDF_SB(sb);
560 
561 	uopt.flags = sbi->s_flags;
562 	uopt.uid   = sbi->s_uid;
563 	uopt.gid   = sbi->s_gid;
564 	uopt.umask = sbi->s_umask;
565 	uopt.fmode = sbi->s_fmode;
566 	uopt.dmode = sbi->s_dmode;
567 
568 	if (!udf_parse_options(options, &uopt, true))
569 		return -EINVAL;
570 
571 	sbi->s_flags = uopt.flags;
572 	sbi->s_uid   = uopt.uid;
573 	sbi->s_gid   = uopt.gid;
574 	sbi->s_umask = uopt.umask;
575 	sbi->s_fmode = uopt.fmode;
576 	sbi->s_dmode = uopt.dmode;
577 
578 	if (sbi->s_lvid_bh) {
579 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
580 		if (write_rev > UDF_MAX_WRITE_VERSION)
581 			*flags |= MS_RDONLY;
582 	}
583 
584 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
585 		return 0;
586 	if (*flags & MS_RDONLY)
587 		udf_close_lvid(sb);
588 	else
589 		udf_open_lvid(sb);
590 
591 	return 0;
592 }
593 
594 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
595 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
596 static loff_t udf_check_vsd(struct super_block *sb)
597 {
598 	struct volStructDesc *vsd = NULL;
599 	loff_t sector = 32768;
600 	int sectorsize;
601 	struct buffer_head *bh = NULL;
602 	int nsr02 = 0;
603 	int nsr03 = 0;
604 	struct udf_sb_info *sbi;
605 
606 	sbi = UDF_SB(sb);
607 	if (sb->s_blocksize < sizeof(struct volStructDesc))
608 		sectorsize = sizeof(struct volStructDesc);
609 	else
610 		sectorsize = sb->s_blocksize;
611 
612 	sector += (sbi->s_session << sb->s_blocksize_bits);
613 
614 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
615 		  (unsigned int)(sector >> sb->s_blocksize_bits),
616 		  sb->s_blocksize);
617 	/* Process the sequence (if applicable) */
618 	for (; !nsr02 && !nsr03; sector += sectorsize) {
619 		/* Read a block */
620 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
621 		if (!bh)
622 			break;
623 
624 		/* Look for ISO  descriptors */
625 		vsd = (struct volStructDesc *)(bh->b_data +
626 					      (sector & (sb->s_blocksize - 1)));
627 
628 		if (vsd->stdIdent[0] == 0) {
629 			brelse(bh);
630 			break;
631 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
632 				    VSD_STD_ID_LEN)) {
633 			switch (vsd->structType) {
634 			case 0:
635 				udf_debug("ISO9660 Boot Record found\n");
636 				break;
637 			case 1:
638 				udf_debug("ISO9660 Primary Volume Descriptor "
639 					  "found\n");
640 				break;
641 			case 2:
642 				udf_debug("ISO9660 Supplementary Volume "
643 					  "Descriptor found\n");
644 				break;
645 			case 3:
646 				udf_debug("ISO9660 Volume Partition Descriptor "
647 					  "found\n");
648 				break;
649 			case 255:
650 				udf_debug("ISO9660 Volume Descriptor Set "
651 					  "Terminator found\n");
652 				break;
653 			default:
654 				udf_debug("ISO9660 VRS (%u) found\n",
655 					  vsd->structType);
656 				break;
657 			}
658 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
659 				    VSD_STD_ID_LEN))
660 			; /* nothing */
661 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
662 				    VSD_STD_ID_LEN)) {
663 			brelse(bh);
664 			break;
665 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
666 				    VSD_STD_ID_LEN))
667 			nsr02 = sector;
668 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
669 				    VSD_STD_ID_LEN))
670 			nsr03 = sector;
671 		brelse(bh);
672 	}
673 
674 	if (nsr03)
675 		return nsr03;
676 	else if (nsr02)
677 		return nsr02;
678 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
679 		return -1;
680 	else
681 		return 0;
682 }
683 
684 static int udf_find_fileset(struct super_block *sb,
685 			    struct kernel_lb_addr *fileset,
686 			    struct kernel_lb_addr *root)
687 {
688 	struct buffer_head *bh = NULL;
689 	long lastblock;
690 	uint16_t ident;
691 	struct udf_sb_info *sbi;
692 
693 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
694 	    fileset->partitionReferenceNum != 0xFFFF) {
695 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
696 
697 		if (!bh) {
698 			return 1;
699 		} else if (ident != TAG_IDENT_FSD) {
700 			brelse(bh);
701 			return 1;
702 		}
703 
704 	}
705 
706 	sbi = UDF_SB(sb);
707 	if (!bh) {
708 		/* Search backwards through the partitions */
709 		struct kernel_lb_addr newfileset;
710 
711 /* --> cvg: FIXME - is it reasonable? */
712 		return 1;
713 
714 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
715 		     (newfileset.partitionReferenceNum != 0xFFFF &&
716 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
717 		      fileset->partitionReferenceNum == 0xFFFF);
718 		     newfileset.partitionReferenceNum--) {
719 			lastblock = sbi->s_partmaps
720 					[newfileset.partitionReferenceNum]
721 						.s_partition_len;
722 			newfileset.logicalBlockNum = 0;
723 
724 			do {
725 				bh = udf_read_ptagged(sb, &newfileset, 0,
726 						      &ident);
727 				if (!bh) {
728 					newfileset.logicalBlockNum++;
729 					continue;
730 				}
731 
732 				switch (ident) {
733 				case TAG_IDENT_SBD:
734 				{
735 					struct spaceBitmapDesc *sp;
736 					sp = (struct spaceBitmapDesc *)
737 								bh->b_data;
738 					newfileset.logicalBlockNum += 1 +
739 						((le32_to_cpu(sp->numOfBytes) +
740 						  sizeof(struct spaceBitmapDesc)
741 						  - 1) >> sb->s_blocksize_bits);
742 					brelse(bh);
743 					break;
744 				}
745 				case TAG_IDENT_FSD:
746 					*fileset = newfileset;
747 					break;
748 				default:
749 					newfileset.logicalBlockNum++;
750 					brelse(bh);
751 					bh = NULL;
752 					break;
753 				}
754 			} while (newfileset.logicalBlockNum < lastblock &&
755 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
756 				 fileset->partitionReferenceNum == 0xFFFF);
757 		}
758 	}
759 
760 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
761 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
762 		udf_debug("Fileset at block=%d, partition=%d\n",
763 			  fileset->logicalBlockNum,
764 			  fileset->partitionReferenceNum);
765 
766 		sbi->s_partition = fileset->partitionReferenceNum;
767 		udf_load_fileset(sb, bh, root);
768 		brelse(bh);
769 		return 0;
770 	}
771 	return 1;
772 }
773 
774 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
775 {
776 	struct primaryVolDesc *pvoldesc;
777 	struct ustr *instr, *outstr;
778 	struct buffer_head *bh;
779 	uint16_t ident;
780 	int ret = 1;
781 
782 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
783 	if (!instr)
784 		return 1;
785 
786 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
787 	if (!outstr)
788 		goto out1;
789 
790 	bh = udf_read_tagged(sb, block, block, &ident);
791 	if (!bh)
792 		goto out2;
793 
794 	BUG_ON(ident != TAG_IDENT_PVD);
795 
796 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
797 
798 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
799 			      pvoldesc->recordingDateAndTime)) {
800 #ifdef UDFFS_DEBUG
801 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
802 		udf_debug("recording time %04u/%02u/%02u"
803 			  " %02u:%02u (%x)\n",
804 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
805 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
806 #endif
807 	}
808 
809 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
810 		if (udf_CS0toUTF8(outstr, instr)) {
811 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
812 				outstr->u_len > 31 ? 31 : outstr->u_len);
813 			udf_debug("volIdent[] = '%s'\n",
814 					UDF_SB(sb)->s_volume_ident);
815 		}
816 
817 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
818 		if (udf_CS0toUTF8(outstr, instr))
819 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
820 
821 	brelse(bh);
822 	ret = 0;
823 out2:
824 	kfree(outstr);
825 out1:
826 	kfree(instr);
827 	return ret;
828 }
829 
830 static int udf_load_metadata_files(struct super_block *sb, int partition)
831 {
832 	struct udf_sb_info *sbi = UDF_SB(sb);
833 	struct udf_part_map *map;
834 	struct udf_meta_data *mdata;
835 	struct kernel_lb_addr addr;
836 	int fe_error = 0;
837 
838 	map = &sbi->s_partmaps[partition];
839 	mdata = &map->s_type_specific.s_metadata;
840 
841 	/* metadata address */
842 	addr.logicalBlockNum =  mdata->s_meta_file_loc;
843 	addr.partitionReferenceNum = map->s_partition_num;
844 
845 	udf_debug("Metadata file location: block = %d part = %d\n",
846 			  addr.logicalBlockNum, addr.partitionReferenceNum);
847 
848 	mdata->s_metadata_fe = udf_iget(sb, &addr);
849 
850 	if (mdata->s_metadata_fe == NULL) {
851 		udf_warning(sb, __func__, "metadata inode efe not found, "
852 				"will try mirror inode.");
853 		fe_error = 1;
854 	} else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
855 		 ICBTAG_FLAG_AD_SHORT) {
856 		udf_warning(sb, __func__, "metadata inode efe does not have "
857 			"short allocation descriptors!");
858 		fe_error = 1;
859 		iput(mdata->s_metadata_fe);
860 		mdata->s_metadata_fe = NULL;
861 	}
862 
863 	/* mirror file entry */
864 	addr.logicalBlockNum = mdata->s_mirror_file_loc;
865 	addr.partitionReferenceNum = map->s_partition_num;
866 
867 	udf_debug("Mirror metadata file location: block = %d part = %d\n",
868 			  addr.logicalBlockNum, addr.partitionReferenceNum);
869 
870 	mdata->s_mirror_fe = udf_iget(sb, &addr);
871 
872 	if (mdata->s_mirror_fe == NULL) {
873 		if (fe_error) {
874 			udf_error(sb, __func__, "mirror inode efe not found "
875 			"and metadata inode is missing too, exiting...");
876 			goto error_exit;
877 		} else
878 			udf_warning(sb, __func__, "mirror inode efe not found,"
879 					" but metadata inode is OK");
880 	} else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
881 		 ICBTAG_FLAG_AD_SHORT) {
882 		udf_warning(sb, __func__, "mirror inode efe does not have "
883 			"short allocation descriptors!");
884 		iput(mdata->s_mirror_fe);
885 		mdata->s_mirror_fe = NULL;
886 		if (fe_error)
887 			goto error_exit;
888 	}
889 
890 	/*
891 	 * bitmap file entry
892 	 * Note:
893 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
894 	*/
895 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
896 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
897 		addr.partitionReferenceNum = map->s_partition_num;
898 
899 		udf_debug("Bitmap file location: block = %d part = %d\n",
900 			addr.logicalBlockNum, addr.partitionReferenceNum);
901 
902 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
903 
904 		if (mdata->s_bitmap_fe == NULL) {
905 			if (sb->s_flags & MS_RDONLY)
906 				udf_warning(sb, __func__, "bitmap inode efe "
907 					"not found but it's ok since the disc"
908 					" is mounted read-only");
909 			else {
910 				udf_error(sb, __func__, "bitmap inode efe not "
911 					"found and attempted read-write mount");
912 				goto error_exit;
913 			}
914 		}
915 	}
916 
917 	udf_debug("udf_load_metadata_files Ok\n");
918 
919 	return 0;
920 
921 error_exit:
922 	return 1;
923 }
924 
925 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
926 			     struct kernel_lb_addr *root)
927 {
928 	struct fileSetDesc *fset;
929 
930 	fset = (struct fileSetDesc *)bh->b_data;
931 
932 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
933 
934 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
935 
936 	udf_debug("Rootdir at block=%d, partition=%d\n",
937 		  root->logicalBlockNum, root->partitionReferenceNum);
938 }
939 
940 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
941 {
942 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
943 	return DIV_ROUND_UP(map->s_partition_len +
944 			    (sizeof(struct spaceBitmapDesc) << 3),
945 			    sb->s_blocksize * 8);
946 }
947 
948 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
949 {
950 	struct udf_bitmap *bitmap;
951 	int nr_groups;
952 	int size;
953 
954 	nr_groups = udf_compute_nr_groups(sb, index);
955 	size = sizeof(struct udf_bitmap) +
956 		(sizeof(struct buffer_head *) * nr_groups);
957 
958 	if (size <= PAGE_SIZE)
959 		bitmap = kmalloc(size, GFP_KERNEL);
960 	else
961 		bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
962 
963 	if (bitmap == NULL) {
964 		udf_error(sb, __func__,
965 			  "Unable to allocate space for bitmap "
966 			  "and %d buffer_head pointers", nr_groups);
967 		return NULL;
968 	}
969 
970 	memset(bitmap, 0x00, size);
971 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
972 	bitmap->s_nr_groups = nr_groups;
973 	return bitmap;
974 }
975 
976 static int udf_fill_partdesc_info(struct super_block *sb,
977 		struct partitionDesc *p, int p_index)
978 {
979 	struct udf_part_map *map;
980 	struct udf_sb_info *sbi = UDF_SB(sb);
981 	struct partitionHeaderDesc *phd;
982 
983 	map = &sbi->s_partmaps[p_index];
984 
985 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
986 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
987 
988 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
989 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
990 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
991 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
992 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
993 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
994 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
995 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
996 
997 	udf_debug("Partition (%d type %x) starts at physical %d, "
998 		  "block length %d\n", p_index,
999 		  map->s_partition_type, map->s_partition_root,
1000 		  map->s_partition_len);
1001 
1002 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1003 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1004 		return 0;
1005 
1006 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1007 	if (phd->unallocSpaceTable.extLength) {
1008 		struct kernel_lb_addr loc = {
1009 			.logicalBlockNum = le32_to_cpu(
1010 				phd->unallocSpaceTable.extPosition),
1011 			.partitionReferenceNum = p_index,
1012 		};
1013 
1014 		map->s_uspace.s_table = udf_iget(sb, &loc);
1015 		if (!map->s_uspace.s_table) {
1016 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1017 					p_index);
1018 			return 1;
1019 		}
1020 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1021 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1022 				p_index, map->s_uspace.s_table->i_ino);
1023 	}
1024 
1025 	if (phd->unallocSpaceBitmap.extLength) {
1026 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1027 		if (!bitmap)
1028 			return 1;
1029 		map->s_uspace.s_bitmap = bitmap;
1030 		bitmap->s_extLength = le32_to_cpu(
1031 				phd->unallocSpaceBitmap.extLength);
1032 		bitmap->s_extPosition = le32_to_cpu(
1033 				phd->unallocSpaceBitmap.extPosition);
1034 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1035 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1036 						bitmap->s_extPosition);
1037 	}
1038 
1039 	if (phd->partitionIntegrityTable.extLength)
1040 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1041 
1042 	if (phd->freedSpaceTable.extLength) {
1043 		struct kernel_lb_addr loc = {
1044 			.logicalBlockNum = le32_to_cpu(
1045 				phd->freedSpaceTable.extPosition),
1046 			.partitionReferenceNum = p_index,
1047 		};
1048 
1049 		map->s_fspace.s_table = udf_iget(sb, &loc);
1050 		if (!map->s_fspace.s_table) {
1051 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1052 				p_index);
1053 			return 1;
1054 		}
1055 
1056 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1057 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1058 				p_index, map->s_fspace.s_table->i_ino);
1059 	}
1060 
1061 	if (phd->freedSpaceBitmap.extLength) {
1062 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1063 		if (!bitmap)
1064 			return 1;
1065 		map->s_fspace.s_bitmap = bitmap;
1066 		bitmap->s_extLength = le32_to_cpu(
1067 				phd->freedSpaceBitmap.extLength);
1068 		bitmap->s_extPosition = le32_to_cpu(
1069 				phd->freedSpaceBitmap.extPosition);
1070 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1071 		udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1072 					bitmap->s_extPosition);
1073 	}
1074 	return 0;
1075 }
1076 
1077 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1078 {
1079 	struct udf_sb_info *sbi = UDF_SB(sb);
1080 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1081 	struct kernel_lb_addr ino;
1082 	struct buffer_head *bh = NULL;
1083 	struct udf_inode_info *vati;
1084 	uint32_t pos;
1085 	struct virtualAllocationTable20 *vat20;
1086 
1087 	/* VAT file entry is in the last recorded block */
1088 	ino.partitionReferenceNum = type1_index;
1089 	ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root;
1090 	sbi->s_vat_inode = udf_iget(sb, &ino);
1091 	if (!sbi->s_vat_inode)
1092 		return 1;
1093 
1094 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1095 		map->s_type_specific.s_virtual.s_start_offset = 0;
1096 		map->s_type_specific.s_virtual.s_num_entries =
1097 			(sbi->s_vat_inode->i_size - 36) >> 2;
1098 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1099 		vati = UDF_I(sbi->s_vat_inode);
1100 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1101 			pos = udf_block_map(sbi->s_vat_inode, 0);
1102 			bh = sb_bread(sb, pos);
1103 			if (!bh)
1104 				return 1;
1105 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1106 		} else {
1107 			vat20 = (struct virtualAllocationTable20 *)
1108 							vati->i_ext.i_data;
1109 		}
1110 
1111 		map->s_type_specific.s_virtual.s_start_offset =
1112 			le16_to_cpu(vat20->lengthHeader);
1113 		map->s_type_specific.s_virtual.s_num_entries =
1114 			(sbi->s_vat_inode->i_size -
1115 				map->s_type_specific.s_virtual.
1116 					s_start_offset) >> 2;
1117 		brelse(bh);
1118 	}
1119 	return 0;
1120 }
1121 
1122 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1123 {
1124 	struct buffer_head *bh;
1125 	struct partitionDesc *p;
1126 	struct udf_part_map *map;
1127 	struct udf_sb_info *sbi = UDF_SB(sb);
1128 	int i, type1_idx;
1129 	uint16_t partitionNumber;
1130 	uint16_t ident;
1131 	int ret = 0;
1132 
1133 	bh = udf_read_tagged(sb, block, block, &ident);
1134 	if (!bh)
1135 		return 1;
1136 	if (ident != TAG_IDENT_PD)
1137 		goto out_bh;
1138 
1139 	p = (struct partitionDesc *)bh->b_data;
1140 	partitionNumber = le16_to_cpu(p->partitionNumber);
1141 
1142 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1143 	for (i = 0; i < sbi->s_partitions; i++) {
1144 		map = &sbi->s_partmaps[i];
1145 		udf_debug("Searching map: (%d == %d)\n",
1146 			  map->s_partition_num, partitionNumber);
1147 		if (map->s_partition_num == partitionNumber &&
1148 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1149 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1150 			break;
1151 	}
1152 
1153 	if (i >= sbi->s_partitions) {
1154 		udf_debug("Partition (%d) not found in partition map\n",
1155 			  partitionNumber);
1156 		goto out_bh;
1157 	}
1158 
1159 	ret = udf_fill_partdesc_info(sb, p, i);
1160 
1161 	/*
1162 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1163 	 * PHYSICAL partitions are already set up
1164 	 */
1165 	type1_idx = i;
1166 	for (i = 0; i < sbi->s_partitions; i++) {
1167 		map = &sbi->s_partmaps[i];
1168 
1169 		if (map->s_partition_num == partitionNumber &&
1170 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1171 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1172 		     map->s_partition_type == UDF_METADATA_MAP25))
1173 			break;
1174 	}
1175 
1176 	if (i >= sbi->s_partitions)
1177 		goto out_bh;
1178 
1179 	ret = udf_fill_partdesc_info(sb, p, i);
1180 	if (ret)
1181 		goto out_bh;
1182 
1183 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1184 		ret = udf_load_metadata_files(sb, i);
1185 		if (ret) {
1186 			printk(KERN_ERR "UDF-fs: error loading MetaData "
1187 			"partition map %d\n", i);
1188 			goto out_bh;
1189 		}
1190 	} else {
1191 		ret = udf_load_vat(sb, i, type1_idx);
1192 		if (ret)
1193 			goto out_bh;
1194 		/*
1195 		 * Mark filesystem read-only if we have a partition with
1196 		 * virtual map since we don't handle writing to it (we
1197 		 * overwrite blocks instead of relocating them).
1198 		 */
1199 		sb->s_flags |= MS_RDONLY;
1200 		printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1201 			"because writing to pseudooverwrite partition is "
1202 			"not implemented.\n");
1203 	}
1204 out_bh:
1205 	/* In case loading failed, we handle cleanup in udf_fill_super */
1206 	brelse(bh);
1207 	return ret;
1208 }
1209 
1210 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1211 			       struct kernel_lb_addr *fileset)
1212 {
1213 	struct logicalVolDesc *lvd;
1214 	int i, j, offset;
1215 	uint8_t type;
1216 	struct udf_sb_info *sbi = UDF_SB(sb);
1217 	struct genericPartitionMap *gpm;
1218 	uint16_t ident;
1219 	struct buffer_head *bh;
1220 	int ret = 0;
1221 
1222 	bh = udf_read_tagged(sb, block, block, &ident);
1223 	if (!bh)
1224 		return 1;
1225 	BUG_ON(ident != TAG_IDENT_LVD);
1226 	lvd = (struct logicalVolDesc *)bh->b_data;
1227 
1228 	i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1229 	if (i != 0) {
1230 		ret = i;
1231 		goto out_bh;
1232 	}
1233 
1234 	for (i = 0, offset = 0;
1235 	     i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1236 	     i++, offset += gpm->partitionMapLength) {
1237 		struct udf_part_map *map = &sbi->s_partmaps[i];
1238 		gpm = (struct genericPartitionMap *)
1239 				&(lvd->partitionMaps[offset]);
1240 		type = gpm->partitionMapType;
1241 		if (type == 1) {
1242 			struct genericPartitionMap1 *gpm1 =
1243 				(struct genericPartitionMap1 *)gpm;
1244 			map->s_partition_type = UDF_TYPE1_MAP15;
1245 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1246 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1247 			map->s_partition_func = NULL;
1248 		} else if (type == 2) {
1249 			struct udfPartitionMap2 *upm2 =
1250 						(struct udfPartitionMap2 *)gpm;
1251 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1252 						strlen(UDF_ID_VIRTUAL))) {
1253 				u16 suf =
1254 					le16_to_cpu(((__le16 *)upm2->partIdent.
1255 							identSuffix)[0]);
1256 				if (suf < 0x0200) {
1257 					map->s_partition_type =
1258 							UDF_VIRTUAL_MAP15;
1259 					map->s_partition_func =
1260 							udf_get_pblock_virt15;
1261 				} else {
1262 					map->s_partition_type =
1263 							UDF_VIRTUAL_MAP20;
1264 					map->s_partition_func =
1265 							udf_get_pblock_virt20;
1266 				}
1267 			} else if (!strncmp(upm2->partIdent.ident,
1268 						UDF_ID_SPARABLE,
1269 						strlen(UDF_ID_SPARABLE))) {
1270 				uint32_t loc;
1271 				struct sparingTable *st;
1272 				struct sparablePartitionMap *spm =
1273 					(struct sparablePartitionMap *)gpm;
1274 
1275 				map->s_partition_type = UDF_SPARABLE_MAP15;
1276 				map->s_type_specific.s_sparing.s_packet_len =
1277 						le16_to_cpu(spm->packetLength);
1278 				for (j = 0; j < spm->numSparingTables; j++) {
1279 					struct buffer_head *bh2;
1280 
1281 					loc = le32_to_cpu(
1282 						spm->locSparingTable[j]);
1283 					bh2 = udf_read_tagged(sb, loc, loc,
1284 							     &ident);
1285 					map->s_type_specific.s_sparing.
1286 							s_spar_map[j] = bh2;
1287 
1288 					if (bh2 == NULL)
1289 						continue;
1290 
1291 					st = (struct sparingTable *)bh2->b_data;
1292 					if (ident != 0 || strncmp(
1293 						st->sparingIdent.ident,
1294 						UDF_ID_SPARING,
1295 						strlen(UDF_ID_SPARING))) {
1296 						brelse(bh2);
1297 						map->s_type_specific.s_sparing.
1298 							s_spar_map[j] = NULL;
1299 					}
1300 				}
1301 				map->s_partition_func = udf_get_pblock_spar15;
1302 			} else if (!strncmp(upm2->partIdent.ident,
1303 						UDF_ID_METADATA,
1304 						strlen(UDF_ID_METADATA))) {
1305 				struct udf_meta_data *mdata =
1306 					&map->s_type_specific.s_metadata;
1307 				struct metadataPartitionMap *mdm =
1308 						(struct metadataPartitionMap *)
1309 						&(lvd->partitionMaps[offset]);
1310 				udf_debug("Parsing Logical vol part %d "
1311 					"type %d  id=%s\n", i, type,
1312 					UDF_ID_METADATA);
1313 
1314 				map->s_partition_type = UDF_METADATA_MAP25;
1315 				map->s_partition_func = udf_get_pblock_meta25;
1316 
1317 				mdata->s_meta_file_loc   =
1318 					le32_to_cpu(mdm->metadataFileLoc);
1319 				mdata->s_mirror_file_loc =
1320 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1321 				mdata->s_bitmap_file_loc =
1322 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1323 				mdata->s_alloc_unit_size =
1324 					le32_to_cpu(mdm->allocUnitSize);
1325 				mdata->s_align_unit_size =
1326 					le16_to_cpu(mdm->alignUnitSize);
1327 				mdata->s_dup_md_flag 	 =
1328 					mdm->flags & 0x01;
1329 
1330 				udf_debug("Metadata Ident suffix=0x%x\n",
1331 					(le16_to_cpu(
1332 					 ((__le16 *)
1333 					      mdm->partIdent.identSuffix)[0])));
1334 				udf_debug("Metadata part num=%d\n",
1335 					le16_to_cpu(mdm->partitionNum));
1336 				udf_debug("Metadata part alloc unit size=%d\n",
1337 					le32_to_cpu(mdm->allocUnitSize));
1338 				udf_debug("Metadata file loc=%d\n",
1339 					le32_to_cpu(mdm->metadataFileLoc));
1340 				udf_debug("Mirror file loc=%d\n",
1341 				       le32_to_cpu(mdm->metadataMirrorFileLoc));
1342 				udf_debug("Bitmap file loc=%d\n",
1343 				       le32_to_cpu(mdm->metadataBitmapFileLoc));
1344 				udf_debug("Duplicate Flag: %d %d\n",
1345 					mdata->s_dup_md_flag, mdm->flags);
1346 			} else {
1347 				udf_debug("Unknown ident: %s\n",
1348 					  upm2->partIdent.ident);
1349 				continue;
1350 			}
1351 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1352 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1353 		}
1354 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1355 			  i, map->s_partition_num, type,
1356 			  map->s_volumeseqnum);
1357 	}
1358 
1359 	if (fileset) {
1360 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1361 
1362 		*fileset = lelb_to_cpu(la->extLocation);
1363 		udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1364 			  "partition=%d\n", fileset->logicalBlockNum,
1365 			  fileset->partitionReferenceNum);
1366 	}
1367 	if (lvd->integritySeqExt.extLength)
1368 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1369 
1370 out_bh:
1371 	brelse(bh);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * udf_load_logicalvolint
1377  *
1378  */
1379 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1380 {
1381 	struct buffer_head *bh = NULL;
1382 	uint16_t ident;
1383 	struct udf_sb_info *sbi = UDF_SB(sb);
1384 	struct logicalVolIntegrityDesc *lvid;
1385 
1386 	while (loc.extLength > 0 &&
1387 	       (bh = udf_read_tagged(sb, loc.extLocation,
1388 				     loc.extLocation, &ident)) &&
1389 	       ident == TAG_IDENT_LVID) {
1390 		sbi->s_lvid_bh = bh;
1391 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1392 
1393 		if (lvid->nextIntegrityExt.extLength)
1394 			udf_load_logicalvolint(sb,
1395 				leea_to_cpu(lvid->nextIntegrityExt));
1396 
1397 		if (sbi->s_lvid_bh != bh)
1398 			brelse(bh);
1399 		loc.extLength -= sb->s_blocksize;
1400 		loc.extLocation++;
1401 	}
1402 	if (sbi->s_lvid_bh != bh)
1403 		brelse(bh);
1404 }
1405 
1406 /*
1407  * udf_process_sequence
1408  *
1409  * PURPOSE
1410  *	Process a main/reserve volume descriptor sequence.
1411  *
1412  * PRE-CONDITIONS
1413  *	sb			Pointer to _locked_ superblock.
1414  *	block			First block of first extent of the sequence.
1415  *	lastblock		Lastblock of first extent of the sequence.
1416  *
1417  * HISTORY
1418  *	July 1, 1997 - Andrew E. Mileski
1419  *	Written, tested, and released.
1420  */
1421 static noinline int udf_process_sequence(struct super_block *sb, long block,
1422 				long lastblock, struct kernel_lb_addr *fileset)
1423 {
1424 	struct buffer_head *bh = NULL;
1425 	struct udf_vds_record vds[VDS_POS_LENGTH];
1426 	struct udf_vds_record *curr;
1427 	struct generic_desc *gd;
1428 	struct volDescPtr *vdp;
1429 	int done = 0;
1430 	uint32_t vdsn;
1431 	uint16_t ident;
1432 	long next_s = 0, next_e = 0;
1433 
1434 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1435 
1436 	/*
1437 	 * Read the main descriptor sequence and find which descriptors
1438 	 * are in it.
1439 	 */
1440 	for (; (!done && block <= lastblock); block++) {
1441 
1442 		bh = udf_read_tagged(sb, block, block, &ident);
1443 		if (!bh) {
1444 			printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1445 			       "sequence is corrupted or we could not read "
1446 			       "it.\n", (unsigned long long)block);
1447 			return 1;
1448 		}
1449 
1450 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1451 		gd = (struct generic_desc *)bh->b_data;
1452 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1453 		switch (ident) {
1454 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1455 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1456 			if (vdsn >= curr->volDescSeqNum) {
1457 				curr->volDescSeqNum = vdsn;
1458 				curr->block = block;
1459 			}
1460 			break;
1461 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1462 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1463 			if (vdsn >= curr->volDescSeqNum) {
1464 				curr->volDescSeqNum = vdsn;
1465 				curr->block = block;
1466 
1467 				vdp = (struct volDescPtr *)bh->b_data;
1468 				next_s = le32_to_cpu(
1469 					vdp->nextVolDescSeqExt.extLocation);
1470 				next_e = le32_to_cpu(
1471 					vdp->nextVolDescSeqExt.extLength);
1472 				next_e = next_e >> sb->s_blocksize_bits;
1473 				next_e += next_s;
1474 			}
1475 			break;
1476 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1477 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1478 			if (vdsn >= curr->volDescSeqNum) {
1479 				curr->volDescSeqNum = vdsn;
1480 				curr->block = block;
1481 			}
1482 			break;
1483 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1484 			curr = &vds[VDS_POS_PARTITION_DESC];
1485 			if (!curr->block)
1486 				curr->block = block;
1487 			break;
1488 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1489 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1490 			if (vdsn >= curr->volDescSeqNum) {
1491 				curr->volDescSeqNum = vdsn;
1492 				curr->block = block;
1493 			}
1494 			break;
1495 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1496 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1497 			if (vdsn >= curr->volDescSeqNum) {
1498 				curr->volDescSeqNum = vdsn;
1499 				curr->block = block;
1500 			}
1501 			break;
1502 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1503 			vds[VDS_POS_TERMINATING_DESC].block = block;
1504 			if (next_e) {
1505 				block = next_s;
1506 				lastblock = next_e;
1507 				next_s = next_e = 0;
1508 			} else
1509 				done = 1;
1510 			break;
1511 		}
1512 		brelse(bh);
1513 	}
1514 	/*
1515 	 * Now read interesting descriptors again and process them
1516 	 * in a suitable order
1517 	 */
1518 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1519 		printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1520 		return 1;
1521 	}
1522 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1523 		return 1;
1524 
1525 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1526 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1527 		return 1;
1528 
1529 	if (vds[VDS_POS_PARTITION_DESC].block) {
1530 		/*
1531 		 * We rescan the whole descriptor sequence to find
1532 		 * partition descriptor blocks and process them.
1533 		 */
1534 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1535 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1536 		     block++)
1537 			if (udf_load_partdesc(sb, block))
1538 				return 1;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1545 			     struct kernel_lb_addr *fileset)
1546 {
1547 	struct anchorVolDescPtr *anchor;
1548 	long main_s, main_e, reserve_s, reserve_e;
1549 	struct udf_sb_info *sbi;
1550 
1551 	sbi = UDF_SB(sb);
1552 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1553 
1554 	/* Locate the main sequence */
1555 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1556 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1557 	main_e = main_e >> sb->s_blocksize_bits;
1558 	main_e += main_s;
1559 
1560 	/* Locate the reserve sequence */
1561 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1562 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1563 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1564 	reserve_e += reserve_s;
1565 
1566 	/* Process the main & reserve sequences */
1567 	/* responsible for finding the PartitionDesc(s) */
1568 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1569 		return 1;
1570 	return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1571 }
1572 
1573 /*
1574  * Check whether there is an anchor block in the given block and
1575  * load Volume Descriptor Sequence if so.
1576  */
1577 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1578 				  struct kernel_lb_addr *fileset)
1579 {
1580 	struct buffer_head *bh;
1581 	uint16_t ident;
1582 	int ret;
1583 
1584 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1585 	    udf_fixed_to_variable(block) >=
1586 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1587 		return 0;
1588 
1589 	bh = udf_read_tagged(sb, block, block, &ident);
1590 	if (!bh)
1591 		return 0;
1592 	if (ident != TAG_IDENT_AVDP) {
1593 		brelse(bh);
1594 		return 0;
1595 	}
1596 	ret = udf_load_sequence(sb, bh, fileset);
1597 	brelse(bh);
1598 	return ret;
1599 }
1600 
1601 /* Search for an anchor volume descriptor pointer */
1602 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1603 				 struct kernel_lb_addr *fileset)
1604 {
1605 	sector_t last[6];
1606 	int i;
1607 	struct udf_sb_info *sbi = UDF_SB(sb);
1608 	int last_count = 0;
1609 
1610 	/* First try user provided anchor */
1611 	if (sbi->s_anchor) {
1612 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1613 			return lastblock;
1614 	}
1615 	/*
1616 	 * according to spec, anchor is in either:
1617 	 *     block 256
1618 	 *     lastblock-256
1619 	 *     lastblock
1620 	 *  however, if the disc isn't closed, it could be 512.
1621 	 */
1622 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1623 		return lastblock;
1624 	/*
1625 	 * The trouble is which block is the last one. Drives often misreport
1626 	 * this so we try various possibilities.
1627 	 */
1628 	last[last_count++] = lastblock;
1629 	if (lastblock >= 1)
1630 		last[last_count++] = lastblock - 1;
1631 	last[last_count++] = lastblock + 1;
1632 	if (lastblock >= 2)
1633 		last[last_count++] = lastblock - 2;
1634 	if (lastblock >= 150)
1635 		last[last_count++] = lastblock - 150;
1636 	if (lastblock >= 152)
1637 		last[last_count++] = lastblock - 152;
1638 
1639 	for (i = 0; i < last_count; i++) {
1640 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1641 				sb->s_blocksize_bits)
1642 			continue;
1643 		if (udf_check_anchor_block(sb, last[i], fileset))
1644 			return last[i];
1645 		if (last[i] < 256)
1646 			continue;
1647 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1648 			return last[i];
1649 	}
1650 
1651 	/* Finally try block 512 in case media is open */
1652 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1653 		return last[0];
1654 	return 0;
1655 }
1656 
1657 /*
1658  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1659  * area specified by it. The function expects sbi->s_lastblock to be the last
1660  * block on the media.
1661  *
1662  * Return 1 if ok, 0 if not found.
1663  *
1664  */
1665 static int udf_find_anchor(struct super_block *sb,
1666 			   struct kernel_lb_addr *fileset)
1667 {
1668 	sector_t lastblock;
1669 	struct udf_sb_info *sbi = UDF_SB(sb);
1670 
1671 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1672 	if (lastblock)
1673 		goto out;
1674 
1675 	/* No anchor found? Try VARCONV conversion of block numbers */
1676 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1677 	/* Firstly, we try to not convert number of the last block */
1678 	lastblock = udf_scan_anchors(sb,
1679 				udf_variable_to_fixed(sbi->s_last_block),
1680 				fileset);
1681 	if (lastblock)
1682 		goto out;
1683 
1684 	/* Secondly, we try with converted number of the last block */
1685 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1686 	if (!lastblock) {
1687 		/* VARCONV didn't help. Clear it. */
1688 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1689 		return 0;
1690 	}
1691 out:
1692 	sbi->s_last_block = lastblock;
1693 	return 1;
1694 }
1695 
1696 /*
1697  * Check Volume Structure Descriptor, find Anchor block and load Volume
1698  * Descriptor Sequence
1699  */
1700 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1701 			int silent, struct kernel_lb_addr *fileset)
1702 {
1703 	struct udf_sb_info *sbi = UDF_SB(sb);
1704 	loff_t nsr_off;
1705 
1706 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1707 		if (!silent)
1708 			printk(KERN_WARNING "UDF-fs: Bad block size\n");
1709 		return 0;
1710 	}
1711 	sbi->s_last_block = uopt->lastblock;
1712 	if (!uopt->novrs) {
1713 		/* Check that it is NSR02 compliant */
1714 		nsr_off = udf_check_vsd(sb);
1715 		if (!nsr_off) {
1716 			if (!silent)
1717 				printk(KERN_WARNING "UDF-fs: No VRS found\n");
1718 			return 0;
1719 		}
1720 		if (nsr_off == -1)
1721 			udf_debug("Failed to read byte 32768. Assuming open "
1722 				  "disc. Skipping validity check\n");
1723 		if (!sbi->s_last_block)
1724 			sbi->s_last_block = udf_get_last_block(sb);
1725 	} else {
1726 		udf_debug("Validity check skipped because of novrs option\n");
1727 	}
1728 
1729 	/* Look for anchor block and load Volume Descriptor Sequence */
1730 	sbi->s_anchor = uopt->anchor;
1731 	if (!udf_find_anchor(sb, fileset)) {
1732 		if (!silent)
1733 			printk(KERN_WARNING "UDF-fs: No anchor found\n");
1734 		return 0;
1735 	}
1736 	return 1;
1737 }
1738 
1739 static void udf_open_lvid(struct super_block *sb)
1740 {
1741 	struct udf_sb_info *sbi = UDF_SB(sb);
1742 	struct buffer_head *bh = sbi->s_lvid_bh;
1743 	struct logicalVolIntegrityDesc *lvid;
1744 	struct logicalVolIntegrityDescImpUse *lvidiu;
1745 
1746 	if (!bh)
1747 		return;
1748 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1749 	lvidiu = udf_sb_lvidiu(sbi);
1750 
1751 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1752 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1753 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1754 				CURRENT_TIME);
1755 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1756 
1757 	lvid->descTag.descCRC = cpu_to_le16(
1758 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1759 			le16_to_cpu(lvid->descTag.descCRCLength)));
1760 
1761 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1762 	mark_buffer_dirty(bh);
1763 	sbi->s_lvid_dirty = 0;
1764 }
1765 
1766 static void udf_close_lvid(struct super_block *sb)
1767 {
1768 	struct udf_sb_info *sbi = UDF_SB(sb);
1769 	struct buffer_head *bh = sbi->s_lvid_bh;
1770 	struct logicalVolIntegrityDesc *lvid;
1771 	struct logicalVolIntegrityDescImpUse *lvidiu;
1772 
1773 	if (!bh)
1774 		return;
1775 
1776 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1777 	lvidiu = udf_sb_lvidiu(sbi);
1778 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1781 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1782 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1783 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1784 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1785 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1786 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1787 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1788 
1789 	lvid->descTag.descCRC = cpu_to_le16(
1790 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1791 				le16_to_cpu(lvid->descTag.descCRCLength)));
1792 
1793 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1794 	mark_buffer_dirty(bh);
1795 	sbi->s_lvid_dirty = 0;
1796 }
1797 
1798 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1799 {
1800 	int i;
1801 	int nr_groups = bitmap->s_nr_groups;
1802 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1803 						nr_groups);
1804 
1805 	for (i = 0; i < nr_groups; i++)
1806 		if (bitmap->s_block_bitmap[i])
1807 			brelse(bitmap->s_block_bitmap[i]);
1808 
1809 	if (size <= PAGE_SIZE)
1810 		kfree(bitmap);
1811 	else
1812 		vfree(bitmap);
1813 }
1814 
1815 static void udf_free_partition(struct udf_part_map *map)
1816 {
1817 	int i;
1818 	struct udf_meta_data *mdata;
1819 
1820 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1821 		iput(map->s_uspace.s_table);
1822 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1823 		iput(map->s_fspace.s_table);
1824 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1825 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1826 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1827 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1828 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
1829 		for (i = 0; i < 4; i++)
1830 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1831 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
1832 		mdata = &map->s_type_specific.s_metadata;
1833 		iput(mdata->s_metadata_fe);
1834 		mdata->s_metadata_fe = NULL;
1835 
1836 		iput(mdata->s_mirror_fe);
1837 		mdata->s_mirror_fe = NULL;
1838 
1839 		iput(mdata->s_bitmap_fe);
1840 		mdata->s_bitmap_fe = NULL;
1841 	}
1842 }
1843 
1844 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1845 {
1846 	int i;
1847 	int ret;
1848 	struct inode *inode = NULL;
1849 	struct udf_options uopt;
1850 	struct kernel_lb_addr rootdir, fileset;
1851 	struct udf_sb_info *sbi;
1852 
1853 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1854 	uopt.uid = -1;
1855 	uopt.gid = -1;
1856 	uopt.umask = 0;
1857 	uopt.fmode = UDF_INVALID_MODE;
1858 	uopt.dmode = UDF_INVALID_MODE;
1859 
1860 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1861 	if (!sbi)
1862 		return -ENOMEM;
1863 
1864 	sb->s_fs_info = sbi;
1865 
1866 	mutex_init(&sbi->s_alloc_mutex);
1867 
1868 	if (!udf_parse_options((char *)options, &uopt, false))
1869 		goto error_out;
1870 
1871 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1872 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1873 		udf_error(sb, "udf_read_super",
1874 			  "utf8 cannot be combined with iocharset\n");
1875 		goto error_out;
1876 	}
1877 #ifdef CONFIG_UDF_NLS
1878 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1879 		uopt.nls_map = load_nls_default();
1880 		if (!uopt.nls_map)
1881 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1882 		else
1883 			udf_debug("Using default NLS map\n");
1884 	}
1885 #endif
1886 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1887 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1888 
1889 	fileset.logicalBlockNum = 0xFFFFFFFF;
1890 	fileset.partitionReferenceNum = 0xFFFF;
1891 
1892 	sbi->s_flags = uopt.flags;
1893 	sbi->s_uid = uopt.uid;
1894 	sbi->s_gid = uopt.gid;
1895 	sbi->s_umask = uopt.umask;
1896 	sbi->s_fmode = uopt.fmode;
1897 	sbi->s_dmode = uopt.dmode;
1898 	sbi->s_nls_map = uopt.nls_map;
1899 
1900 	if (uopt.session == 0xFFFFFFFF)
1901 		sbi->s_session = udf_get_last_session(sb);
1902 	else
1903 		sbi->s_session = uopt.session;
1904 
1905 	udf_debug("Multi-session=%d\n", sbi->s_session);
1906 
1907 	/* Fill in the rest of the superblock */
1908 	sb->s_op = &udf_sb_ops;
1909 	sb->s_export_op = &udf_export_ops;
1910 	sb->dq_op = NULL;
1911 	sb->s_dirt = 0;
1912 	sb->s_magic = UDF_SUPER_MAGIC;
1913 	sb->s_time_gran = 1000;
1914 
1915 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1916 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1917 	} else {
1918 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1919 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1920 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1921 			if (!silent)
1922 				printk(KERN_NOTICE
1923 				       "UDF-fs: Rescanning with blocksize "
1924 				       "%d\n", UDF_DEFAULT_BLOCKSIZE);
1925 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1926 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1927 		}
1928 	}
1929 	if (!ret) {
1930 		printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1931 		goto error_out;
1932 	}
1933 
1934 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
1935 
1936 	if (sbi->s_lvid_bh) {
1937 		struct logicalVolIntegrityDescImpUse *lvidiu =
1938 							udf_sb_lvidiu(sbi);
1939 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1940 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1941 		/* uint16_t maxUDFWriteRev =
1942 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
1943 
1944 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1945 			printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1946 					"(max is %x)\n",
1947 			       le16_to_cpu(lvidiu->minUDFReadRev),
1948 			       UDF_MAX_READ_VERSION);
1949 			goto error_out;
1950 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1951 			sb->s_flags |= MS_RDONLY;
1952 
1953 		sbi->s_udfrev = minUDFWriteRev;
1954 
1955 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1956 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1957 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1958 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1959 	}
1960 
1961 	if (!sbi->s_partitions) {
1962 		printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1963 		goto error_out;
1964 	}
1965 
1966 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
1967 			UDF_PART_FLAG_READ_ONLY) {
1968 		printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
1969 				   "forcing readonly mount\n");
1970 		sb->s_flags |= MS_RDONLY;
1971 	}
1972 
1973 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
1974 		printk(KERN_WARNING "UDF-fs: No fileset found\n");
1975 		goto error_out;
1976 	}
1977 
1978 	if (!silent) {
1979 		struct timestamp ts;
1980 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
1981 		udf_info("UDF: Mounting volume '%s', "
1982 			 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
1983 			 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
1984 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
1985 	}
1986 	if (!(sb->s_flags & MS_RDONLY))
1987 		udf_open_lvid(sb);
1988 
1989 	/* Assign the root inode */
1990 	/* assign inodes by physical block number */
1991 	/* perhaps it's not extensible enough, but for now ... */
1992 	inode = udf_iget(sb, &rootdir);
1993 	if (!inode) {
1994 		printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
1995 				"partition=%d\n",
1996 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
1997 		goto error_out;
1998 	}
1999 
2000 	/* Allocate a dentry for the root inode */
2001 	sb->s_root = d_alloc_root(inode);
2002 	if (!sb->s_root) {
2003 		printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2004 		iput(inode);
2005 		goto error_out;
2006 	}
2007 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2008 	return 0;
2009 
2010 error_out:
2011 	if (sbi->s_vat_inode)
2012 		iput(sbi->s_vat_inode);
2013 	if (sbi->s_partitions)
2014 		for (i = 0; i < sbi->s_partitions; i++)
2015 			udf_free_partition(&sbi->s_partmaps[i]);
2016 #ifdef CONFIG_UDF_NLS
2017 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2018 		unload_nls(sbi->s_nls_map);
2019 #endif
2020 	if (!(sb->s_flags & MS_RDONLY))
2021 		udf_close_lvid(sb);
2022 	brelse(sbi->s_lvid_bh);
2023 
2024 	kfree(sbi->s_partmaps);
2025 	kfree(sbi);
2026 	sb->s_fs_info = NULL;
2027 
2028 	return -EINVAL;
2029 }
2030 
2031 static void udf_error(struct super_block *sb, const char *function,
2032 		      const char *fmt, ...)
2033 {
2034 	va_list args;
2035 
2036 	if (!(sb->s_flags & MS_RDONLY)) {
2037 		/* mark sb error */
2038 		sb->s_dirt = 1;
2039 	}
2040 	va_start(args, fmt);
2041 	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2042 	va_end(args);
2043 	printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2044 		sb->s_id, function, error_buf);
2045 }
2046 
2047 void udf_warning(struct super_block *sb, const char *function,
2048 		 const char *fmt, ...)
2049 {
2050 	va_list args;
2051 
2052 	va_start(args, fmt);
2053 	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2054 	va_end(args);
2055 	printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2056 	       sb->s_id, function, error_buf);
2057 }
2058 
2059 static void udf_put_super(struct super_block *sb)
2060 {
2061 	int i;
2062 	struct udf_sb_info *sbi;
2063 
2064 	sbi = UDF_SB(sb);
2065 	if (sbi->s_vat_inode)
2066 		iput(sbi->s_vat_inode);
2067 	if (sbi->s_partitions)
2068 		for (i = 0; i < sbi->s_partitions; i++)
2069 			udf_free_partition(&sbi->s_partmaps[i]);
2070 #ifdef CONFIG_UDF_NLS
2071 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2072 		unload_nls(sbi->s_nls_map);
2073 #endif
2074 	if (!(sb->s_flags & MS_RDONLY))
2075 		udf_close_lvid(sb);
2076 	brelse(sbi->s_lvid_bh);
2077 	kfree(sbi->s_partmaps);
2078 	kfree(sb->s_fs_info);
2079 	sb->s_fs_info = NULL;
2080 }
2081 
2082 static int udf_sync_fs(struct super_block *sb, int wait)
2083 {
2084 	struct udf_sb_info *sbi = UDF_SB(sb);
2085 
2086 	mutex_lock(&sbi->s_alloc_mutex);
2087 	if (sbi->s_lvid_dirty) {
2088 		/*
2089 		 * Blockdevice will be synced later so we don't have to submit
2090 		 * the buffer for IO
2091 		 */
2092 		mark_buffer_dirty(sbi->s_lvid_bh);
2093 		sb->s_dirt = 0;
2094 		sbi->s_lvid_dirty = 0;
2095 	}
2096 	mutex_unlock(&sbi->s_alloc_mutex);
2097 
2098 	return 0;
2099 }
2100 
2101 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2102 {
2103 	struct super_block *sb = dentry->d_sb;
2104 	struct udf_sb_info *sbi = UDF_SB(sb);
2105 	struct logicalVolIntegrityDescImpUse *lvidiu;
2106 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2107 
2108 	if (sbi->s_lvid_bh != NULL)
2109 		lvidiu = udf_sb_lvidiu(sbi);
2110 	else
2111 		lvidiu = NULL;
2112 
2113 	buf->f_type = UDF_SUPER_MAGIC;
2114 	buf->f_bsize = sb->s_blocksize;
2115 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2116 	buf->f_bfree = udf_count_free(sb);
2117 	buf->f_bavail = buf->f_bfree;
2118 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2119 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2120 			+ buf->f_bfree;
2121 	buf->f_ffree = buf->f_bfree;
2122 	buf->f_namelen = UDF_NAME_LEN - 2;
2123 	buf->f_fsid.val[0] = (u32)id;
2124 	buf->f_fsid.val[1] = (u32)(id >> 32);
2125 
2126 	return 0;
2127 }
2128 
2129 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2130 					  struct udf_bitmap *bitmap)
2131 {
2132 	struct buffer_head *bh = NULL;
2133 	unsigned int accum = 0;
2134 	int index;
2135 	int block = 0, newblock;
2136 	struct kernel_lb_addr loc;
2137 	uint32_t bytes;
2138 	uint8_t *ptr;
2139 	uint16_t ident;
2140 	struct spaceBitmapDesc *bm;
2141 
2142 	lock_kernel();
2143 
2144 	loc.logicalBlockNum = bitmap->s_extPosition;
2145 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2146 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2147 
2148 	if (!bh) {
2149 		printk(KERN_ERR "udf: udf_count_free failed\n");
2150 		goto out;
2151 	} else if (ident != TAG_IDENT_SBD) {
2152 		brelse(bh);
2153 		printk(KERN_ERR "udf: udf_count_free failed\n");
2154 		goto out;
2155 	}
2156 
2157 	bm = (struct spaceBitmapDesc *)bh->b_data;
2158 	bytes = le32_to_cpu(bm->numOfBytes);
2159 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2160 	ptr = (uint8_t *)bh->b_data;
2161 
2162 	while (bytes > 0) {
2163 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2164 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2165 					cur_bytes * 8);
2166 		bytes -= cur_bytes;
2167 		if (bytes) {
2168 			brelse(bh);
2169 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2170 			bh = udf_tread(sb, newblock);
2171 			if (!bh) {
2172 				udf_debug("read failed\n");
2173 				goto out;
2174 			}
2175 			index = 0;
2176 			ptr = (uint8_t *)bh->b_data;
2177 		}
2178 	}
2179 	brelse(bh);
2180 
2181 out:
2182 	unlock_kernel();
2183 
2184 	return accum;
2185 }
2186 
2187 static unsigned int udf_count_free_table(struct super_block *sb,
2188 					 struct inode *table)
2189 {
2190 	unsigned int accum = 0;
2191 	uint32_t elen;
2192 	struct kernel_lb_addr eloc;
2193 	int8_t etype;
2194 	struct extent_position epos;
2195 
2196 	lock_kernel();
2197 
2198 	epos.block = UDF_I(table)->i_location;
2199 	epos.offset = sizeof(struct unallocSpaceEntry);
2200 	epos.bh = NULL;
2201 
2202 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2203 		accum += (elen >> table->i_sb->s_blocksize_bits);
2204 
2205 	brelse(epos.bh);
2206 
2207 	unlock_kernel();
2208 
2209 	return accum;
2210 }
2211 
2212 static unsigned int udf_count_free(struct super_block *sb)
2213 {
2214 	unsigned int accum = 0;
2215 	struct udf_sb_info *sbi;
2216 	struct udf_part_map *map;
2217 
2218 	sbi = UDF_SB(sb);
2219 	if (sbi->s_lvid_bh) {
2220 		struct logicalVolIntegrityDesc *lvid =
2221 			(struct logicalVolIntegrityDesc *)
2222 			sbi->s_lvid_bh->b_data;
2223 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2224 			accum = le32_to_cpu(
2225 					lvid->freeSpaceTable[sbi->s_partition]);
2226 			if (accum == 0xFFFFFFFF)
2227 				accum = 0;
2228 		}
2229 	}
2230 
2231 	if (accum)
2232 		return accum;
2233 
2234 	map = &sbi->s_partmaps[sbi->s_partition];
2235 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2236 		accum += udf_count_free_bitmap(sb,
2237 					       map->s_uspace.s_bitmap);
2238 	}
2239 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2240 		accum += udf_count_free_bitmap(sb,
2241 					       map->s_fspace.s_bitmap);
2242 	}
2243 	if (accum)
2244 		return accum;
2245 
2246 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2247 		accum += udf_count_free_table(sb,
2248 					      map->s_uspace.s_table);
2249 	}
2250 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2251 		accum += udf_count_free_table(sb,
2252 					      map->s_fspace.s_table);
2253 	}
2254 
2255 	return accum;
2256 }
2257