1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * https://www.ecma.ch/ 15 * https://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 #include <linux/iversion.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <linux/uaccess.h> 67 68 enum { 69 VDS_POS_PRIMARY_VOL_DESC, 70 VDS_POS_UNALLOC_SPACE_DESC, 71 VDS_POS_LOGICAL_VOL_DESC, 72 VDS_POS_IMP_USE_VOL_DESC, 73 VDS_POS_LENGTH 74 }; 75 76 #define VSD_FIRST_SECTOR_OFFSET 32768 77 #define VSD_MAX_SECTOR_OFFSET 0x800000 78 79 /* 80 * Maximum number of Terminating Descriptor / Logical Volume Integrity 81 * Descriptor redirections. The chosen numbers are arbitrary - just that we 82 * hopefully don't limit any real use of rewritten inode on write-once media 83 * but avoid looping for too long on corrupted media. 84 */ 85 #define UDF_MAX_TD_NESTING 64 86 #define UDF_MAX_LVID_NESTING 1000 87 88 enum { UDF_MAX_LINKS = 0xffff }; 89 90 /* These are the "meat" - everything else is stuffing */ 91 static int udf_fill_super(struct super_block *, void *, int); 92 static void udf_put_super(struct super_block *); 93 static int udf_sync_fs(struct super_block *, int); 94 static int udf_remount_fs(struct super_block *, int *, char *); 95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 96 static void udf_open_lvid(struct super_block *); 97 static void udf_close_lvid(struct super_block *); 98 static unsigned int udf_count_free(struct super_block *); 99 static int udf_statfs(struct dentry *, struct kstatfs *); 100 static int udf_show_options(struct seq_file *, struct dentry *); 101 102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 103 { 104 struct logicalVolIntegrityDesc *lvid; 105 unsigned int partnum; 106 unsigned int offset; 107 108 if (!UDF_SB(sb)->s_lvid_bh) 109 return NULL; 110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 111 partnum = le32_to_cpu(lvid->numOfPartitions); 112 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 113 offset = partnum * 2 * sizeof(uint32_t); 114 return (struct logicalVolIntegrityDescImpUse *) 115 (((uint8_t *)(lvid + 1)) + offset); 116 } 117 118 /* UDF filesystem type */ 119 static struct dentry *udf_mount(struct file_system_type *fs_type, 120 int flags, const char *dev_name, void *data) 121 { 122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 123 } 124 125 static struct file_system_type udf_fstype = { 126 .owner = THIS_MODULE, 127 .name = "udf", 128 .mount = udf_mount, 129 .kill_sb = kill_block_super, 130 .fs_flags = FS_REQUIRES_DEV, 131 }; 132 MODULE_ALIAS_FS("udf"); 133 134 static struct kmem_cache *udf_inode_cachep; 135 136 static struct inode *udf_alloc_inode(struct super_block *sb) 137 { 138 struct udf_inode_info *ei; 139 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 140 if (!ei) 141 return NULL; 142 143 ei->i_unique = 0; 144 ei->i_lenExtents = 0; 145 ei->i_lenStreams = 0; 146 ei->i_next_alloc_block = 0; 147 ei->i_next_alloc_goal = 0; 148 ei->i_strat4096 = 0; 149 ei->i_streamdir = 0; 150 init_rwsem(&ei->i_data_sem); 151 ei->cached_extent.lstart = -1; 152 spin_lock_init(&ei->i_extent_cache_lock); 153 inode_set_iversion(&ei->vfs_inode, 1); 154 155 return &ei->vfs_inode; 156 } 157 158 static void udf_free_in_core_inode(struct inode *inode) 159 { 160 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 161 } 162 163 static void init_once(void *foo) 164 { 165 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 166 167 ei->i_data = NULL; 168 inode_init_once(&ei->vfs_inode); 169 } 170 171 static int __init init_inodecache(void) 172 { 173 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 174 sizeof(struct udf_inode_info), 175 0, (SLAB_RECLAIM_ACCOUNT | 176 SLAB_MEM_SPREAD | 177 SLAB_ACCOUNT), 178 init_once); 179 if (!udf_inode_cachep) 180 return -ENOMEM; 181 return 0; 182 } 183 184 static void destroy_inodecache(void) 185 { 186 /* 187 * Make sure all delayed rcu free inodes are flushed before we 188 * destroy cache. 189 */ 190 rcu_barrier(); 191 kmem_cache_destroy(udf_inode_cachep); 192 } 193 194 /* Superblock operations */ 195 static const struct super_operations udf_sb_ops = { 196 .alloc_inode = udf_alloc_inode, 197 .free_inode = udf_free_in_core_inode, 198 .write_inode = udf_write_inode, 199 .evict_inode = udf_evict_inode, 200 .put_super = udf_put_super, 201 .sync_fs = udf_sync_fs, 202 .statfs = udf_statfs, 203 .remount_fs = udf_remount_fs, 204 .show_options = udf_show_options, 205 }; 206 207 struct udf_options { 208 unsigned char novrs; 209 unsigned int blocksize; 210 unsigned int session; 211 unsigned int lastblock; 212 unsigned int anchor; 213 unsigned int flags; 214 umode_t umask; 215 kgid_t gid; 216 kuid_t uid; 217 umode_t fmode; 218 umode_t dmode; 219 struct nls_table *nls_map; 220 }; 221 222 static int __init init_udf_fs(void) 223 { 224 int err; 225 226 err = init_inodecache(); 227 if (err) 228 goto out1; 229 err = register_filesystem(&udf_fstype); 230 if (err) 231 goto out; 232 233 return 0; 234 235 out: 236 destroy_inodecache(); 237 238 out1: 239 return err; 240 } 241 242 static void __exit exit_udf_fs(void) 243 { 244 unregister_filesystem(&udf_fstype); 245 destroy_inodecache(); 246 } 247 248 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 249 { 250 struct udf_sb_info *sbi = UDF_SB(sb); 251 252 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 253 if (!sbi->s_partmaps) { 254 sbi->s_partitions = 0; 255 return -ENOMEM; 256 } 257 258 sbi->s_partitions = count; 259 return 0; 260 } 261 262 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 263 { 264 int i; 265 int nr_groups = bitmap->s_nr_groups; 266 267 for (i = 0; i < nr_groups; i++) 268 brelse(bitmap->s_block_bitmap[i]); 269 270 kvfree(bitmap); 271 } 272 273 static void udf_free_partition(struct udf_part_map *map) 274 { 275 int i; 276 struct udf_meta_data *mdata; 277 278 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 279 iput(map->s_uspace.s_table); 280 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 281 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 282 if (map->s_partition_type == UDF_SPARABLE_MAP15) 283 for (i = 0; i < 4; i++) 284 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 285 else if (map->s_partition_type == UDF_METADATA_MAP25) { 286 mdata = &map->s_type_specific.s_metadata; 287 iput(mdata->s_metadata_fe); 288 mdata->s_metadata_fe = NULL; 289 290 iput(mdata->s_mirror_fe); 291 mdata->s_mirror_fe = NULL; 292 293 iput(mdata->s_bitmap_fe); 294 mdata->s_bitmap_fe = NULL; 295 } 296 } 297 298 static void udf_sb_free_partitions(struct super_block *sb) 299 { 300 struct udf_sb_info *sbi = UDF_SB(sb); 301 int i; 302 303 if (!sbi->s_partmaps) 304 return; 305 for (i = 0; i < sbi->s_partitions; i++) 306 udf_free_partition(&sbi->s_partmaps[i]); 307 kfree(sbi->s_partmaps); 308 sbi->s_partmaps = NULL; 309 } 310 311 static int udf_show_options(struct seq_file *seq, struct dentry *root) 312 { 313 struct super_block *sb = root->d_sb; 314 struct udf_sb_info *sbi = UDF_SB(sb); 315 316 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 317 seq_puts(seq, ",nostrict"); 318 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 319 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 320 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 321 seq_puts(seq, ",unhide"); 322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 323 seq_puts(seq, ",undelete"); 324 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 325 seq_puts(seq, ",noadinicb"); 326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 327 seq_puts(seq, ",shortad"); 328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 329 seq_puts(seq, ",uid=forget"); 330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 331 seq_puts(seq, ",gid=forget"); 332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 333 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 335 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 336 if (sbi->s_umask != 0) 337 seq_printf(seq, ",umask=%ho", sbi->s_umask); 338 if (sbi->s_fmode != UDF_INVALID_MODE) 339 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 340 if (sbi->s_dmode != UDF_INVALID_MODE) 341 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 343 seq_printf(seq, ",session=%d", sbi->s_session); 344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 345 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 346 if (sbi->s_anchor != 0) 347 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 348 if (sbi->s_nls_map) 349 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 350 else 351 seq_puts(seq, ",iocharset=utf8"); 352 353 return 0; 354 } 355 356 /* 357 * udf_parse_options 358 * 359 * PURPOSE 360 * Parse mount options. 361 * 362 * DESCRIPTION 363 * The following mount options are supported: 364 * 365 * gid= Set the default group. 366 * umask= Set the default umask. 367 * mode= Set the default file permissions. 368 * dmode= Set the default directory permissions. 369 * uid= Set the default user. 370 * bs= Set the block size. 371 * unhide Show otherwise hidden files. 372 * undelete Show deleted files in lists. 373 * adinicb Embed data in the inode (default) 374 * noadinicb Don't embed data in the inode 375 * shortad Use short ad's 376 * longad Use long ad's (default) 377 * nostrict Unset strict conformance 378 * iocharset= Set the NLS character set 379 * 380 * The remaining are for debugging and disaster recovery: 381 * 382 * novrs Skip volume sequence recognition 383 * 384 * The following expect a offset from 0. 385 * 386 * session= Set the CDROM session (default= last session) 387 * anchor= Override standard anchor location. (default= 256) 388 * volume= Override the VolumeDesc location. (unused) 389 * partition= Override the PartitionDesc location. (unused) 390 * lastblock= Set the last block of the filesystem/ 391 * 392 * The following expect a offset from the partition root. 393 * 394 * fileset= Override the fileset block location. (unused) 395 * rootdir= Override the root directory location. (unused) 396 * WARNING: overriding the rootdir to a non-directory may 397 * yield highly unpredictable results. 398 * 399 * PRE-CONDITIONS 400 * options Pointer to mount options string. 401 * uopts Pointer to mount options variable. 402 * 403 * POST-CONDITIONS 404 * <return> 1 Mount options parsed okay. 405 * <return> 0 Error parsing mount options. 406 * 407 * HISTORY 408 * July 1, 1997 - Andrew E. Mileski 409 * Written, tested, and released. 410 */ 411 412 enum { 413 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 414 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 415 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 416 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 417 Opt_rootdir, Opt_utf8, Opt_iocharset, 418 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 419 Opt_fmode, Opt_dmode 420 }; 421 422 static const match_table_t tokens = { 423 {Opt_novrs, "novrs"}, 424 {Opt_nostrict, "nostrict"}, 425 {Opt_bs, "bs=%u"}, 426 {Opt_unhide, "unhide"}, 427 {Opt_undelete, "undelete"}, 428 {Opt_noadinicb, "noadinicb"}, 429 {Opt_adinicb, "adinicb"}, 430 {Opt_shortad, "shortad"}, 431 {Opt_longad, "longad"}, 432 {Opt_uforget, "uid=forget"}, 433 {Opt_uignore, "uid=ignore"}, 434 {Opt_gforget, "gid=forget"}, 435 {Opt_gignore, "gid=ignore"}, 436 {Opt_gid, "gid=%u"}, 437 {Opt_uid, "uid=%u"}, 438 {Opt_umask, "umask=%o"}, 439 {Opt_session, "session=%u"}, 440 {Opt_lastblock, "lastblock=%u"}, 441 {Opt_anchor, "anchor=%u"}, 442 {Opt_volume, "volume=%u"}, 443 {Opt_partition, "partition=%u"}, 444 {Opt_fileset, "fileset=%u"}, 445 {Opt_rootdir, "rootdir=%u"}, 446 {Opt_utf8, "utf8"}, 447 {Opt_iocharset, "iocharset=%s"}, 448 {Opt_fmode, "mode=%o"}, 449 {Opt_dmode, "dmode=%o"}, 450 {Opt_err, NULL} 451 }; 452 453 static int udf_parse_options(char *options, struct udf_options *uopt, 454 bool remount) 455 { 456 char *p; 457 int option; 458 unsigned int uv; 459 460 uopt->novrs = 0; 461 uopt->session = 0xFFFFFFFF; 462 uopt->lastblock = 0; 463 uopt->anchor = 0; 464 465 if (!options) 466 return 1; 467 468 while ((p = strsep(&options, ",")) != NULL) { 469 substring_t args[MAX_OPT_ARGS]; 470 int token; 471 unsigned n; 472 if (!*p) 473 continue; 474 475 token = match_token(p, tokens, args); 476 switch (token) { 477 case Opt_novrs: 478 uopt->novrs = 1; 479 break; 480 case Opt_bs: 481 if (match_int(&args[0], &option)) 482 return 0; 483 n = option; 484 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 485 return 0; 486 uopt->blocksize = n; 487 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 488 break; 489 case Opt_unhide: 490 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 491 break; 492 case Opt_undelete: 493 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 494 break; 495 case Opt_noadinicb: 496 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 497 break; 498 case Opt_adinicb: 499 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 500 break; 501 case Opt_shortad: 502 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 503 break; 504 case Opt_longad: 505 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 506 break; 507 case Opt_gid: 508 if (match_uint(args, &uv)) 509 return 0; 510 uopt->gid = make_kgid(current_user_ns(), uv); 511 if (!gid_valid(uopt->gid)) 512 return 0; 513 uopt->flags |= (1 << UDF_FLAG_GID_SET); 514 break; 515 case Opt_uid: 516 if (match_uint(args, &uv)) 517 return 0; 518 uopt->uid = make_kuid(current_user_ns(), uv); 519 if (!uid_valid(uopt->uid)) 520 return 0; 521 uopt->flags |= (1 << UDF_FLAG_UID_SET); 522 break; 523 case Opt_umask: 524 if (match_octal(args, &option)) 525 return 0; 526 uopt->umask = option; 527 break; 528 case Opt_nostrict: 529 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 530 break; 531 case Opt_session: 532 if (match_int(args, &option)) 533 return 0; 534 uopt->session = option; 535 if (!remount) 536 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 537 break; 538 case Opt_lastblock: 539 if (match_int(args, &option)) 540 return 0; 541 uopt->lastblock = option; 542 if (!remount) 543 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 544 break; 545 case Opt_anchor: 546 if (match_int(args, &option)) 547 return 0; 548 uopt->anchor = option; 549 break; 550 case Opt_volume: 551 case Opt_partition: 552 case Opt_fileset: 553 case Opt_rootdir: 554 /* Ignored (never implemented properly) */ 555 break; 556 case Opt_utf8: 557 if (!remount) { 558 unload_nls(uopt->nls_map); 559 uopt->nls_map = NULL; 560 } 561 break; 562 case Opt_iocharset: 563 if (!remount) { 564 unload_nls(uopt->nls_map); 565 uopt->nls_map = NULL; 566 } 567 /* When nls_map is not loaded then UTF-8 is used */ 568 if (!remount && strcmp(args[0].from, "utf8") != 0) { 569 uopt->nls_map = load_nls(args[0].from); 570 if (!uopt->nls_map) { 571 pr_err("iocharset %s not found\n", 572 args[0].from); 573 return 0; 574 } 575 } 576 break; 577 case Opt_uforget: 578 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 579 break; 580 case Opt_uignore: 581 case Opt_gignore: 582 /* These options are superseeded by uid=<number> */ 583 break; 584 case Opt_gforget: 585 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 586 break; 587 case Opt_fmode: 588 if (match_octal(args, &option)) 589 return 0; 590 uopt->fmode = option & 0777; 591 break; 592 case Opt_dmode: 593 if (match_octal(args, &option)) 594 return 0; 595 uopt->dmode = option & 0777; 596 break; 597 default: 598 pr_err("bad mount option \"%s\" or missing value\n", p); 599 return 0; 600 } 601 } 602 return 1; 603 } 604 605 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 606 { 607 struct udf_options uopt; 608 struct udf_sb_info *sbi = UDF_SB(sb); 609 int error = 0; 610 611 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 612 return -EACCES; 613 614 sync_filesystem(sb); 615 616 uopt.flags = sbi->s_flags; 617 uopt.uid = sbi->s_uid; 618 uopt.gid = sbi->s_gid; 619 uopt.umask = sbi->s_umask; 620 uopt.fmode = sbi->s_fmode; 621 uopt.dmode = sbi->s_dmode; 622 uopt.nls_map = NULL; 623 624 if (!udf_parse_options(options, &uopt, true)) 625 return -EINVAL; 626 627 write_lock(&sbi->s_cred_lock); 628 sbi->s_flags = uopt.flags; 629 sbi->s_uid = uopt.uid; 630 sbi->s_gid = uopt.gid; 631 sbi->s_umask = uopt.umask; 632 sbi->s_fmode = uopt.fmode; 633 sbi->s_dmode = uopt.dmode; 634 write_unlock(&sbi->s_cred_lock); 635 636 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 637 goto out_unlock; 638 639 if (*flags & SB_RDONLY) 640 udf_close_lvid(sb); 641 else 642 udf_open_lvid(sb); 643 644 out_unlock: 645 return error; 646 } 647 648 /* 649 * Check VSD descriptor. Returns -1 in case we are at the end of volume 650 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 651 * we found one of NSR descriptors we are looking for. 652 */ 653 static int identify_vsd(const struct volStructDesc *vsd) 654 { 655 int ret = 0; 656 657 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 658 switch (vsd->structType) { 659 case 0: 660 udf_debug("ISO9660 Boot Record found\n"); 661 break; 662 case 1: 663 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 664 break; 665 case 2: 666 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 667 break; 668 case 3: 669 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 670 break; 671 case 255: 672 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 673 break; 674 default: 675 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 676 break; 677 } 678 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 679 ; /* ret = 0 */ 680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 681 ret = 1; 682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 683 ret = 1; 684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 685 ; /* ret = 0 */ 686 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 687 ; /* ret = 0 */ 688 else { 689 /* TEA01 or invalid id : end of volume recognition area */ 690 ret = -1; 691 } 692 693 return ret; 694 } 695 696 /* 697 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 698 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 699 * @return 1 if NSR02 or NSR03 found, 700 * -1 if first sector read error, 0 otherwise 701 */ 702 static int udf_check_vsd(struct super_block *sb) 703 { 704 struct volStructDesc *vsd = NULL; 705 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 706 int sectorsize; 707 struct buffer_head *bh = NULL; 708 int nsr = 0; 709 struct udf_sb_info *sbi; 710 loff_t session_offset; 711 712 sbi = UDF_SB(sb); 713 if (sb->s_blocksize < sizeof(struct volStructDesc)) 714 sectorsize = sizeof(struct volStructDesc); 715 else 716 sectorsize = sb->s_blocksize; 717 718 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; 719 sector += session_offset; 720 721 udf_debug("Starting at sector %u (%lu byte sectors)\n", 722 (unsigned int)(sector >> sb->s_blocksize_bits), 723 sb->s_blocksize); 724 /* Process the sequence (if applicable). The hard limit on the sector 725 * offset is arbitrary, hopefully large enough so that all valid UDF 726 * filesystems will be recognised. There is no mention of an upper 727 * bound to the size of the volume recognition area in the standard. 728 * The limit will prevent the code to read all the sectors of a 729 * specially crafted image (like a bluray disc full of CD001 sectors), 730 * potentially causing minutes or even hours of uninterruptible I/O 731 * activity. This actually happened with uninitialised SSD partitions 732 * (all 0xFF) before the check for the limit and all valid IDs were 733 * added */ 734 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 735 /* Read a block */ 736 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 737 if (!bh) 738 break; 739 740 vsd = (struct volStructDesc *)(bh->b_data + 741 (sector & (sb->s_blocksize - 1))); 742 nsr = identify_vsd(vsd); 743 /* Found NSR or end? */ 744 if (nsr) { 745 brelse(bh); 746 break; 747 } 748 /* 749 * Special handling for improperly formatted VRS (e.g., Win10) 750 * where components are separated by 2048 bytes even though 751 * sectors are 4K 752 */ 753 if (sb->s_blocksize == 4096) { 754 nsr = identify_vsd(vsd + 1); 755 /* Ignore unknown IDs... */ 756 if (nsr < 0) 757 nsr = 0; 758 } 759 brelse(bh); 760 } 761 762 if (nsr > 0) 763 return 1; 764 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) 765 return -1; 766 else 767 return 0; 768 } 769 770 static int udf_verify_domain_identifier(struct super_block *sb, 771 struct regid *ident, char *dname) 772 { 773 struct domainIdentSuffix *suffix; 774 775 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 776 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 777 goto force_ro; 778 } 779 if (ident->flags & ENTITYID_FLAGS_DIRTY) { 780 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 781 dname); 782 goto force_ro; 783 } 784 suffix = (struct domainIdentSuffix *)ident->identSuffix; 785 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || 786 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { 787 if (!sb_rdonly(sb)) { 788 udf_warn(sb, "Descriptor for %s marked write protected." 789 " Forcing read only mount.\n", dname); 790 } 791 goto force_ro; 792 } 793 return 0; 794 795 force_ro: 796 if (!sb_rdonly(sb)) 797 return -EACCES; 798 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 799 return 0; 800 } 801 802 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 803 struct kernel_lb_addr *root) 804 { 805 int ret; 806 807 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 808 if (ret < 0) 809 return ret; 810 811 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 812 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 813 814 udf_debug("Rootdir at block=%u, partition=%u\n", 815 root->logicalBlockNum, root->partitionReferenceNum); 816 return 0; 817 } 818 819 static int udf_find_fileset(struct super_block *sb, 820 struct kernel_lb_addr *fileset, 821 struct kernel_lb_addr *root) 822 { 823 struct buffer_head *bh = NULL; 824 uint16_t ident; 825 int ret; 826 827 if (fileset->logicalBlockNum == 0xFFFFFFFF && 828 fileset->partitionReferenceNum == 0xFFFF) 829 return -EINVAL; 830 831 bh = udf_read_ptagged(sb, fileset, 0, &ident); 832 if (!bh) 833 return -EIO; 834 if (ident != TAG_IDENT_FSD) { 835 brelse(bh); 836 return -EINVAL; 837 } 838 839 udf_debug("Fileset at block=%u, partition=%u\n", 840 fileset->logicalBlockNum, fileset->partitionReferenceNum); 841 842 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 843 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 844 brelse(bh); 845 return ret; 846 } 847 848 /* 849 * Load primary Volume Descriptor Sequence 850 * 851 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 852 * should be tried. 853 */ 854 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 855 { 856 struct primaryVolDesc *pvoldesc; 857 uint8_t *outstr; 858 struct buffer_head *bh; 859 uint16_t ident; 860 int ret; 861 struct timestamp *ts; 862 863 outstr = kmalloc(128, GFP_NOFS); 864 if (!outstr) 865 return -ENOMEM; 866 867 bh = udf_read_tagged(sb, block, block, &ident); 868 if (!bh) { 869 ret = -EAGAIN; 870 goto out2; 871 } 872 873 if (ident != TAG_IDENT_PVD) { 874 ret = -EIO; 875 goto out_bh; 876 } 877 878 pvoldesc = (struct primaryVolDesc *)bh->b_data; 879 880 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 881 pvoldesc->recordingDateAndTime); 882 ts = &pvoldesc->recordingDateAndTime; 883 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 884 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 885 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 886 887 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 888 if (ret < 0) { 889 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 890 pr_warn("incorrect volume identification, setting to " 891 "'InvalidName'\n"); 892 } else { 893 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 894 } 895 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 896 897 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 898 if (ret < 0) { 899 ret = 0; 900 goto out_bh; 901 } 902 outstr[ret] = 0; 903 udf_debug("volSetIdent[] = '%s'\n", outstr); 904 905 ret = 0; 906 out_bh: 907 brelse(bh); 908 out2: 909 kfree(outstr); 910 return ret; 911 } 912 913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 914 u32 meta_file_loc, u32 partition_ref) 915 { 916 struct kernel_lb_addr addr; 917 struct inode *metadata_fe; 918 919 addr.logicalBlockNum = meta_file_loc; 920 addr.partitionReferenceNum = partition_ref; 921 922 metadata_fe = udf_iget_special(sb, &addr); 923 924 if (IS_ERR(metadata_fe)) { 925 udf_warn(sb, "metadata inode efe not found\n"); 926 return metadata_fe; 927 } 928 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 929 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 930 iput(metadata_fe); 931 return ERR_PTR(-EIO); 932 } 933 934 return metadata_fe; 935 } 936 937 static int udf_load_metadata_files(struct super_block *sb, int partition, 938 int type1_index) 939 { 940 struct udf_sb_info *sbi = UDF_SB(sb); 941 struct udf_part_map *map; 942 struct udf_meta_data *mdata; 943 struct kernel_lb_addr addr; 944 struct inode *fe; 945 946 map = &sbi->s_partmaps[partition]; 947 mdata = &map->s_type_specific.s_metadata; 948 mdata->s_phys_partition_ref = type1_index; 949 950 /* metadata address */ 951 udf_debug("Metadata file location: block = %u part = %u\n", 952 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 953 954 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 955 mdata->s_phys_partition_ref); 956 if (IS_ERR(fe)) { 957 /* mirror file entry */ 958 udf_debug("Mirror metadata file location: block = %u part = %u\n", 959 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 960 961 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 962 mdata->s_phys_partition_ref); 963 964 if (IS_ERR(fe)) { 965 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 966 return PTR_ERR(fe); 967 } 968 mdata->s_mirror_fe = fe; 969 } else 970 mdata->s_metadata_fe = fe; 971 972 973 /* 974 * bitmap file entry 975 * Note: 976 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 977 */ 978 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 979 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 980 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 981 982 udf_debug("Bitmap file location: block = %u part = %u\n", 983 addr.logicalBlockNum, addr.partitionReferenceNum); 984 985 fe = udf_iget_special(sb, &addr); 986 if (IS_ERR(fe)) { 987 if (sb_rdonly(sb)) 988 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 989 else { 990 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 991 return PTR_ERR(fe); 992 } 993 } else 994 mdata->s_bitmap_fe = fe; 995 } 996 997 udf_debug("udf_load_metadata_files Ok\n"); 998 return 0; 999 } 1000 1001 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1002 { 1003 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1004 return DIV_ROUND_UP(map->s_partition_len + 1005 (sizeof(struct spaceBitmapDesc) << 3), 1006 sb->s_blocksize * 8); 1007 } 1008 1009 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1010 { 1011 struct udf_bitmap *bitmap; 1012 int nr_groups = udf_compute_nr_groups(sb, index); 1013 1014 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), 1015 GFP_KERNEL); 1016 if (!bitmap) 1017 return NULL; 1018 1019 bitmap->s_nr_groups = nr_groups; 1020 return bitmap; 1021 } 1022 1023 static int check_partition_desc(struct super_block *sb, 1024 struct partitionDesc *p, 1025 struct udf_part_map *map) 1026 { 1027 bool umap, utable, fmap, ftable; 1028 struct partitionHeaderDesc *phd; 1029 1030 switch (le32_to_cpu(p->accessType)) { 1031 case PD_ACCESS_TYPE_READ_ONLY: 1032 case PD_ACCESS_TYPE_WRITE_ONCE: 1033 case PD_ACCESS_TYPE_NONE: 1034 goto force_ro; 1035 } 1036 1037 /* No Partition Header Descriptor? */ 1038 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1039 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1040 goto force_ro; 1041 1042 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1043 utable = phd->unallocSpaceTable.extLength; 1044 umap = phd->unallocSpaceBitmap.extLength; 1045 ftable = phd->freedSpaceTable.extLength; 1046 fmap = phd->freedSpaceBitmap.extLength; 1047 1048 /* No allocation info? */ 1049 if (!utable && !umap && !ftable && !fmap) 1050 goto force_ro; 1051 1052 /* We don't support blocks that require erasing before overwrite */ 1053 if (ftable || fmap) 1054 goto force_ro; 1055 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1056 if (utable && umap) 1057 goto force_ro; 1058 1059 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1060 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1061 map->s_partition_type == UDF_METADATA_MAP25) 1062 goto force_ro; 1063 1064 return 0; 1065 force_ro: 1066 if (!sb_rdonly(sb)) 1067 return -EACCES; 1068 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1069 return 0; 1070 } 1071 1072 static int udf_fill_partdesc_info(struct super_block *sb, 1073 struct partitionDesc *p, int p_index) 1074 { 1075 struct udf_part_map *map; 1076 struct udf_sb_info *sbi = UDF_SB(sb); 1077 struct partitionHeaderDesc *phd; 1078 int err; 1079 1080 map = &sbi->s_partmaps[p_index]; 1081 1082 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1083 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1084 1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1086 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1088 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1090 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1092 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1093 1094 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1095 p_index, map->s_partition_type, 1096 map->s_partition_root, map->s_partition_len); 1097 1098 err = check_partition_desc(sb, p, map); 1099 if (err) 1100 return err; 1101 1102 /* 1103 * Skip loading allocation info it we cannot ever write to the fs. 1104 * This is a correctness thing as we may have decided to force ro mount 1105 * to avoid allocation info we don't support. 1106 */ 1107 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1108 return 0; 1109 1110 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1111 if (phd->unallocSpaceTable.extLength) { 1112 struct kernel_lb_addr loc = { 1113 .logicalBlockNum = le32_to_cpu( 1114 phd->unallocSpaceTable.extPosition), 1115 .partitionReferenceNum = p_index, 1116 }; 1117 struct inode *inode; 1118 1119 inode = udf_iget_special(sb, &loc); 1120 if (IS_ERR(inode)) { 1121 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1122 p_index); 1123 return PTR_ERR(inode); 1124 } 1125 map->s_uspace.s_table = inode; 1126 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1127 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1128 p_index, map->s_uspace.s_table->i_ino); 1129 } 1130 1131 if (phd->unallocSpaceBitmap.extLength) { 1132 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1133 if (!bitmap) 1134 return -ENOMEM; 1135 map->s_uspace.s_bitmap = bitmap; 1136 bitmap->s_extPosition = le32_to_cpu( 1137 phd->unallocSpaceBitmap.extPosition); 1138 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1139 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1140 p_index, bitmap->s_extPosition); 1141 } 1142 1143 return 0; 1144 } 1145 1146 static void udf_find_vat_block(struct super_block *sb, int p_index, 1147 int type1_index, sector_t start_block) 1148 { 1149 struct udf_sb_info *sbi = UDF_SB(sb); 1150 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1151 sector_t vat_block; 1152 struct kernel_lb_addr ino; 1153 struct inode *inode; 1154 1155 /* 1156 * VAT file entry is in the last recorded block. Some broken disks have 1157 * it a few blocks before so try a bit harder... 1158 */ 1159 ino.partitionReferenceNum = type1_index; 1160 for (vat_block = start_block; 1161 vat_block >= map->s_partition_root && 1162 vat_block >= start_block - 3; vat_block--) { 1163 ino.logicalBlockNum = vat_block - map->s_partition_root; 1164 inode = udf_iget_special(sb, &ino); 1165 if (!IS_ERR(inode)) { 1166 sbi->s_vat_inode = inode; 1167 break; 1168 } 1169 } 1170 } 1171 1172 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1173 { 1174 struct udf_sb_info *sbi = UDF_SB(sb); 1175 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1176 struct buffer_head *bh = NULL; 1177 struct udf_inode_info *vati; 1178 uint32_t pos; 1179 struct virtualAllocationTable20 *vat20; 1180 sector_t blocks = sb_bdev_nr_blocks(sb); 1181 1182 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1183 if (!sbi->s_vat_inode && 1184 sbi->s_last_block != blocks - 1) { 1185 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1186 (unsigned long)sbi->s_last_block, 1187 (unsigned long)blocks - 1); 1188 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1189 } 1190 if (!sbi->s_vat_inode) 1191 return -EIO; 1192 1193 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1194 map->s_type_specific.s_virtual.s_start_offset = 0; 1195 map->s_type_specific.s_virtual.s_num_entries = 1196 (sbi->s_vat_inode->i_size - 36) >> 2; 1197 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1198 vati = UDF_I(sbi->s_vat_inode); 1199 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1200 pos = udf_block_map(sbi->s_vat_inode, 0); 1201 bh = sb_bread(sb, pos); 1202 if (!bh) 1203 return -EIO; 1204 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1205 } else { 1206 vat20 = (struct virtualAllocationTable20 *) 1207 vati->i_data; 1208 } 1209 1210 map->s_type_specific.s_virtual.s_start_offset = 1211 le16_to_cpu(vat20->lengthHeader); 1212 map->s_type_specific.s_virtual.s_num_entries = 1213 (sbi->s_vat_inode->i_size - 1214 map->s_type_specific.s_virtual. 1215 s_start_offset) >> 2; 1216 brelse(bh); 1217 } 1218 return 0; 1219 } 1220 1221 /* 1222 * Load partition descriptor block 1223 * 1224 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1225 * sequence. 1226 */ 1227 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1228 { 1229 struct buffer_head *bh; 1230 struct partitionDesc *p; 1231 struct udf_part_map *map; 1232 struct udf_sb_info *sbi = UDF_SB(sb); 1233 int i, type1_idx; 1234 uint16_t partitionNumber; 1235 uint16_t ident; 1236 int ret; 1237 1238 bh = udf_read_tagged(sb, block, block, &ident); 1239 if (!bh) 1240 return -EAGAIN; 1241 if (ident != TAG_IDENT_PD) { 1242 ret = 0; 1243 goto out_bh; 1244 } 1245 1246 p = (struct partitionDesc *)bh->b_data; 1247 partitionNumber = le16_to_cpu(p->partitionNumber); 1248 1249 /* First scan for TYPE1 and SPARABLE partitions */ 1250 for (i = 0; i < sbi->s_partitions; i++) { 1251 map = &sbi->s_partmaps[i]; 1252 udf_debug("Searching map: (%u == %u)\n", 1253 map->s_partition_num, partitionNumber); 1254 if (map->s_partition_num == partitionNumber && 1255 (map->s_partition_type == UDF_TYPE1_MAP15 || 1256 map->s_partition_type == UDF_SPARABLE_MAP15)) 1257 break; 1258 } 1259 1260 if (i >= sbi->s_partitions) { 1261 udf_debug("Partition (%u) not found in partition map\n", 1262 partitionNumber); 1263 ret = 0; 1264 goto out_bh; 1265 } 1266 1267 ret = udf_fill_partdesc_info(sb, p, i); 1268 if (ret < 0) 1269 goto out_bh; 1270 1271 /* 1272 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1273 * PHYSICAL partitions are already set up 1274 */ 1275 type1_idx = i; 1276 map = NULL; /* supress 'maybe used uninitialized' warning */ 1277 for (i = 0; i < sbi->s_partitions; i++) { 1278 map = &sbi->s_partmaps[i]; 1279 1280 if (map->s_partition_num == partitionNumber && 1281 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1282 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1283 map->s_partition_type == UDF_METADATA_MAP25)) 1284 break; 1285 } 1286 1287 if (i >= sbi->s_partitions) { 1288 ret = 0; 1289 goto out_bh; 1290 } 1291 1292 ret = udf_fill_partdesc_info(sb, p, i); 1293 if (ret < 0) 1294 goto out_bh; 1295 1296 if (map->s_partition_type == UDF_METADATA_MAP25) { 1297 ret = udf_load_metadata_files(sb, i, type1_idx); 1298 if (ret < 0) { 1299 udf_err(sb, "error loading MetaData partition map %d\n", 1300 i); 1301 goto out_bh; 1302 } 1303 } else { 1304 /* 1305 * If we have a partition with virtual map, we don't handle 1306 * writing to it (we overwrite blocks instead of relocating 1307 * them). 1308 */ 1309 if (!sb_rdonly(sb)) { 1310 ret = -EACCES; 1311 goto out_bh; 1312 } 1313 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1314 ret = udf_load_vat(sb, i, type1_idx); 1315 if (ret < 0) 1316 goto out_bh; 1317 } 1318 ret = 0; 1319 out_bh: 1320 /* In case loading failed, we handle cleanup in udf_fill_super */ 1321 brelse(bh); 1322 return ret; 1323 } 1324 1325 static int udf_load_sparable_map(struct super_block *sb, 1326 struct udf_part_map *map, 1327 struct sparablePartitionMap *spm) 1328 { 1329 uint32_t loc; 1330 uint16_t ident; 1331 struct sparingTable *st; 1332 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1333 int i; 1334 struct buffer_head *bh; 1335 1336 map->s_partition_type = UDF_SPARABLE_MAP15; 1337 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1338 if (!is_power_of_2(sdata->s_packet_len)) { 1339 udf_err(sb, "error loading logical volume descriptor: " 1340 "Invalid packet length %u\n", 1341 (unsigned)sdata->s_packet_len); 1342 return -EIO; 1343 } 1344 if (spm->numSparingTables > 4) { 1345 udf_err(sb, "error loading logical volume descriptor: " 1346 "Too many sparing tables (%d)\n", 1347 (int)spm->numSparingTables); 1348 return -EIO; 1349 } 1350 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { 1351 udf_err(sb, "error loading logical volume descriptor: " 1352 "Too big sparing table size (%u)\n", 1353 le32_to_cpu(spm->sizeSparingTable)); 1354 return -EIO; 1355 } 1356 1357 for (i = 0; i < spm->numSparingTables; i++) { 1358 loc = le32_to_cpu(spm->locSparingTable[i]); 1359 bh = udf_read_tagged(sb, loc, loc, &ident); 1360 if (!bh) 1361 continue; 1362 1363 st = (struct sparingTable *)bh->b_data; 1364 if (ident != 0 || 1365 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1366 strlen(UDF_ID_SPARING)) || 1367 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1368 sb->s_blocksize) { 1369 brelse(bh); 1370 continue; 1371 } 1372 1373 sdata->s_spar_map[i] = bh; 1374 } 1375 map->s_partition_func = udf_get_pblock_spar15; 1376 return 0; 1377 } 1378 1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1380 struct kernel_lb_addr *fileset) 1381 { 1382 struct logicalVolDesc *lvd; 1383 int i, offset; 1384 uint8_t type; 1385 struct udf_sb_info *sbi = UDF_SB(sb); 1386 struct genericPartitionMap *gpm; 1387 uint16_t ident; 1388 struct buffer_head *bh; 1389 unsigned int table_len; 1390 int ret; 1391 1392 bh = udf_read_tagged(sb, block, block, &ident); 1393 if (!bh) 1394 return -EAGAIN; 1395 BUG_ON(ident != TAG_IDENT_LVD); 1396 lvd = (struct logicalVolDesc *)bh->b_data; 1397 table_len = le32_to_cpu(lvd->mapTableLength); 1398 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1399 udf_err(sb, "error loading logical volume descriptor: " 1400 "Partition table too long (%u > %lu)\n", table_len, 1401 sb->s_blocksize - sizeof(*lvd)); 1402 ret = -EIO; 1403 goto out_bh; 1404 } 1405 1406 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1407 "logical volume"); 1408 if (ret) 1409 goto out_bh; 1410 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1411 if (ret) 1412 goto out_bh; 1413 1414 for (i = 0, offset = 0; 1415 i < sbi->s_partitions && offset < table_len; 1416 i++, offset += gpm->partitionMapLength) { 1417 struct udf_part_map *map = &sbi->s_partmaps[i]; 1418 gpm = (struct genericPartitionMap *) 1419 &(lvd->partitionMaps[offset]); 1420 type = gpm->partitionMapType; 1421 if (type == 1) { 1422 struct genericPartitionMap1 *gpm1 = 1423 (struct genericPartitionMap1 *)gpm; 1424 map->s_partition_type = UDF_TYPE1_MAP15; 1425 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1426 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1427 map->s_partition_func = NULL; 1428 } else if (type == 2) { 1429 struct udfPartitionMap2 *upm2 = 1430 (struct udfPartitionMap2 *)gpm; 1431 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1432 strlen(UDF_ID_VIRTUAL))) { 1433 u16 suf = 1434 le16_to_cpu(((__le16 *)upm2->partIdent. 1435 identSuffix)[0]); 1436 if (suf < 0x0200) { 1437 map->s_partition_type = 1438 UDF_VIRTUAL_MAP15; 1439 map->s_partition_func = 1440 udf_get_pblock_virt15; 1441 } else { 1442 map->s_partition_type = 1443 UDF_VIRTUAL_MAP20; 1444 map->s_partition_func = 1445 udf_get_pblock_virt20; 1446 } 1447 } else if (!strncmp(upm2->partIdent.ident, 1448 UDF_ID_SPARABLE, 1449 strlen(UDF_ID_SPARABLE))) { 1450 ret = udf_load_sparable_map(sb, map, 1451 (struct sparablePartitionMap *)gpm); 1452 if (ret < 0) 1453 goto out_bh; 1454 } else if (!strncmp(upm2->partIdent.ident, 1455 UDF_ID_METADATA, 1456 strlen(UDF_ID_METADATA))) { 1457 struct udf_meta_data *mdata = 1458 &map->s_type_specific.s_metadata; 1459 struct metadataPartitionMap *mdm = 1460 (struct metadataPartitionMap *) 1461 &(lvd->partitionMaps[offset]); 1462 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1463 i, type, UDF_ID_METADATA); 1464 1465 map->s_partition_type = UDF_METADATA_MAP25; 1466 map->s_partition_func = udf_get_pblock_meta25; 1467 1468 mdata->s_meta_file_loc = 1469 le32_to_cpu(mdm->metadataFileLoc); 1470 mdata->s_mirror_file_loc = 1471 le32_to_cpu(mdm->metadataMirrorFileLoc); 1472 mdata->s_bitmap_file_loc = 1473 le32_to_cpu(mdm->metadataBitmapFileLoc); 1474 mdata->s_alloc_unit_size = 1475 le32_to_cpu(mdm->allocUnitSize); 1476 mdata->s_align_unit_size = 1477 le16_to_cpu(mdm->alignUnitSize); 1478 if (mdm->flags & 0x01) 1479 mdata->s_flags |= MF_DUPLICATE_MD; 1480 1481 udf_debug("Metadata Ident suffix=0x%x\n", 1482 le16_to_cpu(*(__le16 *) 1483 mdm->partIdent.identSuffix)); 1484 udf_debug("Metadata part num=%u\n", 1485 le16_to_cpu(mdm->partitionNum)); 1486 udf_debug("Metadata part alloc unit size=%u\n", 1487 le32_to_cpu(mdm->allocUnitSize)); 1488 udf_debug("Metadata file loc=%u\n", 1489 le32_to_cpu(mdm->metadataFileLoc)); 1490 udf_debug("Mirror file loc=%u\n", 1491 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1492 udf_debug("Bitmap file loc=%u\n", 1493 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1494 udf_debug("Flags: %d %u\n", 1495 mdata->s_flags, mdm->flags); 1496 } else { 1497 udf_debug("Unknown ident: %s\n", 1498 upm2->partIdent.ident); 1499 continue; 1500 } 1501 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1502 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1503 } 1504 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1505 i, map->s_partition_num, type, map->s_volumeseqnum); 1506 } 1507 1508 if (fileset) { 1509 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1510 1511 *fileset = lelb_to_cpu(la->extLocation); 1512 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1513 fileset->logicalBlockNum, 1514 fileset->partitionReferenceNum); 1515 } 1516 if (lvd->integritySeqExt.extLength) 1517 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1518 ret = 0; 1519 1520 if (!sbi->s_lvid_bh) { 1521 /* We can't generate unique IDs without a valid LVID */ 1522 if (sb_rdonly(sb)) { 1523 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1524 } else { 1525 udf_warn(sb, "Damaged or missing LVID, forcing " 1526 "readonly mount\n"); 1527 ret = -EACCES; 1528 } 1529 } 1530 out_bh: 1531 brelse(bh); 1532 return ret; 1533 } 1534 1535 /* 1536 * Find the prevailing Logical Volume Integrity Descriptor. 1537 */ 1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1539 { 1540 struct buffer_head *bh, *final_bh; 1541 uint16_t ident; 1542 struct udf_sb_info *sbi = UDF_SB(sb); 1543 struct logicalVolIntegrityDesc *lvid; 1544 int indirections = 0; 1545 u32 parts, impuselen; 1546 1547 while (++indirections <= UDF_MAX_LVID_NESTING) { 1548 final_bh = NULL; 1549 while (loc.extLength > 0 && 1550 (bh = udf_read_tagged(sb, loc.extLocation, 1551 loc.extLocation, &ident))) { 1552 if (ident != TAG_IDENT_LVID) { 1553 brelse(bh); 1554 break; 1555 } 1556 1557 brelse(final_bh); 1558 final_bh = bh; 1559 1560 loc.extLength -= sb->s_blocksize; 1561 loc.extLocation++; 1562 } 1563 1564 if (!final_bh) 1565 return; 1566 1567 brelse(sbi->s_lvid_bh); 1568 sbi->s_lvid_bh = final_bh; 1569 1570 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1571 if (lvid->nextIntegrityExt.extLength == 0) 1572 goto check; 1573 1574 loc = leea_to_cpu(lvid->nextIntegrityExt); 1575 } 1576 1577 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1578 UDF_MAX_LVID_NESTING); 1579 out_err: 1580 brelse(sbi->s_lvid_bh); 1581 sbi->s_lvid_bh = NULL; 1582 return; 1583 check: 1584 parts = le32_to_cpu(lvid->numOfPartitions); 1585 impuselen = le32_to_cpu(lvid->lengthOfImpUse); 1586 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize || 1587 sizeof(struct logicalVolIntegrityDesc) + impuselen + 1588 2 * parts * sizeof(u32) > sb->s_blocksize) { 1589 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), " 1590 "ignoring.\n", parts, impuselen); 1591 goto out_err; 1592 } 1593 } 1594 1595 /* 1596 * Step for reallocation of table of partition descriptor sequence numbers. 1597 * Must be power of 2. 1598 */ 1599 #define PART_DESC_ALLOC_STEP 32 1600 1601 struct part_desc_seq_scan_data { 1602 struct udf_vds_record rec; 1603 u32 partnum; 1604 }; 1605 1606 struct desc_seq_scan_data { 1607 struct udf_vds_record vds[VDS_POS_LENGTH]; 1608 unsigned int size_part_descs; 1609 unsigned int num_part_descs; 1610 struct part_desc_seq_scan_data *part_descs_loc; 1611 }; 1612 1613 static struct udf_vds_record *handle_partition_descriptor( 1614 struct buffer_head *bh, 1615 struct desc_seq_scan_data *data) 1616 { 1617 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1618 int partnum; 1619 int i; 1620 1621 partnum = le16_to_cpu(desc->partitionNumber); 1622 for (i = 0; i < data->num_part_descs; i++) 1623 if (partnum == data->part_descs_loc[i].partnum) 1624 return &(data->part_descs_loc[i].rec); 1625 if (data->num_part_descs >= data->size_part_descs) { 1626 struct part_desc_seq_scan_data *new_loc; 1627 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1628 1629 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1630 if (!new_loc) 1631 return ERR_PTR(-ENOMEM); 1632 memcpy(new_loc, data->part_descs_loc, 1633 data->size_part_descs * sizeof(*new_loc)); 1634 kfree(data->part_descs_loc); 1635 data->part_descs_loc = new_loc; 1636 data->size_part_descs = new_size; 1637 } 1638 return &(data->part_descs_loc[data->num_part_descs++].rec); 1639 } 1640 1641 1642 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1643 struct buffer_head *bh, struct desc_seq_scan_data *data) 1644 { 1645 switch (ident) { 1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1647 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1648 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1649 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1650 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1651 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1652 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1653 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1654 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1655 return handle_partition_descriptor(bh, data); 1656 } 1657 return NULL; 1658 } 1659 1660 /* 1661 * Process a main/reserve volume descriptor sequence. 1662 * @block First block of first extent of the sequence. 1663 * @lastblock Lastblock of first extent of the sequence. 1664 * @fileset There we store extent containing root fileset 1665 * 1666 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1667 * sequence 1668 */ 1669 static noinline int udf_process_sequence( 1670 struct super_block *sb, 1671 sector_t block, sector_t lastblock, 1672 struct kernel_lb_addr *fileset) 1673 { 1674 struct buffer_head *bh = NULL; 1675 struct udf_vds_record *curr; 1676 struct generic_desc *gd; 1677 struct volDescPtr *vdp; 1678 bool done = false; 1679 uint32_t vdsn; 1680 uint16_t ident; 1681 int ret; 1682 unsigned int indirections = 0; 1683 struct desc_seq_scan_data data; 1684 unsigned int i; 1685 1686 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1687 data.size_part_descs = PART_DESC_ALLOC_STEP; 1688 data.num_part_descs = 0; 1689 data.part_descs_loc = kcalloc(data.size_part_descs, 1690 sizeof(*data.part_descs_loc), 1691 GFP_KERNEL); 1692 if (!data.part_descs_loc) 1693 return -ENOMEM; 1694 1695 /* 1696 * Read the main descriptor sequence and find which descriptors 1697 * are in it. 1698 */ 1699 for (; (!done && block <= lastblock); block++) { 1700 bh = udf_read_tagged(sb, block, block, &ident); 1701 if (!bh) 1702 break; 1703 1704 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1705 gd = (struct generic_desc *)bh->b_data; 1706 vdsn = le32_to_cpu(gd->volDescSeqNum); 1707 switch (ident) { 1708 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1709 if (++indirections > UDF_MAX_TD_NESTING) { 1710 udf_err(sb, "too many Volume Descriptor " 1711 "Pointers (max %u supported)\n", 1712 UDF_MAX_TD_NESTING); 1713 brelse(bh); 1714 ret = -EIO; 1715 goto out; 1716 } 1717 1718 vdp = (struct volDescPtr *)bh->b_data; 1719 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1720 lastblock = le32_to_cpu( 1721 vdp->nextVolDescSeqExt.extLength) >> 1722 sb->s_blocksize_bits; 1723 lastblock += block - 1; 1724 /* For loop is going to increment 'block' again */ 1725 block--; 1726 break; 1727 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1728 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1729 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1730 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1731 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1732 curr = get_volume_descriptor_record(ident, bh, &data); 1733 if (IS_ERR(curr)) { 1734 brelse(bh); 1735 ret = PTR_ERR(curr); 1736 goto out; 1737 } 1738 /* Descriptor we don't care about? */ 1739 if (!curr) 1740 break; 1741 if (vdsn >= curr->volDescSeqNum) { 1742 curr->volDescSeqNum = vdsn; 1743 curr->block = block; 1744 } 1745 break; 1746 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1747 done = true; 1748 break; 1749 } 1750 brelse(bh); 1751 } 1752 /* 1753 * Now read interesting descriptors again and process them 1754 * in a suitable order 1755 */ 1756 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1757 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1758 ret = -EAGAIN; 1759 goto out; 1760 } 1761 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1762 if (ret < 0) 1763 goto out; 1764 1765 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1766 ret = udf_load_logicalvol(sb, 1767 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1768 fileset); 1769 if (ret < 0) 1770 goto out; 1771 } 1772 1773 /* Now handle prevailing Partition Descriptors */ 1774 for (i = 0; i < data.num_part_descs; i++) { 1775 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1776 if (ret < 0) 1777 goto out; 1778 } 1779 ret = 0; 1780 out: 1781 kfree(data.part_descs_loc); 1782 return ret; 1783 } 1784 1785 /* 1786 * Load Volume Descriptor Sequence described by anchor in bh 1787 * 1788 * Returns <0 on error, 0 on success 1789 */ 1790 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1791 struct kernel_lb_addr *fileset) 1792 { 1793 struct anchorVolDescPtr *anchor; 1794 sector_t main_s, main_e, reserve_s, reserve_e; 1795 int ret; 1796 1797 anchor = (struct anchorVolDescPtr *)bh->b_data; 1798 1799 /* Locate the main sequence */ 1800 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1801 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1802 main_e = main_e >> sb->s_blocksize_bits; 1803 main_e += main_s - 1; 1804 1805 /* Locate the reserve sequence */ 1806 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1807 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1808 reserve_e = reserve_e >> sb->s_blocksize_bits; 1809 reserve_e += reserve_s - 1; 1810 1811 /* Process the main & reserve sequences */ 1812 /* responsible for finding the PartitionDesc(s) */ 1813 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1814 if (ret != -EAGAIN) 1815 return ret; 1816 udf_sb_free_partitions(sb); 1817 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1818 if (ret < 0) { 1819 udf_sb_free_partitions(sb); 1820 /* No sequence was OK, return -EIO */ 1821 if (ret == -EAGAIN) 1822 ret = -EIO; 1823 } 1824 return ret; 1825 } 1826 1827 /* 1828 * Check whether there is an anchor block in the given block and 1829 * load Volume Descriptor Sequence if so. 1830 * 1831 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1832 * block 1833 */ 1834 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1835 struct kernel_lb_addr *fileset) 1836 { 1837 struct buffer_head *bh; 1838 uint16_t ident; 1839 int ret; 1840 1841 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1842 udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb)) 1843 return -EAGAIN; 1844 1845 bh = udf_read_tagged(sb, block, block, &ident); 1846 if (!bh) 1847 return -EAGAIN; 1848 if (ident != TAG_IDENT_AVDP) { 1849 brelse(bh); 1850 return -EAGAIN; 1851 } 1852 ret = udf_load_sequence(sb, bh, fileset); 1853 brelse(bh); 1854 return ret; 1855 } 1856 1857 /* 1858 * Search for an anchor volume descriptor pointer. 1859 * 1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1861 * of anchors. 1862 */ 1863 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1864 struct kernel_lb_addr *fileset) 1865 { 1866 sector_t last[6]; 1867 int i; 1868 struct udf_sb_info *sbi = UDF_SB(sb); 1869 int last_count = 0; 1870 int ret; 1871 1872 /* First try user provided anchor */ 1873 if (sbi->s_anchor) { 1874 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1875 if (ret != -EAGAIN) 1876 return ret; 1877 } 1878 /* 1879 * according to spec, anchor is in either: 1880 * block 256 1881 * lastblock-256 1882 * lastblock 1883 * however, if the disc isn't closed, it could be 512. 1884 */ 1885 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1886 if (ret != -EAGAIN) 1887 return ret; 1888 /* 1889 * The trouble is which block is the last one. Drives often misreport 1890 * this so we try various possibilities. 1891 */ 1892 last[last_count++] = *lastblock; 1893 if (*lastblock >= 1) 1894 last[last_count++] = *lastblock - 1; 1895 last[last_count++] = *lastblock + 1; 1896 if (*lastblock >= 2) 1897 last[last_count++] = *lastblock - 2; 1898 if (*lastblock >= 150) 1899 last[last_count++] = *lastblock - 150; 1900 if (*lastblock >= 152) 1901 last[last_count++] = *lastblock - 152; 1902 1903 for (i = 0; i < last_count; i++) { 1904 if (last[i] >= sb_bdev_nr_blocks(sb)) 1905 continue; 1906 ret = udf_check_anchor_block(sb, last[i], fileset); 1907 if (ret != -EAGAIN) { 1908 if (!ret) 1909 *lastblock = last[i]; 1910 return ret; 1911 } 1912 if (last[i] < 256) 1913 continue; 1914 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1915 if (ret != -EAGAIN) { 1916 if (!ret) 1917 *lastblock = last[i]; 1918 return ret; 1919 } 1920 } 1921 1922 /* Finally try block 512 in case media is open */ 1923 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1924 } 1925 1926 /* 1927 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1928 * area specified by it. The function expects sbi->s_lastblock to be the last 1929 * block on the media. 1930 * 1931 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1932 * was not found. 1933 */ 1934 static int udf_find_anchor(struct super_block *sb, 1935 struct kernel_lb_addr *fileset) 1936 { 1937 struct udf_sb_info *sbi = UDF_SB(sb); 1938 sector_t lastblock = sbi->s_last_block; 1939 int ret; 1940 1941 ret = udf_scan_anchors(sb, &lastblock, fileset); 1942 if (ret != -EAGAIN) 1943 goto out; 1944 1945 /* No anchor found? Try VARCONV conversion of block numbers */ 1946 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1947 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1948 /* Firstly, we try to not convert number of the last block */ 1949 ret = udf_scan_anchors(sb, &lastblock, fileset); 1950 if (ret != -EAGAIN) 1951 goto out; 1952 1953 lastblock = sbi->s_last_block; 1954 /* Secondly, we try with converted number of the last block */ 1955 ret = udf_scan_anchors(sb, &lastblock, fileset); 1956 if (ret < 0) { 1957 /* VARCONV didn't help. Clear it. */ 1958 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1959 } 1960 out: 1961 if (ret == 0) 1962 sbi->s_last_block = lastblock; 1963 return ret; 1964 } 1965 1966 /* 1967 * Check Volume Structure Descriptor, find Anchor block and load Volume 1968 * Descriptor Sequence. 1969 * 1970 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1971 * block was not found. 1972 */ 1973 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1974 int silent, struct kernel_lb_addr *fileset) 1975 { 1976 struct udf_sb_info *sbi = UDF_SB(sb); 1977 int nsr = 0; 1978 int ret; 1979 1980 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1981 if (!silent) 1982 udf_warn(sb, "Bad block size\n"); 1983 return -EINVAL; 1984 } 1985 sbi->s_last_block = uopt->lastblock; 1986 if (!uopt->novrs) { 1987 /* Check that it is NSR02 compliant */ 1988 nsr = udf_check_vsd(sb); 1989 if (!nsr) { 1990 if (!silent) 1991 udf_warn(sb, "No VRS found\n"); 1992 return -EINVAL; 1993 } 1994 if (nsr == -1) 1995 udf_debug("Failed to read sector at offset %d. " 1996 "Assuming open disc. Skipping validity " 1997 "check\n", VSD_FIRST_SECTOR_OFFSET); 1998 if (!sbi->s_last_block) 1999 sbi->s_last_block = udf_get_last_block(sb); 2000 } else { 2001 udf_debug("Validity check skipped because of novrs option\n"); 2002 } 2003 2004 /* Look for anchor block and load Volume Descriptor Sequence */ 2005 sbi->s_anchor = uopt->anchor; 2006 ret = udf_find_anchor(sb, fileset); 2007 if (ret < 0) { 2008 if (!silent && ret == -EAGAIN) 2009 udf_warn(sb, "No anchor found\n"); 2010 return ret; 2011 } 2012 return 0; 2013 } 2014 2015 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 2016 { 2017 struct timespec64 ts; 2018 2019 ktime_get_real_ts64(&ts); 2020 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2021 lvid->descTag.descCRC = cpu_to_le16( 2022 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2023 le16_to_cpu(lvid->descTag.descCRCLength))); 2024 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2025 } 2026 2027 static void udf_open_lvid(struct super_block *sb) 2028 { 2029 struct udf_sb_info *sbi = UDF_SB(sb); 2030 struct buffer_head *bh = sbi->s_lvid_bh; 2031 struct logicalVolIntegrityDesc *lvid; 2032 struct logicalVolIntegrityDescImpUse *lvidiu; 2033 2034 if (!bh) 2035 return; 2036 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2037 lvidiu = udf_sb_lvidiu(sb); 2038 if (!lvidiu) 2039 return; 2040 2041 mutex_lock(&sbi->s_alloc_mutex); 2042 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2043 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2044 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2045 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2046 else 2047 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2048 2049 udf_finalize_lvid(lvid); 2050 mark_buffer_dirty(bh); 2051 sbi->s_lvid_dirty = 0; 2052 mutex_unlock(&sbi->s_alloc_mutex); 2053 /* Make opening of filesystem visible on the media immediately */ 2054 sync_dirty_buffer(bh); 2055 } 2056 2057 static void udf_close_lvid(struct super_block *sb) 2058 { 2059 struct udf_sb_info *sbi = UDF_SB(sb); 2060 struct buffer_head *bh = sbi->s_lvid_bh; 2061 struct logicalVolIntegrityDesc *lvid; 2062 struct logicalVolIntegrityDescImpUse *lvidiu; 2063 2064 if (!bh) 2065 return; 2066 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2067 lvidiu = udf_sb_lvidiu(sb); 2068 if (!lvidiu) 2069 return; 2070 2071 mutex_lock(&sbi->s_alloc_mutex); 2072 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2073 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2074 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2075 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2076 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2077 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2078 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2079 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2080 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2081 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2082 2083 /* 2084 * We set buffer uptodate unconditionally here to avoid spurious 2085 * warnings from mark_buffer_dirty() when previous EIO has marked 2086 * the buffer as !uptodate 2087 */ 2088 set_buffer_uptodate(bh); 2089 udf_finalize_lvid(lvid); 2090 mark_buffer_dirty(bh); 2091 sbi->s_lvid_dirty = 0; 2092 mutex_unlock(&sbi->s_alloc_mutex); 2093 /* Make closing of filesystem visible on the media immediately */ 2094 sync_dirty_buffer(bh); 2095 } 2096 2097 u64 lvid_get_unique_id(struct super_block *sb) 2098 { 2099 struct buffer_head *bh; 2100 struct udf_sb_info *sbi = UDF_SB(sb); 2101 struct logicalVolIntegrityDesc *lvid; 2102 struct logicalVolHeaderDesc *lvhd; 2103 u64 uniqueID; 2104 u64 ret; 2105 2106 bh = sbi->s_lvid_bh; 2107 if (!bh) 2108 return 0; 2109 2110 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2111 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2112 2113 mutex_lock(&sbi->s_alloc_mutex); 2114 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2115 if (!(++uniqueID & 0xFFFFFFFF)) 2116 uniqueID += 16; 2117 lvhd->uniqueID = cpu_to_le64(uniqueID); 2118 udf_updated_lvid(sb); 2119 mutex_unlock(&sbi->s_alloc_mutex); 2120 2121 return ret; 2122 } 2123 2124 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2125 { 2126 int ret = -EINVAL; 2127 struct inode *inode = NULL; 2128 struct udf_options uopt; 2129 struct kernel_lb_addr rootdir, fileset; 2130 struct udf_sb_info *sbi; 2131 bool lvid_open = false; 2132 2133 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2134 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2135 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2136 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2137 uopt.umask = 0; 2138 uopt.fmode = UDF_INVALID_MODE; 2139 uopt.dmode = UDF_INVALID_MODE; 2140 uopt.nls_map = NULL; 2141 2142 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2143 if (!sbi) 2144 return -ENOMEM; 2145 2146 sb->s_fs_info = sbi; 2147 2148 mutex_init(&sbi->s_alloc_mutex); 2149 2150 if (!udf_parse_options((char *)options, &uopt, false)) 2151 goto parse_options_failure; 2152 2153 fileset.logicalBlockNum = 0xFFFFFFFF; 2154 fileset.partitionReferenceNum = 0xFFFF; 2155 2156 sbi->s_flags = uopt.flags; 2157 sbi->s_uid = uopt.uid; 2158 sbi->s_gid = uopt.gid; 2159 sbi->s_umask = uopt.umask; 2160 sbi->s_fmode = uopt.fmode; 2161 sbi->s_dmode = uopt.dmode; 2162 sbi->s_nls_map = uopt.nls_map; 2163 rwlock_init(&sbi->s_cred_lock); 2164 2165 if (uopt.session == 0xFFFFFFFF) 2166 sbi->s_session = udf_get_last_session(sb); 2167 else 2168 sbi->s_session = uopt.session; 2169 2170 udf_debug("Multi-session=%d\n", sbi->s_session); 2171 2172 /* Fill in the rest of the superblock */ 2173 sb->s_op = &udf_sb_ops; 2174 sb->s_export_op = &udf_export_ops; 2175 2176 sb->s_magic = UDF_SUPER_MAGIC; 2177 sb->s_time_gran = 1000; 2178 2179 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2180 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2181 } else { 2182 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2183 while (uopt.blocksize <= 4096) { 2184 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2185 if (ret < 0) { 2186 if (!silent && ret != -EACCES) { 2187 pr_notice("Scanning with blocksize %u failed\n", 2188 uopt.blocksize); 2189 } 2190 brelse(sbi->s_lvid_bh); 2191 sbi->s_lvid_bh = NULL; 2192 /* 2193 * EACCES is special - we want to propagate to 2194 * upper layers that we cannot handle RW mount. 2195 */ 2196 if (ret == -EACCES) 2197 break; 2198 } else 2199 break; 2200 2201 uopt.blocksize <<= 1; 2202 } 2203 } 2204 if (ret < 0) { 2205 if (ret == -EAGAIN) { 2206 udf_warn(sb, "No partition found (1)\n"); 2207 ret = -EINVAL; 2208 } 2209 goto error_out; 2210 } 2211 2212 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2213 2214 if (sbi->s_lvid_bh) { 2215 struct logicalVolIntegrityDescImpUse *lvidiu = 2216 udf_sb_lvidiu(sb); 2217 uint16_t minUDFReadRev; 2218 uint16_t minUDFWriteRev; 2219 2220 if (!lvidiu) { 2221 ret = -EINVAL; 2222 goto error_out; 2223 } 2224 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2225 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2226 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2227 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2228 minUDFReadRev, 2229 UDF_MAX_READ_VERSION); 2230 ret = -EINVAL; 2231 goto error_out; 2232 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2233 if (!sb_rdonly(sb)) { 2234 ret = -EACCES; 2235 goto error_out; 2236 } 2237 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2238 } 2239 2240 sbi->s_udfrev = minUDFWriteRev; 2241 2242 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2243 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2244 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2245 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2246 } 2247 2248 if (!sbi->s_partitions) { 2249 udf_warn(sb, "No partition found (2)\n"); 2250 ret = -EINVAL; 2251 goto error_out; 2252 } 2253 2254 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2255 UDF_PART_FLAG_READ_ONLY) { 2256 if (!sb_rdonly(sb)) { 2257 ret = -EACCES; 2258 goto error_out; 2259 } 2260 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2261 } 2262 2263 ret = udf_find_fileset(sb, &fileset, &rootdir); 2264 if (ret < 0) { 2265 udf_warn(sb, "No fileset found\n"); 2266 goto error_out; 2267 } 2268 2269 if (!silent) { 2270 struct timestamp ts; 2271 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2272 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2273 sbi->s_volume_ident, 2274 le16_to_cpu(ts.year), ts.month, ts.day, 2275 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2276 } 2277 if (!sb_rdonly(sb)) { 2278 udf_open_lvid(sb); 2279 lvid_open = true; 2280 } 2281 2282 /* Assign the root inode */ 2283 /* assign inodes by physical block number */ 2284 /* perhaps it's not extensible enough, but for now ... */ 2285 inode = udf_iget(sb, &rootdir); 2286 if (IS_ERR(inode)) { 2287 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2288 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2289 ret = PTR_ERR(inode); 2290 goto error_out; 2291 } 2292 2293 /* Allocate a dentry for the root inode */ 2294 sb->s_root = d_make_root(inode); 2295 if (!sb->s_root) { 2296 udf_err(sb, "Couldn't allocate root dentry\n"); 2297 ret = -ENOMEM; 2298 goto error_out; 2299 } 2300 sb->s_maxbytes = MAX_LFS_FILESIZE; 2301 sb->s_max_links = UDF_MAX_LINKS; 2302 return 0; 2303 2304 error_out: 2305 iput(sbi->s_vat_inode); 2306 parse_options_failure: 2307 unload_nls(uopt.nls_map); 2308 if (lvid_open) 2309 udf_close_lvid(sb); 2310 brelse(sbi->s_lvid_bh); 2311 udf_sb_free_partitions(sb); 2312 kfree(sbi); 2313 sb->s_fs_info = NULL; 2314 2315 return ret; 2316 } 2317 2318 void _udf_err(struct super_block *sb, const char *function, 2319 const char *fmt, ...) 2320 { 2321 struct va_format vaf; 2322 va_list args; 2323 2324 va_start(args, fmt); 2325 2326 vaf.fmt = fmt; 2327 vaf.va = &args; 2328 2329 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2330 2331 va_end(args); 2332 } 2333 2334 void _udf_warn(struct super_block *sb, const char *function, 2335 const char *fmt, ...) 2336 { 2337 struct va_format vaf; 2338 va_list args; 2339 2340 va_start(args, fmt); 2341 2342 vaf.fmt = fmt; 2343 vaf.va = &args; 2344 2345 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2346 2347 va_end(args); 2348 } 2349 2350 static void udf_put_super(struct super_block *sb) 2351 { 2352 struct udf_sb_info *sbi; 2353 2354 sbi = UDF_SB(sb); 2355 2356 iput(sbi->s_vat_inode); 2357 unload_nls(sbi->s_nls_map); 2358 if (!sb_rdonly(sb)) 2359 udf_close_lvid(sb); 2360 brelse(sbi->s_lvid_bh); 2361 udf_sb_free_partitions(sb); 2362 mutex_destroy(&sbi->s_alloc_mutex); 2363 kfree(sb->s_fs_info); 2364 sb->s_fs_info = NULL; 2365 } 2366 2367 static int udf_sync_fs(struct super_block *sb, int wait) 2368 { 2369 struct udf_sb_info *sbi = UDF_SB(sb); 2370 2371 mutex_lock(&sbi->s_alloc_mutex); 2372 if (sbi->s_lvid_dirty) { 2373 struct buffer_head *bh = sbi->s_lvid_bh; 2374 struct logicalVolIntegrityDesc *lvid; 2375 2376 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2377 udf_finalize_lvid(lvid); 2378 2379 /* 2380 * Blockdevice will be synced later so we don't have to submit 2381 * the buffer for IO 2382 */ 2383 mark_buffer_dirty(bh); 2384 sbi->s_lvid_dirty = 0; 2385 } 2386 mutex_unlock(&sbi->s_alloc_mutex); 2387 2388 return 0; 2389 } 2390 2391 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2392 { 2393 struct super_block *sb = dentry->d_sb; 2394 struct udf_sb_info *sbi = UDF_SB(sb); 2395 struct logicalVolIntegrityDescImpUse *lvidiu; 2396 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2397 2398 lvidiu = udf_sb_lvidiu(sb); 2399 buf->f_type = UDF_SUPER_MAGIC; 2400 buf->f_bsize = sb->s_blocksize; 2401 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2402 buf->f_bfree = udf_count_free(sb); 2403 buf->f_bavail = buf->f_bfree; 2404 /* 2405 * Let's pretend each free block is also a free 'inode' since UDF does 2406 * not have separate preallocated table of inodes. 2407 */ 2408 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2409 le32_to_cpu(lvidiu->numDirs)) : 0) 2410 + buf->f_bfree; 2411 buf->f_ffree = buf->f_bfree; 2412 buf->f_namelen = UDF_NAME_LEN; 2413 buf->f_fsid = u64_to_fsid(id); 2414 2415 return 0; 2416 } 2417 2418 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2419 struct udf_bitmap *bitmap) 2420 { 2421 struct buffer_head *bh = NULL; 2422 unsigned int accum = 0; 2423 int index; 2424 udf_pblk_t block = 0, newblock; 2425 struct kernel_lb_addr loc; 2426 uint32_t bytes; 2427 uint8_t *ptr; 2428 uint16_t ident; 2429 struct spaceBitmapDesc *bm; 2430 2431 loc.logicalBlockNum = bitmap->s_extPosition; 2432 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2433 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2434 2435 if (!bh) { 2436 udf_err(sb, "udf_count_free failed\n"); 2437 goto out; 2438 } else if (ident != TAG_IDENT_SBD) { 2439 brelse(bh); 2440 udf_err(sb, "udf_count_free failed\n"); 2441 goto out; 2442 } 2443 2444 bm = (struct spaceBitmapDesc *)bh->b_data; 2445 bytes = le32_to_cpu(bm->numOfBytes); 2446 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2447 ptr = (uint8_t *)bh->b_data; 2448 2449 while (bytes > 0) { 2450 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2451 accum += bitmap_weight((const unsigned long *)(ptr + index), 2452 cur_bytes * 8); 2453 bytes -= cur_bytes; 2454 if (bytes) { 2455 brelse(bh); 2456 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2457 bh = udf_tread(sb, newblock); 2458 if (!bh) { 2459 udf_debug("read failed\n"); 2460 goto out; 2461 } 2462 index = 0; 2463 ptr = (uint8_t *)bh->b_data; 2464 } 2465 } 2466 brelse(bh); 2467 out: 2468 return accum; 2469 } 2470 2471 static unsigned int udf_count_free_table(struct super_block *sb, 2472 struct inode *table) 2473 { 2474 unsigned int accum = 0; 2475 uint32_t elen; 2476 struct kernel_lb_addr eloc; 2477 int8_t etype; 2478 struct extent_position epos; 2479 2480 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2481 epos.block = UDF_I(table)->i_location; 2482 epos.offset = sizeof(struct unallocSpaceEntry); 2483 epos.bh = NULL; 2484 2485 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2486 accum += (elen >> table->i_sb->s_blocksize_bits); 2487 2488 brelse(epos.bh); 2489 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2490 2491 return accum; 2492 } 2493 2494 static unsigned int udf_count_free(struct super_block *sb) 2495 { 2496 unsigned int accum = 0; 2497 struct udf_sb_info *sbi = UDF_SB(sb); 2498 struct udf_part_map *map; 2499 unsigned int part = sbi->s_partition; 2500 int ptype = sbi->s_partmaps[part].s_partition_type; 2501 2502 if (ptype == UDF_METADATA_MAP25) { 2503 part = sbi->s_partmaps[part].s_type_specific.s_metadata. 2504 s_phys_partition_ref; 2505 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { 2506 /* 2507 * Filesystems with VAT are append-only and we cannot write to 2508 * them. Let's just report 0 here. 2509 */ 2510 return 0; 2511 } 2512 2513 if (sbi->s_lvid_bh) { 2514 struct logicalVolIntegrityDesc *lvid = 2515 (struct logicalVolIntegrityDesc *) 2516 sbi->s_lvid_bh->b_data; 2517 if (le32_to_cpu(lvid->numOfPartitions) > part) { 2518 accum = le32_to_cpu( 2519 lvid->freeSpaceTable[part]); 2520 if (accum == 0xFFFFFFFF) 2521 accum = 0; 2522 } 2523 } 2524 2525 if (accum) 2526 return accum; 2527 2528 map = &sbi->s_partmaps[part]; 2529 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2530 accum += udf_count_free_bitmap(sb, 2531 map->s_uspace.s_bitmap); 2532 } 2533 if (accum) 2534 return accum; 2535 2536 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2537 accum += udf_count_free_table(sb, 2538 map->s_uspace.s_table); 2539 } 2540 return accum; 2541 } 2542 2543 MODULE_AUTHOR("Ben Fennema"); 2544 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2545 MODULE_LICENSE("GPL"); 2546 module_init(init_udf_fs) 2547 module_exit(exit_udf_fs) 2548