xref: /openbmc/linux/fs/udf/super.c (revision 6a108a14)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <asm/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77 
78 static char error_buf[1024];
79 
80 /* These are the "meat" - everything else is stuffing */
81 static int udf_fill_super(struct super_block *, void *, int);
82 static void udf_put_super(struct super_block *);
83 static int udf_sync_fs(struct super_block *, int);
84 static int udf_remount_fs(struct super_block *, int *, char *);
85 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
86 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
87 			    struct kernel_lb_addr *);
88 static void udf_load_fileset(struct super_block *, struct buffer_head *,
89 			     struct kernel_lb_addr *);
90 static void udf_open_lvid(struct super_block *);
91 static void udf_close_lvid(struct super_block *);
92 static unsigned int udf_count_free(struct super_block *);
93 static int udf_statfs(struct dentry *, struct kstatfs *);
94 static int udf_show_options(struct seq_file *, struct vfsmount *);
95 static void udf_error(struct super_block *sb, const char *function,
96 		      const char *fmt, ...);
97 
98 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
99 {
100 	struct logicalVolIntegrityDesc *lvid =
101 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
102 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
103 	__u32 offset = number_of_partitions * 2 *
104 				sizeof(uint32_t)/sizeof(uint8_t);
105 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
106 }
107 
108 /* UDF filesystem type */
109 static struct dentry *udf_mount(struct file_system_type *fs_type,
110 		      int flags, const char *dev_name, void *data)
111 {
112 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
113 }
114 
115 static struct file_system_type udf_fstype = {
116 	.owner		= THIS_MODULE,
117 	.name		= "udf",
118 	.mount		= udf_mount,
119 	.kill_sb	= kill_block_super,
120 	.fs_flags	= FS_REQUIRES_DEV,
121 };
122 
123 static struct kmem_cache *udf_inode_cachep;
124 
125 static struct inode *udf_alloc_inode(struct super_block *sb)
126 {
127 	struct udf_inode_info *ei;
128 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
129 	if (!ei)
130 		return NULL;
131 
132 	ei->i_unique = 0;
133 	ei->i_lenExtents = 0;
134 	ei->i_next_alloc_block = 0;
135 	ei->i_next_alloc_goal = 0;
136 	ei->i_strat4096 = 0;
137 	init_rwsem(&ei->i_data_sem);
138 
139 	return &ei->vfs_inode;
140 }
141 
142 static void udf_i_callback(struct rcu_head *head)
143 {
144 	struct inode *inode = container_of(head, struct inode, i_rcu);
145 	INIT_LIST_HEAD(&inode->i_dentry);
146 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
147 }
148 
149 static void udf_destroy_inode(struct inode *inode)
150 {
151 	call_rcu(&inode->i_rcu, udf_i_callback);
152 }
153 
154 static void init_once(void *foo)
155 {
156 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
157 
158 	ei->i_ext.i_data = NULL;
159 	inode_init_once(&ei->vfs_inode);
160 }
161 
162 static int init_inodecache(void)
163 {
164 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
165 					     sizeof(struct udf_inode_info),
166 					     0, (SLAB_RECLAIM_ACCOUNT |
167 						 SLAB_MEM_SPREAD),
168 					     init_once);
169 	if (!udf_inode_cachep)
170 		return -ENOMEM;
171 	return 0;
172 }
173 
174 static void destroy_inodecache(void)
175 {
176 	kmem_cache_destroy(udf_inode_cachep);
177 }
178 
179 /* Superblock operations */
180 static const struct super_operations udf_sb_ops = {
181 	.alloc_inode	= udf_alloc_inode,
182 	.destroy_inode	= udf_destroy_inode,
183 	.write_inode	= udf_write_inode,
184 	.evict_inode	= udf_evict_inode,
185 	.put_super	= udf_put_super,
186 	.sync_fs	= udf_sync_fs,
187 	.statfs		= udf_statfs,
188 	.remount_fs	= udf_remount_fs,
189 	.show_options	= udf_show_options,
190 };
191 
192 struct udf_options {
193 	unsigned char novrs;
194 	unsigned int blocksize;
195 	unsigned int session;
196 	unsigned int lastblock;
197 	unsigned int anchor;
198 	unsigned int volume;
199 	unsigned short partition;
200 	unsigned int fileset;
201 	unsigned int rootdir;
202 	unsigned int flags;
203 	mode_t umask;
204 	gid_t gid;
205 	uid_t uid;
206 	mode_t fmode;
207 	mode_t dmode;
208 	struct nls_table *nls_map;
209 };
210 
211 static int __init init_udf_fs(void)
212 {
213 	int err;
214 
215 	err = init_inodecache();
216 	if (err)
217 		goto out1;
218 	err = register_filesystem(&udf_fstype);
219 	if (err)
220 		goto out;
221 
222 	return 0;
223 
224 out:
225 	destroy_inodecache();
226 
227 out1:
228 	return err;
229 }
230 
231 static void __exit exit_udf_fs(void)
232 {
233 	unregister_filesystem(&udf_fstype);
234 	destroy_inodecache();
235 }
236 
237 module_init(init_udf_fs)
238 module_exit(exit_udf_fs)
239 
240 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
241 {
242 	struct udf_sb_info *sbi = UDF_SB(sb);
243 
244 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
245 				  GFP_KERNEL);
246 	if (!sbi->s_partmaps) {
247 		udf_error(sb, __func__,
248 			  "Unable to allocate space for %d partition maps",
249 			  count);
250 		sbi->s_partitions = 0;
251 		return -ENOMEM;
252 	}
253 
254 	sbi->s_partitions = count;
255 	return 0;
256 }
257 
258 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
259 {
260 	struct super_block *sb = mnt->mnt_sb;
261 	struct udf_sb_info *sbi = UDF_SB(sb);
262 
263 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
264 		seq_puts(seq, ",nostrict");
265 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
266 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
267 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
268 		seq_puts(seq, ",unhide");
269 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
270 		seq_puts(seq, ",undelete");
271 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
272 		seq_puts(seq, ",noadinicb");
273 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
274 		seq_puts(seq, ",shortad");
275 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
276 		seq_puts(seq, ",uid=forget");
277 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
278 		seq_puts(seq, ",uid=ignore");
279 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
280 		seq_puts(seq, ",gid=forget");
281 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
282 		seq_puts(seq, ",gid=ignore");
283 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
284 		seq_printf(seq, ",uid=%u", sbi->s_uid);
285 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
286 		seq_printf(seq, ",gid=%u", sbi->s_gid);
287 	if (sbi->s_umask != 0)
288 		seq_printf(seq, ",umask=%o", sbi->s_umask);
289 	if (sbi->s_fmode != UDF_INVALID_MODE)
290 		seq_printf(seq, ",mode=%o", sbi->s_fmode);
291 	if (sbi->s_dmode != UDF_INVALID_MODE)
292 		seq_printf(seq, ",dmode=%o", sbi->s_dmode);
293 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
294 		seq_printf(seq, ",session=%u", sbi->s_session);
295 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
296 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
297 	if (sbi->s_anchor != 0)
298 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
299 	/*
300 	 * volume, partition, fileset and rootdir seem to be ignored
301 	 * currently
302 	 */
303 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
304 		seq_puts(seq, ",utf8");
305 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
306 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
307 
308 	return 0;
309 }
310 
311 /*
312  * udf_parse_options
313  *
314  * PURPOSE
315  *	Parse mount options.
316  *
317  * DESCRIPTION
318  *	The following mount options are supported:
319  *
320  *	gid=		Set the default group.
321  *	umask=		Set the default umask.
322  *	mode=		Set the default file permissions.
323  *	dmode=		Set the default directory permissions.
324  *	uid=		Set the default user.
325  *	bs=		Set the block size.
326  *	unhide		Show otherwise hidden files.
327  *	undelete	Show deleted files in lists.
328  *	adinicb		Embed data in the inode (default)
329  *	noadinicb	Don't embed data in the inode
330  *	shortad		Use short ad's
331  *	longad		Use long ad's (default)
332  *	nostrict	Unset strict conformance
333  *	iocharset=	Set the NLS character set
334  *
335  *	The remaining are for debugging and disaster recovery:
336  *
337  *	novrs		Skip volume sequence recognition
338  *
339  *	The following expect a offset from 0.
340  *
341  *	session=	Set the CDROM session (default= last session)
342  *	anchor=		Override standard anchor location. (default= 256)
343  *	volume=		Override the VolumeDesc location. (unused)
344  *	partition=	Override the PartitionDesc location. (unused)
345  *	lastblock=	Set the last block of the filesystem/
346  *
347  *	The following expect a offset from the partition root.
348  *
349  *	fileset=	Override the fileset block location. (unused)
350  *	rootdir=	Override the root directory location. (unused)
351  *		WARNING: overriding the rootdir to a non-directory may
352  *		yield highly unpredictable results.
353  *
354  * PRE-CONDITIONS
355  *	options		Pointer to mount options string.
356  *	uopts		Pointer to mount options variable.
357  *
358  * POST-CONDITIONS
359  *	<return>	1	Mount options parsed okay.
360  *	<return>	0	Error parsing mount options.
361  *
362  * HISTORY
363  *	July 1, 1997 - Andrew E. Mileski
364  *	Written, tested, and released.
365  */
366 
367 enum {
368 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
369 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
370 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
371 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
372 	Opt_rootdir, Opt_utf8, Opt_iocharset,
373 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
374 	Opt_fmode, Opt_dmode
375 };
376 
377 static const match_table_t tokens = {
378 	{Opt_novrs,	"novrs"},
379 	{Opt_nostrict,	"nostrict"},
380 	{Opt_bs,	"bs=%u"},
381 	{Opt_unhide,	"unhide"},
382 	{Opt_undelete,	"undelete"},
383 	{Opt_noadinicb,	"noadinicb"},
384 	{Opt_adinicb,	"adinicb"},
385 	{Opt_shortad,	"shortad"},
386 	{Opt_longad,	"longad"},
387 	{Opt_uforget,	"uid=forget"},
388 	{Opt_uignore,	"uid=ignore"},
389 	{Opt_gforget,	"gid=forget"},
390 	{Opt_gignore,	"gid=ignore"},
391 	{Opt_gid,	"gid=%u"},
392 	{Opt_uid,	"uid=%u"},
393 	{Opt_umask,	"umask=%o"},
394 	{Opt_session,	"session=%u"},
395 	{Opt_lastblock,	"lastblock=%u"},
396 	{Opt_anchor,	"anchor=%u"},
397 	{Opt_volume,	"volume=%u"},
398 	{Opt_partition,	"partition=%u"},
399 	{Opt_fileset,	"fileset=%u"},
400 	{Opt_rootdir,	"rootdir=%u"},
401 	{Opt_utf8,	"utf8"},
402 	{Opt_iocharset,	"iocharset=%s"},
403 	{Opt_fmode,     "mode=%o"},
404 	{Opt_dmode,     "dmode=%o"},
405 	{Opt_err,	NULL}
406 };
407 
408 static int udf_parse_options(char *options, struct udf_options *uopt,
409 			     bool remount)
410 {
411 	char *p;
412 	int option;
413 
414 	uopt->novrs = 0;
415 	uopt->partition = 0xFFFF;
416 	uopt->session = 0xFFFFFFFF;
417 	uopt->lastblock = 0;
418 	uopt->anchor = 0;
419 	uopt->volume = 0xFFFFFFFF;
420 	uopt->rootdir = 0xFFFFFFFF;
421 	uopt->fileset = 0xFFFFFFFF;
422 	uopt->nls_map = NULL;
423 
424 	if (!options)
425 		return 1;
426 
427 	while ((p = strsep(&options, ",")) != NULL) {
428 		substring_t args[MAX_OPT_ARGS];
429 		int token;
430 		if (!*p)
431 			continue;
432 
433 		token = match_token(p, tokens, args);
434 		switch (token) {
435 		case Opt_novrs:
436 			uopt->novrs = 1;
437 			break;
438 		case Opt_bs:
439 			if (match_int(&args[0], &option))
440 				return 0;
441 			uopt->blocksize = option;
442 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
443 			break;
444 		case Opt_unhide:
445 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
446 			break;
447 		case Opt_undelete:
448 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
449 			break;
450 		case Opt_noadinicb:
451 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
452 			break;
453 		case Opt_adinicb:
454 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
455 			break;
456 		case Opt_shortad:
457 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
458 			break;
459 		case Opt_longad:
460 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
461 			break;
462 		case Opt_gid:
463 			if (match_int(args, &option))
464 				return 0;
465 			uopt->gid = option;
466 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
467 			break;
468 		case Opt_uid:
469 			if (match_int(args, &option))
470 				return 0;
471 			uopt->uid = option;
472 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
473 			break;
474 		case Opt_umask:
475 			if (match_octal(args, &option))
476 				return 0;
477 			uopt->umask = option;
478 			break;
479 		case Opt_nostrict:
480 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
481 			break;
482 		case Opt_session:
483 			if (match_int(args, &option))
484 				return 0;
485 			uopt->session = option;
486 			if (!remount)
487 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
488 			break;
489 		case Opt_lastblock:
490 			if (match_int(args, &option))
491 				return 0;
492 			uopt->lastblock = option;
493 			if (!remount)
494 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
495 			break;
496 		case Opt_anchor:
497 			if (match_int(args, &option))
498 				return 0;
499 			uopt->anchor = option;
500 			break;
501 		case Opt_volume:
502 			if (match_int(args, &option))
503 				return 0;
504 			uopt->volume = option;
505 			break;
506 		case Opt_partition:
507 			if (match_int(args, &option))
508 				return 0;
509 			uopt->partition = option;
510 			break;
511 		case Opt_fileset:
512 			if (match_int(args, &option))
513 				return 0;
514 			uopt->fileset = option;
515 			break;
516 		case Opt_rootdir:
517 			if (match_int(args, &option))
518 				return 0;
519 			uopt->rootdir = option;
520 			break;
521 		case Opt_utf8:
522 			uopt->flags |= (1 << UDF_FLAG_UTF8);
523 			break;
524 #ifdef CONFIG_UDF_NLS
525 		case Opt_iocharset:
526 			uopt->nls_map = load_nls(args[0].from);
527 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
528 			break;
529 #endif
530 		case Opt_uignore:
531 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
532 			break;
533 		case Opt_uforget:
534 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
535 			break;
536 		case Opt_gignore:
537 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
538 			break;
539 		case Opt_gforget:
540 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
541 			break;
542 		case Opt_fmode:
543 			if (match_octal(args, &option))
544 				return 0;
545 			uopt->fmode = option & 0777;
546 			break;
547 		case Opt_dmode:
548 			if (match_octal(args, &option))
549 				return 0;
550 			uopt->dmode = option & 0777;
551 			break;
552 		default:
553 			printk(KERN_ERR "udf: bad mount option \"%s\" "
554 			       "or missing value\n", p);
555 			return 0;
556 		}
557 	}
558 	return 1;
559 }
560 
561 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
562 {
563 	struct udf_options uopt;
564 	struct udf_sb_info *sbi = UDF_SB(sb);
565 	int error = 0;
566 
567 	uopt.flags = sbi->s_flags;
568 	uopt.uid   = sbi->s_uid;
569 	uopt.gid   = sbi->s_gid;
570 	uopt.umask = sbi->s_umask;
571 	uopt.fmode = sbi->s_fmode;
572 	uopt.dmode = sbi->s_dmode;
573 
574 	if (!udf_parse_options(options, &uopt, true))
575 		return -EINVAL;
576 
577 	write_lock(&sbi->s_cred_lock);
578 	sbi->s_flags = uopt.flags;
579 	sbi->s_uid   = uopt.uid;
580 	sbi->s_gid   = uopt.gid;
581 	sbi->s_umask = uopt.umask;
582 	sbi->s_fmode = uopt.fmode;
583 	sbi->s_dmode = uopt.dmode;
584 	write_unlock(&sbi->s_cred_lock);
585 
586 	if (sbi->s_lvid_bh) {
587 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
588 		if (write_rev > UDF_MAX_WRITE_VERSION)
589 			*flags |= MS_RDONLY;
590 	}
591 
592 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
593 		goto out_unlock;
594 
595 	if (*flags & MS_RDONLY)
596 		udf_close_lvid(sb);
597 	else
598 		udf_open_lvid(sb);
599 
600 out_unlock:
601 	return error;
602 }
603 
604 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
605 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
606 static loff_t udf_check_vsd(struct super_block *sb)
607 {
608 	struct volStructDesc *vsd = NULL;
609 	loff_t sector = 32768;
610 	int sectorsize;
611 	struct buffer_head *bh = NULL;
612 	int nsr02 = 0;
613 	int nsr03 = 0;
614 	struct udf_sb_info *sbi;
615 
616 	sbi = UDF_SB(sb);
617 	if (sb->s_blocksize < sizeof(struct volStructDesc))
618 		sectorsize = sizeof(struct volStructDesc);
619 	else
620 		sectorsize = sb->s_blocksize;
621 
622 	sector += (sbi->s_session << sb->s_blocksize_bits);
623 
624 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
625 		  (unsigned int)(sector >> sb->s_blocksize_bits),
626 		  sb->s_blocksize);
627 	/* Process the sequence (if applicable) */
628 	for (; !nsr02 && !nsr03; sector += sectorsize) {
629 		/* Read a block */
630 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
631 		if (!bh)
632 			break;
633 
634 		/* Look for ISO  descriptors */
635 		vsd = (struct volStructDesc *)(bh->b_data +
636 					      (sector & (sb->s_blocksize - 1)));
637 
638 		if (vsd->stdIdent[0] == 0) {
639 			brelse(bh);
640 			break;
641 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
642 				    VSD_STD_ID_LEN)) {
643 			switch (vsd->structType) {
644 			case 0:
645 				udf_debug("ISO9660 Boot Record found\n");
646 				break;
647 			case 1:
648 				udf_debug("ISO9660 Primary Volume Descriptor "
649 					  "found\n");
650 				break;
651 			case 2:
652 				udf_debug("ISO9660 Supplementary Volume "
653 					  "Descriptor found\n");
654 				break;
655 			case 3:
656 				udf_debug("ISO9660 Volume Partition Descriptor "
657 					  "found\n");
658 				break;
659 			case 255:
660 				udf_debug("ISO9660 Volume Descriptor Set "
661 					  "Terminator found\n");
662 				break;
663 			default:
664 				udf_debug("ISO9660 VRS (%u) found\n",
665 					  vsd->structType);
666 				break;
667 			}
668 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
669 				    VSD_STD_ID_LEN))
670 			; /* nothing */
671 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
672 				    VSD_STD_ID_LEN)) {
673 			brelse(bh);
674 			break;
675 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
676 				    VSD_STD_ID_LEN))
677 			nsr02 = sector;
678 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
679 				    VSD_STD_ID_LEN))
680 			nsr03 = sector;
681 		brelse(bh);
682 	}
683 
684 	if (nsr03)
685 		return nsr03;
686 	else if (nsr02)
687 		return nsr02;
688 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
689 		return -1;
690 	else
691 		return 0;
692 }
693 
694 static int udf_find_fileset(struct super_block *sb,
695 			    struct kernel_lb_addr *fileset,
696 			    struct kernel_lb_addr *root)
697 {
698 	struct buffer_head *bh = NULL;
699 	long lastblock;
700 	uint16_t ident;
701 	struct udf_sb_info *sbi;
702 
703 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
704 	    fileset->partitionReferenceNum != 0xFFFF) {
705 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
706 
707 		if (!bh) {
708 			return 1;
709 		} else if (ident != TAG_IDENT_FSD) {
710 			brelse(bh);
711 			return 1;
712 		}
713 
714 	}
715 
716 	sbi = UDF_SB(sb);
717 	if (!bh) {
718 		/* Search backwards through the partitions */
719 		struct kernel_lb_addr newfileset;
720 
721 /* --> cvg: FIXME - is it reasonable? */
722 		return 1;
723 
724 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
725 		     (newfileset.partitionReferenceNum != 0xFFFF &&
726 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
727 		      fileset->partitionReferenceNum == 0xFFFF);
728 		     newfileset.partitionReferenceNum--) {
729 			lastblock = sbi->s_partmaps
730 					[newfileset.partitionReferenceNum]
731 						.s_partition_len;
732 			newfileset.logicalBlockNum = 0;
733 
734 			do {
735 				bh = udf_read_ptagged(sb, &newfileset, 0,
736 						      &ident);
737 				if (!bh) {
738 					newfileset.logicalBlockNum++;
739 					continue;
740 				}
741 
742 				switch (ident) {
743 				case TAG_IDENT_SBD:
744 				{
745 					struct spaceBitmapDesc *sp;
746 					sp = (struct spaceBitmapDesc *)
747 								bh->b_data;
748 					newfileset.logicalBlockNum += 1 +
749 						((le32_to_cpu(sp->numOfBytes) +
750 						  sizeof(struct spaceBitmapDesc)
751 						  - 1) >> sb->s_blocksize_bits);
752 					brelse(bh);
753 					break;
754 				}
755 				case TAG_IDENT_FSD:
756 					*fileset = newfileset;
757 					break;
758 				default:
759 					newfileset.logicalBlockNum++;
760 					brelse(bh);
761 					bh = NULL;
762 					break;
763 				}
764 			} while (newfileset.logicalBlockNum < lastblock &&
765 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
766 				 fileset->partitionReferenceNum == 0xFFFF);
767 		}
768 	}
769 
770 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
771 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
772 		udf_debug("Fileset at block=%d, partition=%d\n",
773 			  fileset->logicalBlockNum,
774 			  fileset->partitionReferenceNum);
775 
776 		sbi->s_partition = fileset->partitionReferenceNum;
777 		udf_load_fileset(sb, bh, root);
778 		brelse(bh);
779 		return 0;
780 	}
781 	return 1;
782 }
783 
784 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
785 {
786 	struct primaryVolDesc *pvoldesc;
787 	struct ustr *instr, *outstr;
788 	struct buffer_head *bh;
789 	uint16_t ident;
790 	int ret = 1;
791 
792 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
793 	if (!instr)
794 		return 1;
795 
796 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
797 	if (!outstr)
798 		goto out1;
799 
800 	bh = udf_read_tagged(sb, block, block, &ident);
801 	if (!bh)
802 		goto out2;
803 
804 	BUG_ON(ident != TAG_IDENT_PVD);
805 
806 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
807 
808 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
809 			      pvoldesc->recordingDateAndTime)) {
810 #ifdef UDFFS_DEBUG
811 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
812 		udf_debug("recording time %04u/%02u/%02u"
813 			  " %02u:%02u (%x)\n",
814 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
815 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
816 #endif
817 	}
818 
819 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
820 		if (udf_CS0toUTF8(outstr, instr)) {
821 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
822 				outstr->u_len > 31 ? 31 : outstr->u_len);
823 			udf_debug("volIdent[] = '%s'\n",
824 					UDF_SB(sb)->s_volume_ident);
825 		}
826 
827 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
828 		if (udf_CS0toUTF8(outstr, instr))
829 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
830 
831 	brelse(bh);
832 	ret = 0;
833 out2:
834 	kfree(outstr);
835 out1:
836 	kfree(instr);
837 	return ret;
838 }
839 
840 static int udf_load_metadata_files(struct super_block *sb, int partition)
841 {
842 	struct udf_sb_info *sbi = UDF_SB(sb);
843 	struct udf_part_map *map;
844 	struct udf_meta_data *mdata;
845 	struct kernel_lb_addr addr;
846 	int fe_error = 0;
847 
848 	map = &sbi->s_partmaps[partition];
849 	mdata = &map->s_type_specific.s_metadata;
850 
851 	/* metadata address */
852 	addr.logicalBlockNum =  mdata->s_meta_file_loc;
853 	addr.partitionReferenceNum = map->s_partition_num;
854 
855 	udf_debug("Metadata file location: block = %d part = %d\n",
856 			  addr.logicalBlockNum, addr.partitionReferenceNum);
857 
858 	mdata->s_metadata_fe = udf_iget(sb, &addr);
859 
860 	if (mdata->s_metadata_fe == NULL) {
861 		udf_warning(sb, __func__, "metadata inode efe not found, "
862 				"will try mirror inode.");
863 		fe_error = 1;
864 	} else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
865 		 ICBTAG_FLAG_AD_SHORT) {
866 		udf_warning(sb, __func__, "metadata inode efe does not have "
867 			"short allocation descriptors!");
868 		fe_error = 1;
869 		iput(mdata->s_metadata_fe);
870 		mdata->s_metadata_fe = NULL;
871 	}
872 
873 	/* mirror file entry */
874 	addr.logicalBlockNum = mdata->s_mirror_file_loc;
875 	addr.partitionReferenceNum = map->s_partition_num;
876 
877 	udf_debug("Mirror metadata file location: block = %d part = %d\n",
878 			  addr.logicalBlockNum, addr.partitionReferenceNum);
879 
880 	mdata->s_mirror_fe = udf_iget(sb, &addr);
881 
882 	if (mdata->s_mirror_fe == NULL) {
883 		if (fe_error) {
884 			udf_error(sb, __func__, "mirror inode efe not found "
885 			"and metadata inode is missing too, exiting...");
886 			goto error_exit;
887 		} else
888 			udf_warning(sb, __func__, "mirror inode efe not found,"
889 					" but metadata inode is OK");
890 	} else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
891 		 ICBTAG_FLAG_AD_SHORT) {
892 		udf_warning(sb, __func__, "mirror inode efe does not have "
893 			"short allocation descriptors!");
894 		iput(mdata->s_mirror_fe);
895 		mdata->s_mirror_fe = NULL;
896 		if (fe_error)
897 			goto error_exit;
898 	}
899 
900 	/*
901 	 * bitmap file entry
902 	 * Note:
903 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
904 	*/
905 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
906 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
907 		addr.partitionReferenceNum = map->s_partition_num;
908 
909 		udf_debug("Bitmap file location: block = %d part = %d\n",
910 			addr.logicalBlockNum, addr.partitionReferenceNum);
911 
912 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
913 
914 		if (mdata->s_bitmap_fe == NULL) {
915 			if (sb->s_flags & MS_RDONLY)
916 				udf_warning(sb, __func__, "bitmap inode efe "
917 					"not found but it's ok since the disc"
918 					" is mounted read-only");
919 			else {
920 				udf_error(sb, __func__, "bitmap inode efe not "
921 					"found and attempted read-write mount");
922 				goto error_exit;
923 			}
924 		}
925 	}
926 
927 	udf_debug("udf_load_metadata_files Ok\n");
928 
929 	return 0;
930 
931 error_exit:
932 	return 1;
933 }
934 
935 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
936 			     struct kernel_lb_addr *root)
937 {
938 	struct fileSetDesc *fset;
939 
940 	fset = (struct fileSetDesc *)bh->b_data;
941 
942 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
943 
944 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
945 
946 	udf_debug("Rootdir at block=%d, partition=%d\n",
947 		  root->logicalBlockNum, root->partitionReferenceNum);
948 }
949 
950 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
951 {
952 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
953 	return DIV_ROUND_UP(map->s_partition_len +
954 			    (sizeof(struct spaceBitmapDesc) << 3),
955 			    sb->s_blocksize * 8);
956 }
957 
958 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
959 {
960 	struct udf_bitmap *bitmap;
961 	int nr_groups;
962 	int size;
963 
964 	nr_groups = udf_compute_nr_groups(sb, index);
965 	size = sizeof(struct udf_bitmap) +
966 		(sizeof(struct buffer_head *) * nr_groups);
967 
968 	if (size <= PAGE_SIZE)
969 		bitmap = kzalloc(size, GFP_KERNEL);
970 	else
971 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
972 
973 	if (bitmap == NULL) {
974 		udf_error(sb, __func__,
975 			  "Unable to allocate space for bitmap "
976 			  "and %d buffer_head pointers", nr_groups);
977 		return NULL;
978 	}
979 
980 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
981 	bitmap->s_nr_groups = nr_groups;
982 	return bitmap;
983 }
984 
985 static int udf_fill_partdesc_info(struct super_block *sb,
986 		struct partitionDesc *p, int p_index)
987 {
988 	struct udf_part_map *map;
989 	struct udf_sb_info *sbi = UDF_SB(sb);
990 	struct partitionHeaderDesc *phd;
991 
992 	map = &sbi->s_partmaps[p_index];
993 
994 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
995 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
996 
997 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
998 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
999 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1000 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1001 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1002 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1003 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1004 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1005 
1006 	udf_debug("Partition (%d type %x) starts at physical %d, "
1007 		  "block length %d\n", p_index,
1008 		  map->s_partition_type, map->s_partition_root,
1009 		  map->s_partition_len);
1010 
1011 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1012 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1013 		return 0;
1014 
1015 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1016 	if (phd->unallocSpaceTable.extLength) {
1017 		struct kernel_lb_addr loc = {
1018 			.logicalBlockNum = le32_to_cpu(
1019 				phd->unallocSpaceTable.extPosition),
1020 			.partitionReferenceNum = p_index,
1021 		};
1022 
1023 		map->s_uspace.s_table = udf_iget(sb, &loc);
1024 		if (!map->s_uspace.s_table) {
1025 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1026 					p_index);
1027 			return 1;
1028 		}
1029 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1030 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1031 				p_index, map->s_uspace.s_table->i_ino);
1032 	}
1033 
1034 	if (phd->unallocSpaceBitmap.extLength) {
1035 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1036 		if (!bitmap)
1037 			return 1;
1038 		map->s_uspace.s_bitmap = bitmap;
1039 		bitmap->s_extLength = le32_to_cpu(
1040 				phd->unallocSpaceBitmap.extLength);
1041 		bitmap->s_extPosition = le32_to_cpu(
1042 				phd->unallocSpaceBitmap.extPosition);
1043 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1044 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1045 						bitmap->s_extPosition);
1046 	}
1047 
1048 	if (phd->partitionIntegrityTable.extLength)
1049 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1050 
1051 	if (phd->freedSpaceTable.extLength) {
1052 		struct kernel_lb_addr loc = {
1053 			.logicalBlockNum = le32_to_cpu(
1054 				phd->freedSpaceTable.extPosition),
1055 			.partitionReferenceNum = p_index,
1056 		};
1057 
1058 		map->s_fspace.s_table = udf_iget(sb, &loc);
1059 		if (!map->s_fspace.s_table) {
1060 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1061 				p_index);
1062 			return 1;
1063 		}
1064 
1065 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1066 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1067 				p_index, map->s_fspace.s_table->i_ino);
1068 	}
1069 
1070 	if (phd->freedSpaceBitmap.extLength) {
1071 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1072 		if (!bitmap)
1073 			return 1;
1074 		map->s_fspace.s_bitmap = bitmap;
1075 		bitmap->s_extLength = le32_to_cpu(
1076 				phd->freedSpaceBitmap.extLength);
1077 		bitmap->s_extPosition = le32_to_cpu(
1078 				phd->freedSpaceBitmap.extPosition);
1079 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1080 		udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1081 					bitmap->s_extPosition);
1082 	}
1083 	return 0;
1084 }
1085 
1086 static void udf_find_vat_block(struct super_block *sb, int p_index,
1087 			       int type1_index, sector_t start_block)
1088 {
1089 	struct udf_sb_info *sbi = UDF_SB(sb);
1090 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1091 	sector_t vat_block;
1092 	struct kernel_lb_addr ino;
1093 
1094 	/*
1095 	 * VAT file entry is in the last recorded block. Some broken disks have
1096 	 * it a few blocks before so try a bit harder...
1097 	 */
1098 	ino.partitionReferenceNum = type1_index;
1099 	for (vat_block = start_block;
1100 	     vat_block >= map->s_partition_root &&
1101 	     vat_block >= start_block - 3 &&
1102 	     !sbi->s_vat_inode; vat_block--) {
1103 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1104 		sbi->s_vat_inode = udf_iget(sb, &ino);
1105 	}
1106 }
1107 
1108 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1109 {
1110 	struct udf_sb_info *sbi = UDF_SB(sb);
1111 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1112 	struct buffer_head *bh = NULL;
1113 	struct udf_inode_info *vati;
1114 	uint32_t pos;
1115 	struct virtualAllocationTable20 *vat20;
1116 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1117 
1118 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1119 	if (!sbi->s_vat_inode &&
1120 	    sbi->s_last_block != blocks - 1) {
1121 		printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the"
1122 		       " last recorded block (%lu), retrying with the last "
1123 		       "block of the device (%lu).\n",
1124 		       (unsigned long)sbi->s_last_block,
1125 		       (unsigned long)blocks - 1);
1126 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1127 	}
1128 	if (!sbi->s_vat_inode)
1129 		return 1;
1130 
1131 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1132 		map->s_type_specific.s_virtual.s_start_offset = 0;
1133 		map->s_type_specific.s_virtual.s_num_entries =
1134 			(sbi->s_vat_inode->i_size - 36) >> 2;
1135 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1136 		vati = UDF_I(sbi->s_vat_inode);
1137 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1138 			pos = udf_block_map(sbi->s_vat_inode, 0);
1139 			bh = sb_bread(sb, pos);
1140 			if (!bh)
1141 				return 1;
1142 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1143 		} else {
1144 			vat20 = (struct virtualAllocationTable20 *)
1145 							vati->i_ext.i_data;
1146 		}
1147 
1148 		map->s_type_specific.s_virtual.s_start_offset =
1149 			le16_to_cpu(vat20->lengthHeader);
1150 		map->s_type_specific.s_virtual.s_num_entries =
1151 			(sbi->s_vat_inode->i_size -
1152 				map->s_type_specific.s_virtual.
1153 					s_start_offset) >> 2;
1154 		brelse(bh);
1155 	}
1156 	return 0;
1157 }
1158 
1159 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1160 {
1161 	struct buffer_head *bh;
1162 	struct partitionDesc *p;
1163 	struct udf_part_map *map;
1164 	struct udf_sb_info *sbi = UDF_SB(sb);
1165 	int i, type1_idx;
1166 	uint16_t partitionNumber;
1167 	uint16_t ident;
1168 	int ret = 0;
1169 
1170 	bh = udf_read_tagged(sb, block, block, &ident);
1171 	if (!bh)
1172 		return 1;
1173 	if (ident != TAG_IDENT_PD)
1174 		goto out_bh;
1175 
1176 	p = (struct partitionDesc *)bh->b_data;
1177 	partitionNumber = le16_to_cpu(p->partitionNumber);
1178 
1179 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1180 	for (i = 0; i < sbi->s_partitions; i++) {
1181 		map = &sbi->s_partmaps[i];
1182 		udf_debug("Searching map: (%d == %d)\n",
1183 			  map->s_partition_num, partitionNumber);
1184 		if (map->s_partition_num == partitionNumber &&
1185 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1186 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1187 			break;
1188 	}
1189 
1190 	if (i >= sbi->s_partitions) {
1191 		udf_debug("Partition (%d) not found in partition map\n",
1192 			  partitionNumber);
1193 		goto out_bh;
1194 	}
1195 
1196 	ret = udf_fill_partdesc_info(sb, p, i);
1197 
1198 	/*
1199 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1200 	 * PHYSICAL partitions are already set up
1201 	 */
1202 	type1_idx = i;
1203 	for (i = 0; i < sbi->s_partitions; i++) {
1204 		map = &sbi->s_partmaps[i];
1205 
1206 		if (map->s_partition_num == partitionNumber &&
1207 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1208 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1209 		     map->s_partition_type == UDF_METADATA_MAP25))
1210 			break;
1211 	}
1212 
1213 	if (i >= sbi->s_partitions)
1214 		goto out_bh;
1215 
1216 	ret = udf_fill_partdesc_info(sb, p, i);
1217 	if (ret)
1218 		goto out_bh;
1219 
1220 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1221 		ret = udf_load_metadata_files(sb, i);
1222 		if (ret) {
1223 			printk(KERN_ERR "UDF-fs: error loading MetaData "
1224 			"partition map %d\n", i);
1225 			goto out_bh;
1226 		}
1227 	} else {
1228 		ret = udf_load_vat(sb, i, type1_idx);
1229 		if (ret)
1230 			goto out_bh;
1231 		/*
1232 		 * Mark filesystem read-only if we have a partition with
1233 		 * virtual map since we don't handle writing to it (we
1234 		 * overwrite blocks instead of relocating them).
1235 		 */
1236 		sb->s_flags |= MS_RDONLY;
1237 		printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1238 			"because writing to pseudooverwrite partition is "
1239 			"not implemented.\n");
1240 	}
1241 out_bh:
1242 	/* In case loading failed, we handle cleanup in udf_fill_super */
1243 	brelse(bh);
1244 	return ret;
1245 }
1246 
1247 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1248 			       struct kernel_lb_addr *fileset)
1249 {
1250 	struct logicalVolDesc *lvd;
1251 	int i, j, offset;
1252 	uint8_t type;
1253 	struct udf_sb_info *sbi = UDF_SB(sb);
1254 	struct genericPartitionMap *gpm;
1255 	uint16_t ident;
1256 	struct buffer_head *bh;
1257 	int ret = 0;
1258 
1259 	bh = udf_read_tagged(sb, block, block, &ident);
1260 	if (!bh)
1261 		return 1;
1262 	BUG_ON(ident != TAG_IDENT_LVD);
1263 	lvd = (struct logicalVolDesc *)bh->b_data;
1264 
1265 	i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1266 	if (i != 0) {
1267 		ret = i;
1268 		goto out_bh;
1269 	}
1270 
1271 	for (i = 0, offset = 0;
1272 	     i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1273 	     i++, offset += gpm->partitionMapLength) {
1274 		struct udf_part_map *map = &sbi->s_partmaps[i];
1275 		gpm = (struct genericPartitionMap *)
1276 				&(lvd->partitionMaps[offset]);
1277 		type = gpm->partitionMapType;
1278 		if (type == 1) {
1279 			struct genericPartitionMap1 *gpm1 =
1280 				(struct genericPartitionMap1 *)gpm;
1281 			map->s_partition_type = UDF_TYPE1_MAP15;
1282 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1283 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1284 			map->s_partition_func = NULL;
1285 		} else if (type == 2) {
1286 			struct udfPartitionMap2 *upm2 =
1287 						(struct udfPartitionMap2 *)gpm;
1288 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1289 						strlen(UDF_ID_VIRTUAL))) {
1290 				u16 suf =
1291 					le16_to_cpu(((__le16 *)upm2->partIdent.
1292 							identSuffix)[0]);
1293 				if (suf < 0x0200) {
1294 					map->s_partition_type =
1295 							UDF_VIRTUAL_MAP15;
1296 					map->s_partition_func =
1297 							udf_get_pblock_virt15;
1298 				} else {
1299 					map->s_partition_type =
1300 							UDF_VIRTUAL_MAP20;
1301 					map->s_partition_func =
1302 							udf_get_pblock_virt20;
1303 				}
1304 			} else if (!strncmp(upm2->partIdent.ident,
1305 						UDF_ID_SPARABLE,
1306 						strlen(UDF_ID_SPARABLE))) {
1307 				uint32_t loc;
1308 				struct sparingTable *st;
1309 				struct sparablePartitionMap *spm =
1310 					(struct sparablePartitionMap *)gpm;
1311 
1312 				map->s_partition_type = UDF_SPARABLE_MAP15;
1313 				map->s_type_specific.s_sparing.s_packet_len =
1314 						le16_to_cpu(spm->packetLength);
1315 				for (j = 0; j < spm->numSparingTables; j++) {
1316 					struct buffer_head *bh2;
1317 
1318 					loc = le32_to_cpu(
1319 						spm->locSparingTable[j]);
1320 					bh2 = udf_read_tagged(sb, loc, loc,
1321 							     &ident);
1322 					map->s_type_specific.s_sparing.
1323 							s_spar_map[j] = bh2;
1324 
1325 					if (bh2 == NULL)
1326 						continue;
1327 
1328 					st = (struct sparingTable *)bh2->b_data;
1329 					if (ident != 0 || strncmp(
1330 						st->sparingIdent.ident,
1331 						UDF_ID_SPARING,
1332 						strlen(UDF_ID_SPARING))) {
1333 						brelse(bh2);
1334 						map->s_type_specific.s_sparing.
1335 							s_spar_map[j] = NULL;
1336 					}
1337 				}
1338 				map->s_partition_func = udf_get_pblock_spar15;
1339 			} else if (!strncmp(upm2->partIdent.ident,
1340 						UDF_ID_METADATA,
1341 						strlen(UDF_ID_METADATA))) {
1342 				struct udf_meta_data *mdata =
1343 					&map->s_type_specific.s_metadata;
1344 				struct metadataPartitionMap *mdm =
1345 						(struct metadataPartitionMap *)
1346 						&(lvd->partitionMaps[offset]);
1347 				udf_debug("Parsing Logical vol part %d "
1348 					"type %d  id=%s\n", i, type,
1349 					UDF_ID_METADATA);
1350 
1351 				map->s_partition_type = UDF_METADATA_MAP25;
1352 				map->s_partition_func = udf_get_pblock_meta25;
1353 
1354 				mdata->s_meta_file_loc   =
1355 					le32_to_cpu(mdm->metadataFileLoc);
1356 				mdata->s_mirror_file_loc =
1357 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1358 				mdata->s_bitmap_file_loc =
1359 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1360 				mdata->s_alloc_unit_size =
1361 					le32_to_cpu(mdm->allocUnitSize);
1362 				mdata->s_align_unit_size =
1363 					le16_to_cpu(mdm->alignUnitSize);
1364 				mdata->s_dup_md_flag 	 =
1365 					mdm->flags & 0x01;
1366 
1367 				udf_debug("Metadata Ident suffix=0x%x\n",
1368 					(le16_to_cpu(
1369 					 ((__le16 *)
1370 					      mdm->partIdent.identSuffix)[0])));
1371 				udf_debug("Metadata part num=%d\n",
1372 					le16_to_cpu(mdm->partitionNum));
1373 				udf_debug("Metadata part alloc unit size=%d\n",
1374 					le32_to_cpu(mdm->allocUnitSize));
1375 				udf_debug("Metadata file loc=%d\n",
1376 					le32_to_cpu(mdm->metadataFileLoc));
1377 				udf_debug("Mirror file loc=%d\n",
1378 				       le32_to_cpu(mdm->metadataMirrorFileLoc));
1379 				udf_debug("Bitmap file loc=%d\n",
1380 				       le32_to_cpu(mdm->metadataBitmapFileLoc));
1381 				udf_debug("Duplicate Flag: %d %d\n",
1382 					mdata->s_dup_md_flag, mdm->flags);
1383 			} else {
1384 				udf_debug("Unknown ident: %s\n",
1385 					  upm2->partIdent.ident);
1386 				continue;
1387 			}
1388 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1389 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1390 		}
1391 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1392 			  i, map->s_partition_num, type,
1393 			  map->s_volumeseqnum);
1394 	}
1395 
1396 	if (fileset) {
1397 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1398 
1399 		*fileset = lelb_to_cpu(la->extLocation);
1400 		udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1401 			  "partition=%d\n", fileset->logicalBlockNum,
1402 			  fileset->partitionReferenceNum);
1403 	}
1404 	if (lvd->integritySeqExt.extLength)
1405 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1406 
1407 out_bh:
1408 	brelse(bh);
1409 	return ret;
1410 }
1411 
1412 /*
1413  * udf_load_logicalvolint
1414  *
1415  */
1416 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1417 {
1418 	struct buffer_head *bh = NULL;
1419 	uint16_t ident;
1420 	struct udf_sb_info *sbi = UDF_SB(sb);
1421 	struct logicalVolIntegrityDesc *lvid;
1422 
1423 	while (loc.extLength > 0 &&
1424 	       (bh = udf_read_tagged(sb, loc.extLocation,
1425 				     loc.extLocation, &ident)) &&
1426 	       ident == TAG_IDENT_LVID) {
1427 		sbi->s_lvid_bh = bh;
1428 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1429 
1430 		if (lvid->nextIntegrityExt.extLength)
1431 			udf_load_logicalvolint(sb,
1432 				leea_to_cpu(lvid->nextIntegrityExt));
1433 
1434 		if (sbi->s_lvid_bh != bh)
1435 			brelse(bh);
1436 		loc.extLength -= sb->s_blocksize;
1437 		loc.extLocation++;
1438 	}
1439 	if (sbi->s_lvid_bh != bh)
1440 		brelse(bh);
1441 }
1442 
1443 /*
1444  * udf_process_sequence
1445  *
1446  * PURPOSE
1447  *	Process a main/reserve volume descriptor sequence.
1448  *
1449  * PRE-CONDITIONS
1450  *	sb			Pointer to _locked_ superblock.
1451  *	block			First block of first extent of the sequence.
1452  *	lastblock		Lastblock of first extent of the sequence.
1453  *
1454  * HISTORY
1455  *	July 1, 1997 - Andrew E. Mileski
1456  *	Written, tested, and released.
1457  */
1458 static noinline int udf_process_sequence(struct super_block *sb, long block,
1459 				long lastblock, struct kernel_lb_addr *fileset)
1460 {
1461 	struct buffer_head *bh = NULL;
1462 	struct udf_vds_record vds[VDS_POS_LENGTH];
1463 	struct udf_vds_record *curr;
1464 	struct generic_desc *gd;
1465 	struct volDescPtr *vdp;
1466 	int done = 0;
1467 	uint32_t vdsn;
1468 	uint16_t ident;
1469 	long next_s = 0, next_e = 0;
1470 
1471 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1472 
1473 	/*
1474 	 * Read the main descriptor sequence and find which descriptors
1475 	 * are in it.
1476 	 */
1477 	for (; (!done && block <= lastblock); block++) {
1478 
1479 		bh = udf_read_tagged(sb, block, block, &ident);
1480 		if (!bh) {
1481 			printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1482 			       "sequence is corrupted or we could not read "
1483 			       "it.\n", (unsigned long long)block);
1484 			return 1;
1485 		}
1486 
1487 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1488 		gd = (struct generic_desc *)bh->b_data;
1489 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1490 		switch (ident) {
1491 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1492 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1493 			if (vdsn >= curr->volDescSeqNum) {
1494 				curr->volDescSeqNum = vdsn;
1495 				curr->block = block;
1496 			}
1497 			break;
1498 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1499 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1500 			if (vdsn >= curr->volDescSeqNum) {
1501 				curr->volDescSeqNum = vdsn;
1502 				curr->block = block;
1503 
1504 				vdp = (struct volDescPtr *)bh->b_data;
1505 				next_s = le32_to_cpu(
1506 					vdp->nextVolDescSeqExt.extLocation);
1507 				next_e = le32_to_cpu(
1508 					vdp->nextVolDescSeqExt.extLength);
1509 				next_e = next_e >> sb->s_blocksize_bits;
1510 				next_e += next_s;
1511 			}
1512 			break;
1513 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1514 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1515 			if (vdsn >= curr->volDescSeqNum) {
1516 				curr->volDescSeqNum = vdsn;
1517 				curr->block = block;
1518 			}
1519 			break;
1520 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1521 			curr = &vds[VDS_POS_PARTITION_DESC];
1522 			if (!curr->block)
1523 				curr->block = block;
1524 			break;
1525 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1526 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1527 			if (vdsn >= curr->volDescSeqNum) {
1528 				curr->volDescSeqNum = vdsn;
1529 				curr->block = block;
1530 			}
1531 			break;
1532 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1533 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1534 			if (vdsn >= curr->volDescSeqNum) {
1535 				curr->volDescSeqNum = vdsn;
1536 				curr->block = block;
1537 			}
1538 			break;
1539 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1540 			vds[VDS_POS_TERMINATING_DESC].block = block;
1541 			if (next_e) {
1542 				block = next_s;
1543 				lastblock = next_e;
1544 				next_s = next_e = 0;
1545 			} else
1546 				done = 1;
1547 			break;
1548 		}
1549 		brelse(bh);
1550 	}
1551 	/*
1552 	 * Now read interesting descriptors again and process them
1553 	 * in a suitable order
1554 	 */
1555 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1556 		printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1557 		return 1;
1558 	}
1559 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1560 		return 1;
1561 
1562 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1563 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1564 		return 1;
1565 
1566 	if (vds[VDS_POS_PARTITION_DESC].block) {
1567 		/*
1568 		 * We rescan the whole descriptor sequence to find
1569 		 * partition descriptor blocks and process them.
1570 		 */
1571 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1572 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1573 		     block++)
1574 			if (udf_load_partdesc(sb, block))
1575 				return 1;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1582 			     struct kernel_lb_addr *fileset)
1583 {
1584 	struct anchorVolDescPtr *anchor;
1585 	long main_s, main_e, reserve_s, reserve_e;
1586 
1587 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1588 
1589 	/* Locate the main sequence */
1590 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1591 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1592 	main_e = main_e >> sb->s_blocksize_bits;
1593 	main_e += main_s;
1594 
1595 	/* Locate the reserve sequence */
1596 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1597 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1598 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1599 	reserve_e += reserve_s;
1600 
1601 	/* Process the main & reserve sequences */
1602 	/* responsible for finding the PartitionDesc(s) */
1603 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1604 		return 1;
1605 	return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1606 }
1607 
1608 /*
1609  * Check whether there is an anchor block in the given block and
1610  * load Volume Descriptor Sequence if so.
1611  */
1612 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1613 				  struct kernel_lb_addr *fileset)
1614 {
1615 	struct buffer_head *bh;
1616 	uint16_t ident;
1617 	int ret;
1618 
1619 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1620 	    udf_fixed_to_variable(block) >=
1621 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1622 		return 0;
1623 
1624 	bh = udf_read_tagged(sb, block, block, &ident);
1625 	if (!bh)
1626 		return 0;
1627 	if (ident != TAG_IDENT_AVDP) {
1628 		brelse(bh);
1629 		return 0;
1630 	}
1631 	ret = udf_load_sequence(sb, bh, fileset);
1632 	brelse(bh);
1633 	return ret;
1634 }
1635 
1636 /* Search for an anchor volume descriptor pointer */
1637 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1638 				 struct kernel_lb_addr *fileset)
1639 {
1640 	sector_t last[6];
1641 	int i;
1642 	struct udf_sb_info *sbi = UDF_SB(sb);
1643 	int last_count = 0;
1644 
1645 	/* First try user provided anchor */
1646 	if (sbi->s_anchor) {
1647 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1648 			return lastblock;
1649 	}
1650 	/*
1651 	 * according to spec, anchor is in either:
1652 	 *     block 256
1653 	 *     lastblock-256
1654 	 *     lastblock
1655 	 *  however, if the disc isn't closed, it could be 512.
1656 	 */
1657 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1658 		return lastblock;
1659 	/*
1660 	 * The trouble is which block is the last one. Drives often misreport
1661 	 * this so we try various possibilities.
1662 	 */
1663 	last[last_count++] = lastblock;
1664 	if (lastblock >= 1)
1665 		last[last_count++] = lastblock - 1;
1666 	last[last_count++] = lastblock + 1;
1667 	if (lastblock >= 2)
1668 		last[last_count++] = lastblock - 2;
1669 	if (lastblock >= 150)
1670 		last[last_count++] = lastblock - 150;
1671 	if (lastblock >= 152)
1672 		last[last_count++] = lastblock - 152;
1673 
1674 	for (i = 0; i < last_count; i++) {
1675 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1676 				sb->s_blocksize_bits)
1677 			continue;
1678 		if (udf_check_anchor_block(sb, last[i], fileset))
1679 			return last[i];
1680 		if (last[i] < 256)
1681 			continue;
1682 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1683 			return last[i];
1684 	}
1685 
1686 	/* Finally try block 512 in case media is open */
1687 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1688 		return last[0];
1689 	return 0;
1690 }
1691 
1692 /*
1693  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1694  * area specified by it. The function expects sbi->s_lastblock to be the last
1695  * block on the media.
1696  *
1697  * Return 1 if ok, 0 if not found.
1698  *
1699  */
1700 static int udf_find_anchor(struct super_block *sb,
1701 			   struct kernel_lb_addr *fileset)
1702 {
1703 	sector_t lastblock;
1704 	struct udf_sb_info *sbi = UDF_SB(sb);
1705 
1706 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1707 	if (lastblock)
1708 		goto out;
1709 
1710 	/* No anchor found? Try VARCONV conversion of block numbers */
1711 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1712 	/* Firstly, we try to not convert number of the last block */
1713 	lastblock = udf_scan_anchors(sb,
1714 				udf_variable_to_fixed(sbi->s_last_block),
1715 				fileset);
1716 	if (lastblock)
1717 		goto out;
1718 
1719 	/* Secondly, we try with converted number of the last block */
1720 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1721 	if (!lastblock) {
1722 		/* VARCONV didn't help. Clear it. */
1723 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1724 		return 0;
1725 	}
1726 out:
1727 	sbi->s_last_block = lastblock;
1728 	return 1;
1729 }
1730 
1731 /*
1732  * Check Volume Structure Descriptor, find Anchor block and load Volume
1733  * Descriptor Sequence
1734  */
1735 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1736 			int silent, struct kernel_lb_addr *fileset)
1737 {
1738 	struct udf_sb_info *sbi = UDF_SB(sb);
1739 	loff_t nsr_off;
1740 
1741 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1742 		if (!silent)
1743 			printk(KERN_WARNING "UDF-fs: Bad block size\n");
1744 		return 0;
1745 	}
1746 	sbi->s_last_block = uopt->lastblock;
1747 	if (!uopt->novrs) {
1748 		/* Check that it is NSR02 compliant */
1749 		nsr_off = udf_check_vsd(sb);
1750 		if (!nsr_off) {
1751 			if (!silent)
1752 				printk(KERN_WARNING "UDF-fs: No VRS found\n");
1753 			return 0;
1754 		}
1755 		if (nsr_off == -1)
1756 			udf_debug("Failed to read byte 32768. Assuming open "
1757 				  "disc. Skipping validity check\n");
1758 		if (!sbi->s_last_block)
1759 			sbi->s_last_block = udf_get_last_block(sb);
1760 	} else {
1761 		udf_debug("Validity check skipped because of novrs option\n");
1762 	}
1763 
1764 	/* Look for anchor block and load Volume Descriptor Sequence */
1765 	sbi->s_anchor = uopt->anchor;
1766 	if (!udf_find_anchor(sb, fileset)) {
1767 		if (!silent)
1768 			printk(KERN_WARNING "UDF-fs: No anchor found\n");
1769 		return 0;
1770 	}
1771 	return 1;
1772 }
1773 
1774 static void udf_open_lvid(struct super_block *sb)
1775 {
1776 	struct udf_sb_info *sbi = UDF_SB(sb);
1777 	struct buffer_head *bh = sbi->s_lvid_bh;
1778 	struct logicalVolIntegrityDesc *lvid;
1779 	struct logicalVolIntegrityDescImpUse *lvidiu;
1780 
1781 	if (!bh)
1782 		return;
1783 
1784 	mutex_lock(&sbi->s_alloc_mutex);
1785 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1786 	lvidiu = udf_sb_lvidiu(sbi);
1787 
1788 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1791 				CURRENT_TIME);
1792 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1793 
1794 	lvid->descTag.descCRC = cpu_to_le16(
1795 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1796 			le16_to_cpu(lvid->descTag.descCRCLength)));
1797 
1798 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1799 	mark_buffer_dirty(bh);
1800 	sbi->s_lvid_dirty = 0;
1801 	mutex_unlock(&sbi->s_alloc_mutex);
1802 }
1803 
1804 static void udf_close_lvid(struct super_block *sb)
1805 {
1806 	struct udf_sb_info *sbi = UDF_SB(sb);
1807 	struct buffer_head *bh = sbi->s_lvid_bh;
1808 	struct logicalVolIntegrityDesc *lvid;
1809 	struct logicalVolIntegrityDescImpUse *lvidiu;
1810 
1811 	if (!bh)
1812 		return;
1813 
1814 	mutex_lock(&sbi->s_alloc_mutex);
1815 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1816 	lvidiu = udf_sb_lvidiu(sbi);
1817 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1818 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1819 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1820 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1821 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1822 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1823 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1824 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1825 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1826 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1827 
1828 	lvid->descTag.descCRC = cpu_to_le16(
1829 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1830 				le16_to_cpu(lvid->descTag.descCRCLength)));
1831 
1832 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1833 	mark_buffer_dirty(bh);
1834 	sbi->s_lvid_dirty = 0;
1835 	mutex_unlock(&sbi->s_alloc_mutex);
1836 }
1837 
1838 u64 lvid_get_unique_id(struct super_block *sb)
1839 {
1840 	struct buffer_head *bh;
1841 	struct udf_sb_info *sbi = UDF_SB(sb);
1842 	struct logicalVolIntegrityDesc *lvid;
1843 	struct logicalVolHeaderDesc *lvhd;
1844 	u64 uniqueID;
1845 	u64 ret;
1846 
1847 	bh = sbi->s_lvid_bh;
1848 	if (!bh)
1849 		return 0;
1850 
1851 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1852 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1853 
1854 	mutex_lock(&sbi->s_alloc_mutex);
1855 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1856 	if (!(++uniqueID & 0xFFFFFFFF))
1857 		uniqueID += 16;
1858 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1859 	mutex_unlock(&sbi->s_alloc_mutex);
1860 	mark_buffer_dirty(bh);
1861 
1862 	return ret;
1863 }
1864 
1865 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1866 {
1867 	int i;
1868 	int nr_groups = bitmap->s_nr_groups;
1869 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1870 						nr_groups);
1871 
1872 	for (i = 0; i < nr_groups; i++)
1873 		if (bitmap->s_block_bitmap[i])
1874 			brelse(bitmap->s_block_bitmap[i]);
1875 
1876 	if (size <= PAGE_SIZE)
1877 		kfree(bitmap);
1878 	else
1879 		vfree(bitmap);
1880 }
1881 
1882 static void udf_free_partition(struct udf_part_map *map)
1883 {
1884 	int i;
1885 	struct udf_meta_data *mdata;
1886 
1887 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1888 		iput(map->s_uspace.s_table);
1889 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1890 		iput(map->s_fspace.s_table);
1891 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1892 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1893 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1894 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1895 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
1896 		for (i = 0; i < 4; i++)
1897 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1898 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
1899 		mdata = &map->s_type_specific.s_metadata;
1900 		iput(mdata->s_metadata_fe);
1901 		mdata->s_metadata_fe = NULL;
1902 
1903 		iput(mdata->s_mirror_fe);
1904 		mdata->s_mirror_fe = NULL;
1905 
1906 		iput(mdata->s_bitmap_fe);
1907 		mdata->s_bitmap_fe = NULL;
1908 	}
1909 }
1910 
1911 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1912 {
1913 	int i;
1914 	int ret;
1915 	struct inode *inode = NULL;
1916 	struct udf_options uopt;
1917 	struct kernel_lb_addr rootdir, fileset;
1918 	struct udf_sb_info *sbi;
1919 
1920 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1921 	uopt.uid = -1;
1922 	uopt.gid = -1;
1923 	uopt.umask = 0;
1924 	uopt.fmode = UDF_INVALID_MODE;
1925 	uopt.dmode = UDF_INVALID_MODE;
1926 
1927 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1928 	if (!sbi)
1929 		return -ENOMEM;
1930 
1931 	sb->s_fs_info = sbi;
1932 
1933 	mutex_init(&sbi->s_alloc_mutex);
1934 
1935 	if (!udf_parse_options((char *)options, &uopt, false))
1936 		goto error_out;
1937 
1938 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1939 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1940 		udf_error(sb, "udf_read_super",
1941 			  "utf8 cannot be combined with iocharset\n");
1942 		goto error_out;
1943 	}
1944 #ifdef CONFIG_UDF_NLS
1945 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1946 		uopt.nls_map = load_nls_default();
1947 		if (!uopt.nls_map)
1948 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1949 		else
1950 			udf_debug("Using default NLS map\n");
1951 	}
1952 #endif
1953 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1954 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1955 
1956 	fileset.logicalBlockNum = 0xFFFFFFFF;
1957 	fileset.partitionReferenceNum = 0xFFFF;
1958 
1959 	sbi->s_flags = uopt.flags;
1960 	sbi->s_uid = uopt.uid;
1961 	sbi->s_gid = uopt.gid;
1962 	sbi->s_umask = uopt.umask;
1963 	sbi->s_fmode = uopt.fmode;
1964 	sbi->s_dmode = uopt.dmode;
1965 	sbi->s_nls_map = uopt.nls_map;
1966 	rwlock_init(&sbi->s_cred_lock);
1967 
1968 	if (uopt.session == 0xFFFFFFFF)
1969 		sbi->s_session = udf_get_last_session(sb);
1970 	else
1971 		sbi->s_session = uopt.session;
1972 
1973 	udf_debug("Multi-session=%d\n", sbi->s_session);
1974 
1975 	/* Fill in the rest of the superblock */
1976 	sb->s_op = &udf_sb_ops;
1977 	sb->s_export_op = &udf_export_ops;
1978 
1979 	sb->s_dirt = 0;
1980 	sb->s_magic = UDF_SUPER_MAGIC;
1981 	sb->s_time_gran = 1000;
1982 
1983 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1984 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1985 	} else {
1986 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1987 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1988 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1989 			if (!silent)
1990 				printk(KERN_NOTICE
1991 				       "UDF-fs: Rescanning with blocksize "
1992 				       "%d\n", UDF_DEFAULT_BLOCKSIZE);
1993 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1994 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1995 		}
1996 	}
1997 	if (!ret) {
1998 		printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1999 		goto error_out;
2000 	}
2001 
2002 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2003 
2004 	if (sbi->s_lvid_bh) {
2005 		struct logicalVolIntegrityDescImpUse *lvidiu =
2006 							udf_sb_lvidiu(sbi);
2007 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2008 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2009 		/* uint16_t maxUDFWriteRev =
2010 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2011 
2012 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2013 			printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
2014 					"(max is %x)\n",
2015 			       le16_to_cpu(lvidiu->minUDFReadRev),
2016 			       UDF_MAX_READ_VERSION);
2017 			goto error_out;
2018 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2019 			sb->s_flags |= MS_RDONLY;
2020 
2021 		sbi->s_udfrev = minUDFWriteRev;
2022 
2023 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2024 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2025 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2026 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2027 	}
2028 
2029 	if (!sbi->s_partitions) {
2030 		printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
2031 		goto error_out;
2032 	}
2033 
2034 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2035 			UDF_PART_FLAG_READ_ONLY) {
2036 		printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2037 				   "forcing readonly mount\n");
2038 		sb->s_flags |= MS_RDONLY;
2039 	}
2040 
2041 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2042 		printk(KERN_WARNING "UDF-fs: No fileset found\n");
2043 		goto error_out;
2044 	}
2045 
2046 	if (!silent) {
2047 		struct timestamp ts;
2048 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2049 		udf_info("UDF: Mounting volume '%s', "
2050 			 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2051 			 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2052 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2053 	}
2054 	if (!(sb->s_flags & MS_RDONLY))
2055 		udf_open_lvid(sb);
2056 
2057 	/* Assign the root inode */
2058 	/* assign inodes by physical block number */
2059 	/* perhaps it's not extensible enough, but for now ... */
2060 	inode = udf_iget(sb, &rootdir);
2061 	if (!inode) {
2062 		printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2063 				"partition=%d\n",
2064 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2065 		goto error_out;
2066 	}
2067 
2068 	/* Allocate a dentry for the root inode */
2069 	sb->s_root = d_alloc_root(inode);
2070 	if (!sb->s_root) {
2071 		printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2072 		iput(inode);
2073 		goto error_out;
2074 	}
2075 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2076 	return 0;
2077 
2078 error_out:
2079 	if (sbi->s_vat_inode)
2080 		iput(sbi->s_vat_inode);
2081 	if (sbi->s_partitions)
2082 		for (i = 0; i < sbi->s_partitions; i++)
2083 			udf_free_partition(&sbi->s_partmaps[i]);
2084 #ifdef CONFIG_UDF_NLS
2085 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2086 		unload_nls(sbi->s_nls_map);
2087 #endif
2088 	if (!(sb->s_flags & MS_RDONLY))
2089 		udf_close_lvid(sb);
2090 	brelse(sbi->s_lvid_bh);
2091 
2092 	kfree(sbi->s_partmaps);
2093 	kfree(sbi);
2094 	sb->s_fs_info = NULL;
2095 
2096 	return -EINVAL;
2097 }
2098 
2099 static void udf_error(struct super_block *sb, const char *function,
2100 		      const char *fmt, ...)
2101 {
2102 	va_list args;
2103 
2104 	if (!(sb->s_flags & MS_RDONLY)) {
2105 		/* mark sb error */
2106 		sb->s_dirt = 1;
2107 	}
2108 	va_start(args, fmt);
2109 	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2110 	va_end(args);
2111 	printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2112 		sb->s_id, function, error_buf);
2113 }
2114 
2115 void udf_warning(struct super_block *sb, const char *function,
2116 		 const char *fmt, ...)
2117 {
2118 	va_list args;
2119 
2120 	va_start(args, fmt);
2121 	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2122 	va_end(args);
2123 	printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2124 	       sb->s_id, function, error_buf);
2125 }
2126 
2127 static void udf_put_super(struct super_block *sb)
2128 {
2129 	int i;
2130 	struct udf_sb_info *sbi;
2131 
2132 	sbi = UDF_SB(sb);
2133 
2134 	if (sbi->s_vat_inode)
2135 		iput(sbi->s_vat_inode);
2136 	if (sbi->s_partitions)
2137 		for (i = 0; i < sbi->s_partitions; i++)
2138 			udf_free_partition(&sbi->s_partmaps[i]);
2139 #ifdef CONFIG_UDF_NLS
2140 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2141 		unload_nls(sbi->s_nls_map);
2142 #endif
2143 	if (!(sb->s_flags & MS_RDONLY))
2144 		udf_close_lvid(sb);
2145 	brelse(sbi->s_lvid_bh);
2146 	kfree(sbi->s_partmaps);
2147 	kfree(sb->s_fs_info);
2148 	sb->s_fs_info = NULL;
2149 }
2150 
2151 static int udf_sync_fs(struct super_block *sb, int wait)
2152 {
2153 	struct udf_sb_info *sbi = UDF_SB(sb);
2154 
2155 	mutex_lock(&sbi->s_alloc_mutex);
2156 	if (sbi->s_lvid_dirty) {
2157 		/*
2158 		 * Blockdevice will be synced later so we don't have to submit
2159 		 * the buffer for IO
2160 		 */
2161 		mark_buffer_dirty(sbi->s_lvid_bh);
2162 		sb->s_dirt = 0;
2163 		sbi->s_lvid_dirty = 0;
2164 	}
2165 	mutex_unlock(&sbi->s_alloc_mutex);
2166 
2167 	return 0;
2168 }
2169 
2170 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2171 {
2172 	struct super_block *sb = dentry->d_sb;
2173 	struct udf_sb_info *sbi = UDF_SB(sb);
2174 	struct logicalVolIntegrityDescImpUse *lvidiu;
2175 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2176 
2177 	if (sbi->s_lvid_bh != NULL)
2178 		lvidiu = udf_sb_lvidiu(sbi);
2179 	else
2180 		lvidiu = NULL;
2181 
2182 	buf->f_type = UDF_SUPER_MAGIC;
2183 	buf->f_bsize = sb->s_blocksize;
2184 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2185 	buf->f_bfree = udf_count_free(sb);
2186 	buf->f_bavail = buf->f_bfree;
2187 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2188 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2189 			+ buf->f_bfree;
2190 	buf->f_ffree = buf->f_bfree;
2191 	buf->f_namelen = UDF_NAME_LEN - 2;
2192 	buf->f_fsid.val[0] = (u32)id;
2193 	buf->f_fsid.val[1] = (u32)(id >> 32);
2194 
2195 	return 0;
2196 }
2197 
2198 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2199 					  struct udf_bitmap *bitmap)
2200 {
2201 	struct buffer_head *bh = NULL;
2202 	unsigned int accum = 0;
2203 	int index;
2204 	int block = 0, newblock;
2205 	struct kernel_lb_addr loc;
2206 	uint32_t bytes;
2207 	uint8_t *ptr;
2208 	uint16_t ident;
2209 	struct spaceBitmapDesc *bm;
2210 
2211 	loc.logicalBlockNum = bitmap->s_extPosition;
2212 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2213 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2214 
2215 	if (!bh) {
2216 		printk(KERN_ERR "udf: udf_count_free failed\n");
2217 		goto out;
2218 	} else if (ident != TAG_IDENT_SBD) {
2219 		brelse(bh);
2220 		printk(KERN_ERR "udf: udf_count_free failed\n");
2221 		goto out;
2222 	}
2223 
2224 	bm = (struct spaceBitmapDesc *)bh->b_data;
2225 	bytes = le32_to_cpu(bm->numOfBytes);
2226 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2227 	ptr = (uint8_t *)bh->b_data;
2228 
2229 	while (bytes > 0) {
2230 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2231 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2232 					cur_bytes * 8);
2233 		bytes -= cur_bytes;
2234 		if (bytes) {
2235 			brelse(bh);
2236 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2237 			bh = udf_tread(sb, newblock);
2238 			if (!bh) {
2239 				udf_debug("read failed\n");
2240 				goto out;
2241 			}
2242 			index = 0;
2243 			ptr = (uint8_t *)bh->b_data;
2244 		}
2245 	}
2246 	brelse(bh);
2247 out:
2248 	return accum;
2249 }
2250 
2251 static unsigned int udf_count_free_table(struct super_block *sb,
2252 					 struct inode *table)
2253 {
2254 	unsigned int accum = 0;
2255 	uint32_t elen;
2256 	struct kernel_lb_addr eloc;
2257 	int8_t etype;
2258 	struct extent_position epos;
2259 
2260 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2261 	epos.block = UDF_I(table)->i_location;
2262 	epos.offset = sizeof(struct unallocSpaceEntry);
2263 	epos.bh = NULL;
2264 
2265 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2266 		accum += (elen >> table->i_sb->s_blocksize_bits);
2267 
2268 	brelse(epos.bh);
2269 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2270 
2271 	return accum;
2272 }
2273 
2274 static unsigned int udf_count_free(struct super_block *sb)
2275 {
2276 	unsigned int accum = 0;
2277 	struct udf_sb_info *sbi;
2278 	struct udf_part_map *map;
2279 
2280 	sbi = UDF_SB(sb);
2281 	if (sbi->s_lvid_bh) {
2282 		struct logicalVolIntegrityDesc *lvid =
2283 			(struct logicalVolIntegrityDesc *)
2284 			sbi->s_lvid_bh->b_data;
2285 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2286 			accum = le32_to_cpu(
2287 					lvid->freeSpaceTable[sbi->s_partition]);
2288 			if (accum == 0xFFFFFFFF)
2289 				accum = 0;
2290 		}
2291 	}
2292 
2293 	if (accum)
2294 		return accum;
2295 
2296 	map = &sbi->s_partmaps[sbi->s_partition];
2297 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2298 		accum += udf_count_free_bitmap(sb,
2299 					       map->s_uspace.s_bitmap);
2300 	}
2301 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2302 		accum += udf_count_free_bitmap(sb,
2303 					       map->s_fspace.s_bitmap);
2304 	}
2305 	if (accum)
2306 		return accum;
2307 
2308 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2309 		accum += udf_count_free_table(sb,
2310 					      map->s_uspace.s_table);
2311 	}
2312 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2313 		accum += udf_count_free_table(sb,
2314 					      map->s_fspace.s_table);
2315 	}
2316 
2317 	return accum;
2318 }
2319