xref: /openbmc/linux/fs/udf/super.c (revision 5d0e4d78)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define VSD_FIRST_SECTOR_OFFSET		32768
77 #define VSD_MAX_SECTOR_OFFSET		0x800000
78 
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87 
88 enum { UDF_MAX_LINKS = 0xffff };
89 
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97 			    struct kernel_lb_addr *);
98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
99 			     struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105 
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108 	struct logicalVolIntegrityDesc *lvid;
109 	unsigned int partnum;
110 	unsigned int offset;
111 
112 	if (!UDF_SB(sb)->s_lvid_bh)
113 		return NULL;
114 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115 	partnum = le32_to_cpu(lvid->numOfPartitions);
116 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
117 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
118 	     (2 * sizeof(uint32_t)) < partnum) {
119 		udf_err(sb, "Logical volume integrity descriptor corrupted "
120 			"(numOfPartitions = %u)!\n", partnum);
121 		return NULL;
122 	}
123 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
124 	offset = partnum * 2 * sizeof(uint32_t);
125 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
126 }
127 
128 /* UDF filesystem type */
129 static struct dentry *udf_mount(struct file_system_type *fs_type,
130 		      int flags, const char *dev_name, void *data)
131 {
132 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
133 }
134 
135 static struct file_system_type udf_fstype = {
136 	.owner		= THIS_MODULE,
137 	.name		= "udf",
138 	.mount		= udf_mount,
139 	.kill_sb	= kill_block_super,
140 	.fs_flags	= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("udf");
143 
144 static struct kmem_cache *udf_inode_cachep;
145 
146 static struct inode *udf_alloc_inode(struct super_block *sb)
147 {
148 	struct udf_inode_info *ei;
149 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
150 	if (!ei)
151 		return NULL;
152 
153 	ei->i_unique = 0;
154 	ei->i_lenExtents = 0;
155 	ei->i_next_alloc_block = 0;
156 	ei->i_next_alloc_goal = 0;
157 	ei->i_strat4096 = 0;
158 	init_rwsem(&ei->i_data_sem);
159 	ei->cached_extent.lstart = -1;
160 	spin_lock_init(&ei->i_extent_cache_lock);
161 
162 	return &ei->vfs_inode;
163 }
164 
165 static void udf_i_callback(struct rcu_head *head)
166 {
167 	struct inode *inode = container_of(head, struct inode, i_rcu);
168 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170 
171 static void udf_destroy_inode(struct inode *inode)
172 {
173 	call_rcu(&inode->i_rcu, udf_i_callback);
174 }
175 
176 static void init_once(void *foo)
177 {
178 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179 
180 	ei->i_ext.i_data = NULL;
181 	inode_init_once(&ei->vfs_inode);
182 }
183 
184 static int __init init_inodecache(void)
185 {
186 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
187 					     sizeof(struct udf_inode_info),
188 					     0, (SLAB_RECLAIM_ACCOUNT |
189 						 SLAB_MEM_SPREAD |
190 						 SLAB_ACCOUNT),
191 					     init_once);
192 	if (!udf_inode_cachep)
193 		return -ENOMEM;
194 	return 0;
195 }
196 
197 static void destroy_inodecache(void)
198 {
199 	/*
200 	 * Make sure all delayed rcu free inodes are flushed before we
201 	 * destroy cache.
202 	 */
203 	rcu_barrier();
204 	kmem_cache_destroy(udf_inode_cachep);
205 }
206 
207 /* Superblock operations */
208 static const struct super_operations udf_sb_ops = {
209 	.alloc_inode	= udf_alloc_inode,
210 	.destroy_inode	= udf_destroy_inode,
211 	.write_inode	= udf_write_inode,
212 	.evict_inode	= udf_evict_inode,
213 	.put_super	= udf_put_super,
214 	.sync_fs	= udf_sync_fs,
215 	.statfs		= udf_statfs,
216 	.remount_fs	= udf_remount_fs,
217 	.show_options	= udf_show_options,
218 };
219 
220 struct udf_options {
221 	unsigned char novrs;
222 	unsigned int blocksize;
223 	unsigned int session;
224 	unsigned int lastblock;
225 	unsigned int anchor;
226 	unsigned int volume;
227 	unsigned short partition;
228 	unsigned int fileset;
229 	unsigned int rootdir;
230 	unsigned int flags;
231 	umode_t umask;
232 	kgid_t gid;
233 	kuid_t uid;
234 	umode_t fmode;
235 	umode_t dmode;
236 	struct nls_table *nls_map;
237 };
238 
239 static int __init init_udf_fs(void)
240 {
241 	int err;
242 
243 	err = init_inodecache();
244 	if (err)
245 		goto out1;
246 	err = register_filesystem(&udf_fstype);
247 	if (err)
248 		goto out;
249 
250 	return 0;
251 
252 out:
253 	destroy_inodecache();
254 
255 out1:
256 	return err;
257 }
258 
259 static void __exit exit_udf_fs(void)
260 {
261 	unregister_filesystem(&udf_fstype);
262 	destroy_inodecache();
263 }
264 
265 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
266 {
267 	struct udf_sb_info *sbi = UDF_SB(sb);
268 
269 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
270 				  GFP_KERNEL);
271 	if (!sbi->s_partmaps) {
272 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
273 			count);
274 		sbi->s_partitions = 0;
275 		return -ENOMEM;
276 	}
277 
278 	sbi->s_partitions = count;
279 	return 0;
280 }
281 
282 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
283 {
284 	int i;
285 	int nr_groups = bitmap->s_nr_groups;
286 
287 	for (i = 0; i < nr_groups; i++)
288 		if (bitmap->s_block_bitmap[i])
289 			brelse(bitmap->s_block_bitmap[i]);
290 
291 	kvfree(bitmap);
292 }
293 
294 static void udf_free_partition(struct udf_part_map *map)
295 {
296 	int i;
297 	struct udf_meta_data *mdata;
298 
299 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
300 		iput(map->s_uspace.s_table);
301 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
302 		iput(map->s_fspace.s_table);
303 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
304 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
305 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
306 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
307 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
308 		for (i = 0; i < 4; i++)
309 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
310 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
311 		mdata = &map->s_type_specific.s_metadata;
312 		iput(mdata->s_metadata_fe);
313 		mdata->s_metadata_fe = NULL;
314 
315 		iput(mdata->s_mirror_fe);
316 		mdata->s_mirror_fe = NULL;
317 
318 		iput(mdata->s_bitmap_fe);
319 		mdata->s_bitmap_fe = NULL;
320 	}
321 }
322 
323 static void udf_sb_free_partitions(struct super_block *sb)
324 {
325 	struct udf_sb_info *sbi = UDF_SB(sb);
326 	int i;
327 	if (sbi->s_partmaps == NULL)
328 		return;
329 	for (i = 0; i < sbi->s_partitions; i++)
330 		udf_free_partition(&sbi->s_partmaps[i]);
331 	kfree(sbi->s_partmaps);
332 	sbi->s_partmaps = NULL;
333 }
334 
335 static int udf_show_options(struct seq_file *seq, struct dentry *root)
336 {
337 	struct super_block *sb = root->d_sb;
338 	struct udf_sb_info *sbi = UDF_SB(sb);
339 
340 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
341 		seq_puts(seq, ",nostrict");
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
343 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
344 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
345 		seq_puts(seq, ",unhide");
346 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
347 		seq_puts(seq, ",undelete");
348 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
349 		seq_puts(seq, ",noadinicb");
350 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
351 		seq_puts(seq, ",shortad");
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
353 		seq_puts(seq, ",uid=forget");
354 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
355 		seq_puts(seq, ",uid=ignore");
356 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
357 		seq_puts(seq, ",gid=forget");
358 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
359 		seq_puts(seq, ",gid=ignore");
360 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
361 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
362 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
363 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
364 	if (sbi->s_umask != 0)
365 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
366 	if (sbi->s_fmode != UDF_INVALID_MODE)
367 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
368 	if (sbi->s_dmode != UDF_INVALID_MODE)
369 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
370 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
371 		seq_printf(seq, ",session=%u", sbi->s_session);
372 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
373 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
374 	if (sbi->s_anchor != 0)
375 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
376 	/*
377 	 * volume, partition, fileset and rootdir seem to be ignored
378 	 * currently
379 	 */
380 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
381 		seq_puts(seq, ",utf8");
382 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
383 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
384 
385 	return 0;
386 }
387 
388 /*
389  * udf_parse_options
390  *
391  * PURPOSE
392  *	Parse mount options.
393  *
394  * DESCRIPTION
395  *	The following mount options are supported:
396  *
397  *	gid=		Set the default group.
398  *	umask=		Set the default umask.
399  *	mode=		Set the default file permissions.
400  *	dmode=		Set the default directory permissions.
401  *	uid=		Set the default user.
402  *	bs=		Set the block size.
403  *	unhide		Show otherwise hidden files.
404  *	undelete	Show deleted files in lists.
405  *	adinicb		Embed data in the inode (default)
406  *	noadinicb	Don't embed data in the inode
407  *	shortad		Use short ad's
408  *	longad		Use long ad's (default)
409  *	nostrict	Unset strict conformance
410  *	iocharset=	Set the NLS character set
411  *
412  *	The remaining are for debugging and disaster recovery:
413  *
414  *	novrs		Skip volume sequence recognition
415  *
416  *	The following expect a offset from 0.
417  *
418  *	session=	Set the CDROM session (default= last session)
419  *	anchor=		Override standard anchor location. (default= 256)
420  *	volume=		Override the VolumeDesc location. (unused)
421  *	partition=	Override the PartitionDesc location. (unused)
422  *	lastblock=	Set the last block of the filesystem/
423  *
424  *	The following expect a offset from the partition root.
425  *
426  *	fileset=	Override the fileset block location. (unused)
427  *	rootdir=	Override the root directory location. (unused)
428  *		WARNING: overriding the rootdir to a non-directory may
429  *		yield highly unpredictable results.
430  *
431  * PRE-CONDITIONS
432  *	options		Pointer to mount options string.
433  *	uopts		Pointer to mount options variable.
434  *
435  * POST-CONDITIONS
436  *	<return>	1	Mount options parsed okay.
437  *	<return>	0	Error parsing mount options.
438  *
439  * HISTORY
440  *	July 1, 1997 - Andrew E. Mileski
441  *	Written, tested, and released.
442  */
443 
444 enum {
445 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
446 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
447 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
448 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
449 	Opt_rootdir, Opt_utf8, Opt_iocharset,
450 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
451 	Opt_fmode, Opt_dmode
452 };
453 
454 static const match_table_t tokens = {
455 	{Opt_novrs,	"novrs"},
456 	{Opt_nostrict,	"nostrict"},
457 	{Opt_bs,	"bs=%u"},
458 	{Opt_unhide,	"unhide"},
459 	{Opt_undelete,	"undelete"},
460 	{Opt_noadinicb,	"noadinicb"},
461 	{Opt_adinicb,	"adinicb"},
462 	{Opt_shortad,	"shortad"},
463 	{Opt_longad,	"longad"},
464 	{Opt_uforget,	"uid=forget"},
465 	{Opt_uignore,	"uid=ignore"},
466 	{Opt_gforget,	"gid=forget"},
467 	{Opt_gignore,	"gid=ignore"},
468 	{Opt_gid,	"gid=%u"},
469 	{Opt_uid,	"uid=%u"},
470 	{Opt_umask,	"umask=%o"},
471 	{Opt_session,	"session=%u"},
472 	{Opt_lastblock,	"lastblock=%u"},
473 	{Opt_anchor,	"anchor=%u"},
474 	{Opt_volume,	"volume=%u"},
475 	{Opt_partition,	"partition=%u"},
476 	{Opt_fileset,	"fileset=%u"},
477 	{Opt_rootdir,	"rootdir=%u"},
478 	{Opt_utf8,	"utf8"},
479 	{Opt_iocharset,	"iocharset=%s"},
480 	{Opt_fmode,     "mode=%o"},
481 	{Opt_dmode,     "dmode=%o"},
482 	{Opt_err,	NULL}
483 };
484 
485 static int udf_parse_options(char *options, struct udf_options *uopt,
486 			     bool remount)
487 {
488 	char *p;
489 	int option;
490 
491 	uopt->novrs = 0;
492 	uopt->partition = 0xFFFF;
493 	uopt->session = 0xFFFFFFFF;
494 	uopt->lastblock = 0;
495 	uopt->anchor = 0;
496 	uopt->volume = 0xFFFFFFFF;
497 	uopt->rootdir = 0xFFFFFFFF;
498 	uopt->fileset = 0xFFFFFFFF;
499 	uopt->nls_map = NULL;
500 
501 	if (!options)
502 		return 1;
503 
504 	while ((p = strsep(&options, ",")) != NULL) {
505 		substring_t args[MAX_OPT_ARGS];
506 		int token;
507 		unsigned n;
508 		if (!*p)
509 			continue;
510 
511 		token = match_token(p, tokens, args);
512 		switch (token) {
513 		case Opt_novrs:
514 			uopt->novrs = 1;
515 			break;
516 		case Opt_bs:
517 			if (match_int(&args[0], &option))
518 				return 0;
519 			n = option;
520 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
521 				return 0;
522 			uopt->blocksize = n;
523 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
524 			break;
525 		case Opt_unhide:
526 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
527 			break;
528 		case Opt_undelete:
529 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
530 			break;
531 		case Opt_noadinicb:
532 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
533 			break;
534 		case Opt_adinicb:
535 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
536 			break;
537 		case Opt_shortad:
538 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
539 			break;
540 		case Opt_longad:
541 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
542 			break;
543 		case Opt_gid:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->gid = make_kgid(current_user_ns(), option);
547 			if (!gid_valid(uopt->gid))
548 				return 0;
549 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
550 			break;
551 		case Opt_uid:
552 			if (match_int(args, &option))
553 				return 0;
554 			uopt->uid = make_kuid(current_user_ns(), option);
555 			if (!uid_valid(uopt->uid))
556 				return 0;
557 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
558 			break;
559 		case Opt_umask:
560 			if (match_octal(args, &option))
561 				return 0;
562 			uopt->umask = option;
563 			break;
564 		case Opt_nostrict:
565 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
566 			break;
567 		case Opt_session:
568 			if (match_int(args, &option))
569 				return 0;
570 			uopt->session = option;
571 			if (!remount)
572 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
573 			break;
574 		case Opt_lastblock:
575 			if (match_int(args, &option))
576 				return 0;
577 			uopt->lastblock = option;
578 			if (!remount)
579 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
580 			break;
581 		case Opt_anchor:
582 			if (match_int(args, &option))
583 				return 0;
584 			uopt->anchor = option;
585 			break;
586 		case Opt_volume:
587 			if (match_int(args, &option))
588 				return 0;
589 			uopt->volume = option;
590 			break;
591 		case Opt_partition:
592 			if (match_int(args, &option))
593 				return 0;
594 			uopt->partition = option;
595 			break;
596 		case Opt_fileset:
597 			if (match_int(args, &option))
598 				return 0;
599 			uopt->fileset = option;
600 			break;
601 		case Opt_rootdir:
602 			if (match_int(args, &option))
603 				return 0;
604 			uopt->rootdir = option;
605 			break;
606 		case Opt_utf8:
607 			uopt->flags |= (1 << UDF_FLAG_UTF8);
608 			break;
609 #ifdef CONFIG_UDF_NLS
610 		case Opt_iocharset:
611 			uopt->nls_map = load_nls(args[0].from);
612 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
613 			break;
614 #endif
615 		case Opt_uignore:
616 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
617 			break;
618 		case Opt_uforget:
619 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
620 			break;
621 		case Opt_gignore:
622 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
623 			break;
624 		case Opt_gforget:
625 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
626 			break;
627 		case Opt_fmode:
628 			if (match_octal(args, &option))
629 				return 0;
630 			uopt->fmode = option & 0777;
631 			break;
632 		case Opt_dmode:
633 			if (match_octal(args, &option))
634 				return 0;
635 			uopt->dmode = option & 0777;
636 			break;
637 		default:
638 			pr_err("bad mount option \"%s\" or missing value\n", p);
639 			return 0;
640 		}
641 	}
642 	return 1;
643 }
644 
645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
646 {
647 	struct udf_options uopt;
648 	struct udf_sb_info *sbi = UDF_SB(sb);
649 	int error = 0;
650 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
651 
652 	sync_filesystem(sb);
653 	if (lvidiu) {
654 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656 			return -EACCES;
657 	}
658 
659 	uopt.flags = sbi->s_flags;
660 	uopt.uid   = sbi->s_uid;
661 	uopt.gid   = sbi->s_gid;
662 	uopt.umask = sbi->s_umask;
663 	uopt.fmode = sbi->s_fmode;
664 	uopt.dmode = sbi->s_dmode;
665 
666 	if (!udf_parse_options(options, &uopt, true))
667 		return -EINVAL;
668 
669 	write_lock(&sbi->s_cred_lock);
670 	sbi->s_flags = uopt.flags;
671 	sbi->s_uid   = uopt.uid;
672 	sbi->s_gid   = uopt.gid;
673 	sbi->s_umask = uopt.umask;
674 	sbi->s_fmode = uopt.fmode;
675 	sbi->s_dmode = uopt.dmode;
676 	write_unlock(&sbi->s_cred_lock);
677 
678 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679 		goto out_unlock;
680 
681 	if (*flags & MS_RDONLY)
682 		udf_close_lvid(sb);
683 	else
684 		udf_open_lvid(sb);
685 
686 out_unlock:
687 	return error;
688 }
689 
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694 	struct volStructDesc *vsd = NULL;
695 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696 	int sectorsize;
697 	struct buffer_head *bh = NULL;
698 	int nsr02 = 0;
699 	int nsr03 = 0;
700 	struct udf_sb_info *sbi;
701 
702 	sbi = UDF_SB(sb);
703 	if (sb->s_blocksize < sizeof(struct volStructDesc))
704 		sectorsize = sizeof(struct volStructDesc);
705 	else
706 		sectorsize = sb->s_blocksize;
707 
708 	sector += (sbi->s_session << sb->s_blocksize_bits);
709 
710 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
711 		  (unsigned int)(sector >> sb->s_blocksize_bits),
712 		  sb->s_blocksize);
713 	/* Process the sequence (if applicable). The hard limit on the sector
714 	 * offset is arbitrary, hopefully large enough so that all valid UDF
715 	 * filesystems will be recognised. There is no mention of an upper
716 	 * bound to the size of the volume recognition area in the standard.
717 	 *  The limit will prevent the code to read all the sectors of a
718 	 * specially crafted image (like a bluray disc full of CD001 sectors),
719 	 * potentially causing minutes or even hours of uninterruptible I/O
720 	 * activity. This actually happened with uninitialised SSD partitions
721 	 * (all 0xFF) before the check for the limit and all valid IDs were
722 	 * added */
723 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724 	     sector += sectorsize) {
725 		/* Read a block */
726 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727 		if (!bh)
728 			break;
729 
730 		/* Look for ISO  descriptors */
731 		vsd = (struct volStructDesc *)(bh->b_data +
732 					      (sector & (sb->s_blocksize - 1)));
733 
734 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735 				    VSD_STD_ID_LEN)) {
736 			switch (vsd->structType) {
737 			case 0:
738 				udf_debug("ISO9660 Boot Record found\n");
739 				break;
740 			case 1:
741 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
742 				break;
743 			case 2:
744 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745 				break;
746 			case 3:
747 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
748 				break;
749 			case 255:
750 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751 				break;
752 			default:
753 				udf_debug("ISO9660 VRS (%u) found\n",
754 					  vsd->structType);
755 				break;
756 			}
757 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758 				    VSD_STD_ID_LEN))
759 			; /* nothing */
760 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761 				    VSD_STD_ID_LEN)) {
762 			brelse(bh);
763 			break;
764 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765 				    VSD_STD_ID_LEN))
766 			nsr02 = sector;
767 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768 				    VSD_STD_ID_LEN))
769 			nsr03 = sector;
770 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771 				    VSD_STD_ID_LEN))
772 			; /* nothing */
773 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774 				    VSD_STD_ID_LEN))
775 			; /* nothing */
776 		else {
777 			/* invalid id : end of volume recognition area */
778 			brelse(bh);
779 			break;
780 		}
781 		brelse(bh);
782 	}
783 
784 	if (nsr03)
785 		return nsr03;
786 	else if (nsr02)
787 		return nsr02;
788 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789 			VSD_FIRST_SECTOR_OFFSET)
790 		return -1;
791 	else
792 		return 0;
793 }
794 
795 static int udf_find_fileset(struct super_block *sb,
796 			    struct kernel_lb_addr *fileset,
797 			    struct kernel_lb_addr *root)
798 {
799 	struct buffer_head *bh = NULL;
800 	long lastblock;
801 	uint16_t ident;
802 	struct udf_sb_info *sbi;
803 
804 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805 	    fileset->partitionReferenceNum != 0xFFFF) {
806 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
807 
808 		if (!bh) {
809 			return 1;
810 		} else if (ident != TAG_IDENT_FSD) {
811 			brelse(bh);
812 			return 1;
813 		}
814 
815 	}
816 
817 	sbi = UDF_SB(sb);
818 	if (!bh) {
819 		/* Search backwards through the partitions */
820 		struct kernel_lb_addr newfileset;
821 
822 /* --> cvg: FIXME - is it reasonable? */
823 		return 1;
824 
825 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826 		     (newfileset.partitionReferenceNum != 0xFFFF &&
827 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
828 		      fileset->partitionReferenceNum == 0xFFFF);
829 		     newfileset.partitionReferenceNum--) {
830 			lastblock = sbi->s_partmaps
831 					[newfileset.partitionReferenceNum]
832 						.s_partition_len;
833 			newfileset.logicalBlockNum = 0;
834 
835 			do {
836 				bh = udf_read_ptagged(sb, &newfileset, 0,
837 						      &ident);
838 				if (!bh) {
839 					newfileset.logicalBlockNum++;
840 					continue;
841 				}
842 
843 				switch (ident) {
844 				case TAG_IDENT_SBD:
845 				{
846 					struct spaceBitmapDesc *sp;
847 					sp = (struct spaceBitmapDesc *)
848 								bh->b_data;
849 					newfileset.logicalBlockNum += 1 +
850 						((le32_to_cpu(sp->numOfBytes) +
851 						  sizeof(struct spaceBitmapDesc)
852 						  - 1) >> sb->s_blocksize_bits);
853 					brelse(bh);
854 					break;
855 				}
856 				case TAG_IDENT_FSD:
857 					*fileset = newfileset;
858 					break;
859 				default:
860 					newfileset.logicalBlockNum++;
861 					brelse(bh);
862 					bh = NULL;
863 					break;
864 				}
865 			} while (newfileset.logicalBlockNum < lastblock &&
866 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
867 				 fileset->partitionReferenceNum == 0xFFFF);
868 		}
869 	}
870 
871 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
873 		udf_debug("Fileset at block=%d, partition=%d\n",
874 			  fileset->logicalBlockNum,
875 			  fileset->partitionReferenceNum);
876 
877 		sbi->s_partition = fileset->partitionReferenceNum;
878 		udf_load_fileset(sb, bh, root);
879 		brelse(bh);
880 		return 0;
881 	}
882 	return 1;
883 }
884 
885 /*
886  * Load primary Volume Descriptor Sequence
887  *
888  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889  * should be tried.
890  */
891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893 	struct primaryVolDesc *pvoldesc;
894 	uint8_t *outstr;
895 	struct buffer_head *bh;
896 	uint16_t ident;
897 	int ret = -ENOMEM;
898 
899 	outstr = kmalloc(128, GFP_NOFS);
900 	if (!outstr)
901 		return -ENOMEM;
902 
903 	bh = udf_read_tagged(sb, block, block, &ident);
904 	if (!bh) {
905 		ret = -EAGAIN;
906 		goto out2;
907 	}
908 
909 	if (ident != TAG_IDENT_PVD) {
910 		ret = -EIO;
911 		goto out_bh;
912 	}
913 
914 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
915 
916 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917 			      pvoldesc->recordingDateAndTime)) {
918 #ifdef UDFFS_DEBUG
919 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
920 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
921 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
922 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
923 #endif
924 	}
925 
926 	ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
927 	if (ret < 0)
928 		goto out_bh;
929 
930 	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
931 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
932 
933 	ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
934 	if (ret < 0)
935 		goto out_bh;
936 
937 	outstr[ret] = 0;
938 	udf_debug("volSetIdent[] = '%s'\n", outstr);
939 
940 	ret = 0;
941 out_bh:
942 	brelse(bh);
943 out2:
944 	kfree(outstr);
945 	return ret;
946 }
947 
948 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
949 					u32 meta_file_loc, u32 partition_ref)
950 {
951 	struct kernel_lb_addr addr;
952 	struct inode *metadata_fe;
953 
954 	addr.logicalBlockNum = meta_file_loc;
955 	addr.partitionReferenceNum = partition_ref;
956 
957 	metadata_fe = udf_iget_special(sb, &addr);
958 
959 	if (IS_ERR(metadata_fe)) {
960 		udf_warn(sb, "metadata inode efe not found\n");
961 		return metadata_fe;
962 	}
963 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
964 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
965 		iput(metadata_fe);
966 		return ERR_PTR(-EIO);
967 	}
968 
969 	return metadata_fe;
970 }
971 
972 static int udf_load_metadata_files(struct super_block *sb, int partition,
973 				   int type1_index)
974 {
975 	struct udf_sb_info *sbi = UDF_SB(sb);
976 	struct udf_part_map *map;
977 	struct udf_meta_data *mdata;
978 	struct kernel_lb_addr addr;
979 	struct inode *fe;
980 
981 	map = &sbi->s_partmaps[partition];
982 	mdata = &map->s_type_specific.s_metadata;
983 	mdata->s_phys_partition_ref = type1_index;
984 
985 	/* metadata address */
986 	udf_debug("Metadata file location: block = %d part = %d\n",
987 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
988 
989 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
990 					 mdata->s_phys_partition_ref);
991 	if (IS_ERR(fe)) {
992 		/* mirror file entry */
993 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
994 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
995 
996 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
997 						 mdata->s_phys_partition_ref);
998 
999 		if (IS_ERR(fe)) {
1000 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1001 			return PTR_ERR(fe);
1002 		}
1003 		mdata->s_mirror_fe = fe;
1004 	} else
1005 		mdata->s_metadata_fe = fe;
1006 
1007 
1008 	/*
1009 	 * bitmap file entry
1010 	 * Note:
1011 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1012 	*/
1013 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1014 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1015 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1016 
1017 		udf_debug("Bitmap file location: block = %d part = %d\n",
1018 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1019 
1020 		fe = udf_iget_special(sb, &addr);
1021 		if (IS_ERR(fe)) {
1022 			if (sb->s_flags & MS_RDONLY)
1023 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1024 			else {
1025 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1026 				return PTR_ERR(fe);
1027 			}
1028 		} else
1029 			mdata->s_bitmap_fe = fe;
1030 	}
1031 
1032 	udf_debug("udf_load_metadata_files Ok\n");
1033 	return 0;
1034 }
1035 
1036 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1037 			     struct kernel_lb_addr *root)
1038 {
1039 	struct fileSetDesc *fset;
1040 
1041 	fset = (struct fileSetDesc *)bh->b_data;
1042 
1043 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1044 
1045 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1046 
1047 	udf_debug("Rootdir at block=%d, partition=%d\n",
1048 		  root->logicalBlockNum, root->partitionReferenceNum);
1049 }
1050 
1051 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1052 {
1053 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1054 	return DIV_ROUND_UP(map->s_partition_len +
1055 			    (sizeof(struct spaceBitmapDesc) << 3),
1056 			    sb->s_blocksize * 8);
1057 }
1058 
1059 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1060 {
1061 	struct udf_bitmap *bitmap;
1062 	int nr_groups;
1063 	int size;
1064 
1065 	nr_groups = udf_compute_nr_groups(sb, index);
1066 	size = sizeof(struct udf_bitmap) +
1067 		(sizeof(struct buffer_head *) * nr_groups);
1068 
1069 	if (size <= PAGE_SIZE)
1070 		bitmap = kzalloc(size, GFP_KERNEL);
1071 	else
1072 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1073 
1074 	if (bitmap == NULL)
1075 		return NULL;
1076 
1077 	bitmap->s_nr_groups = nr_groups;
1078 	return bitmap;
1079 }
1080 
1081 static int udf_fill_partdesc_info(struct super_block *sb,
1082 		struct partitionDesc *p, int p_index)
1083 {
1084 	struct udf_part_map *map;
1085 	struct udf_sb_info *sbi = UDF_SB(sb);
1086 	struct partitionHeaderDesc *phd;
1087 
1088 	map = &sbi->s_partmaps[p_index];
1089 
1090 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1091 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1092 
1093 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1094 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1095 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1096 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1097 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1098 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1099 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1100 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1101 
1102 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1103 		  p_index, map->s_partition_type,
1104 		  map->s_partition_root, map->s_partition_len);
1105 
1106 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1107 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1108 		return 0;
1109 
1110 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111 	if (phd->unallocSpaceTable.extLength) {
1112 		struct kernel_lb_addr loc = {
1113 			.logicalBlockNum = le32_to_cpu(
1114 				phd->unallocSpaceTable.extPosition),
1115 			.partitionReferenceNum = p_index,
1116 		};
1117 		struct inode *inode;
1118 
1119 		inode = udf_iget_special(sb, &loc);
1120 		if (IS_ERR(inode)) {
1121 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122 				  p_index);
1123 			return PTR_ERR(inode);
1124 		}
1125 		map->s_uspace.s_table = inode;
1126 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1128 			  p_index, map->s_uspace.s_table->i_ino);
1129 	}
1130 
1131 	if (phd->unallocSpaceBitmap.extLength) {
1132 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133 		if (!bitmap)
1134 			return -ENOMEM;
1135 		map->s_uspace.s_bitmap = bitmap;
1136 		bitmap->s_extPosition = le32_to_cpu(
1137 				phd->unallocSpaceBitmap.extPosition);
1138 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1140 			  p_index, bitmap->s_extPosition);
1141 	}
1142 
1143 	if (phd->partitionIntegrityTable.extLength)
1144 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1145 
1146 	if (phd->freedSpaceTable.extLength) {
1147 		struct kernel_lb_addr loc = {
1148 			.logicalBlockNum = le32_to_cpu(
1149 				phd->freedSpaceTable.extPosition),
1150 			.partitionReferenceNum = p_index,
1151 		};
1152 		struct inode *inode;
1153 
1154 		inode = udf_iget_special(sb, &loc);
1155 		if (IS_ERR(inode)) {
1156 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1157 				  p_index);
1158 			return PTR_ERR(inode);
1159 		}
1160 		map->s_fspace.s_table = inode;
1161 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1162 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1163 			  p_index, map->s_fspace.s_table->i_ino);
1164 	}
1165 
1166 	if (phd->freedSpaceBitmap.extLength) {
1167 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1168 		if (!bitmap)
1169 			return -ENOMEM;
1170 		map->s_fspace.s_bitmap = bitmap;
1171 		bitmap->s_extPosition = le32_to_cpu(
1172 				phd->freedSpaceBitmap.extPosition);
1173 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1174 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1175 			  p_index, bitmap->s_extPosition);
1176 	}
1177 	return 0;
1178 }
1179 
1180 static void udf_find_vat_block(struct super_block *sb, int p_index,
1181 			       int type1_index, sector_t start_block)
1182 {
1183 	struct udf_sb_info *sbi = UDF_SB(sb);
1184 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1185 	sector_t vat_block;
1186 	struct kernel_lb_addr ino;
1187 	struct inode *inode;
1188 
1189 	/*
1190 	 * VAT file entry is in the last recorded block. Some broken disks have
1191 	 * it a few blocks before so try a bit harder...
1192 	 */
1193 	ino.partitionReferenceNum = type1_index;
1194 	for (vat_block = start_block;
1195 	     vat_block >= map->s_partition_root &&
1196 	     vat_block >= start_block - 3; vat_block--) {
1197 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1198 		inode = udf_iget_special(sb, &ino);
1199 		if (!IS_ERR(inode)) {
1200 			sbi->s_vat_inode = inode;
1201 			break;
1202 		}
1203 	}
1204 }
1205 
1206 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1207 {
1208 	struct udf_sb_info *sbi = UDF_SB(sb);
1209 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1210 	struct buffer_head *bh = NULL;
1211 	struct udf_inode_info *vati;
1212 	uint32_t pos;
1213 	struct virtualAllocationTable20 *vat20;
1214 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1215 			  sb->s_blocksize_bits;
1216 
1217 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1218 	if (!sbi->s_vat_inode &&
1219 	    sbi->s_last_block != blocks - 1) {
1220 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1221 			  (unsigned long)sbi->s_last_block,
1222 			  (unsigned long)blocks - 1);
1223 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1224 	}
1225 	if (!sbi->s_vat_inode)
1226 		return -EIO;
1227 
1228 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1229 		map->s_type_specific.s_virtual.s_start_offset = 0;
1230 		map->s_type_specific.s_virtual.s_num_entries =
1231 			(sbi->s_vat_inode->i_size - 36) >> 2;
1232 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1233 		vati = UDF_I(sbi->s_vat_inode);
1234 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1235 			pos = udf_block_map(sbi->s_vat_inode, 0);
1236 			bh = sb_bread(sb, pos);
1237 			if (!bh)
1238 				return -EIO;
1239 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1240 		} else {
1241 			vat20 = (struct virtualAllocationTable20 *)
1242 							vati->i_ext.i_data;
1243 		}
1244 
1245 		map->s_type_specific.s_virtual.s_start_offset =
1246 			le16_to_cpu(vat20->lengthHeader);
1247 		map->s_type_specific.s_virtual.s_num_entries =
1248 			(sbi->s_vat_inode->i_size -
1249 				map->s_type_specific.s_virtual.
1250 					s_start_offset) >> 2;
1251 		brelse(bh);
1252 	}
1253 	return 0;
1254 }
1255 
1256 /*
1257  * Load partition descriptor block
1258  *
1259  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1260  * sequence.
1261  */
1262 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1263 {
1264 	struct buffer_head *bh;
1265 	struct partitionDesc *p;
1266 	struct udf_part_map *map;
1267 	struct udf_sb_info *sbi = UDF_SB(sb);
1268 	int i, type1_idx;
1269 	uint16_t partitionNumber;
1270 	uint16_t ident;
1271 	int ret;
1272 
1273 	bh = udf_read_tagged(sb, block, block, &ident);
1274 	if (!bh)
1275 		return -EAGAIN;
1276 	if (ident != TAG_IDENT_PD) {
1277 		ret = 0;
1278 		goto out_bh;
1279 	}
1280 
1281 	p = (struct partitionDesc *)bh->b_data;
1282 	partitionNumber = le16_to_cpu(p->partitionNumber);
1283 
1284 	/* First scan for TYPE1 and SPARABLE partitions */
1285 	for (i = 0; i < sbi->s_partitions; i++) {
1286 		map = &sbi->s_partmaps[i];
1287 		udf_debug("Searching map: (%d == %d)\n",
1288 			  map->s_partition_num, partitionNumber);
1289 		if (map->s_partition_num == partitionNumber &&
1290 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1291 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1292 			break;
1293 	}
1294 
1295 	if (i >= sbi->s_partitions) {
1296 		udf_debug("Partition (%d) not found in partition map\n",
1297 			  partitionNumber);
1298 		ret = 0;
1299 		goto out_bh;
1300 	}
1301 
1302 	ret = udf_fill_partdesc_info(sb, p, i);
1303 	if (ret < 0)
1304 		goto out_bh;
1305 
1306 	/*
1307 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1308 	 * PHYSICAL partitions are already set up
1309 	 */
1310 	type1_idx = i;
1311 #ifdef UDFFS_DEBUG
1312 	map = NULL; /* supress 'maybe used uninitialized' warning */
1313 #endif
1314 	for (i = 0; i < sbi->s_partitions; i++) {
1315 		map = &sbi->s_partmaps[i];
1316 
1317 		if (map->s_partition_num == partitionNumber &&
1318 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1319 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1320 		     map->s_partition_type == UDF_METADATA_MAP25))
1321 			break;
1322 	}
1323 
1324 	if (i >= sbi->s_partitions) {
1325 		ret = 0;
1326 		goto out_bh;
1327 	}
1328 
1329 	ret = udf_fill_partdesc_info(sb, p, i);
1330 	if (ret < 0)
1331 		goto out_bh;
1332 
1333 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1334 		ret = udf_load_metadata_files(sb, i, type1_idx);
1335 		if (ret < 0) {
1336 			udf_err(sb, "error loading MetaData partition map %d\n",
1337 				i);
1338 			goto out_bh;
1339 		}
1340 	} else {
1341 		/*
1342 		 * If we have a partition with virtual map, we don't handle
1343 		 * writing to it (we overwrite blocks instead of relocating
1344 		 * them).
1345 		 */
1346 		if (!(sb->s_flags & MS_RDONLY)) {
1347 			ret = -EACCES;
1348 			goto out_bh;
1349 		}
1350 		ret = udf_load_vat(sb, i, type1_idx);
1351 		if (ret < 0)
1352 			goto out_bh;
1353 	}
1354 	ret = 0;
1355 out_bh:
1356 	/* In case loading failed, we handle cleanup in udf_fill_super */
1357 	brelse(bh);
1358 	return ret;
1359 }
1360 
1361 static int udf_load_sparable_map(struct super_block *sb,
1362 				 struct udf_part_map *map,
1363 				 struct sparablePartitionMap *spm)
1364 {
1365 	uint32_t loc;
1366 	uint16_t ident;
1367 	struct sparingTable *st;
1368 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1369 	int i;
1370 	struct buffer_head *bh;
1371 
1372 	map->s_partition_type = UDF_SPARABLE_MAP15;
1373 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1374 	if (!is_power_of_2(sdata->s_packet_len)) {
1375 		udf_err(sb, "error loading logical volume descriptor: "
1376 			"Invalid packet length %u\n",
1377 			(unsigned)sdata->s_packet_len);
1378 		return -EIO;
1379 	}
1380 	if (spm->numSparingTables > 4) {
1381 		udf_err(sb, "error loading logical volume descriptor: "
1382 			"Too many sparing tables (%d)\n",
1383 			(int)spm->numSparingTables);
1384 		return -EIO;
1385 	}
1386 
1387 	for (i = 0; i < spm->numSparingTables; i++) {
1388 		loc = le32_to_cpu(spm->locSparingTable[i]);
1389 		bh = udf_read_tagged(sb, loc, loc, &ident);
1390 		if (!bh)
1391 			continue;
1392 
1393 		st = (struct sparingTable *)bh->b_data;
1394 		if (ident != 0 ||
1395 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1396 			    strlen(UDF_ID_SPARING)) ||
1397 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1398 							sb->s_blocksize) {
1399 			brelse(bh);
1400 			continue;
1401 		}
1402 
1403 		sdata->s_spar_map[i] = bh;
1404 	}
1405 	map->s_partition_func = udf_get_pblock_spar15;
1406 	return 0;
1407 }
1408 
1409 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1410 			       struct kernel_lb_addr *fileset)
1411 {
1412 	struct logicalVolDesc *lvd;
1413 	int i, offset;
1414 	uint8_t type;
1415 	struct udf_sb_info *sbi = UDF_SB(sb);
1416 	struct genericPartitionMap *gpm;
1417 	uint16_t ident;
1418 	struct buffer_head *bh;
1419 	unsigned int table_len;
1420 	int ret;
1421 
1422 	bh = udf_read_tagged(sb, block, block, &ident);
1423 	if (!bh)
1424 		return -EAGAIN;
1425 	BUG_ON(ident != TAG_IDENT_LVD);
1426 	lvd = (struct logicalVolDesc *)bh->b_data;
1427 	table_len = le32_to_cpu(lvd->mapTableLength);
1428 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1429 		udf_err(sb, "error loading logical volume descriptor: "
1430 			"Partition table too long (%u > %lu)\n", table_len,
1431 			sb->s_blocksize - sizeof(*lvd));
1432 		ret = -EIO;
1433 		goto out_bh;
1434 	}
1435 
1436 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1437 	if (ret)
1438 		goto out_bh;
1439 
1440 	for (i = 0, offset = 0;
1441 	     i < sbi->s_partitions && offset < table_len;
1442 	     i++, offset += gpm->partitionMapLength) {
1443 		struct udf_part_map *map = &sbi->s_partmaps[i];
1444 		gpm = (struct genericPartitionMap *)
1445 				&(lvd->partitionMaps[offset]);
1446 		type = gpm->partitionMapType;
1447 		if (type == 1) {
1448 			struct genericPartitionMap1 *gpm1 =
1449 				(struct genericPartitionMap1 *)gpm;
1450 			map->s_partition_type = UDF_TYPE1_MAP15;
1451 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1452 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1453 			map->s_partition_func = NULL;
1454 		} else if (type == 2) {
1455 			struct udfPartitionMap2 *upm2 =
1456 						(struct udfPartitionMap2 *)gpm;
1457 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1458 						strlen(UDF_ID_VIRTUAL))) {
1459 				u16 suf =
1460 					le16_to_cpu(((__le16 *)upm2->partIdent.
1461 							identSuffix)[0]);
1462 				if (suf < 0x0200) {
1463 					map->s_partition_type =
1464 							UDF_VIRTUAL_MAP15;
1465 					map->s_partition_func =
1466 							udf_get_pblock_virt15;
1467 				} else {
1468 					map->s_partition_type =
1469 							UDF_VIRTUAL_MAP20;
1470 					map->s_partition_func =
1471 							udf_get_pblock_virt20;
1472 				}
1473 			} else if (!strncmp(upm2->partIdent.ident,
1474 						UDF_ID_SPARABLE,
1475 						strlen(UDF_ID_SPARABLE))) {
1476 				ret = udf_load_sparable_map(sb, map,
1477 					(struct sparablePartitionMap *)gpm);
1478 				if (ret < 0)
1479 					goto out_bh;
1480 			} else if (!strncmp(upm2->partIdent.ident,
1481 						UDF_ID_METADATA,
1482 						strlen(UDF_ID_METADATA))) {
1483 				struct udf_meta_data *mdata =
1484 					&map->s_type_specific.s_metadata;
1485 				struct metadataPartitionMap *mdm =
1486 						(struct metadataPartitionMap *)
1487 						&(lvd->partitionMaps[offset]);
1488 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1489 					  i, type, UDF_ID_METADATA);
1490 
1491 				map->s_partition_type = UDF_METADATA_MAP25;
1492 				map->s_partition_func = udf_get_pblock_meta25;
1493 
1494 				mdata->s_meta_file_loc   =
1495 					le32_to_cpu(mdm->metadataFileLoc);
1496 				mdata->s_mirror_file_loc =
1497 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1498 				mdata->s_bitmap_file_loc =
1499 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1500 				mdata->s_alloc_unit_size =
1501 					le32_to_cpu(mdm->allocUnitSize);
1502 				mdata->s_align_unit_size =
1503 					le16_to_cpu(mdm->alignUnitSize);
1504 				if (mdm->flags & 0x01)
1505 					mdata->s_flags |= MF_DUPLICATE_MD;
1506 
1507 				udf_debug("Metadata Ident suffix=0x%x\n",
1508 					  le16_to_cpu(*(__le16 *)
1509 						      mdm->partIdent.identSuffix));
1510 				udf_debug("Metadata part num=%d\n",
1511 					  le16_to_cpu(mdm->partitionNum));
1512 				udf_debug("Metadata part alloc unit size=%d\n",
1513 					  le32_to_cpu(mdm->allocUnitSize));
1514 				udf_debug("Metadata file loc=%d\n",
1515 					  le32_to_cpu(mdm->metadataFileLoc));
1516 				udf_debug("Mirror file loc=%d\n",
1517 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1518 				udf_debug("Bitmap file loc=%d\n",
1519 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1520 				udf_debug("Flags: %d %d\n",
1521 					  mdata->s_flags, mdm->flags);
1522 			} else {
1523 				udf_debug("Unknown ident: %s\n",
1524 					  upm2->partIdent.ident);
1525 				continue;
1526 			}
1527 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1528 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1529 		}
1530 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1531 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1532 	}
1533 
1534 	if (fileset) {
1535 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1536 
1537 		*fileset = lelb_to_cpu(la->extLocation);
1538 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1539 			  fileset->logicalBlockNum,
1540 			  fileset->partitionReferenceNum);
1541 	}
1542 	if (lvd->integritySeqExt.extLength)
1543 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1544 	ret = 0;
1545 out_bh:
1546 	brelse(bh);
1547 	return ret;
1548 }
1549 
1550 /*
1551  * Find the prevailing Logical Volume Integrity Descriptor.
1552  */
1553 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1554 {
1555 	struct buffer_head *bh, *final_bh;
1556 	uint16_t ident;
1557 	struct udf_sb_info *sbi = UDF_SB(sb);
1558 	struct logicalVolIntegrityDesc *lvid;
1559 	int indirections = 0;
1560 
1561 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1562 		final_bh = NULL;
1563 		while (loc.extLength > 0 &&
1564 			(bh = udf_read_tagged(sb, loc.extLocation,
1565 					loc.extLocation, &ident))) {
1566 			if (ident != TAG_IDENT_LVID) {
1567 				brelse(bh);
1568 				break;
1569 			}
1570 
1571 			brelse(final_bh);
1572 			final_bh = bh;
1573 
1574 			loc.extLength -= sb->s_blocksize;
1575 			loc.extLocation++;
1576 		}
1577 
1578 		if (!final_bh)
1579 			return;
1580 
1581 		brelse(sbi->s_lvid_bh);
1582 		sbi->s_lvid_bh = final_bh;
1583 
1584 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1585 		if (lvid->nextIntegrityExt.extLength == 0)
1586 			return;
1587 
1588 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1589 	}
1590 
1591 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1592 		UDF_MAX_LVID_NESTING);
1593 	brelse(sbi->s_lvid_bh);
1594 	sbi->s_lvid_bh = NULL;
1595 }
1596 
1597 
1598 /*
1599  * Process a main/reserve volume descriptor sequence.
1600  *   @block		First block of first extent of the sequence.
1601  *   @lastblock		Lastblock of first extent of the sequence.
1602  *   @fileset		There we store extent containing root fileset
1603  *
1604  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1605  * sequence
1606  */
1607 static noinline int udf_process_sequence(
1608 		struct super_block *sb,
1609 		sector_t block, sector_t lastblock,
1610 		struct kernel_lb_addr *fileset)
1611 {
1612 	struct buffer_head *bh = NULL;
1613 	struct udf_vds_record vds[VDS_POS_LENGTH];
1614 	struct udf_vds_record *curr;
1615 	struct generic_desc *gd;
1616 	struct volDescPtr *vdp;
1617 	bool done = false;
1618 	uint32_t vdsn;
1619 	uint16_t ident;
1620 	long next_s = 0, next_e = 0;
1621 	int ret;
1622 	unsigned int indirections = 0;
1623 
1624 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1625 
1626 	/*
1627 	 * Read the main descriptor sequence and find which descriptors
1628 	 * are in it.
1629 	 */
1630 	for (; (!done && block <= lastblock); block++) {
1631 
1632 		bh = udf_read_tagged(sb, block, block, &ident);
1633 		if (!bh) {
1634 			udf_err(sb,
1635 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1636 				(unsigned long long)block);
1637 			return -EAGAIN;
1638 		}
1639 
1640 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1641 		gd = (struct generic_desc *)bh->b_data;
1642 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1643 		switch (ident) {
1644 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1645 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1646 			if (vdsn >= curr->volDescSeqNum) {
1647 				curr->volDescSeqNum = vdsn;
1648 				curr->block = block;
1649 			}
1650 			break;
1651 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1652 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1653 			if (vdsn >= curr->volDescSeqNum) {
1654 				curr->volDescSeqNum = vdsn;
1655 				curr->block = block;
1656 
1657 				vdp = (struct volDescPtr *)bh->b_data;
1658 				next_s = le32_to_cpu(
1659 					vdp->nextVolDescSeqExt.extLocation);
1660 				next_e = le32_to_cpu(
1661 					vdp->nextVolDescSeqExt.extLength);
1662 				next_e = next_e >> sb->s_blocksize_bits;
1663 				next_e += next_s;
1664 			}
1665 			break;
1666 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1667 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1668 			if (vdsn >= curr->volDescSeqNum) {
1669 				curr->volDescSeqNum = vdsn;
1670 				curr->block = block;
1671 			}
1672 			break;
1673 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1674 			curr = &vds[VDS_POS_PARTITION_DESC];
1675 			if (!curr->block)
1676 				curr->block = block;
1677 			break;
1678 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1679 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1680 			if (vdsn >= curr->volDescSeqNum) {
1681 				curr->volDescSeqNum = vdsn;
1682 				curr->block = block;
1683 			}
1684 			break;
1685 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1686 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1687 			if (vdsn >= curr->volDescSeqNum) {
1688 				curr->volDescSeqNum = vdsn;
1689 				curr->block = block;
1690 			}
1691 			break;
1692 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1693 			if (++indirections > UDF_MAX_TD_NESTING) {
1694 				udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1695 				brelse(bh);
1696 				return -EIO;
1697 			}
1698 
1699 			vds[VDS_POS_TERMINATING_DESC].block = block;
1700 			if (next_e) {
1701 				block = next_s;
1702 				lastblock = next_e;
1703 				next_s = next_e = 0;
1704 			} else
1705 				done = true;
1706 			break;
1707 		}
1708 		brelse(bh);
1709 	}
1710 	/*
1711 	 * Now read interesting descriptors again and process them
1712 	 * in a suitable order
1713 	 */
1714 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1715 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1716 		return -EAGAIN;
1717 	}
1718 	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1719 	if (ret < 0)
1720 		return ret;
1721 
1722 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1723 		ret = udf_load_logicalvol(sb,
1724 					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1725 					  fileset);
1726 		if (ret < 0)
1727 			return ret;
1728 	}
1729 
1730 	if (vds[VDS_POS_PARTITION_DESC].block) {
1731 		/*
1732 		 * We rescan the whole descriptor sequence to find
1733 		 * partition descriptor blocks and process them.
1734 		 */
1735 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1736 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1737 		     block++) {
1738 			ret = udf_load_partdesc(sb, block);
1739 			if (ret < 0)
1740 				return ret;
1741 		}
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 /*
1748  * Load Volume Descriptor Sequence described by anchor in bh
1749  *
1750  * Returns <0 on error, 0 on success
1751  */
1752 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1753 			     struct kernel_lb_addr *fileset)
1754 {
1755 	struct anchorVolDescPtr *anchor;
1756 	sector_t main_s, main_e, reserve_s, reserve_e;
1757 	int ret;
1758 
1759 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1760 
1761 	/* Locate the main sequence */
1762 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1763 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1764 	main_e = main_e >> sb->s_blocksize_bits;
1765 	main_e += main_s;
1766 
1767 	/* Locate the reserve sequence */
1768 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1769 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1770 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1771 	reserve_e += reserve_s;
1772 
1773 	/* Process the main & reserve sequences */
1774 	/* responsible for finding the PartitionDesc(s) */
1775 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1776 	if (ret != -EAGAIN)
1777 		return ret;
1778 	udf_sb_free_partitions(sb);
1779 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1780 	if (ret < 0) {
1781 		udf_sb_free_partitions(sb);
1782 		/* No sequence was OK, return -EIO */
1783 		if (ret == -EAGAIN)
1784 			ret = -EIO;
1785 	}
1786 	return ret;
1787 }
1788 
1789 /*
1790  * Check whether there is an anchor block in the given block and
1791  * load Volume Descriptor Sequence if so.
1792  *
1793  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1794  * block
1795  */
1796 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1797 				  struct kernel_lb_addr *fileset)
1798 {
1799 	struct buffer_head *bh;
1800 	uint16_t ident;
1801 	int ret;
1802 
1803 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1804 	    udf_fixed_to_variable(block) >=
1805 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1806 		return -EAGAIN;
1807 
1808 	bh = udf_read_tagged(sb, block, block, &ident);
1809 	if (!bh)
1810 		return -EAGAIN;
1811 	if (ident != TAG_IDENT_AVDP) {
1812 		brelse(bh);
1813 		return -EAGAIN;
1814 	}
1815 	ret = udf_load_sequence(sb, bh, fileset);
1816 	brelse(bh);
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Search for an anchor volume descriptor pointer.
1822  *
1823  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1824  * of anchors.
1825  */
1826 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1827 			    struct kernel_lb_addr *fileset)
1828 {
1829 	sector_t last[6];
1830 	int i;
1831 	struct udf_sb_info *sbi = UDF_SB(sb);
1832 	int last_count = 0;
1833 	int ret;
1834 
1835 	/* First try user provided anchor */
1836 	if (sbi->s_anchor) {
1837 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1838 		if (ret != -EAGAIN)
1839 			return ret;
1840 	}
1841 	/*
1842 	 * according to spec, anchor is in either:
1843 	 *     block 256
1844 	 *     lastblock-256
1845 	 *     lastblock
1846 	 *  however, if the disc isn't closed, it could be 512.
1847 	 */
1848 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1849 	if (ret != -EAGAIN)
1850 		return ret;
1851 	/*
1852 	 * The trouble is which block is the last one. Drives often misreport
1853 	 * this so we try various possibilities.
1854 	 */
1855 	last[last_count++] = *lastblock;
1856 	if (*lastblock >= 1)
1857 		last[last_count++] = *lastblock - 1;
1858 	last[last_count++] = *lastblock + 1;
1859 	if (*lastblock >= 2)
1860 		last[last_count++] = *lastblock - 2;
1861 	if (*lastblock >= 150)
1862 		last[last_count++] = *lastblock - 150;
1863 	if (*lastblock >= 152)
1864 		last[last_count++] = *lastblock - 152;
1865 
1866 	for (i = 0; i < last_count; i++) {
1867 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1868 				sb->s_blocksize_bits)
1869 			continue;
1870 		ret = udf_check_anchor_block(sb, last[i], fileset);
1871 		if (ret != -EAGAIN) {
1872 			if (!ret)
1873 				*lastblock = last[i];
1874 			return ret;
1875 		}
1876 		if (last[i] < 256)
1877 			continue;
1878 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1879 		if (ret != -EAGAIN) {
1880 			if (!ret)
1881 				*lastblock = last[i];
1882 			return ret;
1883 		}
1884 	}
1885 
1886 	/* Finally try block 512 in case media is open */
1887 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1888 }
1889 
1890 /*
1891  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1892  * area specified by it. The function expects sbi->s_lastblock to be the last
1893  * block on the media.
1894  *
1895  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1896  * was not found.
1897  */
1898 static int udf_find_anchor(struct super_block *sb,
1899 			   struct kernel_lb_addr *fileset)
1900 {
1901 	struct udf_sb_info *sbi = UDF_SB(sb);
1902 	sector_t lastblock = sbi->s_last_block;
1903 	int ret;
1904 
1905 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1906 	if (ret != -EAGAIN)
1907 		goto out;
1908 
1909 	/* No anchor found? Try VARCONV conversion of block numbers */
1910 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1911 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1912 	/* Firstly, we try to not convert number of the last block */
1913 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1914 	if (ret != -EAGAIN)
1915 		goto out;
1916 
1917 	lastblock = sbi->s_last_block;
1918 	/* Secondly, we try with converted number of the last block */
1919 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1920 	if (ret < 0) {
1921 		/* VARCONV didn't help. Clear it. */
1922 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1923 	}
1924 out:
1925 	if (ret == 0)
1926 		sbi->s_last_block = lastblock;
1927 	return ret;
1928 }
1929 
1930 /*
1931  * Check Volume Structure Descriptor, find Anchor block and load Volume
1932  * Descriptor Sequence.
1933  *
1934  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1935  * block was not found.
1936  */
1937 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1938 			int silent, struct kernel_lb_addr *fileset)
1939 {
1940 	struct udf_sb_info *sbi = UDF_SB(sb);
1941 	loff_t nsr_off;
1942 	int ret;
1943 
1944 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1945 		if (!silent)
1946 			udf_warn(sb, "Bad block size\n");
1947 		return -EINVAL;
1948 	}
1949 	sbi->s_last_block = uopt->lastblock;
1950 	if (!uopt->novrs) {
1951 		/* Check that it is NSR02 compliant */
1952 		nsr_off = udf_check_vsd(sb);
1953 		if (!nsr_off) {
1954 			if (!silent)
1955 				udf_warn(sb, "No VRS found\n");
1956 			return -EINVAL;
1957 		}
1958 		if (nsr_off == -1)
1959 			udf_debug("Failed to read sector at offset %d. "
1960 				  "Assuming open disc. Skipping validity "
1961 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1962 		if (!sbi->s_last_block)
1963 			sbi->s_last_block = udf_get_last_block(sb);
1964 	} else {
1965 		udf_debug("Validity check skipped because of novrs option\n");
1966 	}
1967 
1968 	/* Look for anchor block and load Volume Descriptor Sequence */
1969 	sbi->s_anchor = uopt->anchor;
1970 	ret = udf_find_anchor(sb, fileset);
1971 	if (ret < 0) {
1972 		if (!silent && ret == -EAGAIN)
1973 			udf_warn(sb, "No anchor found\n");
1974 		return ret;
1975 	}
1976 	return 0;
1977 }
1978 
1979 static void udf_open_lvid(struct super_block *sb)
1980 {
1981 	struct udf_sb_info *sbi = UDF_SB(sb);
1982 	struct buffer_head *bh = sbi->s_lvid_bh;
1983 	struct logicalVolIntegrityDesc *lvid;
1984 	struct logicalVolIntegrityDescImpUse *lvidiu;
1985 	struct timespec ts;
1986 
1987 	if (!bh)
1988 		return;
1989 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1990 	lvidiu = udf_sb_lvidiu(sb);
1991 	if (!lvidiu)
1992 		return;
1993 
1994 	mutex_lock(&sbi->s_alloc_mutex);
1995 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1996 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1997 	ktime_get_real_ts(&ts);
1998 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1999 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2000 
2001 	lvid->descTag.descCRC = cpu_to_le16(
2002 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2003 			le16_to_cpu(lvid->descTag.descCRCLength)));
2004 
2005 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2006 	mark_buffer_dirty(bh);
2007 	sbi->s_lvid_dirty = 0;
2008 	mutex_unlock(&sbi->s_alloc_mutex);
2009 	/* Make opening of filesystem visible on the media immediately */
2010 	sync_dirty_buffer(bh);
2011 }
2012 
2013 static void udf_close_lvid(struct super_block *sb)
2014 {
2015 	struct udf_sb_info *sbi = UDF_SB(sb);
2016 	struct buffer_head *bh = sbi->s_lvid_bh;
2017 	struct logicalVolIntegrityDesc *lvid;
2018 	struct logicalVolIntegrityDescImpUse *lvidiu;
2019 	struct timespec ts;
2020 
2021 	if (!bh)
2022 		return;
2023 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024 	lvidiu = udf_sb_lvidiu(sb);
2025 	if (!lvidiu)
2026 		return;
2027 
2028 	mutex_lock(&sbi->s_alloc_mutex);
2029 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031 	ktime_get_real_ts(&ts);
2032 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2033 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2034 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2035 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2036 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2037 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2038 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2039 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2040 
2041 	lvid->descTag.descCRC = cpu_to_le16(
2042 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2043 				le16_to_cpu(lvid->descTag.descCRCLength)));
2044 
2045 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2046 	/*
2047 	 * We set buffer uptodate unconditionally here to avoid spurious
2048 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2049 	 * the buffer as !uptodate
2050 	 */
2051 	set_buffer_uptodate(bh);
2052 	mark_buffer_dirty(bh);
2053 	sbi->s_lvid_dirty = 0;
2054 	mutex_unlock(&sbi->s_alloc_mutex);
2055 	/* Make closing of filesystem visible on the media immediately */
2056 	sync_dirty_buffer(bh);
2057 }
2058 
2059 u64 lvid_get_unique_id(struct super_block *sb)
2060 {
2061 	struct buffer_head *bh;
2062 	struct udf_sb_info *sbi = UDF_SB(sb);
2063 	struct logicalVolIntegrityDesc *lvid;
2064 	struct logicalVolHeaderDesc *lvhd;
2065 	u64 uniqueID;
2066 	u64 ret;
2067 
2068 	bh = sbi->s_lvid_bh;
2069 	if (!bh)
2070 		return 0;
2071 
2072 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2073 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2074 
2075 	mutex_lock(&sbi->s_alloc_mutex);
2076 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2077 	if (!(++uniqueID & 0xFFFFFFFF))
2078 		uniqueID += 16;
2079 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2080 	mutex_unlock(&sbi->s_alloc_mutex);
2081 	mark_buffer_dirty(bh);
2082 
2083 	return ret;
2084 }
2085 
2086 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2087 {
2088 	int ret = -EINVAL;
2089 	struct inode *inode = NULL;
2090 	struct udf_options uopt;
2091 	struct kernel_lb_addr rootdir, fileset;
2092 	struct udf_sb_info *sbi;
2093 	bool lvid_open = false;
2094 
2095 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2096 	uopt.uid = INVALID_UID;
2097 	uopt.gid = INVALID_GID;
2098 	uopt.umask = 0;
2099 	uopt.fmode = UDF_INVALID_MODE;
2100 	uopt.dmode = UDF_INVALID_MODE;
2101 
2102 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2103 	if (!sbi)
2104 		return -ENOMEM;
2105 
2106 	sb->s_fs_info = sbi;
2107 
2108 	mutex_init(&sbi->s_alloc_mutex);
2109 
2110 	if (!udf_parse_options((char *)options, &uopt, false))
2111 		goto parse_options_failure;
2112 
2113 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2114 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2115 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2116 		goto parse_options_failure;
2117 	}
2118 #ifdef CONFIG_UDF_NLS
2119 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2120 		uopt.nls_map = load_nls_default();
2121 		if (!uopt.nls_map)
2122 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2123 		else
2124 			udf_debug("Using default NLS map\n");
2125 	}
2126 #endif
2127 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2128 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2129 
2130 	fileset.logicalBlockNum = 0xFFFFFFFF;
2131 	fileset.partitionReferenceNum = 0xFFFF;
2132 
2133 	sbi->s_flags = uopt.flags;
2134 	sbi->s_uid = uopt.uid;
2135 	sbi->s_gid = uopt.gid;
2136 	sbi->s_umask = uopt.umask;
2137 	sbi->s_fmode = uopt.fmode;
2138 	sbi->s_dmode = uopt.dmode;
2139 	sbi->s_nls_map = uopt.nls_map;
2140 	rwlock_init(&sbi->s_cred_lock);
2141 
2142 	if (uopt.session == 0xFFFFFFFF)
2143 		sbi->s_session = udf_get_last_session(sb);
2144 	else
2145 		sbi->s_session = uopt.session;
2146 
2147 	udf_debug("Multi-session=%d\n", sbi->s_session);
2148 
2149 	/* Fill in the rest of the superblock */
2150 	sb->s_op = &udf_sb_ops;
2151 	sb->s_export_op = &udf_export_ops;
2152 
2153 	sb->s_magic = UDF_SUPER_MAGIC;
2154 	sb->s_time_gran = 1000;
2155 
2156 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2157 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2158 	} else {
2159 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2160 		while (uopt.blocksize <= 4096) {
2161 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162 			if (ret < 0) {
2163 				if (!silent && ret != -EACCES) {
2164 					pr_notice("Scanning with blocksize %d failed\n",
2165 						  uopt.blocksize);
2166 				}
2167 				brelse(sbi->s_lvid_bh);
2168 				sbi->s_lvid_bh = NULL;
2169 				/*
2170 				 * EACCES is special - we want to propagate to
2171 				 * upper layers that we cannot handle RW mount.
2172 				 */
2173 				if (ret == -EACCES)
2174 					break;
2175 			} else
2176 				break;
2177 
2178 			uopt.blocksize <<= 1;
2179 		}
2180 	}
2181 	if (ret < 0) {
2182 		if (ret == -EAGAIN) {
2183 			udf_warn(sb, "No partition found (1)\n");
2184 			ret = -EINVAL;
2185 		}
2186 		goto error_out;
2187 	}
2188 
2189 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2190 
2191 	if (sbi->s_lvid_bh) {
2192 		struct logicalVolIntegrityDescImpUse *lvidiu =
2193 							udf_sb_lvidiu(sb);
2194 		uint16_t minUDFReadRev;
2195 		uint16_t minUDFWriteRev;
2196 
2197 		if (!lvidiu) {
2198 			ret = -EINVAL;
2199 			goto error_out;
2200 		}
2201 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2202 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2203 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2204 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2205 				minUDFReadRev,
2206 				UDF_MAX_READ_VERSION);
2207 			ret = -EINVAL;
2208 			goto error_out;
2209 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2210 			   !(sb->s_flags & MS_RDONLY)) {
2211 			ret = -EACCES;
2212 			goto error_out;
2213 		}
2214 
2215 		sbi->s_udfrev = minUDFWriteRev;
2216 
2217 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2218 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2219 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2220 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2221 	}
2222 
2223 	if (!sbi->s_partitions) {
2224 		udf_warn(sb, "No partition found (2)\n");
2225 		ret = -EINVAL;
2226 		goto error_out;
2227 	}
2228 
2229 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2230 			UDF_PART_FLAG_READ_ONLY &&
2231 	    !(sb->s_flags & MS_RDONLY)) {
2232 		ret = -EACCES;
2233 		goto error_out;
2234 	}
2235 
2236 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2237 		udf_warn(sb, "No fileset found\n");
2238 		ret = -EINVAL;
2239 		goto error_out;
2240 	}
2241 
2242 	if (!silent) {
2243 		struct timestamp ts;
2244 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2245 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2246 			 sbi->s_volume_ident,
2247 			 le16_to_cpu(ts.year), ts.month, ts.day,
2248 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2249 	}
2250 	if (!(sb->s_flags & MS_RDONLY)) {
2251 		udf_open_lvid(sb);
2252 		lvid_open = true;
2253 	}
2254 
2255 	/* Assign the root inode */
2256 	/* assign inodes by physical block number */
2257 	/* perhaps it's not extensible enough, but for now ... */
2258 	inode = udf_iget(sb, &rootdir);
2259 	if (IS_ERR(inode)) {
2260 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2261 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2262 		ret = PTR_ERR(inode);
2263 		goto error_out;
2264 	}
2265 
2266 	/* Allocate a dentry for the root inode */
2267 	sb->s_root = d_make_root(inode);
2268 	if (!sb->s_root) {
2269 		udf_err(sb, "Couldn't allocate root dentry\n");
2270 		ret = -ENOMEM;
2271 		goto error_out;
2272 	}
2273 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2274 	sb->s_max_links = UDF_MAX_LINKS;
2275 	return 0;
2276 
2277 error_out:
2278 	iput(sbi->s_vat_inode);
2279 parse_options_failure:
2280 #ifdef CONFIG_UDF_NLS
2281 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2282 		unload_nls(sbi->s_nls_map);
2283 #endif
2284 	if (lvid_open)
2285 		udf_close_lvid(sb);
2286 	brelse(sbi->s_lvid_bh);
2287 	udf_sb_free_partitions(sb);
2288 	kfree(sbi);
2289 	sb->s_fs_info = NULL;
2290 
2291 	return ret;
2292 }
2293 
2294 void _udf_err(struct super_block *sb, const char *function,
2295 	      const char *fmt, ...)
2296 {
2297 	struct va_format vaf;
2298 	va_list args;
2299 
2300 	va_start(args, fmt);
2301 
2302 	vaf.fmt = fmt;
2303 	vaf.va = &args;
2304 
2305 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2306 
2307 	va_end(args);
2308 }
2309 
2310 void _udf_warn(struct super_block *sb, const char *function,
2311 	       const char *fmt, ...)
2312 {
2313 	struct va_format vaf;
2314 	va_list args;
2315 
2316 	va_start(args, fmt);
2317 
2318 	vaf.fmt = fmt;
2319 	vaf.va = &args;
2320 
2321 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2322 
2323 	va_end(args);
2324 }
2325 
2326 static void udf_put_super(struct super_block *sb)
2327 {
2328 	struct udf_sb_info *sbi;
2329 
2330 	sbi = UDF_SB(sb);
2331 
2332 	iput(sbi->s_vat_inode);
2333 #ifdef CONFIG_UDF_NLS
2334 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2335 		unload_nls(sbi->s_nls_map);
2336 #endif
2337 	if (!(sb->s_flags & MS_RDONLY))
2338 		udf_close_lvid(sb);
2339 	brelse(sbi->s_lvid_bh);
2340 	udf_sb_free_partitions(sb);
2341 	mutex_destroy(&sbi->s_alloc_mutex);
2342 	kfree(sb->s_fs_info);
2343 	sb->s_fs_info = NULL;
2344 }
2345 
2346 static int udf_sync_fs(struct super_block *sb, int wait)
2347 {
2348 	struct udf_sb_info *sbi = UDF_SB(sb);
2349 
2350 	mutex_lock(&sbi->s_alloc_mutex);
2351 	if (sbi->s_lvid_dirty) {
2352 		/*
2353 		 * Blockdevice will be synced later so we don't have to submit
2354 		 * the buffer for IO
2355 		 */
2356 		mark_buffer_dirty(sbi->s_lvid_bh);
2357 		sbi->s_lvid_dirty = 0;
2358 	}
2359 	mutex_unlock(&sbi->s_alloc_mutex);
2360 
2361 	return 0;
2362 }
2363 
2364 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2365 {
2366 	struct super_block *sb = dentry->d_sb;
2367 	struct udf_sb_info *sbi = UDF_SB(sb);
2368 	struct logicalVolIntegrityDescImpUse *lvidiu;
2369 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2370 
2371 	lvidiu = udf_sb_lvidiu(sb);
2372 	buf->f_type = UDF_SUPER_MAGIC;
2373 	buf->f_bsize = sb->s_blocksize;
2374 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2375 	buf->f_bfree = udf_count_free(sb);
2376 	buf->f_bavail = buf->f_bfree;
2377 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2378 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2379 			+ buf->f_bfree;
2380 	buf->f_ffree = buf->f_bfree;
2381 	buf->f_namelen = UDF_NAME_LEN;
2382 	buf->f_fsid.val[0] = (u32)id;
2383 	buf->f_fsid.val[1] = (u32)(id >> 32);
2384 
2385 	return 0;
2386 }
2387 
2388 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2389 					  struct udf_bitmap *bitmap)
2390 {
2391 	struct buffer_head *bh = NULL;
2392 	unsigned int accum = 0;
2393 	int index;
2394 	int block = 0, newblock;
2395 	struct kernel_lb_addr loc;
2396 	uint32_t bytes;
2397 	uint8_t *ptr;
2398 	uint16_t ident;
2399 	struct spaceBitmapDesc *bm;
2400 
2401 	loc.logicalBlockNum = bitmap->s_extPosition;
2402 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2403 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2404 
2405 	if (!bh) {
2406 		udf_err(sb, "udf_count_free failed\n");
2407 		goto out;
2408 	} else if (ident != TAG_IDENT_SBD) {
2409 		brelse(bh);
2410 		udf_err(sb, "udf_count_free failed\n");
2411 		goto out;
2412 	}
2413 
2414 	bm = (struct spaceBitmapDesc *)bh->b_data;
2415 	bytes = le32_to_cpu(bm->numOfBytes);
2416 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2417 	ptr = (uint8_t *)bh->b_data;
2418 
2419 	while (bytes > 0) {
2420 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2421 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2422 					cur_bytes * 8);
2423 		bytes -= cur_bytes;
2424 		if (bytes) {
2425 			brelse(bh);
2426 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2427 			bh = udf_tread(sb, newblock);
2428 			if (!bh) {
2429 				udf_debug("read failed\n");
2430 				goto out;
2431 			}
2432 			index = 0;
2433 			ptr = (uint8_t *)bh->b_data;
2434 		}
2435 	}
2436 	brelse(bh);
2437 out:
2438 	return accum;
2439 }
2440 
2441 static unsigned int udf_count_free_table(struct super_block *sb,
2442 					 struct inode *table)
2443 {
2444 	unsigned int accum = 0;
2445 	uint32_t elen;
2446 	struct kernel_lb_addr eloc;
2447 	int8_t etype;
2448 	struct extent_position epos;
2449 
2450 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2451 	epos.block = UDF_I(table)->i_location;
2452 	epos.offset = sizeof(struct unallocSpaceEntry);
2453 	epos.bh = NULL;
2454 
2455 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2456 		accum += (elen >> table->i_sb->s_blocksize_bits);
2457 
2458 	brelse(epos.bh);
2459 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2460 
2461 	return accum;
2462 }
2463 
2464 static unsigned int udf_count_free(struct super_block *sb)
2465 {
2466 	unsigned int accum = 0;
2467 	struct udf_sb_info *sbi;
2468 	struct udf_part_map *map;
2469 
2470 	sbi = UDF_SB(sb);
2471 	if (sbi->s_lvid_bh) {
2472 		struct logicalVolIntegrityDesc *lvid =
2473 			(struct logicalVolIntegrityDesc *)
2474 			sbi->s_lvid_bh->b_data;
2475 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2476 			accum = le32_to_cpu(
2477 					lvid->freeSpaceTable[sbi->s_partition]);
2478 			if (accum == 0xFFFFFFFF)
2479 				accum = 0;
2480 		}
2481 	}
2482 
2483 	if (accum)
2484 		return accum;
2485 
2486 	map = &sbi->s_partmaps[sbi->s_partition];
2487 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2488 		accum += udf_count_free_bitmap(sb,
2489 					       map->s_uspace.s_bitmap);
2490 	}
2491 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2492 		accum += udf_count_free_bitmap(sb,
2493 					       map->s_fspace.s_bitmap);
2494 	}
2495 	if (accum)
2496 		return accum;
2497 
2498 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2499 		accum += udf_count_free_table(sb,
2500 					      map->s_uspace.s_table);
2501 	}
2502 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2503 		accum += udf_count_free_table(sb,
2504 					      map->s_fspace.s_table);
2505 	}
2506 
2507 	return accum;
2508 }
2509 
2510 MODULE_AUTHOR("Ben Fennema");
2511 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2512 MODULE_LICENSE("GPL");
2513 module_init(init_udf_fs)
2514 module_exit(exit_udf_fs)
2515