1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 enum { UDF_MAX_LINKS = 0xffff }; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct dentry *); 96 97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 98 { 99 struct logicalVolIntegrityDesc *lvid = 100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 102 __u32 offset = number_of_partitions * 2 * 103 sizeof(uint32_t)/sizeof(uint8_t); 104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 105 } 106 107 /* UDF filesystem type */ 108 static struct dentry *udf_mount(struct file_system_type *fs_type, 109 int flags, const char *dev_name, void *data) 110 { 111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 112 } 113 114 static struct file_system_type udf_fstype = { 115 .owner = THIS_MODULE, 116 .name = "udf", 117 .mount = udf_mount, 118 .kill_sb = kill_block_super, 119 .fs_flags = FS_REQUIRES_DEV, 120 }; 121 MODULE_ALIAS_FS("udf"); 122 123 static struct kmem_cache *udf_inode_cachep; 124 125 static struct inode *udf_alloc_inode(struct super_block *sb) 126 { 127 struct udf_inode_info *ei; 128 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 129 if (!ei) 130 return NULL; 131 132 ei->i_unique = 0; 133 ei->i_lenExtents = 0; 134 ei->i_next_alloc_block = 0; 135 ei->i_next_alloc_goal = 0; 136 ei->i_strat4096 = 0; 137 init_rwsem(&ei->i_data_sem); 138 ei->cached_extent.lstart = -1; 139 spin_lock_init(&ei->i_extent_cache_lock); 140 141 return &ei->vfs_inode; 142 } 143 144 static void udf_i_callback(struct rcu_head *head) 145 { 146 struct inode *inode = container_of(head, struct inode, i_rcu); 147 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 148 } 149 150 static void udf_destroy_inode(struct inode *inode) 151 { 152 call_rcu(&inode->i_rcu, udf_i_callback); 153 } 154 155 static void init_once(void *foo) 156 { 157 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 158 159 ei->i_ext.i_data = NULL; 160 inode_init_once(&ei->vfs_inode); 161 } 162 163 static int init_inodecache(void) 164 { 165 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 166 sizeof(struct udf_inode_info), 167 0, (SLAB_RECLAIM_ACCOUNT | 168 SLAB_MEM_SPREAD), 169 init_once); 170 if (!udf_inode_cachep) 171 return -ENOMEM; 172 return 0; 173 } 174 175 static void destroy_inodecache(void) 176 { 177 /* 178 * Make sure all delayed rcu free inodes are flushed before we 179 * destroy cache. 180 */ 181 rcu_barrier(); 182 kmem_cache_destroy(udf_inode_cachep); 183 } 184 185 /* Superblock operations */ 186 static const struct super_operations udf_sb_ops = { 187 .alloc_inode = udf_alloc_inode, 188 .destroy_inode = udf_destroy_inode, 189 .write_inode = udf_write_inode, 190 .evict_inode = udf_evict_inode, 191 .put_super = udf_put_super, 192 .sync_fs = udf_sync_fs, 193 .statfs = udf_statfs, 194 .remount_fs = udf_remount_fs, 195 .show_options = udf_show_options, 196 }; 197 198 struct udf_options { 199 unsigned char novrs; 200 unsigned int blocksize; 201 unsigned int session; 202 unsigned int lastblock; 203 unsigned int anchor; 204 unsigned int volume; 205 unsigned short partition; 206 unsigned int fileset; 207 unsigned int rootdir; 208 unsigned int flags; 209 umode_t umask; 210 kgid_t gid; 211 kuid_t uid; 212 umode_t fmode; 213 umode_t dmode; 214 struct nls_table *nls_map; 215 }; 216 217 static int __init init_udf_fs(void) 218 { 219 int err; 220 221 err = init_inodecache(); 222 if (err) 223 goto out1; 224 err = register_filesystem(&udf_fstype); 225 if (err) 226 goto out; 227 228 return 0; 229 230 out: 231 destroy_inodecache(); 232 233 out1: 234 return err; 235 } 236 237 static void __exit exit_udf_fs(void) 238 { 239 unregister_filesystem(&udf_fstype); 240 destroy_inodecache(); 241 } 242 243 module_init(init_udf_fs) 244 module_exit(exit_udf_fs) 245 246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 247 { 248 struct udf_sb_info *sbi = UDF_SB(sb); 249 250 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 251 GFP_KERNEL); 252 if (!sbi->s_partmaps) { 253 udf_err(sb, "Unable to allocate space for %d partition maps\n", 254 count); 255 sbi->s_partitions = 0; 256 return -ENOMEM; 257 } 258 259 sbi->s_partitions = count; 260 return 0; 261 } 262 263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 264 { 265 int i; 266 int nr_groups = bitmap->s_nr_groups; 267 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 268 nr_groups); 269 270 for (i = 0; i < nr_groups; i++) 271 if (bitmap->s_block_bitmap[i]) 272 brelse(bitmap->s_block_bitmap[i]); 273 274 if (size <= PAGE_SIZE) 275 kfree(bitmap); 276 else 277 vfree(bitmap); 278 } 279 280 static void udf_free_partition(struct udf_part_map *map) 281 { 282 int i; 283 struct udf_meta_data *mdata; 284 285 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 286 iput(map->s_uspace.s_table); 287 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 288 iput(map->s_fspace.s_table); 289 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 290 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 291 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 292 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 293 if (map->s_partition_type == UDF_SPARABLE_MAP15) 294 for (i = 0; i < 4; i++) 295 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 296 else if (map->s_partition_type == UDF_METADATA_MAP25) { 297 mdata = &map->s_type_specific.s_metadata; 298 iput(mdata->s_metadata_fe); 299 mdata->s_metadata_fe = NULL; 300 301 iput(mdata->s_mirror_fe); 302 mdata->s_mirror_fe = NULL; 303 304 iput(mdata->s_bitmap_fe); 305 mdata->s_bitmap_fe = NULL; 306 } 307 } 308 309 static void udf_sb_free_partitions(struct super_block *sb) 310 { 311 struct udf_sb_info *sbi = UDF_SB(sb); 312 int i; 313 if (sbi->s_partmaps == NULL) 314 return; 315 for (i = 0; i < sbi->s_partitions; i++) 316 udf_free_partition(&sbi->s_partmaps[i]); 317 kfree(sbi->s_partmaps); 318 sbi->s_partmaps = NULL; 319 } 320 321 static int udf_show_options(struct seq_file *seq, struct dentry *root) 322 { 323 struct super_block *sb = root->d_sb; 324 struct udf_sb_info *sbi = UDF_SB(sb); 325 326 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 327 seq_puts(seq, ",nostrict"); 328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 329 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 331 seq_puts(seq, ",unhide"); 332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 333 seq_puts(seq, ",undelete"); 334 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 335 seq_puts(seq, ",noadinicb"); 336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 337 seq_puts(seq, ",shortad"); 338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 339 seq_puts(seq, ",uid=forget"); 340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 341 seq_puts(seq, ",uid=ignore"); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 343 seq_puts(seq, ",gid=forget"); 344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 345 seq_puts(seq, ",gid=ignore"); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 347 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 349 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 350 if (sbi->s_umask != 0) 351 seq_printf(seq, ",umask=%ho", sbi->s_umask); 352 if (sbi->s_fmode != UDF_INVALID_MODE) 353 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 354 if (sbi->s_dmode != UDF_INVALID_MODE) 355 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 357 seq_printf(seq, ",session=%u", sbi->s_session); 358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 359 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 360 if (sbi->s_anchor != 0) 361 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 362 /* 363 * volume, partition, fileset and rootdir seem to be ignored 364 * currently 365 */ 366 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 367 seq_puts(seq, ",utf8"); 368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 369 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 370 371 return 0; 372 } 373 374 /* 375 * udf_parse_options 376 * 377 * PURPOSE 378 * Parse mount options. 379 * 380 * DESCRIPTION 381 * The following mount options are supported: 382 * 383 * gid= Set the default group. 384 * umask= Set the default umask. 385 * mode= Set the default file permissions. 386 * dmode= Set the default directory permissions. 387 * uid= Set the default user. 388 * bs= Set the block size. 389 * unhide Show otherwise hidden files. 390 * undelete Show deleted files in lists. 391 * adinicb Embed data in the inode (default) 392 * noadinicb Don't embed data in the inode 393 * shortad Use short ad's 394 * longad Use long ad's (default) 395 * nostrict Unset strict conformance 396 * iocharset= Set the NLS character set 397 * 398 * The remaining are for debugging and disaster recovery: 399 * 400 * novrs Skip volume sequence recognition 401 * 402 * The following expect a offset from 0. 403 * 404 * session= Set the CDROM session (default= last session) 405 * anchor= Override standard anchor location. (default= 256) 406 * volume= Override the VolumeDesc location. (unused) 407 * partition= Override the PartitionDesc location. (unused) 408 * lastblock= Set the last block of the filesystem/ 409 * 410 * The following expect a offset from the partition root. 411 * 412 * fileset= Override the fileset block location. (unused) 413 * rootdir= Override the root directory location. (unused) 414 * WARNING: overriding the rootdir to a non-directory may 415 * yield highly unpredictable results. 416 * 417 * PRE-CONDITIONS 418 * options Pointer to mount options string. 419 * uopts Pointer to mount options variable. 420 * 421 * POST-CONDITIONS 422 * <return> 1 Mount options parsed okay. 423 * <return> 0 Error parsing mount options. 424 * 425 * HISTORY 426 * July 1, 1997 - Andrew E. Mileski 427 * Written, tested, and released. 428 */ 429 430 enum { 431 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 432 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 433 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 434 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 435 Opt_rootdir, Opt_utf8, Opt_iocharset, 436 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 437 Opt_fmode, Opt_dmode 438 }; 439 440 static const match_table_t tokens = { 441 {Opt_novrs, "novrs"}, 442 {Opt_nostrict, "nostrict"}, 443 {Opt_bs, "bs=%u"}, 444 {Opt_unhide, "unhide"}, 445 {Opt_undelete, "undelete"}, 446 {Opt_noadinicb, "noadinicb"}, 447 {Opt_adinicb, "adinicb"}, 448 {Opt_shortad, "shortad"}, 449 {Opt_longad, "longad"}, 450 {Opt_uforget, "uid=forget"}, 451 {Opt_uignore, "uid=ignore"}, 452 {Opt_gforget, "gid=forget"}, 453 {Opt_gignore, "gid=ignore"}, 454 {Opt_gid, "gid=%u"}, 455 {Opt_uid, "uid=%u"}, 456 {Opt_umask, "umask=%o"}, 457 {Opt_session, "session=%u"}, 458 {Opt_lastblock, "lastblock=%u"}, 459 {Opt_anchor, "anchor=%u"}, 460 {Opt_volume, "volume=%u"}, 461 {Opt_partition, "partition=%u"}, 462 {Opt_fileset, "fileset=%u"}, 463 {Opt_rootdir, "rootdir=%u"}, 464 {Opt_utf8, "utf8"}, 465 {Opt_iocharset, "iocharset=%s"}, 466 {Opt_fmode, "mode=%o"}, 467 {Opt_dmode, "dmode=%o"}, 468 {Opt_err, NULL} 469 }; 470 471 static int udf_parse_options(char *options, struct udf_options *uopt, 472 bool remount) 473 { 474 char *p; 475 int option; 476 477 uopt->novrs = 0; 478 uopt->partition = 0xFFFF; 479 uopt->session = 0xFFFFFFFF; 480 uopt->lastblock = 0; 481 uopt->anchor = 0; 482 uopt->volume = 0xFFFFFFFF; 483 uopt->rootdir = 0xFFFFFFFF; 484 uopt->fileset = 0xFFFFFFFF; 485 uopt->nls_map = NULL; 486 487 if (!options) 488 return 1; 489 490 while ((p = strsep(&options, ",")) != NULL) { 491 substring_t args[MAX_OPT_ARGS]; 492 int token; 493 if (!*p) 494 continue; 495 496 token = match_token(p, tokens, args); 497 switch (token) { 498 case Opt_novrs: 499 uopt->novrs = 1; 500 break; 501 case Opt_bs: 502 if (match_int(&args[0], &option)) 503 return 0; 504 uopt->blocksize = option; 505 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 506 break; 507 case Opt_unhide: 508 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 509 break; 510 case Opt_undelete: 511 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 512 break; 513 case Opt_noadinicb: 514 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 515 break; 516 case Opt_adinicb: 517 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 518 break; 519 case Opt_shortad: 520 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 521 break; 522 case Opt_longad: 523 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 524 break; 525 case Opt_gid: 526 if (match_int(args, &option)) 527 return 0; 528 uopt->gid = make_kgid(current_user_ns(), option); 529 if (!gid_valid(uopt->gid)) 530 return 0; 531 uopt->flags |= (1 << UDF_FLAG_GID_SET); 532 break; 533 case Opt_uid: 534 if (match_int(args, &option)) 535 return 0; 536 uopt->uid = make_kuid(current_user_ns(), option); 537 if (!uid_valid(uopt->uid)) 538 return 0; 539 uopt->flags |= (1 << UDF_FLAG_UID_SET); 540 break; 541 case Opt_umask: 542 if (match_octal(args, &option)) 543 return 0; 544 uopt->umask = option; 545 break; 546 case Opt_nostrict: 547 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 548 break; 549 case Opt_session: 550 if (match_int(args, &option)) 551 return 0; 552 uopt->session = option; 553 if (!remount) 554 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 555 break; 556 case Opt_lastblock: 557 if (match_int(args, &option)) 558 return 0; 559 uopt->lastblock = option; 560 if (!remount) 561 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 562 break; 563 case Opt_anchor: 564 if (match_int(args, &option)) 565 return 0; 566 uopt->anchor = option; 567 break; 568 case Opt_volume: 569 if (match_int(args, &option)) 570 return 0; 571 uopt->volume = option; 572 break; 573 case Opt_partition: 574 if (match_int(args, &option)) 575 return 0; 576 uopt->partition = option; 577 break; 578 case Opt_fileset: 579 if (match_int(args, &option)) 580 return 0; 581 uopt->fileset = option; 582 break; 583 case Opt_rootdir: 584 if (match_int(args, &option)) 585 return 0; 586 uopt->rootdir = option; 587 break; 588 case Opt_utf8: 589 uopt->flags |= (1 << UDF_FLAG_UTF8); 590 break; 591 #ifdef CONFIG_UDF_NLS 592 case Opt_iocharset: 593 uopt->nls_map = load_nls(args[0].from); 594 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 595 break; 596 #endif 597 case Opt_uignore: 598 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 599 break; 600 case Opt_uforget: 601 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 602 break; 603 case Opt_gignore: 604 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 605 break; 606 case Opt_gforget: 607 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 608 break; 609 case Opt_fmode: 610 if (match_octal(args, &option)) 611 return 0; 612 uopt->fmode = option & 0777; 613 break; 614 case Opt_dmode: 615 if (match_octal(args, &option)) 616 return 0; 617 uopt->dmode = option & 0777; 618 break; 619 default: 620 pr_err("bad mount option \"%s\" or missing value\n", p); 621 return 0; 622 } 623 } 624 return 1; 625 } 626 627 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 628 { 629 struct udf_options uopt; 630 struct udf_sb_info *sbi = UDF_SB(sb); 631 int error = 0; 632 633 if (sbi->s_lvid_bh) { 634 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 635 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 636 return -EACCES; 637 } 638 639 uopt.flags = sbi->s_flags; 640 uopt.uid = sbi->s_uid; 641 uopt.gid = sbi->s_gid; 642 uopt.umask = sbi->s_umask; 643 uopt.fmode = sbi->s_fmode; 644 uopt.dmode = sbi->s_dmode; 645 646 if (!udf_parse_options(options, &uopt, true)) 647 return -EINVAL; 648 649 write_lock(&sbi->s_cred_lock); 650 sbi->s_flags = uopt.flags; 651 sbi->s_uid = uopt.uid; 652 sbi->s_gid = uopt.gid; 653 sbi->s_umask = uopt.umask; 654 sbi->s_fmode = uopt.fmode; 655 sbi->s_dmode = uopt.dmode; 656 write_unlock(&sbi->s_cred_lock); 657 658 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 659 goto out_unlock; 660 661 if (*flags & MS_RDONLY) 662 udf_close_lvid(sb); 663 else 664 udf_open_lvid(sb); 665 666 out_unlock: 667 return error; 668 } 669 670 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 671 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 672 static loff_t udf_check_vsd(struct super_block *sb) 673 { 674 struct volStructDesc *vsd = NULL; 675 loff_t sector = 32768; 676 int sectorsize; 677 struct buffer_head *bh = NULL; 678 int nsr02 = 0; 679 int nsr03 = 0; 680 struct udf_sb_info *sbi; 681 682 sbi = UDF_SB(sb); 683 if (sb->s_blocksize < sizeof(struct volStructDesc)) 684 sectorsize = sizeof(struct volStructDesc); 685 else 686 sectorsize = sb->s_blocksize; 687 688 sector += (sbi->s_session << sb->s_blocksize_bits); 689 690 udf_debug("Starting at sector %u (%ld byte sectors)\n", 691 (unsigned int)(sector >> sb->s_blocksize_bits), 692 sb->s_blocksize); 693 /* Process the sequence (if applicable) */ 694 for (; !nsr02 && !nsr03; sector += sectorsize) { 695 /* Read a block */ 696 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 697 if (!bh) 698 break; 699 700 /* Look for ISO descriptors */ 701 vsd = (struct volStructDesc *)(bh->b_data + 702 (sector & (sb->s_blocksize - 1))); 703 704 if (vsd->stdIdent[0] == 0) { 705 brelse(bh); 706 break; 707 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 708 VSD_STD_ID_LEN)) { 709 switch (vsd->structType) { 710 case 0: 711 udf_debug("ISO9660 Boot Record found\n"); 712 break; 713 case 1: 714 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 715 break; 716 case 2: 717 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 718 break; 719 case 3: 720 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 721 break; 722 case 255: 723 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 724 break; 725 default: 726 udf_debug("ISO9660 VRS (%u) found\n", 727 vsd->structType); 728 break; 729 } 730 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 731 VSD_STD_ID_LEN)) 732 ; /* nothing */ 733 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 734 VSD_STD_ID_LEN)) { 735 brelse(bh); 736 break; 737 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 738 VSD_STD_ID_LEN)) 739 nsr02 = sector; 740 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 741 VSD_STD_ID_LEN)) 742 nsr03 = sector; 743 brelse(bh); 744 } 745 746 if (nsr03) 747 return nsr03; 748 else if (nsr02) 749 return nsr02; 750 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 751 return -1; 752 else 753 return 0; 754 } 755 756 static int udf_find_fileset(struct super_block *sb, 757 struct kernel_lb_addr *fileset, 758 struct kernel_lb_addr *root) 759 { 760 struct buffer_head *bh = NULL; 761 long lastblock; 762 uint16_t ident; 763 struct udf_sb_info *sbi; 764 765 if (fileset->logicalBlockNum != 0xFFFFFFFF || 766 fileset->partitionReferenceNum != 0xFFFF) { 767 bh = udf_read_ptagged(sb, fileset, 0, &ident); 768 769 if (!bh) { 770 return 1; 771 } else if (ident != TAG_IDENT_FSD) { 772 brelse(bh); 773 return 1; 774 } 775 776 } 777 778 sbi = UDF_SB(sb); 779 if (!bh) { 780 /* Search backwards through the partitions */ 781 struct kernel_lb_addr newfileset; 782 783 /* --> cvg: FIXME - is it reasonable? */ 784 return 1; 785 786 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 787 (newfileset.partitionReferenceNum != 0xFFFF && 788 fileset->logicalBlockNum == 0xFFFFFFFF && 789 fileset->partitionReferenceNum == 0xFFFF); 790 newfileset.partitionReferenceNum--) { 791 lastblock = sbi->s_partmaps 792 [newfileset.partitionReferenceNum] 793 .s_partition_len; 794 newfileset.logicalBlockNum = 0; 795 796 do { 797 bh = udf_read_ptagged(sb, &newfileset, 0, 798 &ident); 799 if (!bh) { 800 newfileset.logicalBlockNum++; 801 continue; 802 } 803 804 switch (ident) { 805 case TAG_IDENT_SBD: 806 { 807 struct spaceBitmapDesc *sp; 808 sp = (struct spaceBitmapDesc *) 809 bh->b_data; 810 newfileset.logicalBlockNum += 1 + 811 ((le32_to_cpu(sp->numOfBytes) + 812 sizeof(struct spaceBitmapDesc) 813 - 1) >> sb->s_blocksize_bits); 814 brelse(bh); 815 break; 816 } 817 case TAG_IDENT_FSD: 818 *fileset = newfileset; 819 break; 820 default: 821 newfileset.logicalBlockNum++; 822 brelse(bh); 823 bh = NULL; 824 break; 825 } 826 } while (newfileset.logicalBlockNum < lastblock && 827 fileset->logicalBlockNum == 0xFFFFFFFF && 828 fileset->partitionReferenceNum == 0xFFFF); 829 } 830 } 831 832 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 833 fileset->partitionReferenceNum != 0xFFFF) && bh) { 834 udf_debug("Fileset at block=%d, partition=%d\n", 835 fileset->logicalBlockNum, 836 fileset->partitionReferenceNum); 837 838 sbi->s_partition = fileset->partitionReferenceNum; 839 udf_load_fileset(sb, bh, root); 840 brelse(bh); 841 return 0; 842 } 843 return 1; 844 } 845 846 /* 847 * Load primary Volume Descriptor Sequence 848 * 849 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 850 * should be tried. 851 */ 852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 853 { 854 struct primaryVolDesc *pvoldesc; 855 struct ustr *instr, *outstr; 856 struct buffer_head *bh; 857 uint16_t ident; 858 int ret = -ENOMEM; 859 860 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 861 if (!instr) 862 return -ENOMEM; 863 864 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 865 if (!outstr) 866 goto out1; 867 868 bh = udf_read_tagged(sb, block, block, &ident); 869 if (!bh) { 870 ret = -EAGAIN; 871 goto out2; 872 } 873 874 if (ident != TAG_IDENT_PVD) { 875 ret = -EIO; 876 goto out_bh; 877 } 878 879 pvoldesc = (struct primaryVolDesc *)bh->b_data; 880 881 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 882 pvoldesc->recordingDateAndTime)) { 883 #ifdef UDFFS_DEBUG 884 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 885 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 886 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 887 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 888 #endif 889 } 890 891 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 892 if (udf_CS0toUTF8(outstr, instr)) { 893 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 894 outstr->u_len > 31 ? 31 : outstr->u_len); 895 udf_debug("volIdent[] = '%s'\n", 896 UDF_SB(sb)->s_volume_ident); 897 } 898 899 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 900 if (udf_CS0toUTF8(outstr, instr)) 901 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 902 903 ret = 0; 904 out_bh: 905 brelse(bh); 906 out2: 907 kfree(outstr); 908 out1: 909 kfree(instr); 910 return ret; 911 } 912 913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 914 u32 meta_file_loc, u32 partition_num) 915 { 916 struct kernel_lb_addr addr; 917 struct inode *metadata_fe; 918 919 addr.logicalBlockNum = meta_file_loc; 920 addr.partitionReferenceNum = partition_num; 921 922 metadata_fe = udf_iget(sb, &addr); 923 924 if (metadata_fe == NULL) 925 udf_warn(sb, "metadata inode efe not found\n"); 926 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 927 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 928 iput(metadata_fe); 929 metadata_fe = NULL; 930 } 931 932 return metadata_fe; 933 } 934 935 static int udf_load_metadata_files(struct super_block *sb, int partition) 936 { 937 struct udf_sb_info *sbi = UDF_SB(sb); 938 struct udf_part_map *map; 939 struct udf_meta_data *mdata; 940 struct kernel_lb_addr addr; 941 942 map = &sbi->s_partmaps[partition]; 943 mdata = &map->s_type_specific.s_metadata; 944 945 /* metadata address */ 946 udf_debug("Metadata file location: block = %d part = %d\n", 947 mdata->s_meta_file_loc, map->s_partition_num); 948 949 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 950 mdata->s_meta_file_loc, map->s_partition_num); 951 952 if (mdata->s_metadata_fe == NULL) { 953 /* mirror file entry */ 954 udf_debug("Mirror metadata file location: block = %d part = %d\n", 955 mdata->s_mirror_file_loc, map->s_partition_num); 956 957 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 958 mdata->s_mirror_file_loc, map->s_partition_num); 959 960 if (mdata->s_mirror_fe == NULL) { 961 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 962 return -EIO; 963 } 964 } 965 966 /* 967 * bitmap file entry 968 * Note: 969 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 970 */ 971 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 972 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 973 addr.partitionReferenceNum = map->s_partition_num; 974 975 udf_debug("Bitmap file location: block = %d part = %d\n", 976 addr.logicalBlockNum, addr.partitionReferenceNum); 977 978 mdata->s_bitmap_fe = udf_iget(sb, &addr); 979 if (mdata->s_bitmap_fe == NULL) { 980 if (sb->s_flags & MS_RDONLY) 981 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 982 else { 983 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 984 return -EIO; 985 } 986 } 987 } 988 989 udf_debug("udf_load_metadata_files Ok\n"); 990 return 0; 991 } 992 993 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 994 struct kernel_lb_addr *root) 995 { 996 struct fileSetDesc *fset; 997 998 fset = (struct fileSetDesc *)bh->b_data; 999 1000 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1001 1002 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1003 1004 udf_debug("Rootdir at block=%d, partition=%d\n", 1005 root->logicalBlockNum, root->partitionReferenceNum); 1006 } 1007 1008 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1009 { 1010 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1011 return DIV_ROUND_UP(map->s_partition_len + 1012 (sizeof(struct spaceBitmapDesc) << 3), 1013 sb->s_blocksize * 8); 1014 } 1015 1016 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1017 { 1018 struct udf_bitmap *bitmap; 1019 int nr_groups; 1020 int size; 1021 1022 nr_groups = udf_compute_nr_groups(sb, index); 1023 size = sizeof(struct udf_bitmap) + 1024 (sizeof(struct buffer_head *) * nr_groups); 1025 1026 if (size <= PAGE_SIZE) 1027 bitmap = kzalloc(size, GFP_KERNEL); 1028 else 1029 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1030 1031 if (bitmap == NULL) 1032 return NULL; 1033 1034 bitmap->s_nr_groups = nr_groups; 1035 return bitmap; 1036 } 1037 1038 static int udf_fill_partdesc_info(struct super_block *sb, 1039 struct partitionDesc *p, int p_index) 1040 { 1041 struct udf_part_map *map; 1042 struct udf_sb_info *sbi = UDF_SB(sb); 1043 struct partitionHeaderDesc *phd; 1044 1045 map = &sbi->s_partmaps[p_index]; 1046 1047 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1048 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1049 1050 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1051 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1052 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1053 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1054 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1055 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1056 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1057 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1058 1059 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1060 p_index, map->s_partition_type, 1061 map->s_partition_root, map->s_partition_len); 1062 1063 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1064 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1065 return 0; 1066 1067 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1068 if (phd->unallocSpaceTable.extLength) { 1069 struct kernel_lb_addr loc = { 1070 .logicalBlockNum = le32_to_cpu( 1071 phd->unallocSpaceTable.extPosition), 1072 .partitionReferenceNum = p_index, 1073 }; 1074 1075 map->s_uspace.s_table = udf_iget(sb, &loc); 1076 if (!map->s_uspace.s_table) { 1077 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1078 p_index); 1079 return -EIO; 1080 } 1081 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1082 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1083 p_index, map->s_uspace.s_table->i_ino); 1084 } 1085 1086 if (phd->unallocSpaceBitmap.extLength) { 1087 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1088 if (!bitmap) 1089 return -ENOMEM; 1090 map->s_uspace.s_bitmap = bitmap; 1091 bitmap->s_extPosition = le32_to_cpu( 1092 phd->unallocSpaceBitmap.extPosition); 1093 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1094 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1095 p_index, bitmap->s_extPosition); 1096 } 1097 1098 if (phd->partitionIntegrityTable.extLength) 1099 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1100 1101 if (phd->freedSpaceTable.extLength) { 1102 struct kernel_lb_addr loc = { 1103 .logicalBlockNum = le32_to_cpu( 1104 phd->freedSpaceTable.extPosition), 1105 .partitionReferenceNum = p_index, 1106 }; 1107 1108 map->s_fspace.s_table = udf_iget(sb, &loc); 1109 if (!map->s_fspace.s_table) { 1110 udf_debug("cannot load freedSpaceTable (part %d)\n", 1111 p_index); 1112 return -EIO; 1113 } 1114 1115 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1116 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1117 p_index, map->s_fspace.s_table->i_ino); 1118 } 1119 1120 if (phd->freedSpaceBitmap.extLength) { 1121 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1122 if (!bitmap) 1123 return -ENOMEM; 1124 map->s_fspace.s_bitmap = bitmap; 1125 bitmap->s_extPosition = le32_to_cpu( 1126 phd->freedSpaceBitmap.extPosition); 1127 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1128 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1129 p_index, bitmap->s_extPosition); 1130 } 1131 return 0; 1132 } 1133 1134 static void udf_find_vat_block(struct super_block *sb, int p_index, 1135 int type1_index, sector_t start_block) 1136 { 1137 struct udf_sb_info *sbi = UDF_SB(sb); 1138 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1139 sector_t vat_block; 1140 struct kernel_lb_addr ino; 1141 1142 /* 1143 * VAT file entry is in the last recorded block. Some broken disks have 1144 * it a few blocks before so try a bit harder... 1145 */ 1146 ino.partitionReferenceNum = type1_index; 1147 for (vat_block = start_block; 1148 vat_block >= map->s_partition_root && 1149 vat_block >= start_block - 3 && 1150 !sbi->s_vat_inode; vat_block--) { 1151 ino.logicalBlockNum = vat_block - map->s_partition_root; 1152 sbi->s_vat_inode = udf_iget(sb, &ino); 1153 } 1154 } 1155 1156 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1157 { 1158 struct udf_sb_info *sbi = UDF_SB(sb); 1159 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1160 struct buffer_head *bh = NULL; 1161 struct udf_inode_info *vati; 1162 uint32_t pos; 1163 struct virtualAllocationTable20 *vat20; 1164 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1165 1166 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1167 if (!sbi->s_vat_inode && 1168 sbi->s_last_block != blocks - 1) { 1169 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1170 (unsigned long)sbi->s_last_block, 1171 (unsigned long)blocks - 1); 1172 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1173 } 1174 if (!sbi->s_vat_inode) 1175 return -EIO; 1176 1177 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1178 map->s_type_specific.s_virtual.s_start_offset = 0; 1179 map->s_type_specific.s_virtual.s_num_entries = 1180 (sbi->s_vat_inode->i_size - 36) >> 2; 1181 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1182 vati = UDF_I(sbi->s_vat_inode); 1183 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1184 pos = udf_block_map(sbi->s_vat_inode, 0); 1185 bh = sb_bread(sb, pos); 1186 if (!bh) 1187 return -EIO; 1188 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1189 } else { 1190 vat20 = (struct virtualAllocationTable20 *) 1191 vati->i_ext.i_data; 1192 } 1193 1194 map->s_type_specific.s_virtual.s_start_offset = 1195 le16_to_cpu(vat20->lengthHeader); 1196 map->s_type_specific.s_virtual.s_num_entries = 1197 (sbi->s_vat_inode->i_size - 1198 map->s_type_specific.s_virtual. 1199 s_start_offset) >> 2; 1200 brelse(bh); 1201 } 1202 return 0; 1203 } 1204 1205 /* 1206 * Load partition descriptor block 1207 * 1208 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1209 * sequence. 1210 */ 1211 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1212 { 1213 struct buffer_head *bh; 1214 struct partitionDesc *p; 1215 struct udf_part_map *map; 1216 struct udf_sb_info *sbi = UDF_SB(sb); 1217 int i, type1_idx; 1218 uint16_t partitionNumber; 1219 uint16_t ident; 1220 int ret; 1221 1222 bh = udf_read_tagged(sb, block, block, &ident); 1223 if (!bh) 1224 return -EAGAIN; 1225 if (ident != TAG_IDENT_PD) { 1226 ret = 0; 1227 goto out_bh; 1228 } 1229 1230 p = (struct partitionDesc *)bh->b_data; 1231 partitionNumber = le16_to_cpu(p->partitionNumber); 1232 1233 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1234 for (i = 0; i < sbi->s_partitions; i++) { 1235 map = &sbi->s_partmaps[i]; 1236 udf_debug("Searching map: (%d == %d)\n", 1237 map->s_partition_num, partitionNumber); 1238 if (map->s_partition_num == partitionNumber && 1239 (map->s_partition_type == UDF_TYPE1_MAP15 || 1240 map->s_partition_type == UDF_SPARABLE_MAP15)) 1241 break; 1242 } 1243 1244 if (i >= sbi->s_partitions) { 1245 udf_debug("Partition (%d) not found in partition map\n", 1246 partitionNumber); 1247 ret = 0; 1248 goto out_bh; 1249 } 1250 1251 ret = udf_fill_partdesc_info(sb, p, i); 1252 if (ret < 0) 1253 goto out_bh; 1254 1255 /* 1256 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1257 * PHYSICAL partitions are already set up 1258 */ 1259 type1_idx = i; 1260 for (i = 0; i < sbi->s_partitions; i++) { 1261 map = &sbi->s_partmaps[i]; 1262 1263 if (map->s_partition_num == partitionNumber && 1264 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1265 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1266 map->s_partition_type == UDF_METADATA_MAP25)) 1267 break; 1268 } 1269 1270 if (i >= sbi->s_partitions) { 1271 ret = 0; 1272 goto out_bh; 1273 } 1274 1275 ret = udf_fill_partdesc_info(sb, p, i); 1276 if (ret < 0) 1277 goto out_bh; 1278 1279 if (map->s_partition_type == UDF_METADATA_MAP25) { 1280 ret = udf_load_metadata_files(sb, i); 1281 if (ret < 0) { 1282 udf_err(sb, "error loading MetaData partition map %d\n", 1283 i); 1284 goto out_bh; 1285 } 1286 } else { 1287 /* 1288 * If we have a partition with virtual map, we don't handle 1289 * writing to it (we overwrite blocks instead of relocating 1290 * them). 1291 */ 1292 if (!(sb->s_flags & MS_RDONLY)) { 1293 ret = -EACCES; 1294 goto out_bh; 1295 } 1296 ret = udf_load_vat(sb, i, type1_idx); 1297 if (ret < 0) 1298 goto out_bh; 1299 } 1300 ret = 0; 1301 out_bh: 1302 /* In case loading failed, we handle cleanup in udf_fill_super */ 1303 brelse(bh); 1304 return ret; 1305 } 1306 1307 static int udf_load_sparable_map(struct super_block *sb, 1308 struct udf_part_map *map, 1309 struct sparablePartitionMap *spm) 1310 { 1311 uint32_t loc; 1312 uint16_t ident; 1313 struct sparingTable *st; 1314 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1315 int i; 1316 struct buffer_head *bh; 1317 1318 map->s_partition_type = UDF_SPARABLE_MAP15; 1319 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1320 if (!is_power_of_2(sdata->s_packet_len)) { 1321 udf_err(sb, "error loading logical volume descriptor: " 1322 "Invalid packet length %u\n", 1323 (unsigned)sdata->s_packet_len); 1324 return -EIO; 1325 } 1326 if (spm->numSparingTables > 4) { 1327 udf_err(sb, "error loading logical volume descriptor: " 1328 "Too many sparing tables (%d)\n", 1329 (int)spm->numSparingTables); 1330 return -EIO; 1331 } 1332 1333 for (i = 0; i < spm->numSparingTables; i++) { 1334 loc = le32_to_cpu(spm->locSparingTable[i]); 1335 bh = udf_read_tagged(sb, loc, loc, &ident); 1336 if (!bh) 1337 continue; 1338 1339 st = (struct sparingTable *)bh->b_data; 1340 if (ident != 0 || 1341 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1342 strlen(UDF_ID_SPARING)) || 1343 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1344 sb->s_blocksize) { 1345 brelse(bh); 1346 continue; 1347 } 1348 1349 sdata->s_spar_map[i] = bh; 1350 } 1351 map->s_partition_func = udf_get_pblock_spar15; 1352 return 0; 1353 } 1354 1355 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1356 struct kernel_lb_addr *fileset) 1357 { 1358 struct logicalVolDesc *lvd; 1359 int i, offset; 1360 uint8_t type; 1361 struct udf_sb_info *sbi = UDF_SB(sb); 1362 struct genericPartitionMap *gpm; 1363 uint16_t ident; 1364 struct buffer_head *bh; 1365 unsigned int table_len; 1366 int ret; 1367 1368 bh = udf_read_tagged(sb, block, block, &ident); 1369 if (!bh) 1370 return -EAGAIN; 1371 BUG_ON(ident != TAG_IDENT_LVD); 1372 lvd = (struct logicalVolDesc *)bh->b_data; 1373 table_len = le32_to_cpu(lvd->mapTableLength); 1374 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1375 udf_err(sb, "error loading logical volume descriptor: " 1376 "Partition table too long (%u > %lu)\n", table_len, 1377 sb->s_blocksize - sizeof(*lvd)); 1378 ret = -EIO; 1379 goto out_bh; 1380 } 1381 1382 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1383 if (ret) 1384 goto out_bh; 1385 1386 for (i = 0, offset = 0; 1387 i < sbi->s_partitions && offset < table_len; 1388 i++, offset += gpm->partitionMapLength) { 1389 struct udf_part_map *map = &sbi->s_partmaps[i]; 1390 gpm = (struct genericPartitionMap *) 1391 &(lvd->partitionMaps[offset]); 1392 type = gpm->partitionMapType; 1393 if (type == 1) { 1394 struct genericPartitionMap1 *gpm1 = 1395 (struct genericPartitionMap1 *)gpm; 1396 map->s_partition_type = UDF_TYPE1_MAP15; 1397 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1398 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1399 map->s_partition_func = NULL; 1400 } else if (type == 2) { 1401 struct udfPartitionMap2 *upm2 = 1402 (struct udfPartitionMap2 *)gpm; 1403 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1404 strlen(UDF_ID_VIRTUAL))) { 1405 u16 suf = 1406 le16_to_cpu(((__le16 *)upm2->partIdent. 1407 identSuffix)[0]); 1408 if (suf < 0x0200) { 1409 map->s_partition_type = 1410 UDF_VIRTUAL_MAP15; 1411 map->s_partition_func = 1412 udf_get_pblock_virt15; 1413 } else { 1414 map->s_partition_type = 1415 UDF_VIRTUAL_MAP20; 1416 map->s_partition_func = 1417 udf_get_pblock_virt20; 1418 } 1419 } else if (!strncmp(upm2->partIdent.ident, 1420 UDF_ID_SPARABLE, 1421 strlen(UDF_ID_SPARABLE))) { 1422 ret = udf_load_sparable_map(sb, map, 1423 (struct sparablePartitionMap *)gpm); 1424 if (ret < 0) 1425 goto out_bh; 1426 } else if (!strncmp(upm2->partIdent.ident, 1427 UDF_ID_METADATA, 1428 strlen(UDF_ID_METADATA))) { 1429 struct udf_meta_data *mdata = 1430 &map->s_type_specific.s_metadata; 1431 struct metadataPartitionMap *mdm = 1432 (struct metadataPartitionMap *) 1433 &(lvd->partitionMaps[offset]); 1434 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1435 i, type, UDF_ID_METADATA); 1436 1437 map->s_partition_type = UDF_METADATA_MAP25; 1438 map->s_partition_func = udf_get_pblock_meta25; 1439 1440 mdata->s_meta_file_loc = 1441 le32_to_cpu(mdm->metadataFileLoc); 1442 mdata->s_mirror_file_loc = 1443 le32_to_cpu(mdm->metadataMirrorFileLoc); 1444 mdata->s_bitmap_file_loc = 1445 le32_to_cpu(mdm->metadataBitmapFileLoc); 1446 mdata->s_alloc_unit_size = 1447 le32_to_cpu(mdm->allocUnitSize); 1448 mdata->s_align_unit_size = 1449 le16_to_cpu(mdm->alignUnitSize); 1450 if (mdm->flags & 0x01) 1451 mdata->s_flags |= MF_DUPLICATE_MD; 1452 1453 udf_debug("Metadata Ident suffix=0x%x\n", 1454 le16_to_cpu(*(__le16 *) 1455 mdm->partIdent.identSuffix)); 1456 udf_debug("Metadata part num=%d\n", 1457 le16_to_cpu(mdm->partitionNum)); 1458 udf_debug("Metadata part alloc unit size=%d\n", 1459 le32_to_cpu(mdm->allocUnitSize)); 1460 udf_debug("Metadata file loc=%d\n", 1461 le32_to_cpu(mdm->metadataFileLoc)); 1462 udf_debug("Mirror file loc=%d\n", 1463 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1464 udf_debug("Bitmap file loc=%d\n", 1465 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1466 udf_debug("Flags: %d %d\n", 1467 mdata->s_flags, mdm->flags); 1468 } else { 1469 udf_debug("Unknown ident: %s\n", 1470 upm2->partIdent.ident); 1471 continue; 1472 } 1473 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1474 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1475 } 1476 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1477 i, map->s_partition_num, type, map->s_volumeseqnum); 1478 } 1479 1480 if (fileset) { 1481 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1482 1483 *fileset = lelb_to_cpu(la->extLocation); 1484 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1485 fileset->logicalBlockNum, 1486 fileset->partitionReferenceNum); 1487 } 1488 if (lvd->integritySeqExt.extLength) 1489 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1490 ret = 0; 1491 out_bh: 1492 brelse(bh); 1493 return ret; 1494 } 1495 1496 /* 1497 * udf_load_logicalvolint 1498 * 1499 */ 1500 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1501 { 1502 struct buffer_head *bh = NULL; 1503 uint16_t ident; 1504 struct udf_sb_info *sbi = UDF_SB(sb); 1505 struct logicalVolIntegrityDesc *lvid; 1506 1507 while (loc.extLength > 0 && 1508 (bh = udf_read_tagged(sb, loc.extLocation, 1509 loc.extLocation, &ident)) && 1510 ident == TAG_IDENT_LVID) { 1511 sbi->s_lvid_bh = bh; 1512 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1513 1514 if (lvid->nextIntegrityExt.extLength) 1515 udf_load_logicalvolint(sb, 1516 leea_to_cpu(lvid->nextIntegrityExt)); 1517 1518 if (sbi->s_lvid_bh != bh) 1519 brelse(bh); 1520 loc.extLength -= sb->s_blocksize; 1521 loc.extLocation++; 1522 } 1523 if (sbi->s_lvid_bh != bh) 1524 brelse(bh); 1525 } 1526 1527 /* 1528 * Process a main/reserve volume descriptor sequence. 1529 * @block First block of first extent of the sequence. 1530 * @lastblock Lastblock of first extent of the sequence. 1531 * @fileset There we store extent containing root fileset 1532 * 1533 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1534 * sequence 1535 */ 1536 static noinline int udf_process_sequence( 1537 struct super_block *sb, 1538 sector_t block, sector_t lastblock, 1539 struct kernel_lb_addr *fileset) 1540 { 1541 struct buffer_head *bh = NULL; 1542 struct udf_vds_record vds[VDS_POS_LENGTH]; 1543 struct udf_vds_record *curr; 1544 struct generic_desc *gd; 1545 struct volDescPtr *vdp; 1546 int done = 0; 1547 uint32_t vdsn; 1548 uint16_t ident; 1549 long next_s = 0, next_e = 0; 1550 int ret; 1551 1552 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1553 1554 /* 1555 * Read the main descriptor sequence and find which descriptors 1556 * are in it. 1557 */ 1558 for (; (!done && block <= lastblock); block++) { 1559 1560 bh = udf_read_tagged(sb, block, block, &ident); 1561 if (!bh) { 1562 udf_err(sb, 1563 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1564 (unsigned long long)block); 1565 return -EAGAIN; 1566 } 1567 1568 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1569 gd = (struct generic_desc *)bh->b_data; 1570 vdsn = le32_to_cpu(gd->volDescSeqNum); 1571 switch (ident) { 1572 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1573 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1574 if (vdsn >= curr->volDescSeqNum) { 1575 curr->volDescSeqNum = vdsn; 1576 curr->block = block; 1577 } 1578 break; 1579 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1580 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1581 if (vdsn >= curr->volDescSeqNum) { 1582 curr->volDescSeqNum = vdsn; 1583 curr->block = block; 1584 1585 vdp = (struct volDescPtr *)bh->b_data; 1586 next_s = le32_to_cpu( 1587 vdp->nextVolDescSeqExt.extLocation); 1588 next_e = le32_to_cpu( 1589 vdp->nextVolDescSeqExt.extLength); 1590 next_e = next_e >> sb->s_blocksize_bits; 1591 next_e += next_s; 1592 } 1593 break; 1594 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1595 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1596 if (vdsn >= curr->volDescSeqNum) { 1597 curr->volDescSeqNum = vdsn; 1598 curr->block = block; 1599 } 1600 break; 1601 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1602 curr = &vds[VDS_POS_PARTITION_DESC]; 1603 if (!curr->block) 1604 curr->block = block; 1605 break; 1606 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1607 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1608 if (vdsn >= curr->volDescSeqNum) { 1609 curr->volDescSeqNum = vdsn; 1610 curr->block = block; 1611 } 1612 break; 1613 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1614 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1615 if (vdsn >= curr->volDescSeqNum) { 1616 curr->volDescSeqNum = vdsn; 1617 curr->block = block; 1618 } 1619 break; 1620 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1621 vds[VDS_POS_TERMINATING_DESC].block = block; 1622 if (next_e) { 1623 block = next_s; 1624 lastblock = next_e; 1625 next_s = next_e = 0; 1626 } else 1627 done = 1; 1628 break; 1629 } 1630 brelse(bh); 1631 } 1632 /* 1633 * Now read interesting descriptors again and process them 1634 * in a suitable order 1635 */ 1636 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1637 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1638 return -EAGAIN; 1639 } 1640 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1641 if (ret < 0) 1642 return ret; 1643 1644 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1645 ret = udf_load_logicalvol(sb, 1646 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1647 fileset); 1648 if (ret < 0) 1649 return ret; 1650 } 1651 1652 if (vds[VDS_POS_PARTITION_DESC].block) { 1653 /* 1654 * We rescan the whole descriptor sequence to find 1655 * partition descriptor blocks and process them. 1656 */ 1657 for (block = vds[VDS_POS_PARTITION_DESC].block; 1658 block < vds[VDS_POS_TERMINATING_DESC].block; 1659 block++) { 1660 ret = udf_load_partdesc(sb, block); 1661 if (ret < 0) 1662 return ret; 1663 } 1664 } 1665 1666 return 0; 1667 } 1668 1669 /* 1670 * Load Volume Descriptor Sequence described by anchor in bh 1671 * 1672 * Returns <0 on error, 0 on success 1673 */ 1674 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1675 struct kernel_lb_addr *fileset) 1676 { 1677 struct anchorVolDescPtr *anchor; 1678 sector_t main_s, main_e, reserve_s, reserve_e; 1679 int ret; 1680 1681 anchor = (struct anchorVolDescPtr *)bh->b_data; 1682 1683 /* Locate the main sequence */ 1684 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1685 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1686 main_e = main_e >> sb->s_blocksize_bits; 1687 main_e += main_s; 1688 1689 /* Locate the reserve sequence */ 1690 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1691 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1692 reserve_e = reserve_e >> sb->s_blocksize_bits; 1693 reserve_e += reserve_s; 1694 1695 /* Process the main & reserve sequences */ 1696 /* responsible for finding the PartitionDesc(s) */ 1697 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1698 if (ret != -EAGAIN) 1699 return ret; 1700 udf_sb_free_partitions(sb); 1701 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1702 if (ret < 0) { 1703 udf_sb_free_partitions(sb); 1704 /* No sequence was OK, return -EIO */ 1705 if (ret == -EAGAIN) 1706 ret = -EIO; 1707 } 1708 return ret; 1709 } 1710 1711 /* 1712 * Check whether there is an anchor block in the given block and 1713 * load Volume Descriptor Sequence if so. 1714 * 1715 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1716 * block 1717 */ 1718 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1719 struct kernel_lb_addr *fileset) 1720 { 1721 struct buffer_head *bh; 1722 uint16_t ident; 1723 int ret; 1724 1725 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1726 udf_fixed_to_variable(block) >= 1727 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1728 return -EAGAIN; 1729 1730 bh = udf_read_tagged(sb, block, block, &ident); 1731 if (!bh) 1732 return -EAGAIN; 1733 if (ident != TAG_IDENT_AVDP) { 1734 brelse(bh); 1735 return -EAGAIN; 1736 } 1737 ret = udf_load_sequence(sb, bh, fileset); 1738 brelse(bh); 1739 return ret; 1740 } 1741 1742 /* 1743 * Search for an anchor volume descriptor pointer. 1744 * 1745 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1746 * of anchors. 1747 */ 1748 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1749 struct kernel_lb_addr *fileset) 1750 { 1751 sector_t last[6]; 1752 int i; 1753 struct udf_sb_info *sbi = UDF_SB(sb); 1754 int last_count = 0; 1755 int ret; 1756 1757 /* First try user provided anchor */ 1758 if (sbi->s_anchor) { 1759 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1760 if (ret != -EAGAIN) 1761 return ret; 1762 } 1763 /* 1764 * according to spec, anchor is in either: 1765 * block 256 1766 * lastblock-256 1767 * lastblock 1768 * however, if the disc isn't closed, it could be 512. 1769 */ 1770 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1771 if (ret != -EAGAIN) 1772 return ret; 1773 /* 1774 * The trouble is which block is the last one. Drives often misreport 1775 * this so we try various possibilities. 1776 */ 1777 last[last_count++] = *lastblock; 1778 if (*lastblock >= 1) 1779 last[last_count++] = *lastblock - 1; 1780 last[last_count++] = *lastblock + 1; 1781 if (*lastblock >= 2) 1782 last[last_count++] = *lastblock - 2; 1783 if (*lastblock >= 150) 1784 last[last_count++] = *lastblock - 150; 1785 if (*lastblock >= 152) 1786 last[last_count++] = *lastblock - 152; 1787 1788 for (i = 0; i < last_count; i++) { 1789 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1790 sb->s_blocksize_bits) 1791 continue; 1792 ret = udf_check_anchor_block(sb, last[i], fileset); 1793 if (ret != -EAGAIN) { 1794 if (!ret) 1795 *lastblock = last[i]; 1796 return ret; 1797 } 1798 if (last[i] < 256) 1799 continue; 1800 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1801 if (ret != -EAGAIN) { 1802 if (!ret) 1803 *lastblock = last[i]; 1804 return ret; 1805 } 1806 } 1807 1808 /* Finally try block 512 in case media is open */ 1809 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1810 } 1811 1812 /* 1813 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1814 * area specified by it. The function expects sbi->s_lastblock to be the last 1815 * block on the media. 1816 * 1817 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1818 * was not found. 1819 */ 1820 static int udf_find_anchor(struct super_block *sb, 1821 struct kernel_lb_addr *fileset) 1822 { 1823 struct udf_sb_info *sbi = UDF_SB(sb); 1824 sector_t lastblock = sbi->s_last_block; 1825 int ret; 1826 1827 ret = udf_scan_anchors(sb, &lastblock, fileset); 1828 if (ret != -EAGAIN) 1829 goto out; 1830 1831 /* No anchor found? Try VARCONV conversion of block numbers */ 1832 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1833 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1834 /* Firstly, we try to not convert number of the last block */ 1835 ret = udf_scan_anchors(sb, &lastblock, fileset); 1836 if (ret != -EAGAIN) 1837 goto out; 1838 1839 lastblock = sbi->s_last_block; 1840 /* Secondly, we try with converted number of the last block */ 1841 ret = udf_scan_anchors(sb, &lastblock, fileset); 1842 if (ret < 0) { 1843 /* VARCONV didn't help. Clear it. */ 1844 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1845 } 1846 out: 1847 if (ret == 0) 1848 sbi->s_last_block = lastblock; 1849 return ret; 1850 } 1851 1852 /* 1853 * Check Volume Structure Descriptor, find Anchor block and load Volume 1854 * Descriptor Sequence. 1855 * 1856 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1857 * block was not found. 1858 */ 1859 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1860 int silent, struct kernel_lb_addr *fileset) 1861 { 1862 struct udf_sb_info *sbi = UDF_SB(sb); 1863 loff_t nsr_off; 1864 int ret; 1865 1866 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1867 if (!silent) 1868 udf_warn(sb, "Bad block size\n"); 1869 return -EINVAL; 1870 } 1871 sbi->s_last_block = uopt->lastblock; 1872 if (!uopt->novrs) { 1873 /* Check that it is NSR02 compliant */ 1874 nsr_off = udf_check_vsd(sb); 1875 if (!nsr_off) { 1876 if (!silent) 1877 udf_warn(sb, "No VRS found\n"); 1878 return 0; 1879 } 1880 if (nsr_off == -1) 1881 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1882 if (!sbi->s_last_block) 1883 sbi->s_last_block = udf_get_last_block(sb); 1884 } else { 1885 udf_debug("Validity check skipped because of novrs option\n"); 1886 } 1887 1888 /* Look for anchor block and load Volume Descriptor Sequence */ 1889 sbi->s_anchor = uopt->anchor; 1890 ret = udf_find_anchor(sb, fileset); 1891 if (ret < 0) { 1892 if (!silent && ret == -EAGAIN) 1893 udf_warn(sb, "No anchor found\n"); 1894 return ret; 1895 } 1896 return 0; 1897 } 1898 1899 static void udf_open_lvid(struct super_block *sb) 1900 { 1901 struct udf_sb_info *sbi = UDF_SB(sb); 1902 struct buffer_head *bh = sbi->s_lvid_bh; 1903 struct logicalVolIntegrityDesc *lvid; 1904 struct logicalVolIntegrityDescImpUse *lvidiu; 1905 1906 if (!bh) 1907 return; 1908 1909 mutex_lock(&sbi->s_alloc_mutex); 1910 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1911 lvidiu = udf_sb_lvidiu(sbi); 1912 1913 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1914 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1915 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1916 CURRENT_TIME); 1917 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1918 1919 lvid->descTag.descCRC = cpu_to_le16( 1920 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1921 le16_to_cpu(lvid->descTag.descCRCLength))); 1922 1923 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1924 mark_buffer_dirty(bh); 1925 sbi->s_lvid_dirty = 0; 1926 mutex_unlock(&sbi->s_alloc_mutex); 1927 /* Make opening of filesystem visible on the media immediately */ 1928 sync_dirty_buffer(bh); 1929 } 1930 1931 static void udf_close_lvid(struct super_block *sb) 1932 { 1933 struct udf_sb_info *sbi = UDF_SB(sb); 1934 struct buffer_head *bh = sbi->s_lvid_bh; 1935 struct logicalVolIntegrityDesc *lvid; 1936 struct logicalVolIntegrityDescImpUse *lvidiu; 1937 1938 if (!bh) 1939 return; 1940 1941 mutex_lock(&sbi->s_alloc_mutex); 1942 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1943 lvidiu = udf_sb_lvidiu(sbi); 1944 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1945 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1946 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1947 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1948 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1949 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1950 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1951 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1952 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1953 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1954 1955 lvid->descTag.descCRC = cpu_to_le16( 1956 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1957 le16_to_cpu(lvid->descTag.descCRCLength))); 1958 1959 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1960 /* 1961 * We set buffer uptodate unconditionally here to avoid spurious 1962 * warnings from mark_buffer_dirty() when previous EIO has marked 1963 * the buffer as !uptodate 1964 */ 1965 set_buffer_uptodate(bh); 1966 mark_buffer_dirty(bh); 1967 sbi->s_lvid_dirty = 0; 1968 mutex_unlock(&sbi->s_alloc_mutex); 1969 /* Make closing of filesystem visible on the media immediately */ 1970 sync_dirty_buffer(bh); 1971 } 1972 1973 u64 lvid_get_unique_id(struct super_block *sb) 1974 { 1975 struct buffer_head *bh; 1976 struct udf_sb_info *sbi = UDF_SB(sb); 1977 struct logicalVolIntegrityDesc *lvid; 1978 struct logicalVolHeaderDesc *lvhd; 1979 u64 uniqueID; 1980 u64 ret; 1981 1982 bh = sbi->s_lvid_bh; 1983 if (!bh) 1984 return 0; 1985 1986 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1987 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1988 1989 mutex_lock(&sbi->s_alloc_mutex); 1990 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1991 if (!(++uniqueID & 0xFFFFFFFF)) 1992 uniqueID += 16; 1993 lvhd->uniqueID = cpu_to_le64(uniqueID); 1994 mutex_unlock(&sbi->s_alloc_mutex); 1995 mark_buffer_dirty(bh); 1996 1997 return ret; 1998 } 1999 2000 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2001 { 2002 int ret = -EINVAL; 2003 struct inode *inode = NULL; 2004 struct udf_options uopt; 2005 struct kernel_lb_addr rootdir, fileset; 2006 struct udf_sb_info *sbi; 2007 2008 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2009 uopt.uid = INVALID_UID; 2010 uopt.gid = INVALID_GID; 2011 uopt.umask = 0; 2012 uopt.fmode = UDF_INVALID_MODE; 2013 uopt.dmode = UDF_INVALID_MODE; 2014 2015 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2016 if (!sbi) 2017 return -ENOMEM; 2018 2019 sb->s_fs_info = sbi; 2020 2021 mutex_init(&sbi->s_alloc_mutex); 2022 2023 if (!udf_parse_options((char *)options, &uopt, false)) 2024 goto error_out; 2025 2026 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2027 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2028 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2029 goto error_out; 2030 } 2031 #ifdef CONFIG_UDF_NLS 2032 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2033 uopt.nls_map = load_nls_default(); 2034 if (!uopt.nls_map) 2035 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2036 else 2037 udf_debug("Using default NLS map\n"); 2038 } 2039 #endif 2040 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2041 uopt.flags |= (1 << UDF_FLAG_UTF8); 2042 2043 fileset.logicalBlockNum = 0xFFFFFFFF; 2044 fileset.partitionReferenceNum = 0xFFFF; 2045 2046 sbi->s_flags = uopt.flags; 2047 sbi->s_uid = uopt.uid; 2048 sbi->s_gid = uopt.gid; 2049 sbi->s_umask = uopt.umask; 2050 sbi->s_fmode = uopt.fmode; 2051 sbi->s_dmode = uopt.dmode; 2052 sbi->s_nls_map = uopt.nls_map; 2053 rwlock_init(&sbi->s_cred_lock); 2054 2055 if (uopt.session == 0xFFFFFFFF) 2056 sbi->s_session = udf_get_last_session(sb); 2057 else 2058 sbi->s_session = uopt.session; 2059 2060 udf_debug("Multi-session=%d\n", sbi->s_session); 2061 2062 /* Fill in the rest of the superblock */ 2063 sb->s_op = &udf_sb_ops; 2064 sb->s_export_op = &udf_export_ops; 2065 2066 sb->s_magic = UDF_SUPER_MAGIC; 2067 sb->s_time_gran = 1000; 2068 2069 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2070 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2071 } else { 2072 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2073 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2074 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2075 if (!silent) 2076 pr_notice("Rescanning with blocksize %d\n", 2077 UDF_DEFAULT_BLOCKSIZE); 2078 brelse(sbi->s_lvid_bh); 2079 sbi->s_lvid_bh = NULL; 2080 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2081 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2082 } 2083 } 2084 if (ret < 0) { 2085 if (ret == -EAGAIN) { 2086 udf_warn(sb, "No partition found (1)\n"); 2087 ret = -EINVAL; 2088 } 2089 goto error_out; 2090 } 2091 2092 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2093 2094 if (sbi->s_lvid_bh) { 2095 struct logicalVolIntegrityDescImpUse *lvidiu = 2096 udf_sb_lvidiu(sbi); 2097 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2098 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2099 /* uint16_t maxUDFWriteRev = 2100 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 2101 2102 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2103 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2104 le16_to_cpu(lvidiu->minUDFReadRev), 2105 UDF_MAX_READ_VERSION); 2106 ret = -EINVAL; 2107 goto error_out; 2108 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2109 !(sb->s_flags & MS_RDONLY)) { 2110 ret = -EACCES; 2111 goto error_out; 2112 } 2113 2114 sbi->s_udfrev = minUDFWriteRev; 2115 2116 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2117 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2118 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2119 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2120 } 2121 2122 if (!sbi->s_partitions) { 2123 udf_warn(sb, "No partition found (2)\n"); 2124 ret = -EINVAL; 2125 goto error_out; 2126 } 2127 2128 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2129 UDF_PART_FLAG_READ_ONLY && 2130 !(sb->s_flags & MS_RDONLY)) { 2131 ret = -EACCES; 2132 goto error_out; 2133 } 2134 2135 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2136 udf_warn(sb, "No fileset found\n"); 2137 ret = -EINVAL; 2138 goto error_out; 2139 } 2140 2141 if (!silent) { 2142 struct timestamp ts; 2143 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2144 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2145 sbi->s_volume_ident, 2146 le16_to_cpu(ts.year), ts.month, ts.day, 2147 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2148 } 2149 if (!(sb->s_flags & MS_RDONLY)) 2150 udf_open_lvid(sb); 2151 2152 /* Assign the root inode */ 2153 /* assign inodes by physical block number */ 2154 /* perhaps it's not extensible enough, but for now ... */ 2155 inode = udf_iget(sb, &rootdir); 2156 if (!inode) { 2157 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2158 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2159 ret = -EIO; 2160 goto error_out; 2161 } 2162 2163 /* Allocate a dentry for the root inode */ 2164 sb->s_root = d_make_root(inode); 2165 if (!sb->s_root) { 2166 udf_err(sb, "Couldn't allocate root dentry\n"); 2167 ret = -ENOMEM; 2168 goto error_out; 2169 } 2170 sb->s_maxbytes = MAX_LFS_FILESIZE; 2171 sb->s_max_links = UDF_MAX_LINKS; 2172 return 0; 2173 2174 error_out: 2175 if (sbi->s_vat_inode) 2176 iput(sbi->s_vat_inode); 2177 #ifdef CONFIG_UDF_NLS 2178 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2179 unload_nls(sbi->s_nls_map); 2180 #endif 2181 if (!(sb->s_flags & MS_RDONLY)) 2182 udf_close_lvid(sb); 2183 brelse(sbi->s_lvid_bh); 2184 udf_sb_free_partitions(sb); 2185 kfree(sbi); 2186 sb->s_fs_info = NULL; 2187 2188 return ret; 2189 } 2190 2191 void _udf_err(struct super_block *sb, const char *function, 2192 const char *fmt, ...) 2193 { 2194 struct va_format vaf; 2195 va_list args; 2196 2197 va_start(args, fmt); 2198 2199 vaf.fmt = fmt; 2200 vaf.va = &args; 2201 2202 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2203 2204 va_end(args); 2205 } 2206 2207 void _udf_warn(struct super_block *sb, const char *function, 2208 const char *fmt, ...) 2209 { 2210 struct va_format vaf; 2211 va_list args; 2212 2213 va_start(args, fmt); 2214 2215 vaf.fmt = fmt; 2216 vaf.va = &args; 2217 2218 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2219 2220 va_end(args); 2221 } 2222 2223 static void udf_put_super(struct super_block *sb) 2224 { 2225 struct udf_sb_info *sbi; 2226 2227 sbi = UDF_SB(sb); 2228 2229 if (sbi->s_vat_inode) 2230 iput(sbi->s_vat_inode); 2231 #ifdef CONFIG_UDF_NLS 2232 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2233 unload_nls(sbi->s_nls_map); 2234 #endif 2235 if (!(sb->s_flags & MS_RDONLY)) 2236 udf_close_lvid(sb); 2237 brelse(sbi->s_lvid_bh); 2238 udf_sb_free_partitions(sb); 2239 kfree(sb->s_fs_info); 2240 sb->s_fs_info = NULL; 2241 } 2242 2243 static int udf_sync_fs(struct super_block *sb, int wait) 2244 { 2245 struct udf_sb_info *sbi = UDF_SB(sb); 2246 2247 mutex_lock(&sbi->s_alloc_mutex); 2248 if (sbi->s_lvid_dirty) { 2249 /* 2250 * Blockdevice will be synced later so we don't have to submit 2251 * the buffer for IO 2252 */ 2253 mark_buffer_dirty(sbi->s_lvid_bh); 2254 sbi->s_lvid_dirty = 0; 2255 } 2256 mutex_unlock(&sbi->s_alloc_mutex); 2257 2258 return 0; 2259 } 2260 2261 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2262 { 2263 struct super_block *sb = dentry->d_sb; 2264 struct udf_sb_info *sbi = UDF_SB(sb); 2265 struct logicalVolIntegrityDescImpUse *lvidiu; 2266 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2267 2268 if (sbi->s_lvid_bh != NULL) 2269 lvidiu = udf_sb_lvidiu(sbi); 2270 else 2271 lvidiu = NULL; 2272 2273 buf->f_type = UDF_SUPER_MAGIC; 2274 buf->f_bsize = sb->s_blocksize; 2275 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2276 buf->f_bfree = udf_count_free(sb); 2277 buf->f_bavail = buf->f_bfree; 2278 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2279 le32_to_cpu(lvidiu->numDirs)) : 0) 2280 + buf->f_bfree; 2281 buf->f_ffree = buf->f_bfree; 2282 buf->f_namelen = UDF_NAME_LEN - 2; 2283 buf->f_fsid.val[0] = (u32)id; 2284 buf->f_fsid.val[1] = (u32)(id >> 32); 2285 2286 return 0; 2287 } 2288 2289 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2290 struct udf_bitmap *bitmap) 2291 { 2292 struct buffer_head *bh = NULL; 2293 unsigned int accum = 0; 2294 int index; 2295 int block = 0, newblock; 2296 struct kernel_lb_addr loc; 2297 uint32_t bytes; 2298 uint8_t *ptr; 2299 uint16_t ident; 2300 struct spaceBitmapDesc *bm; 2301 2302 loc.logicalBlockNum = bitmap->s_extPosition; 2303 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2304 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2305 2306 if (!bh) { 2307 udf_err(sb, "udf_count_free failed\n"); 2308 goto out; 2309 } else if (ident != TAG_IDENT_SBD) { 2310 brelse(bh); 2311 udf_err(sb, "udf_count_free failed\n"); 2312 goto out; 2313 } 2314 2315 bm = (struct spaceBitmapDesc *)bh->b_data; 2316 bytes = le32_to_cpu(bm->numOfBytes); 2317 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2318 ptr = (uint8_t *)bh->b_data; 2319 2320 while (bytes > 0) { 2321 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2322 accum += bitmap_weight((const unsigned long *)(ptr + index), 2323 cur_bytes * 8); 2324 bytes -= cur_bytes; 2325 if (bytes) { 2326 brelse(bh); 2327 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2328 bh = udf_tread(sb, newblock); 2329 if (!bh) { 2330 udf_debug("read failed\n"); 2331 goto out; 2332 } 2333 index = 0; 2334 ptr = (uint8_t *)bh->b_data; 2335 } 2336 } 2337 brelse(bh); 2338 out: 2339 return accum; 2340 } 2341 2342 static unsigned int udf_count_free_table(struct super_block *sb, 2343 struct inode *table) 2344 { 2345 unsigned int accum = 0; 2346 uint32_t elen; 2347 struct kernel_lb_addr eloc; 2348 int8_t etype; 2349 struct extent_position epos; 2350 2351 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2352 epos.block = UDF_I(table)->i_location; 2353 epos.offset = sizeof(struct unallocSpaceEntry); 2354 epos.bh = NULL; 2355 2356 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2357 accum += (elen >> table->i_sb->s_blocksize_bits); 2358 2359 brelse(epos.bh); 2360 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2361 2362 return accum; 2363 } 2364 2365 static unsigned int udf_count_free(struct super_block *sb) 2366 { 2367 unsigned int accum = 0; 2368 struct udf_sb_info *sbi; 2369 struct udf_part_map *map; 2370 2371 sbi = UDF_SB(sb); 2372 if (sbi->s_lvid_bh) { 2373 struct logicalVolIntegrityDesc *lvid = 2374 (struct logicalVolIntegrityDesc *) 2375 sbi->s_lvid_bh->b_data; 2376 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2377 accum = le32_to_cpu( 2378 lvid->freeSpaceTable[sbi->s_partition]); 2379 if (accum == 0xFFFFFFFF) 2380 accum = 0; 2381 } 2382 } 2383 2384 if (accum) 2385 return accum; 2386 2387 map = &sbi->s_partmaps[sbi->s_partition]; 2388 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2389 accum += udf_count_free_bitmap(sb, 2390 map->s_uspace.s_bitmap); 2391 } 2392 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2393 accum += udf_count_free_bitmap(sb, 2394 map->s_fspace.s_bitmap); 2395 } 2396 if (accum) 2397 return accum; 2398 2399 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2400 accum += udf_count_free_table(sb, 2401 map->s_uspace.s_table); 2402 } 2403 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2404 accum += udf_count_free_table(sb, 2405 map->s_fspace.s_table); 2406 } 2407 2408 return accum; 2409 } 2410