xref: /openbmc/linux/fs/udf/super.c (revision 5bd8e16d)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 	struct logicalVolIntegrityDesc *lvid =
100 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 	__u32 offset = number_of_partitions * 2 *
103 				sizeof(uint32_t)/sizeof(uint8_t);
104 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 		      int flags, const char *dev_name, void *data)
110 {
111 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115 	.owner		= THIS_MODULE,
116 	.name		= "udf",
117 	.mount		= udf_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 MODULE_ALIAS_FS("udf");
122 
123 static struct kmem_cache *udf_inode_cachep;
124 
125 static struct inode *udf_alloc_inode(struct super_block *sb)
126 {
127 	struct udf_inode_info *ei;
128 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
129 	if (!ei)
130 		return NULL;
131 
132 	ei->i_unique = 0;
133 	ei->i_lenExtents = 0;
134 	ei->i_next_alloc_block = 0;
135 	ei->i_next_alloc_goal = 0;
136 	ei->i_strat4096 = 0;
137 	init_rwsem(&ei->i_data_sem);
138 	ei->cached_extent.lstart = -1;
139 	spin_lock_init(&ei->i_extent_cache_lock);
140 
141 	return &ei->vfs_inode;
142 }
143 
144 static void udf_i_callback(struct rcu_head *head)
145 {
146 	struct inode *inode = container_of(head, struct inode, i_rcu);
147 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
148 }
149 
150 static void udf_destroy_inode(struct inode *inode)
151 {
152 	call_rcu(&inode->i_rcu, udf_i_callback);
153 }
154 
155 static void init_once(void *foo)
156 {
157 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
158 
159 	ei->i_ext.i_data = NULL;
160 	inode_init_once(&ei->vfs_inode);
161 }
162 
163 static int init_inodecache(void)
164 {
165 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
166 					     sizeof(struct udf_inode_info),
167 					     0, (SLAB_RECLAIM_ACCOUNT |
168 						 SLAB_MEM_SPREAD),
169 					     init_once);
170 	if (!udf_inode_cachep)
171 		return -ENOMEM;
172 	return 0;
173 }
174 
175 static void destroy_inodecache(void)
176 {
177 	/*
178 	 * Make sure all delayed rcu free inodes are flushed before we
179 	 * destroy cache.
180 	 */
181 	rcu_barrier();
182 	kmem_cache_destroy(udf_inode_cachep);
183 }
184 
185 /* Superblock operations */
186 static const struct super_operations udf_sb_ops = {
187 	.alloc_inode	= udf_alloc_inode,
188 	.destroy_inode	= udf_destroy_inode,
189 	.write_inode	= udf_write_inode,
190 	.evict_inode	= udf_evict_inode,
191 	.put_super	= udf_put_super,
192 	.sync_fs	= udf_sync_fs,
193 	.statfs		= udf_statfs,
194 	.remount_fs	= udf_remount_fs,
195 	.show_options	= udf_show_options,
196 };
197 
198 struct udf_options {
199 	unsigned char novrs;
200 	unsigned int blocksize;
201 	unsigned int session;
202 	unsigned int lastblock;
203 	unsigned int anchor;
204 	unsigned int volume;
205 	unsigned short partition;
206 	unsigned int fileset;
207 	unsigned int rootdir;
208 	unsigned int flags;
209 	umode_t umask;
210 	kgid_t gid;
211 	kuid_t uid;
212 	umode_t fmode;
213 	umode_t dmode;
214 	struct nls_table *nls_map;
215 };
216 
217 static int __init init_udf_fs(void)
218 {
219 	int err;
220 
221 	err = init_inodecache();
222 	if (err)
223 		goto out1;
224 	err = register_filesystem(&udf_fstype);
225 	if (err)
226 		goto out;
227 
228 	return 0;
229 
230 out:
231 	destroy_inodecache();
232 
233 out1:
234 	return err;
235 }
236 
237 static void __exit exit_udf_fs(void)
238 {
239 	unregister_filesystem(&udf_fstype);
240 	destroy_inodecache();
241 }
242 
243 module_init(init_udf_fs)
244 module_exit(exit_udf_fs)
245 
246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248 	struct udf_sb_info *sbi = UDF_SB(sb);
249 
250 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
251 				  GFP_KERNEL);
252 	if (!sbi->s_partmaps) {
253 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
254 			count);
255 		sbi->s_partitions = 0;
256 		return -ENOMEM;
257 	}
258 
259 	sbi->s_partitions = count;
260 	return 0;
261 }
262 
263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265 	int i;
266 	int nr_groups = bitmap->s_nr_groups;
267 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
268 						nr_groups);
269 
270 	for (i = 0; i < nr_groups; i++)
271 		if (bitmap->s_block_bitmap[i])
272 			brelse(bitmap->s_block_bitmap[i]);
273 
274 	if (size <= PAGE_SIZE)
275 		kfree(bitmap);
276 	else
277 		vfree(bitmap);
278 }
279 
280 static void udf_free_partition(struct udf_part_map *map)
281 {
282 	int i;
283 	struct udf_meta_data *mdata;
284 
285 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
286 		iput(map->s_uspace.s_table);
287 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
288 		iput(map->s_fspace.s_table);
289 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
290 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
291 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
292 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
293 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
294 		for (i = 0; i < 4; i++)
295 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
296 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
297 		mdata = &map->s_type_specific.s_metadata;
298 		iput(mdata->s_metadata_fe);
299 		mdata->s_metadata_fe = NULL;
300 
301 		iput(mdata->s_mirror_fe);
302 		mdata->s_mirror_fe = NULL;
303 
304 		iput(mdata->s_bitmap_fe);
305 		mdata->s_bitmap_fe = NULL;
306 	}
307 }
308 
309 static void udf_sb_free_partitions(struct super_block *sb)
310 {
311 	struct udf_sb_info *sbi = UDF_SB(sb);
312 	int i;
313 	if (sbi->s_partmaps == NULL)
314 		return;
315 	for (i = 0; i < sbi->s_partitions; i++)
316 		udf_free_partition(&sbi->s_partmaps[i]);
317 	kfree(sbi->s_partmaps);
318 	sbi->s_partmaps = NULL;
319 }
320 
321 static int udf_show_options(struct seq_file *seq, struct dentry *root)
322 {
323 	struct super_block *sb = root->d_sb;
324 	struct udf_sb_info *sbi = UDF_SB(sb);
325 
326 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
327 		seq_puts(seq, ",nostrict");
328 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
329 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
331 		seq_puts(seq, ",unhide");
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
333 		seq_puts(seq, ",undelete");
334 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
335 		seq_puts(seq, ",noadinicb");
336 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
337 		seq_puts(seq, ",shortad");
338 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
339 		seq_puts(seq, ",uid=forget");
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
341 		seq_puts(seq, ",uid=ignore");
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
343 		seq_puts(seq, ",gid=forget");
344 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
345 		seq_puts(seq, ",gid=ignore");
346 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
347 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
348 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
349 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
350 	if (sbi->s_umask != 0)
351 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
352 	if (sbi->s_fmode != UDF_INVALID_MODE)
353 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
354 	if (sbi->s_dmode != UDF_INVALID_MODE)
355 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
356 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
357 		seq_printf(seq, ",session=%u", sbi->s_session);
358 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
359 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
360 	if (sbi->s_anchor != 0)
361 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
362 	/*
363 	 * volume, partition, fileset and rootdir seem to be ignored
364 	 * currently
365 	 */
366 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
367 		seq_puts(seq, ",utf8");
368 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
369 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
370 
371 	return 0;
372 }
373 
374 /*
375  * udf_parse_options
376  *
377  * PURPOSE
378  *	Parse mount options.
379  *
380  * DESCRIPTION
381  *	The following mount options are supported:
382  *
383  *	gid=		Set the default group.
384  *	umask=		Set the default umask.
385  *	mode=		Set the default file permissions.
386  *	dmode=		Set the default directory permissions.
387  *	uid=		Set the default user.
388  *	bs=		Set the block size.
389  *	unhide		Show otherwise hidden files.
390  *	undelete	Show deleted files in lists.
391  *	adinicb		Embed data in the inode (default)
392  *	noadinicb	Don't embed data in the inode
393  *	shortad		Use short ad's
394  *	longad		Use long ad's (default)
395  *	nostrict	Unset strict conformance
396  *	iocharset=	Set the NLS character set
397  *
398  *	The remaining are for debugging and disaster recovery:
399  *
400  *	novrs		Skip volume sequence recognition
401  *
402  *	The following expect a offset from 0.
403  *
404  *	session=	Set the CDROM session (default= last session)
405  *	anchor=		Override standard anchor location. (default= 256)
406  *	volume=		Override the VolumeDesc location. (unused)
407  *	partition=	Override the PartitionDesc location. (unused)
408  *	lastblock=	Set the last block of the filesystem/
409  *
410  *	The following expect a offset from the partition root.
411  *
412  *	fileset=	Override the fileset block location. (unused)
413  *	rootdir=	Override the root directory location. (unused)
414  *		WARNING: overriding the rootdir to a non-directory may
415  *		yield highly unpredictable results.
416  *
417  * PRE-CONDITIONS
418  *	options		Pointer to mount options string.
419  *	uopts		Pointer to mount options variable.
420  *
421  * POST-CONDITIONS
422  *	<return>	1	Mount options parsed okay.
423  *	<return>	0	Error parsing mount options.
424  *
425  * HISTORY
426  *	July 1, 1997 - Andrew E. Mileski
427  *	Written, tested, and released.
428  */
429 
430 enum {
431 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
432 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
433 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
434 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
435 	Opt_rootdir, Opt_utf8, Opt_iocharset,
436 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
437 	Opt_fmode, Opt_dmode
438 };
439 
440 static const match_table_t tokens = {
441 	{Opt_novrs,	"novrs"},
442 	{Opt_nostrict,	"nostrict"},
443 	{Opt_bs,	"bs=%u"},
444 	{Opt_unhide,	"unhide"},
445 	{Opt_undelete,	"undelete"},
446 	{Opt_noadinicb,	"noadinicb"},
447 	{Opt_adinicb,	"adinicb"},
448 	{Opt_shortad,	"shortad"},
449 	{Opt_longad,	"longad"},
450 	{Opt_uforget,	"uid=forget"},
451 	{Opt_uignore,	"uid=ignore"},
452 	{Opt_gforget,	"gid=forget"},
453 	{Opt_gignore,	"gid=ignore"},
454 	{Opt_gid,	"gid=%u"},
455 	{Opt_uid,	"uid=%u"},
456 	{Opt_umask,	"umask=%o"},
457 	{Opt_session,	"session=%u"},
458 	{Opt_lastblock,	"lastblock=%u"},
459 	{Opt_anchor,	"anchor=%u"},
460 	{Opt_volume,	"volume=%u"},
461 	{Opt_partition,	"partition=%u"},
462 	{Opt_fileset,	"fileset=%u"},
463 	{Opt_rootdir,	"rootdir=%u"},
464 	{Opt_utf8,	"utf8"},
465 	{Opt_iocharset,	"iocharset=%s"},
466 	{Opt_fmode,     "mode=%o"},
467 	{Opt_dmode,     "dmode=%o"},
468 	{Opt_err,	NULL}
469 };
470 
471 static int udf_parse_options(char *options, struct udf_options *uopt,
472 			     bool remount)
473 {
474 	char *p;
475 	int option;
476 
477 	uopt->novrs = 0;
478 	uopt->partition = 0xFFFF;
479 	uopt->session = 0xFFFFFFFF;
480 	uopt->lastblock = 0;
481 	uopt->anchor = 0;
482 	uopt->volume = 0xFFFFFFFF;
483 	uopt->rootdir = 0xFFFFFFFF;
484 	uopt->fileset = 0xFFFFFFFF;
485 	uopt->nls_map = NULL;
486 
487 	if (!options)
488 		return 1;
489 
490 	while ((p = strsep(&options, ",")) != NULL) {
491 		substring_t args[MAX_OPT_ARGS];
492 		int token;
493 		if (!*p)
494 			continue;
495 
496 		token = match_token(p, tokens, args);
497 		switch (token) {
498 		case Opt_novrs:
499 			uopt->novrs = 1;
500 			break;
501 		case Opt_bs:
502 			if (match_int(&args[0], &option))
503 				return 0;
504 			uopt->blocksize = option;
505 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
506 			break;
507 		case Opt_unhide:
508 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
509 			break;
510 		case Opt_undelete:
511 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
512 			break;
513 		case Opt_noadinicb:
514 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
515 			break;
516 		case Opt_adinicb:
517 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
518 			break;
519 		case Opt_shortad:
520 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
521 			break;
522 		case Opt_longad:
523 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
524 			break;
525 		case Opt_gid:
526 			if (match_int(args, &option))
527 				return 0;
528 			uopt->gid = make_kgid(current_user_ns(), option);
529 			if (!gid_valid(uopt->gid))
530 				return 0;
531 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
532 			break;
533 		case Opt_uid:
534 			if (match_int(args, &option))
535 				return 0;
536 			uopt->uid = make_kuid(current_user_ns(), option);
537 			if (!uid_valid(uopt->uid))
538 				return 0;
539 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
540 			break;
541 		case Opt_umask:
542 			if (match_octal(args, &option))
543 				return 0;
544 			uopt->umask = option;
545 			break;
546 		case Opt_nostrict:
547 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
548 			break;
549 		case Opt_session:
550 			if (match_int(args, &option))
551 				return 0;
552 			uopt->session = option;
553 			if (!remount)
554 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
555 			break;
556 		case Opt_lastblock:
557 			if (match_int(args, &option))
558 				return 0;
559 			uopt->lastblock = option;
560 			if (!remount)
561 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
562 			break;
563 		case Opt_anchor:
564 			if (match_int(args, &option))
565 				return 0;
566 			uopt->anchor = option;
567 			break;
568 		case Opt_volume:
569 			if (match_int(args, &option))
570 				return 0;
571 			uopt->volume = option;
572 			break;
573 		case Opt_partition:
574 			if (match_int(args, &option))
575 				return 0;
576 			uopt->partition = option;
577 			break;
578 		case Opt_fileset:
579 			if (match_int(args, &option))
580 				return 0;
581 			uopt->fileset = option;
582 			break;
583 		case Opt_rootdir:
584 			if (match_int(args, &option))
585 				return 0;
586 			uopt->rootdir = option;
587 			break;
588 		case Opt_utf8:
589 			uopt->flags |= (1 << UDF_FLAG_UTF8);
590 			break;
591 #ifdef CONFIG_UDF_NLS
592 		case Opt_iocharset:
593 			uopt->nls_map = load_nls(args[0].from);
594 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
595 			break;
596 #endif
597 		case Opt_uignore:
598 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
599 			break;
600 		case Opt_uforget:
601 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
602 			break;
603 		case Opt_gignore:
604 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
605 			break;
606 		case Opt_gforget:
607 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
608 			break;
609 		case Opt_fmode:
610 			if (match_octal(args, &option))
611 				return 0;
612 			uopt->fmode = option & 0777;
613 			break;
614 		case Opt_dmode:
615 			if (match_octal(args, &option))
616 				return 0;
617 			uopt->dmode = option & 0777;
618 			break;
619 		default:
620 			pr_err("bad mount option \"%s\" or missing value\n", p);
621 			return 0;
622 		}
623 	}
624 	return 1;
625 }
626 
627 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
628 {
629 	struct udf_options uopt;
630 	struct udf_sb_info *sbi = UDF_SB(sb);
631 	int error = 0;
632 
633 	if (sbi->s_lvid_bh) {
634 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
635 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
636 			return -EACCES;
637 	}
638 
639 	uopt.flags = sbi->s_flags;
640 	uopt.uid   = sbi->s_uid;
641 	uopt.gid   = sbi->s_gid;
642 	uopt.umask = sbi->s_umask;
643 	uopt.fmode = sbi->s_fmode;
644 	uopt.dmode = sbi->s_dmode;
645 
646 	if (!udf_parse_options(options, &uopt, true))
647 		return -EINVAL;
648 
649 	write_lock(&sbi->s_cred_lock);
650 	sbi->s_flags = uopt.flags;
651 	sbi->s_uid   = uopt.uid;
652 	sbi->s_gid   = uopt.gid;
653 	sbi->s_umask = uopt.umask;
654 	sbi->s_fmode = uopt.fmode;
655 	sbi->s_dmode = uopt.dmode;
656 	write_unlock(&sbi->s_cred_lock);
657 
658 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
659 		goto out_unlock;
660 
661 	if (*flags & MS_RDONLY)
662 		udf_close_lvid(sb);
663 	else
664 		udf_open_lvid(sb);
665 
666 out_unlock:
667 	return error;
668 }
669 
670 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
671 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
672 static loff_t udf_check_vsd(struct super_block *sb)
673 {
674 	struct volStructDesc *vsd = NULL;
675 	loff_t sector = 32768;
676 	int sectorsize;
677 	struct buffer_head *bh = NULL;
678 	int nsr02 = 0;
679 	int nsr03 = 0;
680 	struct udf_sb_info *sbi;
681 
682 	sbi = UDF_SB(sb);
683 	if (sb->s_blocksize < sizeof(struct volStructDesc))
684 		sectorsize = sizeof(struct volStructDesc);
685 	else
686 		sectorsize = sb->s_blocksize;
687 
688 	sector += (sbi->s_session << sb->s_blocksize_bits);
689 
690 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
691 		  (unsigned int)(sector >> sb->s_blocksize_bits),
692 		  sb->s_blocksize);
693 	/* Process the sequence (if applicable) */
694 	for (; !nsr02 && !nsr03; sector += sectorsize) {
695 		/* Read a block */
696 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
697 		if (!bh)
698 			break;
699 
700 		/* Look for ISO  descriptors */
701 		vsd = (struct volStructDesc *)(bh->b_data +
702 					      (sector & (sb->s_blocksize - 1)));
703 
704 		if (vsd->stdIdent[0] == 0) {
705 			brelse(bh);
706 			break;
707 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
708 				    VSD_STD_ID_LEN)) {
709 			switch (vsd->structType) {
710 			case 0:
711 				udf_debug("ISO9660 Boot Record found\n");
712 				break;
713 			case 1:
714 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
715 				break;
716 			case 2:
717 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
718 				break;
719 			case 3:
720 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
721 				break;
722 			case 255:
723 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
724 				break;
725 			default:
726 				udf_debug("ISO9660 VRS (%u) found\n",
727 					  vsd->structType);
728 				break;
729 			}
730 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
731 				    VSD_STD_ID_LEN))
732 			; /* nothing */
733 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
734 				    VSD_STD_ID_LEN)) {
735 			brelse(bh);
736 			break;
737 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
738 				    VSD_STD_ID_LEN))
739 			nsr02 = sector;
740 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
741 				    VSD_STD_ID_LEN))
742 			nsr03 = sector;
743 		brelse(bh);
744 	}
745 
746 	if (nsr03)
747 		return nsr03;
748 	else if (nsr02)
749 		return nsr02;
750 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
751 		return -1;
752 	else
753 		return 0;
754 }
755 
756 static int udf_find_fileset(struct super_block *sb,
757 			    struct kernel_lb_addr *fileset,
758 			    struct kernel_lb_addr *root)
759 {
760 	struct buffer_head *bh = NULL;
761 	long lastblock;
762 	uint16_t ident;
763 	struct udf_sb_info *sbi;
764 
765 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
766 	    fileset->partitionReferenceNum != 0xFFFF) {
767 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
768 
769 		if (!bh) {
770 			return 1;
771 		} else if (ident != TAG_IDENT_FSD) {
772 			brelse(bh);
773 			return 1;
774 		}
775 
776 	}
777 
778 	sbi = UDF_SB(sb);
779 	if (!bh) {
780 		/* Search backwards through the partitions */
781 		struct kernel_lb_addr newfileset;
782 
783 /* --> cvg: FIXME - is it reasonable? */
784 		return 1;
785 
786 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
787 		     (newfileset.partitionReferenceNum != 0xFFFF &&
788 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
789 		      fileset->partitionReferenceNum == 0xFFFF);
790 		     newfileset.partitionReferenceNum--) {
791 			lastblock = sbi->s_partmaps
792 					[newfileset.partitionReferenceNum]
793 						.s_partition_len;
794 			newfileset.logicalBlockNum = 0;
795 
796 			do {
797 				bh = udf_read_ptagged(sb, &newfileset, 0,
798 						      &ident);
799 				if (!bh) {
800 					newfileset.logicalBlockNum++;
801 					continue;
802 				}
803 
804 				switch (ident) {
805 				case TAG_IDENT_SBD:
806 				{
807 					struct spaceBitmapDesc *sp;
808 					sp = (struct spaceBitmapDesc *)
809 								bh->b_data;
810 					newfileset.logicalBlockNum += 1 +
811 						((le32_to_cpu(sp->numOfBytes) +
812 						  sizeof(struct spaceBitmapDesc)
813 						  - 1) >> sb->s_blocksize_bits);
814 					brelse(bh);
815 					break;
816 				}
817 				case TAG_IDENT_FSD:
818 					*fileset = newfileset;
819 					break;
820 				default:
821 					newfileset.logicalBlockNum++;
822 					brelse(bh);
823 					bh = NULL;
824 					break;
825 				}
826 			} while (newfileset.logicalBlockNum < lastblock &&
827 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
828 				 fileset->partitionReferenceNum == 0xFFFF);
829 		}
830 	}
831 
832 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
833 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
834 		udf_debug("Fileset at block=%d, partition=%d\n",
835 			  fileset->logicalBlockNum,
836 			  fileset->partitionReferenceNum);
837 
838 		sbi->s_partition = fileset->partitionReferenceNum;
839 		udf_load_fileset(sb, bh, root);
840 		brelse(bh);
841 		return 0;
842 	}
843 	return 1;
844 }
845 
846 /*
847  * Load primary Volume Descriptor Sequence
848  *
849  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
850  * should be tried.
851  */
852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853 {
854 	struct primaryVolDesc *pvoldesc;
855 	struct ustr *instr, *outstr;
856 	struct buffer_head *bh;
857 	uint16_t ident;
858 	int ret = -ENOMEM;
859 
860 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
861 	if (!instr)
862 		return -ENOMEM;
863 
864 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
865 	if (!outstr)
866 		goto out1;
867 
868 	bh = udf_read_tagged(sb, block, block, &ident);
869 	if (!bh) {
870 		ret = -EAGAIN;
871 		goto out2;
872 	}
873 
874 	if (ident != TAG_IDENT_PVD) {
875 		ret = -EIO;
876 		goto out_bh;
877 	}
878 
879 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
880 
881 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
882 			      pvoldesc->recordingDateAndTime)) {
883 #ifdef UDFFS_DEBUG
884 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
885 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
886 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
887 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
888 #endif
889 	}
890 
891 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
892 		if (udf_CS0toUTF8(outstr, instr)) {
893 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
894 				outstr->u_len > 31 ? 31 : outstr->u_len);
895 			udf_debug("volIdent[] = '%s'\n",
896 				  UDF_SB(sb)->s_volume_ident);
897 		}
898 
899 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
900 		if (udf_CS0toUTF8(outstr, instr))
901 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
902 
903 	ret = 0;
904 out_bh:
905 	brelse(bh);
906 out2:
907 	kfree(outstr);
908 out1:
909 	kfree(instr);
910 	return ret;
911 }
912 
913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
914 					u32 meta_file_loc, u32 partition_num)
915 {
916 	struct kernel_lb_addr addr;
917 	struct inode *metadata_fe;
918 
919 	addr.logicalBlockNum = meta_file_loc;
920 	addr.partitionReferenceNum = partition_num;
921 
922 	metadata_fe = udf_iget(sb, &addr);
923 
924 	if (metadata_fe == NULL)
925 		udf_warn(sb, "metadata inode efe not found\n");
926 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
927 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
928 		iput(metadata_fe);
929 		metadata_fe = NULL;
930 	}
931 
932 	return metadata_fe;
933 }
934 
935 static int udf_load_metadata_files(struct super_block *sb, int partition)
936 {
937 	struct udf_sb_info *sbi = UDF_SB(sb);
938 	struct udf_part_map *map;
939 	struct udf_meta_data *mdata;
940 	struct kernel_lb_addr addr;
941 
942 	map = &sbi->s_partmaps[partition];
943 	mdata = &map->s_type_specific.s_metadata;
944 
945 	/* metadata address */
946 	udf_debug("Metadata file location: block = %d part = %d\n",
947 		  mdata->s_meta_file_loc, map->s_partition_num);
948 
949 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
950 		mdata->s_meta_file_loc, map->s_partition_num);
951 
952 	if (mdata->s_metadata_fe == NULL) {
953 		/* mirror file entry */
954 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
955 			  mdata->s_mirror_file_loc, map->s_partition_num);
956 
957 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
958 			mdata->s_mirror_file_loc, map->s_partition_num);
959 
960 		if (mdata->s_mirror_fe == NULL) {
961 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
962 			return -EIO;
963 		}
964 	}
965 
966 	/*
967 	 * bitmap file entry
968 	 * Note:
969 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
970 	*/
971 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
972 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
973 		addr.partitionReferenceNum = map->s_partition_num;
974 
975 		udf_debug("Bitmap file location: block = %d part = %d\n",
976 			  addr.logicalBlockNum, addr.partitionReferenceNum);
977 
978 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
979 		if (mdata->s_bitmap_fe == NULL) {
980 			if (sb->s_flags & MS_RDONLY)
981 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
982 			else {
983 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
984 				return -EIO;
985 			}
986 		}
987 	}
988 
989 	udf_debug("udf_load_metadata_files Ok\n");
990 	return 0;
991 }
992 
993 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
994 			     struct kernel_lb_addr *root)
995 {
996 	struct fileSetDesc *fset;
997 
998 	fset = (struct fileSetDesc *)bh->b_data;
999 
1000 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1001 
1002 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1003 
1004 	udf_debug("Rootdir at block=%d, partition=%d\n",
1005 		  root->logicalBlockNum, root->partitionReferenceNum);
1006 }
1007 
1008 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1009 {
1010 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1011 	return DIV_ROUND_UP(map->s_partition_len +
1012 			    (sizeof(struct spaceBitmapDesc) << 3),
1013 			    sb->s_blocksize * 8);
1014 }
1015 
1016 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1017 {
1018 	struct udf_bitmap *bitmap;
1019 	int nr_groups;
1020 	int size;
1021 
1022 	nr_groups = udf_compute_nr_groups(sb, index);
1023 	size = sizeof(struct udf_bitmap) +
1024 		(sizeof(struct buffer_head *) * nr_groups);
1025 
1026 	if (size <= PAGE_SIZE)
1027 		bitmap = kzalloc(size, GFP_KERNEL);
1028 	else
1029 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1030 
1031 	if (bitmap == NULL)
1032 		return NULL;
1033 
1034 	bitmap->s_nr_groups = nr_groups;
1035 	return bitmap;
1036 }
1037 
1038 static int udf_fill_partdesc_info(struct super_block *sb,
1039 		struct partitionDesc *p, int p_index)
1040 {
1041 	struct udf_part_map *map;
1042 	struct udf_sb_info *sbi = UDF_SB(sb);
1043 	struct partitionHeaderDesc *phd;
1044 
1045 	map = &sbi->s_partmaps[p_index];
1046 
1047 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1048 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1049 
1050 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1051 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1052 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1053 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1054 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1055 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1056 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1057 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1058 
1059 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1060 		  p_index, map->s_partition_type,
1061 		  map->s_partition_root, map->s_partition_len);
1062 
1063 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1064 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1065 		return 0;
1066 
1067 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1068 	if (phd->unallocSpaceTable.extLength) {
1069 		struct kernel_lb_addr loc = {
1070 			.logicalBlockNum = le32_to_cpu(
1071 				phd->unallocSpaceTable.extPosition),
1072 			.partitionReferenceNum = p_index,
1073 		};
1074 
1075 		map->s_uspace.s_table = udf_iget(sb, &loc);
1076 		if (!map->s_uspace.s_table) {
1077 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1078 				  p_index);
1079 			return -EIO;
1080 		}
1081 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1082 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1083 			  p_index, map->s_uspace.s_table->i_ino);
1084 	}
1085 
1086 	if (phd->unallocSpaceBitmap.extLength) {
1087 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1088 		if (!bitmap)
1089 			return -ENOMEM;
1090 		map->s_uspace.s_bitmap = bitmap;
1091 		bitmap->s_extPosition = le32_to_cpu(
1092 				phd->unallocSpaceBitmap.extPosition);
1093 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1094 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1095 			  p_index, bitmap->s_extPosition);
1096 	}
1097 
1098 	if (phd->partitionIntegrityTable.extLength)
1099 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1100 
1101 	if (phd->freedSpaceTable.extLength) {
1102 		struct kernel_lb_addr loc = {
1103 			.logicalBlockNum = le32_to_cpu(
1104 				phd->freedSpaceTable.extPosition),
1105 			.partitionReferenceNum = p_index,
1106 		};
1107 
1108 		map->s_fspace.s_table = udf_iget(sb, &loc);
1109 		if (!map->s_fspace.s_table) {
1110 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1111 				  p_index);
1112 			return -EIO;
1113 		}
1114 
1115 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1116 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1117 			  p_index, map->s_fspace.s_table->i_ino);
1118 	}
1119 
1120 	if (phd->freedSpaceBitmap.extLength) {
1121 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1122 		if (!bitmap)
1123 			return -ENOMEM;
1124 		map->s_fspace.s_bitmap = bitmap;
1125 		bitmap->s_extPosition = le32_to_cpu(
1126 				phd->freedSpaceBitmap.extPosition);
1127 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1128 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1129 			  p_index, bitmap->s_extPosition);
1130 	}
1131 	return 0;
1132 }
1133 
1134 static void udf_find_vat_block(struct super_block *sb, int p_index,
1135 			       int type1_index, sector_t start_block)
1136 {
1137 	struct udf_sb_info *sbi = UDF_SB(sb);
1138 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1139 	sector_t vat_block;
1140 	struct kernel_lb_addr ino;
1141 
1142 	/*
1143 	 * VAT file entry is in the last recorded block. Some broken disks have
1144 	 * it a few blocks before so try a bit harder...
1145 	 */
1146 	ino.partitionReferenceNum = type1_index;
1147 	for (vat_block = start_block;
1148 	     vat_block >= map->s_partition_root &&
1149 	     vat_block >= start_block - 3 &&
1150 	     !sbi->s_vat_inode; vat_block--) {
1151 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1152 		sbi->s_vat_inode = udf_iget(sb, &ino);
1153 	}
1154 }
1155 
1156 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1157 {
1158 	struct udf_sb_info *sbi = UDF_SB(sb);
1159 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1160 	struct buffer_head *bh = NULL;
1161 	struct udf_inode_info *vati;
1162 	uint32_t pos;
1163 	struct virtualAllocationTable20 *vat20;
1164 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1165 
1166 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1167 	if (!sbi->s_vat_inode &&
1168 	    sbi->s_last_block != blocks - 1) {
1169 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1170 			  (unsigned long)sbi->s_last_block,
1171 			  (unsigned long)blocks - 1);
1172 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1173 	}
1174 	if (!sbi->s_vat_inode)
1175 		return -EIO;
1176 
1177 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1178 		map->s_type_specific.s_virtual.s_start_offset = 0;
1179 		map->s_type_specific.s_virtual.s_num_entries =
1180 			(sbi->s_vat_inode->i_size - 36) >> 2;
1181 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1182 		vati = UDF_I(sbi->s_vat_inode);
1183 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1184 			pos = udf_block_map(sbi->s_vat_inode, 0);
1185 			bh = sb_bread(sb, pos);
1186 			if (!bh)
1187 				return -EIO;
1188 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1189 		} else {
1190 			vat20 = (struct virtualAllocationTable20 *)
1191 							vati->i_ext.i_data;
1192 		}
1193 
1194 		map->s_type_specific.s_virtual.s_start_offset =
1195 			le16_to_cpu(vat20->lengthHeader);
1196 		map->s_type_specific.s_virtual.s_num_entries =
1197 			(sbi->s_vat_inode->i_size -
1198 				map->s_type_specific.s_virtual.
1199 					s_start_offset) >> 2;
1200 		brelse(bh);
1201 	}
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Load partition descriptor block
1207  *
1208  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1209  * sequence.
1210  */
1211 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1212 {
1213 	struct buffer_head *bh;
1214 	struct partitionDesc *p;
1215 	struct udf_part_map *map;
1216 	struct udf_sb_info *sbi = UDF_SB(sb);
1217 	int i, type1_idx;
1218 	uint16_t partitionNumber;
1219 	uint16_t ident;
1220 	int ret;
1221 
1222 	bh = udf_read_tagged(sb, block, block, &ident);
1223 	if (!bh)
1224 		return -EAGAIN;
1225 	if (ident != TAG_IDENT_PD) {
1226 		ret = 0;
1227 		goto out_bh;
1228 	}
1229 
1230 	p = (struct partitionDesc *)bh->b_data;
1231 	partitionNumber = le16_to_cpu(p->partitionNumber);
1232 
1233 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1234 	for (i = 0; i < sbi->s_partitions; i++) {
1235 		map = &sbi->s_partmaps[i];
1236 		udf_debug("Searching map: (%d == %d)\n",
1237 			  map->s_partition_num, partitionNumber);
1238 		if (map->s_partition_num == partitionNumber &&
1239 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1240 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1241 			break;
1242 	}
1243 
1244 	if (i >= sbi->s_partitions) {
1245 		udf_debug("Partition (%d) not found in partition map\n",
1246 			  partitionNumber);
1247 		ret = 0;
1248 		goto out_bh;
1249 	}
1250 
1251 	ret = udf_fill_partdesc_info(sb, p, i);
1252 	if (ret < 0)
1253 		goto out_bh;
1254 
1255 	/*
1256 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1257 	 * PHYSICAL partitions are already set up
1258 	 */
1259 	type1_idx = i;
1260 	for (i = 0; i < sbi->s_partitions; i++) {
1261 		map = &sbi->s_partmaps[i];
1262 
1263 		if (map->s_partition_num == partitionNumber &&
1264 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1265 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1266 		     map->s_partition_type == UDF_METADATA_MAP25))
1267 			break;
1268 	}
1269 
1270 	if (i >= sbi->s_partitions) {
1271 		ret = 0;
1272 		goto out_bh;
1273 	}
1274 
1275 	ret = udf_fill_partdesc_info(sb, p, i);
1276 	if (ret < 0)
1277 		goto out_bh;
1278 
1279 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1280 		ret = udf_load_metadata_files(sb, i);
1281 		if (ret < 0) {
1282 			udf_err(sb, "error loading MetaData partition map %d\n",
1283 				i);
1284 			goto out_bh;
1285 		}
1286 	} else {
1287 		/*
1288 		 * If we have a partition with virtual map, we don't handle
1289 		 * writing to it (we overwrite blocks instead of relocating
1290 		 * them).
1291 		 */
1292 		if (!(sb->s_flags & MS_RDONLY)) {
1293 			ret = -EACCES;
1294 			goto out_bh;
1295 		}
1296 		ret = udf_load_vat(sb, i, type1_idx);
1297 		if (ret < 0)
1298 			goto out_bh;
1299 	}
1300 	ret = 0;
1301 out_bh:
1302 	/* In case loading failed, we handle cleanup in udf_fill_super */
1303 	brelse(bh);
1304 	return ret;
1305 }
1306 
1307 static int udf_load_sparable_map(struct super_block *sb,
1308 				 struct udf_part_map *map,
1309 				 struct sparablePartitionMap *spm)
1310 {
1311 	uint32_t loc;
1312 	uint16_t ident;
1313 	struct sparingTable *st;
1314 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1315 	int i;
1316 	struct buffer_head *bh;
1317 
1318 	map->s_partition_type = UDF_SPARABLE_MAP15;
1319 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1320 	if (!is_power_of_2(sdata->s_packet_len)) {
1321 		udf_err(sb, "error loading logical volume descriptor: "
1322 			"Invalid packet length %u\n",
1323 			(unsigned)sdata->s_packet_len);
1324 		return -EIO;
1325 	}
1326 	if (spm->numSparingTables > 4) {
1327 		udf_err(sb, "error loading logical volume descriptor: "
1328 			"Too many sparing tables (%d)\n",
1329 			(int)spm->numSparingTables);
1330 		return -EIO;
1331 	}
1332 
1333 	for (i = 0; i < spm->numSparingTables; i++) {
1334 		loc = le32_to_cpu(spm->locSparingTable[i]);
1335 		bh = udf_read_tagged(sb, loc, loc, &ident);
1336 		if (!bh)
1337 			continue;
1338 
1339 		st = (struct sparingTable *)bh->b_data;
1340 		if (ident != 0 ||
1341 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1342 			    strlen(UDF_ID_SPARING)) ||
1343 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1344 							sb->s_blocksize) {
1345 			brelse(bh);
1346 			continue;
1347 		}
1348 
1349 		sdata->s_spar_map[i] = bh;
1350 	}
1351 	map->s_partition_func = udf_get_pblock_spar15;
1352 	return 0;
1353 }
1354 
1355 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1356 			       struct kernel_lb_addr *fileset)
1357 {
1358 	struct logicalVolDesc *lvd;
1359 	int i, offset;
1360 	uint8_t type;
1361 	struct udf_sb_info *sbi = UDF_SB(sb);
1362 	struct genericPartitionMap *gpm;
1363 	uint16_t ident;
1364 	struct buffer_head *bh;
1365 	unsigned int table_len;
1366 	int ret;
1367 
1368 	bh = udf_read_tagged(sb, block, block, &ident);
1369 	if (!bh)
1370 		return -EAGAIN;
1371 	BUG_ON(ident != TAG_IDENT_LVD);
1372 	lvd = (struct logicalVolDesc *)bh->b_data;
1373 	table_len = le32_to_cpu(lvd->mapTableLength);
1374 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1375 		udf_err(sb, "error loading logical volume descriptor: "
1376 			"Partition table too long (%u > %lu)\n", table_len,
1377 			sb->s_blocksize - sizeof(*lvd));
1378 		ret = -EIO;
1379 		goto out_bh;
1380 	}
1381 
1382 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1383 	if (ret)
1384 		goto out_bh;
1385 
1386 	for (i = 0, offset = 0;
1387 	     i < sbi->s_partitions && offset < table_len;
1388 	     i++, offset += gpm->partitionMapLength) {
1389 		struct udf_part_map *map = &sbi->s_partmaps[i];
1390 		gpm = (struct genericPartitionMap *)
1391 				&(lvd->partitionMaps[offset]);
1392 		type = gpm->partitionMapType;
1393 		if (type == 1) {
1394 			struct genericPartitionMap1 *gpm1 =
1395 				(struct genericPartitionMap1 *)gpm;
1396 			map->s_partition_type = UDF_TYPE1_MAP15;
1397 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1398 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1399 			map->s_partition_func = NULL;
1400 		} else if (type == 2) {
1401 			struct udfPartitionMap2 *upm2 =
1402 						(struct udfPartitionMap2 *)gpm;
1403 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1404 						strlen(UDF_ID_VIRTUAL))) {
1405 				u16 suf =
1406 					le16_to_cpu(((__le16 *)upm2->partIdent.
1407 							identSuffix)[0]);
1408 				if (suf < 0x0200) {
1409 					map->s_partition_type =
1410 							UDF_VIRTUAL_MAP15;
1411 					map->s_partition_func =
1412 							udf_get_pblock_virt15;
1413 				} else {
1414 					map->s_partition_type =
1415 							UDF_VIRTUAL_MAP20;
1416 					map->s_partition_func =
1417 							udf_get_pblock_virt20;
1418 				}
1419 			} else if (!strncmp(upm2->partIdent.ident,
1420 						UDF_ID_SPARABLE,
1421 						strlen(UDF_ID_SPARABLE))) {
1422 				ret = udf_load_sparable_map(sb, map,
1423 					(struct sparablePartitionMap *)gpm);
1424 				if (ret < 0)
1425 					goto out_bh;
1426 			} else if (!strncmp(upm2->partIdent.ident,
1427 						UDF_ID_METADATA,
1428 						strlen(UDF_ID_METADATA))) {
1429 				struct udf_meta_data *mdata =
1430 					&map->s_type_specific.s_metadata;
1431 				struct metadataPartitionMap *mdm =
1432 						(struct metadataPartitionMap *)
1433 						&(lvd->partitionMaps[offset]);
1434 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1435 					  i, type, UDF_ID_METADATA);
1436 
1437 				map->s_partition_type = UDF_METADATA_MAP25;
1438 				map->s_partition_func = udf_get_pblock_meta25;
1439 
1440 				mdata->s_meta_file_loc   =
1441 					le32_to_cpu(mdm->metadataFileLoc);
1442 				mdata->s_mirror_file_loc =
1443 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1444 				mdata->s_bitmap_file_loc =
1445 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1446 				mdata->s_alloc_unit_size =
1447 					le32_to_cpu(mdm->allocUnitSize);
1448 				mdata->s_align_unit_size =
1449 					le16_to_cpu(mdm->alignUnitSize);
1450 				if (mdm->flags & 0x01)
1451 					mdata->s_flags |= MF_DUPLICATE_MD;
1452 
1453 				udf_debug("Metadata Ident suffix=0x%x\n",
1454 					  le16_to_cpu(*(__le16 *)
1455 						      mdm->partIdent.identSuffix));
1456 				udf_debug("Metadata part num=%d\n",
1457 					  le16_to_cpu(mdm->partitionNum));
1458 				udf_debug("Metadata part alloc unit size=%d\n",
1459 					  le32_to_cpu(mdm->allocUnitSize));
1460 				udf_debug("Metadata file loc=%d\n",
1461 					  le32_to_cpu(mdm->metadataFileLoc));
1462 				udf_debug("Mirror file loc=%d\n",
1463 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1464 				udf_debug("Bitmap file loc=%d\n",
1465 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1466 				udf_debug("Flags: %d %d\n",
1467 					  mdata->s_flags, mdm->flags);
1468 			} else {
1469 				udf_debug("Unknown ident: %s\n",
1470 					  upm2->partIdent.ident);
1471 				continue;
1472 			}
1473 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1474 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1475 		}
1476 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1477 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1478 	}
1479 
1480 	if (fileset) {
1481 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1482 
1483 		*fileset = lelb_to_cpu(la->extLocation);
1484 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1485 			  fileset->logicalBlockNum,
1486 			  fileset->partitionReferenceNum);
1487 	}
1488 	if (lvd->integritySeqExt.extLength)
1489 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1490 	ret = 0;
1491 out_bh:
1492 	brelse(bh);
1493 	return ret;
1494 }
1495 
1496 /*
1497  * udf_load_logicalvolint
1498  *
1499  */
1500 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1501 {
1502 	struct buffer_head *bh = NULL;
1503 	uint16_t ident;
1504 	struct udf_sb_info *sbi = UDF_SB(sb);
1505 	struct logicalVolIntegrityDesc *lvid;
1506 
1507 	while (loc.extLength > 0 &&
1508 	       (bh = udf_read_tagged(sb, loc.extLocation,
1509 				     loc.extLocation, &ident)) &&
1510 	       ident == TAG_IDENT_LVID) {
1511 		sbi->s_lvid_bh = bh;
1512 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1513 
1514 		if (lvid->nextIntegrityExt.extLength)
1515 			udf_load_logicalvolint(sb,
1516 				leea_to_cpu(lvid->nextIntegrityExt));
1517 
1518 		if (sbi->s_lvid_bh != bh)
1519 			brelse(bh);
1520 		loc.extLength -= sb->s_blocksize;
1521 		loc.extLocation++;
1522 	}
1523 	if (sbi->s_lvid_bh != bh)
1524 		brelse(bh);
1525 }
1526 
1527 /*
1528  * Process a main/reserve volume descriptor sequence.
1529  *   @block		First block of first extent of the sequence.
1530  *   @lastblock		Lastblock of first extent of the sequence.
1531  *   @fileset		There we store extent containing root fileset
1532  *
1533  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1534  * sequence
1535  */
1536 static noinline int udf_process_sequence(
1537 		struct super_block *sb,
1538 		sector_t block, sector_t lastblock,
1539 		struct kernel_lb_addr *fileset)
1540 {
1541 	struct buffer_head *bh = NULL;
1542 	struct udf_vds_record vds[VDS_POS_LENGTH];
1543 	struct udf_vds_record *curr;
1544 	struct generic_desc *gd;
1545 	struct volDescPtr *vdp;
1546 	int done = 0;
1547 	uint32_t vdsn;
1548 	uint16_t ident;
1549 	long next_s = 0, next_e = 0;
1550 	int ret;
1551 
1552 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1553 
1554 	/*
1555 	 * Read the main descriptor sequence and find which descriptors
1556 	 * are in it.
1557 	 */
1558 	for (; (!done && block <= lastblock); block++) {
1559 
1560 		bh = udf_read_tagged(sb, block, block, &ident);
1561 		if (!bh) {
1562 			udf_err(sb,
1563 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1564 				(unsigned long long)block);
1565 			return -EAGAIN;
1566 		}
1567 
1568 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1569 		gd = (struct generic_desc *)bh->b_data;
1570 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1571 		switch (ident) {
1572 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1573 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1574 			if (vdsn >= curr->volDescSeqNum) {
1575 				curr->volDescSeqNum = vdsn;
1576 				curr->block = block;
1577 			}
1578 			break;
1579 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1580 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1581 			if (vdsn >= curr->volDescSeqNum) {
1582 				curr->volDescSeqNum = vdsn;
1583 				curr->block = block;
1584 
1585 				vdp = (struct volDescPtr *)bh->b_data;
1586 				next_s = le32_to_cpu(
1587 					vdp->nextVolDescSeqExt.extLocation);
1588 				next_e = le32_to_cpu(
1589 					vdp->nextVolDescSeqExt.extLength);
1590 				next_e = next_e >> sb->s_blocksize_bits;
1591 				next_e += next_s;
1592 			}
1593 			break;
1594 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1595 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1596 			if (vdsn >= curr->volDescSeqNum) {
1597 				curr->volDescSeqNum = vdsn;
1598 				curr->block = block;
1599 			}
1600 			break;
1601 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1602 			curr = &vds[VDS_POS_PARTITION_DESC];
1603 			if (!curr->block)
1604 				curr->block = block;
1605 			break;
1606 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1607 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1608 			if (vdsn >= curr->volDescSeqNum) {
1609 				curr->volDescSeqNum = vdsn;
1610 				curr->block = block;
1611 			}
1612 			break;
1613 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1614 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1615 			if (vdsn >= curr->volDescSeqNum) {
1616 				curr->volDescSeqNum = vdsn;
1617 				curr->block = block;
1618 			}
1619 			break;
1620 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1621 			vds[VDS_POS_TERMINATING_DESC].block = block;
1622 			if (next_e) {
1623 				block = next_s;
1624 				lastblock = next_e;
1625 				next_s = next_e = 0;
1626 			} else
1627 				done = 1;
1628 			break;
1629 		}
1630 		brelse(bh);
1631 	}
1632 	/*
1633 	 * Now read interesting descriptors again and process them
1634 	 * in a suitable order
1635 	 */
1636 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1637 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1638 		return -EAGAIN;
1639 	}
1640 	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1641 	if (ret < 0)
1642 		return ret;
1643 
1644 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1645 		ret = udf_load_logicalvol(sb,
1646 					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1647 					  fileset);
1648 		if (ret < 0)
1649 			return ret;
1650 	}
1651 
1652 	if (vds[VDS_POS_PARTITION_DESC].block) {
1653 		/*
1654 		 * We rescan the whole descriptor sequence to find
1655 		 * partition descriptor blocks and process them.
1656 		 */
1657 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1658 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1659 		     block++) {
1660 			ret = udf_load_partdesc(sb, block);
1661 			if (ret < 0)
1662 				return ret;
1663 		}
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 /*
1670  * Load Volume Descriptor Sequence described by anchor in bh
1671  *
1672  * Returns <0 on error, 0 on success
1673  */
1674 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1675 			     struct kernel_lb_addr *fileset)
1676 {
1677 	struct anchorVolDescPtr *anchor;
1678 	sector_t main_s, main_e, reserve_s, reserve_e;
1679 	int ret;
1680 
1681 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1682 
1683 	/* Locate the main sequence */
1684 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1685 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1686 	main_e = main_e >> sb->s_blocksize_bits;
1687 	main_e += main_s;
1688 
1689 	/* Locate the reserve sequence */
1690 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1691 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1692 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1693 	reserve_e += reserve_s;
1694 
1695 	/* Process the main & reserve sequences */
1696 	/* responsible for finding the PartitionDesc(s) */
1697 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1698 	if (ret != -EAGAIN)
1699 		return ret;
1700 	udf_sb_free_partitions(sb);
1701 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1702 	if (ret < 0) {
1703 		udf_sb_free_partitions(sb);
1704 		/* No sequence was OK, return -EIO */
1705 		if (ret == -EAGAIN)
1706 			ret = -EIO;
1707 	}
1708 	return ret;
1709 }
1710 
1711 /*
1712  * Check whether there is an anchor block in the given block and
1713  * load Volume Descriptor Sequence if so.
1714  *
1715  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1716  * block
1717  */
1718 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1719 				  struct kernel_lb_addr *fileset)
1720 {
1721 	struct buffer_head *bh;
1722 	uint16_t ident;
1723 	int ret;
1724 
1725 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1726 	    udf_fixed_to_variable(block) >=
1727 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1728 		return -EAGAIN;
1729 
1730 	bh = udf_read_tagged(sb, block, block, &ident);
1731 	if (!bh)
1732 		return -EAGAIN;
1733 	if (ident != TAG_IDENT_AVDP) {
1734 		brelse(bh);
1735 		return -EAGAIN;
1736 	}
1737 	ret = udf_load_sequence(sb, bh, fileset);
1738 	brelse(bh);
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Search for an anchor volume descriptor pointer.
1744  *
1745  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1746  * of anchors.
1747  */
1748 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1749 			    struct kernel_lb_addr *fileset)
1750 {
1751 	sector_t last[6];
1752 	int i;
1753 	struct udf_sb_info *sbi = UDF_SB(sb);
1754 	int last_count = 0;
1755 	int ret;
1756 
1757 	/* First try user provided anchor */
1758 	if (sbi->s_anchor) {
1759 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1760 		if (ret != -EAGAIN)
1761 			return ret;
1762 	}
1763 	/*
1764 	 * according to spec, anchor is in either:
1765 	 *     block 256
1766 	 *     lastblock-256
1767 	 *     lastblock
1768 	 *  however, if the disc isn't closed, it could be 512.
1769 	 */
1770 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1771 	if (ret != -EAGAIN)
1772 		return ret;
1773 	/*
1774 	 * The trouble is which block is the last one. Drives often misreport
1775 	 * this so we try various possibilities.
1776 	 */
1777 	last[last_count++] = *lastblock;
1778 	if (*lastblock >= 1)
1779 		last[last_count++] = *lastblock - 1;
1780 	last[last_count++] = *lastblock + 1;
1781 	if (*lastblock >= 2)
1782 		last[last_count++] = *lastblock - 2;
1783 	if (*lastblock >= 150)
1784 		last[last_count++] = *lastblock - 150;
1785 	if (*lastblock >= 152)
1786 		last[last_count++] = *lastblock - 152;
1787 
1788 	for (i = 0; i < last_count; i++) {
1789 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1790 				sb->s_blocksize_bits)
1791 			continue;
1792 		ret = udf_check_anchor_block(sb, last[i], fileset);
1793 		if (ret != -EAGAIN) {
1794 			if (!ret)
1795 				*lastblock = last[i];
1796 			return ret;
1797 		}
1798 		if (last[i] < 256)
1799 			continue;
1800 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1801 		if (ret != -EAGAIN) {
1802 			if (!ret)
1803 				*lastblock = last[i];
1804 			return ret;
1805 		}
1806 	}
1807 
1808 	/* Finally try block 512 in case media is open */
1809 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1810 }
1811 
1812 /*
1813  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1814  * area specified by it. The function expects sbi->s_lastblock to be the last
1815  * block on the media.
1816  *
1817  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1818  * was not found.
1819  */
1820 static int udf_find_anchor(struct super_block *sb,
1821 			   struct kernel_lb_addr *fileset)
1822 {
1823 	struct udf_sb_info *sbi = UDF_SB(sb);
1824 	sector_t lastblock = sbi->s_last_block;
1825 	int ret;
1826 
1827 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1828 	if (ret != -EAGAIN)
1829 		goto out;
1830 
1831 	/* No anchor found? Try VARCONV conversion of block numbers */
1832 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1833 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1834 	/* Firstly, we try to not convert number of the last block */
1835 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1836 	if (ret != -EAGAIN)
1837 		goto out;
1838 
1839 	lastblock = sbi->s_last_block;
1840 	/* Secondly, we try with converted number of the last block */
1841 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1842 	if (ret < 0) {
1843 		/* VARCONV didn't help. Clear it. */
1844 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1845 	}
1846 out:
1847 	if (ret == 0)
1848 		sbi->s_last_block = lastblock;
1849 	return ret;
1850 }
1851 
1852 /*
1853  * Check Volume Structure Descriptor, find Anchor block and load Volume
1854  * Descriptor Sequence.
1855  *
1856  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1857  * block was not found.
1858  */
1859 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1860 			int silent, struct kernel_lb_addr *fileset)
1861 {
1862 	struct udf_sb_info *sbi = UDF_SB(sb);
1863 	loff_t nsr_off;
1864 	int ret;
1865 
1866 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1867 		if (!silent)
1868 			udf_warn(sb, "Bad block size\n");
1869 		return -EINVAL;
1870 	}
1871 	sbi->s_last_block = uopt->lastblock;
1872 	if (!uopt->novrs) {
1873 		/* Check that it is NSR02 compliant */
1874 		nsr_off = udf_check_vsd(sb);
1875 		if (!nsr_off) {
1876 			if (!silent)
1877 				udf_warn(sb, "No VRS found\n");
1878 			return 0;
1879 		}
1880 		if (nsr_off == -1)
1881 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1882 		if (!sbi->s_last_block)
1883 			sbi->s_last_block = udf_get_last_block(sb);
1884 	} else {
1885 		udf_debug("Validity check skipped because of novrs option\n");
1886 	}
1887 
1888 	/* Look for anchor block and load Volume Descriptor Sequence */
1889 	sbi->s_anchor = uopt->anchor;
1890 	ret = udf_find_anchor(sb, fileset);
1891 	if (ret < 0) {
1892 		if (!silent && ret == -EAGAIN)
1893 			udf_warn(sb, "No anchor found\n");
1894 		return ret;
1895 	}
1896 	return 0;
1897 }
1898 
1899 static void udf_open_lvid(struct super_block *sb)
1900 {
1901 	struct udf_sb_info *sbi = UDF_SB(sb);
1902 	struct buffer_head *bh = sbi->s_lvid_bh;
1903 	struct logicalVolIntegrityDesc *lvid;
1904 	struct logicalVolIntegrityDescImpUse *lvidiu;
1905 
1906 	if (!bh)
1907 		return;
1908 
1909 	mutex_lock(&sbi->s_alloc_mutex);
1910 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1911 	lvidiu = udf_sb_lvidiu(sbi);
1912 
1913 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1914 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1915 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1916 				CURRENT_TIME);
1917 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1918 
1919 	lvid->descTag.descCRC = cpu_to_le16(
1920 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1921 			le16_to_cpu(lvid->descTag.descCRCLength)));
1922 
1923 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1924 	mark_buffer_dirty(bh);
1925 	sbi->s_lvid_dirty = 0;
1926 	mutex_unlock(&sbi->s_alloc_mutex);
1927 	/* Make opening of filesystem visible on the media immediately */
1928 	sync_dirty_buffer(bh);
1929 }
1930 
1931 static void udf_close_lvid(struct super_block *sb)
1932 {
1933 	struct udf_sb_info *sbi = UDF_SB(sb);
1934 	struct buffer_head *bh = sbi->s_lvid_bh;
1935 	struct logicalVolIntegrityDesc *lvid;
1936 	struct logicalVolIntegrityDescImpUse *lvidiu;
1937 
1938 	if (!bh)
1939 		return;
1940 
1941 	mutex_lock(&sbi->s_alloc_mutex);
1942 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1943 	lvidiu = udf_sb_lvidiu(sbi);
1944 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1945 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1946 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1947 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1948 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1949 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1950 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1951 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1952 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1953 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1954 
1955 	lvid->descTag.descCRC = cpu_to_le16(
1956 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1957 				le16_to_cpu(lvid->descTag.descCRCLength)));
1958 
1959 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1960 	/*
1961 	 * We set buffer uptodate unconditionally here to avoid spurious
1962 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1963 	 * the buffer as !uptodate
1964 	 */
1965 	set_buffer_uptodate(bh);
1966 	mark_buffer_dirty(bh);
1967 	sbi->s_lvid_dirty = 0;
1968 	mutex_unlock(&sbi->s_alloc_mutex);
1969 	/* Make closing of filesystem visible on the media immediately */
1970 	sync_dirty_buffer(bh);
1971 }
1972 
1973 u64 lvid_get_unique_id(struct super_block *sb)
1974 {
1975 	struct buffer_head *bh;
1976 	struct udf_sb_info *sbi = UDF_SB(sb);
1977 	struct logicalVolIntegrityDesc *lvid;
1978 	struct logicalVolHeaderDesc *lvhd;
1979 	u64 uniqueID;
1980 	u64 ret;
1981 
1982 	bh = sbi->s_lvid_bh;
1983 	if (!bh)
1984 		return 0;
1985 
1986 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1987 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1988 
1989 	mutex_lock(&sbi->s_alloc_mutex);
1990 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1991 	if (!(++uniqueID & 0xFFFFFFFF))
1992 		uniqueID += 16;
1993 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1994 	mutex_unlock(&sbi->s_alloc_mutex);
1995 	mark_buffer_dirty(bh);
1996 
1997 	return ret;
1998 }
1999 
2000 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2001 {
2002 	int ret = -EINVAL;
2003 	struct inode *inode = NULL;
2004 	struct udf_options uopt;
2005 	struct kernel_lb_addr rootdir, fileset;
2006 	struct udf_sb_info *sbi;
2007 
2008 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2009 	uopt.uid = INVALID_UID;
2010 	uopt.gid = INVALID_GID;
2011 	uopt.umask = 0;
2012 	uopt.fmode = UDF_INVALID_MODE;
2013 	uopt.dmode = UDF_INVALID_MODE;
2014 
2015 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2016 	if (!sbi)
2017 		return -ENOMEM;
2018 
2019 	sb->s_fs_info = sbi;
2020 
2021 	mutex_init(&sbi->s_alloc_mutex);
2022 
2023 	if (!udf_parse_options((char *)options, &uopt, false))
2024 		goto error_out;
2025 
2026 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2027 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2028 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2029 		goto error_out;
2030 	}
2031 #ifdef CONFIG_UDF_NLS
2032 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2033 		uopt.nls_map = load_nls_default();
2034 		if (!uopt.nls_map)
2035 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2036 		else
2037 			udf_debug("Using default NLS map\n");
2038 	}
2039 #endif
2040 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2041 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2042 
2043 	fileset.logicalBlockNum = 0xFFFFFFFF;
2044 	fileset.partitionReferenceNum = 0xFFFF;
2045 
2046 	sbi->s_flags = uopt.flags;
2047 	sbi->s_uid = uopt.uid;
2048 	sbi->s_gid = uopt.gid;
2049 	sbi->s_umask = uopt.umask;
2050 	sbi->s_fmode = uopt.fmode;
2051 	sbi->s_dmode = uopt.dmode;
2052 	sbi->s_nls_map = uopt.nls_map;
2053 	rwlock_init(&sbi->s_cred_lock);
2054 
2055 	if (uopt.session == 0xFFFFFFFF)
2056 		sbi->s_session = udf_get_last_session(sb);
2057 	else
2058 		sbi->s_session = uopt.session;
2059 
2060 	udf_debug("Multi-session=%d\n", sbi->s_session);
2061 
2062 	/* Fill in the rest of the superblock */
2063 	sb->s_op = &udf_sb_ops;
2064 	sb->s_export_op = &udf_export_ops;
2065 
2066 	sb->s_magic = UDF_SUPER_MAGIC;
2067 	sb->s_time_gran = 1000;
2068 
2069 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2070 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2071 	} else {
2072 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2073 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2074 		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2075 			if (!silent)
2076 				pr_notice("Rescanning with blocksize %d\n",
2077 					  UDF_DEFAULT_BLOCKSIZE);
2078 			brelse(sbi->s_lvid_bh);
2079 			sbi->s_lvid_bh = NULL;
2080 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2081 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2082 		}
2083 	}
2084 	if (ret < 0) {
2085 		if (ret == -EAGAIN) {
2086 			udf_warn(sb, "No partition found (1)\n");
2087 			ret = -EINVAL;
2088 		}
2089 		goto error_out;
2090 	}
2091 
2092 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2093 
2094 	if (sbi->s_lvid_bh) {
2095 		struct logicalVolIntegrityDescImpUse *lvidiu =
2096 							udf_sb_lvidiu(sbi);
2097 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2098 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2099 		/* uint16_t maxUDFWriteRev =
2100 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2101 
2102 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2103 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2104 				le16_to_cpu(lvidiu->minUDFReadRev),
2105 				UDF_MAX_READ_VERSION);
2106 			ret = -EINVAL;
2107 			goto error_out;
2108 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2109 			   !(sb->s_flags & MS_RDONLY)) {
2110 			ret = -EACCES;
2111 			goto error_out;
2112 		}
2113 
2114 		sbi->s_udfrev = minUDFWriteRev;
2115 
2116 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2117 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2118 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2119 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2120 	}
2121 
2122 	if (!sbi->s_partitions) {
2123 		udf_warn(sb, "No partition found (2)\n");
2124 		ret = -EINVAL;
2125 		goto error_out;
2126 	}
2127 
2128 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2129 			UDF_PART_FLAG_READ_ONLY &&
2130 	    !(sb->s_flags & MS_RDONLY)) {
2131 		ret = -EACCES;
2132 		goto error_out;
2133 	}
2134 
2135 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2136 		udf_warn(sb, "No fileset found\n");
2137 		ret = -EINVAL;
2138 		goto error_out;
2139 	}
2140 
2141 	if (!silent) {
2142 		struct timestamp ts;
2143 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2144 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2145 			 sbi->s_volume_ident,
2146 			 le16_to_cpu(ts.year), ts.month, ts.day,
2147 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2148 	}
2149 	if (!(sb->s_flags & MS_RDONLY))
2150 		udf_open_lvid(sb);
2151 
2152 	/* Assign the root inode */
2153 	/* assign inodes by physical block number */
2154 	/* perhaps it's not extensible enough, but for now ... */
2155 	inode = udf_iget(sb, &rootdir);
2156 	if (!inode) {
2157 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2158 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2159 		ret = -EIO;
2160 		goto error_out;
2161 	}
2162 
2163 	/* Allocate a dentry for the root inode */
2164 	sb->s_root = d_make_root(inode);
2165 	if (!sb->s_root) {
2166 		udf_err(sb, "Couldn't allocate root dentry\n");
2167 		ret = -ENOMEM;
2168 		goto error_out;
2169 	}
2170 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2171 	sb->s_max_links = UDF_MAX_LINKS;
2172 	return 0;
2173 
2174 error_out:
2175 	if (sbi->s_vat_inode)
2176 		iput(sbi->s_vat_inode);
2177 #ifdef CONFIG_UDF_NLS
2178 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2179 		unload_nls(sbi->s_nls_map);
2180 #endif
2181 	if (!(sb->s_flags & MS_RDONLY))
2182 		udf_close_lvid(sb);
2183 	brelse(sbi->s_lvid_bh);
2184 	udf_sb_free_partitions(sb);
2185 	kfree(sbi);
2186 	sb->s_fs_info = NULL;
2187 
2188 	return ret;
2189 }
2190 
2191 void _udf_err(struct super_block *sb, const char *function,
2192 	      const char *fmt, ...)
2193 {
2194 	struct va_format vaf;
2195 	va_list args;
2196 
2197 	va_start(args, fmt);
2198 
2199 	vaf.fmt = fmt;
2200 	vaf.va = &args;
2201 
2202 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2203 
2204 	va_end(args);
2205 }
2206 
2207 void _udf_warn(struct super_block *sb, const char *function,
2208 	       const char *fmt, ...)
2209 {
2210 	struct va_format vaf;
2211 	va_list args;
2212 
2213 	va_start(args, fmt);
2214 
2215 	vaf.fmt = fmt;
2216 	vaf.va = &args;
2217 
2218 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2219 
2220 	va_end(args);
2221 }
2222 
2223 static void udf_put_super(struct super_block *sb)
2224 {
2225 	struct udf_sb_info *sbi;
2226 
2227 	sbi = UDF_SB(sb);
2228 
2229 	if (sbi->s_vat_inode)
2230 		iput(sbi->s_vat_inode);
2231 #ifdef CONFIG_UDF_NLS
2232 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2233 		unload_nls(sbi->s_nls_map);
2234 #endif
2235 	if (!(sb->s_flags & MS_RDONLY))
2236 		udf_close_lvid(sb);
2237 	brelse(sbi->s_lvid_bh);
2238 	udf_sb_free_partitions(sb);
2239 	kfree(sb->s_fs_info);
2240 	sb->s_fs_info = NULL;
2241 }
2242 
2243 static int udf_sync_fs(struct super_block *sb, int wait)
2244 {
2245 	struct udf_sb_info *sbi = UDF_SB(sb);
2246 
2247 	mutex_lock(&sbi->s_alloc_mutex);
2248 	if (sbi->s_lvid_dirty) {
2249 		/*
2250 		 * Blockdevice will be synced later so we don't have to submit
2251 		 * the buffer for IO
2252 		 */
2253 		mark_buffer_dirty(sbi->s_lvid_bh);
2254 		sbi->s_lvid_dirty = 0;
2255 	}
2256 	mutex_unlock(&sbi->s_alloc_mutex);
2257 
2258 	return 0;
2259 }
2260 
2261 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2262 {
2263 	struct super_block *sb = dentry->d_sb;
2264 	struct udf_sb_info *sbi = UDF_SB(sb);
2265 	struct logicalVolIntegrityDescImpUse *lvidiu;
2266 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2267 
2268 	if (sbi->s_lvid_bh != NULL)
2269 		lvidiu = udf_sb_lvidiu(sbi);
2270 	else
2271 		lvidiu = NULL;
2272 
2273 	buf->f_type = UDF_SUPER_MAGIC;
2274 	buf->f_bsize = sb->s_blocksize;
2275 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2276 	buf->f_bfree = udf_count_free(sb);
2277 	buf->f_bavail = buf->f_bfree;
2278 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2279 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2280 			+ buf->f_bfree;
2281 	buf->f_ffree = buf->f_bfree;
2282 	buf->f_namelen = UDF_NAME_LEN - 2;
2283 	buf->f_fsid.val[0] = (u32)id;
2284 	buf->f_fsid.val[1] = (u32)(id >> 32);
2285 
2286 	return 0;
2287 }
2288 
2289 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2290 					  struct udf_bitmap *bitmap)
2291 {
2292 	struct buffer_head *bh = NULL;
2293 	unsigned int accum = 0;
2294 	int index;
2295 	int block = 0, newblock;
2296 	struct kernel_lb_addr loc;
2297 	uint32_t bytes;
2298 	uint8_t *ptr;
2299 	uint16_t ident;
2300 	struct spaceBitmapDesc *bm;
2301 
2302 	loc.logicalBlockNum = bitmap->s_extPosition;
2303 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2304 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2305 
2306 	if (!bh) {
2307 		udf_err(sb, "udf_count_free failed\n");
2308 		goto out;
2309 	} else if (ident != TAG_IDENT_SBD) {
2310 		brelse(bh);
2311 		udf_err(sb, "udf_count_free failed\n");
2312 		goto out;
2313 	}
2314 
2315 	bm = (struct spaceBitmapDesc *)bh->b_data;
2316 	bytes = le32_to_cpu(bm->numOfBytes);
2317 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2318 	ptr = (uint8_t *)bh->b_data;
2319 
2320 	while (bytes > 0) {
2321 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2322 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2323 					cur_bytes * 8);
2324 		bytes -= cur_bytes;
2325 		if (bytes) {
2326 			brelse(bh);
2327 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2328 			bh = udf_tread(sb, newblock);
2329 			if (!bh) {
2330 				udf_debug("read failed\n");
2331 				goto out;
2332 			}
2333 			index = 0;
2334 			ptr = (uint8_t *)bh->b_data;
2335 		}
2336 	}
2337 	brelse(bh);
2338 out:
2339 	return accum;
2340 }
2341 
2342 static unsigned int udf_count_free_table(struct super_block *sb,
2343 					 struct inode *table)
2344 {
2345 	unsigned int accum = 0;
2346 	uint32_t elen;
2347 	struct kernel_lb_addr eloc;
2348 	int8_t etype;
2349 	struct extent_position epos;
2350 
2351 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2352 	epos.block = UDF_I(table)->i_location;
2353 	epos.offset = sizeof(struct unallocSpaceEntry);
2354 	epos.bh = NULL;
2355 
2356 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2357 		accum += (elen >> table->i_sb->s_blocksize_bits);
2358 
2359 	brelse(epos.bh);
2360 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2361 
2362 	return accum;
2363 }
2364 
2365 static unsigned int udf_count_free(struct super_block *sb)
2366 {
2367 	unsigned int accum = 0;
2368 	struct udf_sb_info *sbi;
2369 	struct udf_part_map *map;
2370 
2371 	sbi = UDF_SB(sb);
2372 	if (sbi->s_lvid_bh) {
2373 		struct logicalVolIntegrityDesc *lvid =
2374 			(struct logicalVolIntegrityDesc *)
2375 			sbi->s_lvid_bh->b_data;
2376 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2377 			accum = le32_to_cpu(
2378 					lvid->freeSpaceTable[sbi->s_partition]);
2379 			if (accum == 0xFFFFFFFF)
2380 				accum = 0;
2381 		}
2382 	}
2383 
2384 	if (accum)
2385 		return accum;
2386 
2387 	map = &sbi->s_partmaps[sbi->s_partition];
2388 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2389 		accum += udf_count_free_bitmap(sb,
2390 					       map->s_uspace.s_bitmap);
2391 	}
2392 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2393 		accum += udf_count_free_bitmap(sb,
2394 					       map->s_fspace.s_bitmap);
2395 	}
2396 	if (accum)
2397 		return accum;
2398 
2399 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2400 		accum += udf_count_free_table(sb,
2401 					      map->s_uspace.s_table);
2402 	}
2403 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2404 		accum += udf_count_free_table(sb,
2405 					      map->s_fspace.s_table);
2406 	}
2407 
2408 	return accum;
2409 }
2410