1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/smp_lock.h> 52 #include <linux/buffer_head.h> 53 #include <linux/vfs.h> 54 #include <linux/vmalloc.h> 55 #include <linux/errno.h> 56 #include <linux/mount.h> 57 #include <linux/seq_file.h> 58 #include <linux/bitmap.h> 59 #include <linux/crc-itu-t.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 static char error_buf[1024]; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static void udf_write_super(struct super_block *); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static int udf_check_valid(struct super_block *, int, int); 87 static int udf_vrs(struct super_block *sb, int silent); 88 static void udf_load_logicalvolint(struct super_block *, kernel_extent_ad); 89 static void udf_find_anchor(struct super_block *); 90 static int udf_find_fileset(struct super_block *, kernel_lb_addr *, 91 kernel_lb_addr *); 92 static void udf_load_fileset(struct super_block *, struct buffer_head *, 93 kernel_lb_addr *); 94 static void udf_open_lvid(struct super_block *); 95 static void udf_close_lvid(struct super_block *); 96 static unsigned int udf_count_free(struct super_block *); 97 static int udf_statfs(struct dentry *, struct kstatfs *); 98 static int udf_show_options(struct seq_file *, struct vfsmount *); 99 static void udf_error(struct super_block *sb, const char *function, 100 const char *fmt, ...); 101 102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 103 { 104 struct logicalVolIntegrityDesc *lvid = 105 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 106 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 107 __u32 offset = number_of_partitions * 2 * 108 sizeof(uint32_t)/sizeof(uint8_t); 109 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 110 } 111 112 /* UDF filesystem type */ 113 static int udf_get_sb(struct file_system_type *fs_type, 114 int flags, const char *dev_name, void *data, 115 struct vfsmount *mnt) 116 { 117 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt); 118 } 119 120 static struct file_system_type udf_fstype = { 121 .owner = THIS_MODULE, 122 .name = "udf", 123 .get_sb = udf_get_sb, 124 .kill_sb = kill_block_super, 125 .fs_flags = FS_REQUIRES_DEV, 126 }; 127 128 static struct kmem_cache *udf_inode_cachep; 129 130 static struct inode *udf_alloc_inode(struct super_block *sb) 131 { 132 struct udf_inode_info *ei; 133 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 134 if (!ei) 135 return NULL; 136 137 ei->i_unique = 0; 138 ei->i_lenExtents = 0; 139 ei->i_next_alloc_block = 0; 140 ei->i_next_alloc_goal = 0; 141 ei->i_strat4096 = 0; 142 143 return &ei->vfs_inode; 144 } 145 146 static void udf_destroy_inode(struct inode *inode) 147 { 148 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 149 } 150 151 static void init_once(struct kmem_cache *cachep, void *foo) 152 { 153 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 154 155 ei->i_ext.i_data = NULL; 156 inode_init_once(&ei->vfs_inode); 157 } 158 159 static int init_inodecache(void) 160 { 161 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 162 sizeof(struct udf_inode_info), 163 0, (SLAB_RECLAIM_ACCOUNT | 164 SLAB_MEM_SPREAD), 165 init_once); 166 if (!udf_inode_cachep) 167 return -ENOMEM; 168 return 0; 169 } 170 171 static void destroy_inodecache(void) 172 { 173 kmem_cache_destroy(udf_inode_cachep); 174 } 175 176 /* Superblock operations */ 177 static const struct super_operations udf_sb_ops = { 178 .alloc_inode = udf_alloc_inode, 179 .destroy_inode = udf_destroy_inode, 180 .write_inode = udf_write_inode, 181 .delete_inode = udf_delete_inode, 182 .clear_inode = udf_clear_inode, 183 .put_super = udf_put_super, 184 .write_super = udf_write_super, 185 .statfs = udf_statfs, 186 .remount_fs = udf_remount_fs, 187 .show_options = udf_show_options, 188 }; 189 190 struct udf_options { 191 unsigned char novrs; 192 unsigned int blocksize; 193 unsigned int session; 194 unsigned int lastblock; 195 unsigned int anchor; 196 unsigned int volume; 197 unsigned short partition; 198 unsigned int fileset; 199 unsigned int rootdir; 200 unsigned int flags; 201 mode_t umask; 202 gid_t gid; 203 uid_t uid; 204 struct nls_table *nls_map; 205 }; 206 207 static int __init init_udf_fs(void) 208 { 209 int err; 210 211 err = init_inodecache(); 212 if (err) 213 goto out1; 214 err = register_filesystem(&udf_fstype); 215 if (err) 216 goto out; 217 218 return 0; 219 220 out: 221 destroy_inodecache(); 222 223 out1: 224 return err; 225 } 226 227 static void __exit exit_udf_fs(void) 228 { 229 unregister_filesystem(&udf_fstype); 230 destroy_inodecache(); 231 } 232 233 module_init(init_udf_fs) 234 module_exit(exit_udf_fs) 235 236 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 237 { 238 struct udf_sb_info *sbi = UDF_SB(sb); 239 240 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 241 GFP_KERNEL); 242 if (!sbi->s_partmaps) { 243 udf_error(sb, __func__, 244 "Unable to allocate space for %d partition maps", 245 count); 246 sbi->s_partitions = 0; 247 return -ENOMEM; 248 } 249 250 sbi->s_partitions = count; 251 return 0; 252 } 253 254 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt) 255 { 256 struct super_block *sb = mnt->mnt_sb; 257 struct udf_sb_info *sbi = UDF_SB(sb); 258 259 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 260 seq_puts(seq, ",nostrict"); 261 if (sb->s_blocksize != UDF_DEFAULT_BLOCKSIZE) 262 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 263 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 264 seq_puts(seq, ",unhide"); 265 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 266 seq_puts(seq, ",undelete"); 267 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 268 seq_puts(seq, ",noadinicb"); 269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 270 seq_puts(seq, ",shortad"); 271 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 272 seq_puts(seq, ",uid=forget"); 273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 274 seq_puts(seq, ",uid=ignore"); 275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 276 seq_puts(seq, ",gid=forget"); 277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 278 seq_puts(seq, ",gid=ignore"); 279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 280 seq_printf(seq, ",uid=%u", sbi->s_uid); 281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 282 seq_printf(seq, ",gid=%u", sbi->s_gid); 283 if (sbi->s_umask != 0) 284 seq_printf(seq, ",umask=%o", sbi->s_umask); 285 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 286 seq_printf(seq, ",session=%u", sbi->s_session); 287 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 288 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 289 /* 290 * s_anchor[2] could be zeroed out in case there is no anchor 291 * in the specified block, but then the "anchor=N" option 292 * originally given by the user wasn't effective, so it's OK 293 * if we don't show it. 294 */ 295 if (sbi->s_anchor[2] != 0) 296 seq_printf(seq, ",anchor=%u", sbi->s_anchor[2]); 297 /* 298 * volume, partition, fileset and rootdir seem to be ignored 299 * currently 300 */ 301 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 302 seq_puts(seq, ",utf8"); 303 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 304 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 305 306 return 0; 307 } 308 309 /* 310 * udf_parse_options 311 * 312 * PURPOSE 313 * Parse mount options. 314 * 315 * DESCRIPTION 316 * The following mount options are supported: 317 * 318 * gid= Set the default group. 319 * umask= Set the default umask. 320 * uid= Set the default user. 321 * bs= Set the block size. 322 * unhide Show otherwise hidden files. 323 * undelete Show deleted files in lists. 324 * adinicb Embed data in the inode (default) 325 * noadinicb Don't embed data in the inode 326 * shortad Use short ad's 327 * longad Use long ad's (default) 328 * nostrict Unset strict conformance 329 * iocharset= Set the NLS character set 330 * 331 * The remaining are for debugging and disaster recovery: 332 * 333 * novrs Skip volume sequence recognition 334 * 335 * The following expect a offset from 0. 336 * 337 * session= Set the CDROM session (default= last session) 338 * anchor= Override standard anchor location. (default= 256) 339 * volume= Override the VolumeDesc location. (unused) 340 * partition= Override the PartitionDesc location. (unused) 341 * lastblock= Set the last block of the filesystem/ 342 * 343 * The following expect a offset from the partition root. 344 * 345 * fileset= Override the fileset block location. (unused) 346 * rootdir= Override the root directory location. (unused) 347 * WARNING: overriding the rootdir to a non-directory may 348 * yield highly unpredictable results. 349 * 350 * PRE-CONDITIONS 351 * options Pointer to mount options string. 352 * uopts Pointer to mount options variable. 353 * 354 * POST-CONDITIONS 355 * <return> 1 Mount options parsed okay. 356 * <return> 0 Error parsing mount options. 357 * 358 * HISTORY 359 * July 1, 1997 - Andrew E. Mileski 360 * Written, tested, and released. 361 */ 362 363 enum { 364 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 365 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 366 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 367 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 368 Opt_rootdir, Opt_utf8, Opt_iocharset, 369 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore 370 }; 371 372 static match_table_t tokens = { 373 {Opt_novrs, "novrs"}, 374 {Opt_nostrict, "nostrict"}, 375 {Opt_bs, "bs=%u"}, 376 {Opt_unhide, "unhide"}, 377 {Opt_undelete, "undelete"}, 378 {Opt_noadinicb, "noadinicb"}, 379 {Opt_adinicb, "adinicb"}, 380 {Opt_shortad, "shortad"}, 381 {Opt_longad, "longad"}, 382 {Opt_uforget, "uid=forget"}, 383 {Opt_uignore, "uid=ignore"}, 384 {Opt_gforget, "gid=forget"}, 385 {Opt_gignore, "gid=ignore"}, 386 {Opt_gid, "gid=%u"}, 387 {Opt_uid, "uid=%u"}, 388 {Opt_umask, "umask=%o"}, 389 {Opt_session, "session=%u"}, 390 {Opt_lastblock, "lastblock=%u"}, 391 {Opt_anchor, "anchor=%u"}, 392 {Opt_volume, "volume=%u"}, 393 {Opt_partition, "partition=%u"}, 394 {Opt_fileset, "fileset=%u"}, 395 {Opt_rootdir, "rootdir=%u"}, 396 {Opt_utf8, "utf8"}, 397 {Opt_iocharset, "iocharset=%s"}, 398 {Opt_err, NULL} 399 }; 400 401 static int udf_parse_options(char *options, struct udf_options *uopt, 402 bool remount) 403 { 404 char *p; 405 int option; 406 407 uopt->novrs = 0; 408 uopt->blocksize = UDF_DEFAULT_BLOCKSIZE; 409 uopt->partition = 0xFFFF; 410 uopt->session = 0xFFFFFFFF; 411 uopt->lastblock = 0; 412 uopt->anchor = 0; 413 uopt->volume = 0xFFFFFFFF; 414 uopt->rootdir = 0xFFFFFFFF; 415 uopt->fileset = 0xFFFFFFFF; 416 uopt->nls_map = NULL; 417 418 if (!options) 419 return 1; 420 421 while ((p = strsep(&options, ",")) != NULL) { 422 substring_t args[MAX_OPT_ARGS]; 423 int token; 424 if (!*p) 425 continue; 426 427 token = match_token(p, tokens, args); 428 switch (token) { 429 case Opt_novrs: 430 uopt->novrs = 1; 431 case Opt_bs: 432 if (match_int(&args[0], &option)) 433 return 0; 434 uopt->blocksize = option; 435 break; 436 case Opt_unhide: 437 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 438 break; 439 case Opt_undelete: 440 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 441 break; 442 case Opt_noadinicb: 443 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 444 break; 445 case Opt_adinicb: 446 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 447 break; 448 case Opt_shortad: 449 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 450 break; 451 case Opt_longad: 452 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 453 break; 454 case Opt_gid: 455 if (match_int(args, &option)) 456 return 0; 457 uopt->gid = option; 458 uopt->flags |= (1 << UDF_FLAG_GID_SET); 459 break; 460 case Opt_uid: 461 if (match_int(args, &option)) 462 return 0; 463 uopt->uid = option; 464 uopt->flags |= (1 << UDF_FLAG_UID_SET); 465 break; 466 case Opt_umask: 467 if (match_octal(args, &option)) 468 return 0; 469 uopt->umask = option; 470 break; 471 case Opt_nostrict: 472 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 473 break; 474 case Opt_session: 475 if (match_int(args, &option)) 476 return 0; 477 uopt->session = option; 478 if (!remount) 479 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 480 break; 481 case Opt_lastblock: 482 if (match_int(args, &option)) 483 return 0; 484 uopt->lastblock = option; 485 if (!remount) 486 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 487 break; 488 case Opt_anchor: 489 if (match_int(args, &option)) 490 return 0; 491 uopt->anchor = option; 492 break; 493 case Opt_volume: 494 if (match_int(args, &option)) 495 return 0; 496 uopt->volume = option; 497 break; 498 case Opt_partition: 499 if (match_int(args, &option)) 500 return 0; 501 uopt->partition = option; 502 break; 503 case Opt_fileset: 504 if (match_int(args, &option)) 505 return 0; 506 uopt->fileset = option; 507 break; 508 case Opt_rootdir: 509 if (match_int(args, &option)) 510 return 0; 511 uopt->rootdir = option; 512 break; 513 case Opt_utf8: 514 uopt->flags |= (1 << UDF_FLAG_UTF8); 515 break; 516 #ifdef CONFIG_UDF_NLS 517 case Opt_iocharset: 518 uopt->nls_map = load_nls(args[0].from); 519 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 520 break; 521 #endif 522 case Opt_uignore: 523 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 524 break; 525 case Opt_uforget: 526 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 527 break; 528 case Opt_gignore: 529 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 530 break; 531 case Opt_gforget: 532 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 533 break; 534 default: 535 printk(KERN_ERR "udf: bad mount option \"%s\" " 536 "or missing value\n", p); 537 return 0; 538 } 539 } 540 return 1; 541 } 542 543 static void udf_write_super(struct super_block *sb) 544 { 545 lock_kernel(); 546 547 if (!(sb->s_flags & MS_RDONLY)) 548 udf_open_lvid(sb); 549 sb->s_dirt = 0; 550 551 unlock_kernel(); 552 } 553 554 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 555 { 556 struct udf_options uopt; 557 struct udf_sb_info *sbi = UDF_SB(sb); 558 559 uopt.flags = sbi->s_flags; 560 uopt.uid = sbi->s_uid; 561 uopt.gid = sbi->s_gid; 562 uopt.umask = sbi->s_umask; 563 564 if (!udf_parse_options(options, &uopt, true)) 565 return -EINVAL; 566 567 sbi->s_flags = uopt.flags; 568 sbi->s_uid = uopt.uid; 569 sbi->s_gid = uopt.gid; 570 sbi->s_umask = uopt.umask; 571 572 if (sbi->s_lvid_bh) { 573 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 574 if (write_rev > UDF_MAX_WRITE_VERSION) 575 *flags |= MS_RDONLY; 576 } 577 578 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 579 return 0; 580 if (*flags & MS_RDONLY) 581 udf_close_lvid(sb); 582 else 583 udf_open_lvid(sb); 584 585 return 0; 586 } 587 588 static int udf_vrs(struct super_block *sb, int silent) 589 { 590 struct volStructDesc *vsd = NULL; 591 loff_t sector = 32768; 592 int sectorsize; 593 struct buffer_head *bh = NULL; 594 int iso9660 = 0; 595 int nsr02 = 0; 596 int nsr03 = 0; 597 struct udf_sb_info *sbi; 598 599 /* Block size must be a multiple of 512 */ 600 if (sb->s_blocksize & 511) 601 return 0; 602 sbi = UDF_SB(sb); 603 604 if (sb->s_blocksize < sizeof(struct volStructDesc)) 605 sectorsize = sizeof(struct volStructDesc); 606 else 607 sectorsize = sb->s_blocksize; 608 609 sector += (sbi->s_session << sb->s_blocksize_bits); 610 611 udf_debug("Starting at sector %u (%ld byte sectors)\n", 612 (unsigned int)(sector >> sb->s_blocksize_bits), 613 sb->s_blocksize); 614 /* Process the sequence (if applicable) */ 615 for (; !nsr02 && !nsr03; sector += sectorsize) { 616 /* Read a block */ 617 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 618 if (!bh) 619 break; 620 621 /* Look for ISO descriptors */ 622 vsd = (struct volStructDesc *)(bh->b_data + 623 (sector & (sb->s_blocksize - 1))); 624 625 if (vsd->stdIdent[0] == 0) { 626 brelse(bh); 627 break; 628 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 629 VSD_STD_ID_LEN)) { 630 iso9660 = sector; 631 switch (vsd->structType) { 632 case 0: 633 udf_debug("ISO9660 Boot Record found\n"); 634 break; 635 case 1: 636 udf_debug("ISO9660 Primary Volume Descriptor " 637 "found\n"); 638 break; 639 case 2: 640 udf_debug("ISO9660 Supplementary Volume " 641 "Descriptor found\n"); 642 break; 643 case 3: 644 udf_debug("ISO9660 Volume Partition Descriptor " 645 "found\n"); 646 break; 647 case 255: 648 udf_debug("ISO9660 Volume Descriptor Set " 649 "Terminator found\n"); 650 break; 651 default: 652 udf_debug("ISO9660 VRS (%u) found\n", 653 vsd->structType); 654 break; 655 } 656 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 657 VSD_STD_ID_LEN)) 658 ; /* nothing */ 659 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 660 VSD_STD_ID_LEN)) { 661 brelse(bh); 662 break; 663 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 664 VSD_STD_ID_LEN)) 665 nsr02 = sector; 666 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 667 VSD_STD_ID_LEN)) 668 nsr03 = sector; 669 brelse(bh); 670 } 671 672 if (nsr03) 673 return nsr03; 674 else if (nsr02) 675 return nsr02; 676 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 677 return -1; 678 else 679 return 0; 680 } 681 682 /* 683 * Check whether there is an anchor block in the given block 684 */ 685 static int udf_check_anchor_block(struct super_block *sb, sector_t block) 686 { 687 struct buffer_head *bh; 688 uint16_t ident; 689 690 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 691 udf_fixed_to_variable(block) >= 692 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 693 return 0; 694 695 bh = udf_read_tagged(sb, block, block, &ident); 696 if (!bh) 697 return 0; 698 brelse(bh); 699 700 return ident == TAG_IDENT_AVDP; 701 } 702 703 /* Search for an anchor volume descriptor pointer */ 704 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock) 705 { 706 sector_t last[6]; 707 int i; 708 struct udf_sb_info *sbi = UDF_SB(sb); 709 710 last[0] = lastblock; 711 last[1] = last[0] - 1; 712 last[2] = last[0] + 1; 713 last[3] = last[0] - 2; 714 last[4] = last[0] - 150; 715 last[5] = last[0] - 152; 716 717 /* according to spec, anchor is in either: 718 * block 256 719 * lastblock-256 720 * lastblock 721 * however, if the disc isn't closed, it could be 512 */ 722 723 for (i = 0; i < ARRAY_SIZE(last); i++) { 724 if (last[i] < 0) 725 continue; 726 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 727 sb->s_blocksize_bits) 728 continue; 729 730 if (udf_check_anchor_block(sb, last[i])) { 731 sbi->s_anchor[0] = last[i]; 732 sbi->s_anchor[1] = last[i] - 256; 733 return last[i]; 734 } 735 736 if (last[i] < 256) 737 continue; 738 739 if (udf_check_anchor_block(sb, last[i] - 256)) { 740 sbi->s_anchor[1] = last[i] - 256; 741 return last[i]; 742 } 743 } 744 745 if (udf_check_anchor_block(sb, sbi->s_session + 256)) { 746 sbi->s_anchor[0] = sbi->s_session + 256; 747 return last[0]; 748 } 749 if (udf_check_anchor_block(sb, sbi->s_session + 512)) { 750 sbi->s_anchor[0] = sbi->s_session + 512; 751 return last[0]; 752 } 753 return 0; 754 } 755 756 /* 757 * Find an anchor volume descriptor. The function expects sbi->s_lastblock to 758 * be the last block on the media. 759 * 760 * Return 1 if not found, 0 if ok 761 * 762 */ 763 static void udf_find_anchor(struct super_block *sb) 764 { 765 sector_t lastblock; 766 struct buffer_head *bh = NULL; 767 uint16_t ident; 768 int i; 769 struct udf_sb_info *sbi = UDF_SB(sb); 770 771 lastblock = udf_scan_anchors(sb, sbi->s_last_block); 772 if (lastblock) 773 goto check_anchor; 774 775 /* No anchor found? Try VARCONV conversion of block numbers */ 776 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 777 /* Firstly, we try to not convert number of the last block */ 778 lastblock = udf_scan_anchors(sb, 779 udf_variable_to_fixed(sbi->s_last_block)); 780 if (lastblock) 781 goto check_anchor; 782 783 /* Secondly, we try with converted number of the last block */ 784 lastblock = udf_scan_anchors(sb, sbi->s_last_block); 785 if (!lastblock) { 786 /* VARCONV didn't help. Clear it. */ 787 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 788 } 789 790 check_anchor: 791 /* 792 * Check located anchors and the anchor block supplied via 793 * mount options 794 */ 795 for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) { 796 if (!sbi->s_anchor[i]) 797 continue; 798 bh = udf_read_tagged(sb, sbi->s_anchor[i], 799 sbi->s_anchor[i], &ident); 800 if (!bh) 801 sbi->s_anchor[i] = 0; 802 else { 803 brelse(bh); 804 if (ident != TAG_IDENT_AVDP) 805 sbi->s_anchor[i] = 0; 806 } 807 } 808 809 sbi->s_last_block = lastblock; 810 } 811 812 static int udf_find_fileset(struct super_block *sb, 813 kernel_lb_addr *fileset, 814 kernel_lb_addr *root) 815 { 816 struct buffer_head *bh = NULL; 817 long lastblock; 818 uint16_t ident; 819 struct udf_sb_info *sbi; 820 821 if (fileset->logicalBlockNum != 0xFFFFFFFF || 822 fileset->partitionReferenceNum != 0xFFFF) { 823 bh = udf_read_ptagged(sb, *fileset, 0, &ident); 824 825 if (!bh) { 826 return 1; 827 } else if (ident != TAG_IDENT_FSD) { 828 brelse(bh); 829 return 1; 830 } 831 832 } 833 834 sbi = UDF_SB(sb); 835 if (!bh) { 836 /* Search backwards through the partitions */ 837 kernel_lb_addr newfileset; 838 839 /* --> cvg: FIXME - is it reasonable? */ 840 return 1; 841 842 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 843 (newfileset.partitionReferenceNum != 0xFFFF && 844 fileset->logicalBlockNum == 0xFFFFFFFF && 845 fileset->partitionReferenceNum == 0xFFFF); 846 newfileset.partitionReferenceNum--) { 847 lastblock = sbi->s_partmaps 848 [newfileset.partitionReferenceNum] 849 .s_partition_len; 850 newfileset.logicalBlockNum = 0; 851 852 do { 853 bh = udf_read_ptagged(sb, newfileset, 0, 854 &ident); 855 if (!bh) { 856 newfileset.logicalBlockNum++; 857 continue; 858 } 859 860 switch (ident) { 861 case TAG_IDENT_SBD: 862 { 863 struct spaceBitmapDesc *sp; 864 sp = (struct spaceBitmapDesc *) 865 bh->b_data; 866 newfileset.logicalBlockNum += 1 + 867 ((le32_to_cpu(sp->numOfBytes) + 868 sizeof(struct spaceBitmapDesc) 869 - 1) >> sb->s_blocksize_bits); 870 brelse(bh); 871 break; 872 } 873 case TAG_IDENT_FSD: 874 *fileset = newfileset; 875 break; 876 default: 877 newfileset.logicalBlockNum++; 878 brelse(bh); 879 bh = NULL; 880 break; 881 } 882 } while (newfileset.logicalBlockNum < lastblock && 883 fileset->logicalBlockNum == 0xFFFFFFFF && 884 fileset->partitionReferenceNum == 0xFFFF); 885 } 886 } 887 888 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 889 fileset->partitionReferenceNum != 0xFFFF) && bh) { 890 udf_debug("Fileset at block=%d, partition=%d\n", 891 fileset->logicalBlockNum, 892 fileset->partitionReferenceNum); 893 894 sbi->s_partition = fileset->partitionReferenceNum; 895 udf_load_fileset(sb, bh, root); 896 brelse(bh); 897 return 0; 898 } 899 return 1; 900 } 901 902 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 903 { 904 struct primaryVolDesc *pvoldesc; 905 struct ustr instr; 906 struct ustr outstr; 907 struct buffer_head *bh; 908 uint16_t ident; 909 910 bh = udf_read_tagged(sb, block, block, &ident); 911 if (!bh) 912 return 1; 913 BUG_ON(ident != TAG_IDENT_PVD); 914 915 pvoldesc = (struct primaryVolDesc *)bh->b_data; 916 917 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 918 pvoldesc->recordingDateAndTime)) { 919 #ifdef UDFFS_DEBUG 920 timestamp *ts = &pvoldesc->recordingDateAndTime; 921 udf_debug("recording time %04u/%02u/%02u" 922 " %02u:%02u (%x)\n", 923 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 924 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 925 #endif 926 } 927 928 if (!udf_build_ustr(&instr, pvoldesc->volIdent, 32)) 929 if (udf_CS0toUTF8(&outstr, &instr)) { 930 strncpy(UDF_SB(sb)->s_volume_ident, outstr.u_name, 931 outstr.u_len > 31 ? 31 : outstr.u_len); 932 udf_debug("volIdent[] = '%s'\n", 933 UDF_SB(sb)->s_volume_ident); 934 } 935 936 if (!udf_build_ustr(&instr, pvoldesc->volSetIdent, 128)) 937 if (udf_CS0toUTF8(&outstr, &instr)) 938 udf_debug("volSetIdent[] = '%s'\n", outstr.u_name); 939 940 brelse(bh); 941 return 0; 942 } 943 944 static int udf_load_metadata_files(struct super_block *sb, int partition) 945 { 946 struct udf_sb_info *sbi = UDF_SB(sb); 947 struct udf_part_map *map; 948 struct udf_meta_data *mdata; 949 kernel_lb_addr addr; 950 int fe_error = 0; 951 952 map = &sbi->s_partmaps[partition]; 953 mdata = &map->s_type_specific.s_metadata; 954 955 /* metadata address */ 956 addr.logicalBlockNum = mdata->s_meta_file_loc; 957 addr.partitionReferenceNum = map->s_partition_num; 958 959 udf_debug("Metadata file location: block = %d part = %d\n", 960 addr.logicalBlockNum, addr.partitionReferenceNum); 961 962 mdata->s_metadata_fe = udf_iget(sb, addr); 963 964 if (mdata->s_metadata_fe == NULL) { 965 udf_warning(sb, __func__, "metadata inode efe not found, " 966 "will try mirror inode."); 967 fe_error = 1; 968 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type != 969 ICBTAG_FLAG_AD_SHORT) { 970 udf_warning(sb, __func__, "metadata inode efe does not have " 971 "short allocation descriptors!"); 972 fe_error = 1; 973 iput(mdata->s_metadata_fe); 974 mdata->s_metadata_fe = NULL; 975 } 976 977 /* mirror file entry */ 978 addr.logicalBlockNum = mdata->s_mirror_file_loc; 979 addr.partitionReferenceNum = map->s_partition_num; 980 981 udf_debug("Mirror metadata file location: block = %d part = %d\n", 982 addr.logicalBlockNum, addr.partitionReferenceNum); 983 984 mdata->s_mirror_fe = udf_iget(sb, addr); 985 986 if (mdata->s_mirror_fe == NULL) { 987 if (fe_error) { 988 udf_error(sb, __func__, "mirror inode efe not found " 989 "and metadata inode is missing too, exiting..."); 990 goto error_exit; 991 } else 992 udf_warning(sb, __func__, "mirror inode efe not found," 993 " but metadata inode is OK"); 994 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type != 995 ICBTAG_FLAG_AD_SHORT) { 996 udf_warning(sb, __func__, "mirror inode efe does not have " 997 "short allocation descriptors!"); 998 iput(mdata->s_mirror_fe); 999 mdata->s_mirror_fe = NULL; 1000 if (fe_error) 1001 goto error_exit; 1002 } 1003 1004 /* 1005 * bitmap file entry 1006 * Note: 1007 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1008 */ 1009 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1010 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1011 addr.partitionReferenceNum = map->s_partition_num; 1012 1013 udf_debug("Bitmap file location: block = %d part = %d\n", 1014 addr.logicalBlockNum, addr.partitionReferenceNum); 1015 1016 mdata->s_bitmap_fe = udf_iget(sb, addr); 1017 1018 if (mdata->s_bitmap_fe == NULL) { 1019 if (sb->s_flags & MS_RDONLY) 1020 udf_warning(sb, __func__, "bitmap inode efe " 1021 "not found but it's ok since the disc" 1022 " is mounted read-only"); 1023 else { 1024 udf_error(sb, __func__, "bitmap inode efe not " 1025 "found and attempted read-write mount"); 1026 goto error_exit; 1027 } 1028 } 1029 } 1030 1031 udf_debug("udf_load_metadata_files Ok\n"); 1032 1033 return 0; 1034 1035 error_exit: 1036 return 1; 1037 } 1038 1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1040 kernel_lb_addr *root) 1041 { 1042 struct fileSetDesc *fset; 1043 1044 fset = (struct fileSetDesc *)bh->b_data; 1045 1046 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1047 1048 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1049 1050 udf_debug("Rootdir at block=%d, partition=%d\n", 1051 root->logicalBlockNum, root->partitionReferenceNum); 1052 } 1053 1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1055 { 1056 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1057 return DIV_ROUND_UP(map->s_partition_len + 1058 (sizeof(struct spaceBitmapDesc) << 3), 1059 sb->s_blocksize * 8); 1060 } 1061 1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1063 { 1064 struct udf_bitmap *bitmap; 1065 int nr_groups; 1066 int size; 1067 1068 nr_groups = udf_compute_nr_groups(sb, index); 1069 size = sizeof(struct udf_bitmap) + 1070 (sizeof(struct buffer_head *) * nr_groups); 1071 1072 if (size <= PAGE_SIZE) 1073 bitmap = kmalloc(size, GFP_KERNEL); 1074 else 1075 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */ 1076 1077 if (bitmap == NULL) { 1078 udf_error(sb, __func__, 1079 "Unable to allocate space for bitmap " 1080 "and %d buffer_head pointers", nr_groups); 1081 return NULL; 1082 } 1083 1084 memset(bitmap, 0x00, size); 1085 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 1086 bitmap->s_nr_groups = nr_groups; 1087 return bitmap; 1088 } 1089 1090 static int udf_fill_partdesc_info(struct super_block *sb, 1091 struct partitionDesc *p, int p_index) 1092 { 1093 struct udf_part_map *map; 1094 struct udf_sb_info *sbi = UDF_SB(sb); 1095 struct partitionHeaderDesc *phd; 1096 1097 map = &sbi->s_partmaps[p_index]; 1098 1099 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1100 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1101 1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1103 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1104 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1105 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1106 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1107 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1108 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1109 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1110 1111 udf_debug("Partition (%d type %x) starts at physical %d, " 1112 "block length %d\n", p_index, 1113 map->s_partition_type, map->s_partition_root, 1114 map->s_partition_len); 1115 1116 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1117 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1118 return 0; 1119 1120 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1121 if (phd->unallocSpaceTable.extLength) { 1122 kernel_lb_addr loc = { 1123 .logicalBlockNum = le32_to_cpu( 1124 phd->unallocSpaceTable.extPosition), 1125 .partitionReferenceNum = p_index, 1126 }; 1127 1128 map->s_uspace.s_table = udf_iget(sb, loc); 1129 if (!map->s_uspace.s_table) { 1130 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1131 p_index); 1132 return 1; 1133 } 1134 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1135 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1136 p_index, map->s_uspace.s_table->i_ino); 1137 } 1138 1139 if (phd->unallocSpaceBitmap.extLength) { 1140 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1141 if (!bitmap) 1142 return 1; 1143 map->s_uspace.s_bitmap = bitmap; 1144 bitmap->s_extLength = le32_to_cpu( 1145 phd->unallocSpaceBitmap.extLength); 1146 bitmap->s_extPosition = le32_to_cpu( 1147 phd->unallocSpaceBitmap.extPosition); 1148 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1149 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index, 1150 bitmap->s_extPosition); 1151 } 1152 1153 if (phd->partitionIntegrityTable.extLength) 1154 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1155 1156 if (phd->freedSpaceTable.extLength) { 1157 kernel_lb_addr loc = { 1158 .logicalBlockNum = le32_to_cpu( 1159 phd->freedSpaceTable.extPosition), 1160 .partitionReferenceNum = p_index, 1161 }; 1162 1163 map->s_fspace.s_table = udf_iget(sb, loc); 1164 if (!map->s_fspace.s_table) { 1165 udf_debug("cannot load freedSpaceTable (part %d)\n", 1166 p_index); 1167 return 1; 1168 } 1169 1170 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1171 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1172 p_index, map->s_fspace.s_table->i_ino); 1173 } 1174 1175 if (phd->freedSpaceBitmap.extLength) { 1176 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1177 if (!bitmap) 1178 return 1; 1179 map->s_fspace.s_bitmap = bitmap; 1180 bitmap->s_extLength = le32_to_cpu( 1181 phd->freedSpaceBitmap.extLength); 1182 bitmap->s_extPosition = le32_to_cpu( 1183 phd->freedSpaceBitmap.extPosition); 1184 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1185 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index, 1186 bitmap->s_extPosition); 1187 } 1188 return 0; 1189 } 1190 1191 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1192 { 1193 struct udf_sb_info *sbi = UDF_SB(sb); 1194 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1195 kernel_lb_addr ino; 1196 struct buffer_head *bh = NULL; 1197 struct udf_inode_info *vati; 1198 uint32_t pos; 1199 struct virtualAllocationTable20 *vat20; 1200 1201 /* VAT file entry is in the last recorded block */ 1202 ino.partitionReferenceNum = type1_index; 1203 ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root; 1204 sbi->s_vat_inode = udf_iget(sb, ino); 1205 if (!sbi->s_vat_inode) 1206 return 1; 1207 1208 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1209 map->s_type_specific.s_virtual.s_start_offset = 0; 1210 map->s_type_specific.s_virtual.s_num_entries = 1211 (sbi->s_vat_inode->i_size - 36) >> 2; 1212 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1213 vati = UDF_I(sbi->s_vat_inode); 1214 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1215 pos = udf_block_map(sbi->s_vat_inode, 0); 1216 bh = sb_bread(sb, pos); 1217 if (!bh) 1218 return 1; 1219 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1220 } else { 1221 vat20 = (struct virtualAllocationTable20 *) 1222 vati->i_ext.i_data; 1223 } 1224 1225 map->s_type_specific.s_virtual.s_start_offset = 1226 le16_to_cpu(vat20->lengthHeader); 1227 map->s_type_specific.s_virtual.s_num_entries = 1228 (sbi->s_vat_inode->i_size - 1229 map->s_type_specific.s_virtual. 1230 s_start_offset) >> 2; 1231 brelse(bh); 1232 } 1233 return 0; 1234 } 1235 1236 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1237 { 1238 struct buffer_head *bh; 1239 struct partitionDesc *p; 1240 struct udf_part_map *map; 1241 struct udf_sb_info *sbi = UDF_SB(sb); 1242 int i, type1_idx; 1243 uint16_t partitionNumber; 1244 uint16_t ident; 1245 int ret = 0; 1246 1247 bh = udf_read_tagged(sb, block, block, &ident); 1248 if (!bh) 1249 return 1; 1250 if (ident != TAG_IDENT_PD) 1251 goto out_bh; 1252 1253 p = (struct partitionDesc *)bh->b_data; 1254 partitionNumber = le16_to_cpu(p->partitionNumber); 1255 1256 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1257 for (i = 0; i < sbi->s_partitions; i++) { 1258 map = &sbi->s_partmaps[i]; 1259 udf_debug("Searching map: (%d == %d)\n", 1260 map->s_partition_num, partitionNumber); 1261 if (map->s_partition_num == partitionNumber && 1262 (map->s_partition_type == UDF_TYPE1_MAP15 || 1263 map->s_partition_type == UDF_SPARABLE_MAP15)) 1264 break; 1265 } 1266 1267 if (i >= sbi->s_partitions) { 1268 udf_debug("Partition (%d) not found in partition map\n", 1269 partitionNumber); 1270 goto out_bh; 1271 } 1272 1273 ret = udf_fill_partdesc_info(sb, p, i); 1274 1275 /* 1276 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1277 * PHYSICAL partitions are already set up 1278 */ 1279 type1_idx = i; 1280 for (i = 0; i < sbi->s_partitions; i++) { 1281 map = &sbi->s_partmaps[i]; 1282 1283 if (map->s_partition_num == partitionNumber && 1284 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1285 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1286 map->s_partition_type == UDF_METADATA_MAP25)) 1287 break; 1288 } 1289 1290 if (i >= sbi->s_partitions) 1291 goto out_bh; 1292 1293 ret = udf_fill_partdesc_info(sb, p, i); 1294 if (ret) 1295 goto out_bh; 1296 1297 if (map->s_partition_type == UDF_METADATA_MAP25) { 1298 ret = udf_load_metadata_files(sb, i); 1299 if (ret) { 1300 printk(KERN_ERR "UDF-fs: error loading MetaData " 1301 "partition map %d\n", i); 1302 goto out_bh; 1303 } 1304 } else { 1305 ret = udf_load_vat(sb, i, type1_idx); 1306 if (ret) 1307 goto out_bh; 1308 /* 1309 * Mark filesystem read-only if we have a partition with 1310 * virtual map since we don't handle writing to it (we 1311 * overwrite blocks instead of relocating them). 1312 */ 1313 sb->s_flags |= MS_RDONLY; 1314 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only " 1315 "because writing to pseudooverwrite partition is " 1316 "not implemented.\n"); 1317 } 1318 out_bh: 1319 /* In case loading failed, we handle cleanup in udf_fill_super */ 1320 brelse(bh); 1321 return ret; 1322 } 1323 1324 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1325 kernel_lb_addr *fileset) 1326 { 1327 struct logicalVolDesc *lvd; 1328 int i, j, offset; 1329 uint8_t type; 1330 struct udf_sb_info *sbi = UDF_SB(sb); 1331 struct genericPartitionMap *gpm; 1332 uint16_t ident; 1333 struct buffer_head *bh; 1334 int ret = 0; 1335 1336 bh = udf_read_tagged(sb, block, block, &ident); 1337 if (!bh) 1338 return 1; 1339 BUG_ON(ident != TAG_IDENT_LVD); 1340 lvd = (struct logicalVolDesc *)bh->b_data; 1341 1342 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1343 if (i != 0) { 1344 ret = i; 1345 goto out_bh; 1346 } 1347 1348 for (i = 0, offset = 0; 1349 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1350 i++, offset += gpm->partitionMapLength) { 1351 struct udf_part_map *map = &sbi->s_partmaps[i]; 1352 gpm = (struct genericPartitionMap *) 1353 &(lvd->partitionMaps[offset]); 1354 type = gpm->partitionMapType; 1355 if (type == 1) { 1356 struct genericPartitionMap1 *gpm1 = 1357 (struct genericPartitionMap1 *)gpm; 1358 map->s_partition_type = UDF_TYPE1_MAP15; 1359 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1360 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1361 map->s_partition_func = NULL; 1362 } else if (type == 2) { 1363 struct udfPartitionMap2 *upm2 = 1364 (struct udfPartitionMap2 *)gpm; 1365 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1366 strlen(UDF_ID_VIRTUAL))) { 1367 u16 suf = 1368 le16_to_cpu(((__le16 *)upm2->partIdent. 1369 identSuffix)[0]); 1370 if (suf < 0x0200) { 1371 map->s_partition_type = 1372 UDF_VIRTUAL_MAP15; 1373 map->s_partition_func = 1374 udf_get_pblock_virt15; 1375 } else { 1376 map->s_partition_type = 1377 UDF_VIRTUAL_MAP20; 1378 map->s_partition_func = 1379 udf_get_pblock_virt20; 1380 } 1381 } else if (!strncmp(upm2->partIdent.ident, 1382 UDF_ID_SPARABLE, 1383 strlen(UDF_ID_SPARABLE))) { 1384 uint32_t loc; 1385 struct sparingTable *st; 1386 struct sparablePartitionMap *spm = 1387 (struct sparablePartitionMap *)gpm; 1388 1389 map->s_partition_type = UDF_SPARABLE_MAP15; 1390 map->s_type_specific.s_sparing.s_packet_len = 1391 le16_to_cpu(spm->packetLength); 1392 for (j = 0; j < spm->numSparingTables; j++) { 1393 struct buffer_head *bh2; 1394 1395 loc = le32_to_cpu( 1396 spm->locSparingTable[j]); 1397 bh2 = udf_read_tagged(sb, loc, loc, 1398 &ident); 1399 map->s_type_specific.s_sparing. 1400 s_spar_map[j] = bh2; 1401 1402 if (bh2 == NULL) 1403 continue; 1404 1405 st = (struct sparingTable *)bh2->b_data; 1406 if (ident != 0 || strncmp( 1407 st->sparingIdent.ident, 1408 UDF_ID_SPARING, 1409 strlen(UDF_ID_SPARING))) { 1410 brelse(bh2); 1411 map->s_type_specific.s_sparing. 1412 s_spar_map[j] = NULL; 1413 } 1414 } 1415 map->s_partition_func = udf_get_pblock_spar15; 1416 } else if (!strncmp(upm2->partIdent.ident, 1417 UDF_ID_METADATA, 1418 strlen(UDF_ID_METADATA))) { 1419 struct udf_meta_data *mdata = 1420 &map->s_type_specific.s_metadata; 1421 struct metadataPartitionMap *mdm = 1422 (struct metadataPartitionMap *) 1423 &(lvd->partitionMaps[offset]); 1424 udf_debug("Parsing Logical vol part %d " 1425 "type %d id=%s\n", i, type, 1426 UDF_ID_METADATA); 1427 1428 map->s_partition_type = UDF_METADATA_MAP25; 1429 map->s_partition_func = udf_get_pblock_meta25; 1430 1431 mdata->s_meta_file_loc = 1432 le32_to_cpu(mdm->metadataFileLoc); 1433 mdata->s_mirror_file_loc = 1434 le32_to_cpu(mdm->metadataMirrorFileLoc); 1435 mdata->s_bitmap_file_loc = 1436 le32_to_cpu(mdm->metadataBitmapFileLoc); 1437 mdata->s_alloc_unit_size = 1438 le32_to_cpu(mdm->allocUnitSize); 1439 mdata->s_align_unit_size = 1440 le16_to_cpu(mdm->alignUnitSize); 1441 mdata->s_dup_md_flag = 1442 mdm->flags & 0x01; 1443 1444 udf_debug("Metadata Ident suffix=0x%x\n", 1445 (le16_to_cpu( 1446 ((__le16 *) 1447 mdm->partIdent.identSuffix)[0]))); 1448 udf_debug("Metadata part num=%d\n", 1449 le16_to_cpu(mdm->partitionNum)); 1450 udf_debug("Metadata part alloc unit size=%d\n", 1451 le32_to_cpu(mdm->allocUnitSize)); 1452 udf_debug("Metadata file loc=%d\n", 1453 le32_to_cpu(mdm->metadataFileLoc)); 1454 udf_debug("Mirror file loc=%d\n", 1455 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1456 udf_debug("Bitmap file loc=%d\n", 1457 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1458 udf_debug("Duplicate Flag: %d %d\n", 1459 mdata->s_dup_md_flag, mdm->flags); 1460 } else { 1461 udf_debug("Unknown ident: %s\n", 1462 upm2->partIdent.ident); 1463 continue; 1464 } 1465 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1466 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1467 } 1468 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1469 i, map->s_partition_num, type, 1470 map->s_volumeseqnum); 1471 } 1472 1473 if (fileset) { 1474 long_ad *la = (long_ad *)&(lvd->logicalVolContentsUse[0]); 1475 1476 *fileset = lelb_to_cpu(la->extLocation); 1477 udf_debug("FileSet found in LogicalVolDesc at block=%d, " 1478 "partition=%d\n", fileset->logicalBlockNum, 1479 fileset->partitionReferenceNum); 1480 } 1481 if (lvd->integritySeqExt.extLength) 1482 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1483 1484 out_bh: 1485 brelse(bh); 1486 return ret; 1487 } 1488 1489 /* 1490 * udf_load_logicalvolint 1491 * 1492 */ 1493 static void udf_load_logicalvolint(struct super_block *sb, kernel_extent_ad loc) 1494 { 1495 struct buffer_head *bh = NULL; 1496 uint16_t ident; 1497 struct udf_sb_info *sbi = UDF_SB(sb); 1498 struct logicalVolIntegrityDesc *lvid; 1499 1500 while (loc.extLength > 0 && 1501 (bh = udf_read_tagged(sb, loc.extLocation, 1502 loc.extLocation, &ident)) && 1503 ident == TAG_IDENT_LVID) { 1504 sbi->s_lvid_bh = bh; 1505 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1506 1507 if (lvid->nextIntegrityExt.extLength) 1508 udf_load_logicalvolint(sb, 1509 leea_to_cpu(lvid->nextIntegrityExt)); 1510 1511 if (sbi->s_lvid_bh != bh) 1512 brelse(bh); 1513 loc.extLength -= sb->s_blocksize; 1514 loc.extLocation++; 1515 } 1516 if (sbi->s_lvid_bh != bh) 1517 brelse(bh); 1518 } 1519 1520 /* 1521 * udf_process_sequence 1522 * 1523 * PURPOSE 1524 * Process a main/reserve volume descriptor sequence. 1525 * 1526 * PRE-CONDITIONS 1527 * sb Pointer to _locked_ superblock. 1528 * block First block of first extent of the sequence. 1529 * lastblock Lastblock of first extent of the sequence. 1530 * 1531 * HISTORY 1532 * July 1, 1997 - Andrew E. Mileski 1533 * Written, tested, and released. 1534 */ 1535 static noinline int udf_process_sequence(struct super_block *sb, long block, 1536 long lastblock, kernel_lb_addr *fileset) 1537 { 1538 struct buffer_head *bh = NULL; 1539 struct udf_vds_record vds[VDS_POS_LENGTH]; 1540 struct udf_vds_record *curr; 1541 struct generic_desc *gd; 1542 struct volDescPtr *vdp; 1543 int done = 0; 1544 uint32_t vdsn; 1545 uint16_t ident; 1546 long next_s = 0, next_e = 0; 1547 1548 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1549 1550 /* 1551 * Read the main descriptor sequence and find which descriptors 1552 * are in it. 1553 */ 1554 for (; (!done && block <= lastblock); block++) { 1555 1556 bh = udf_read_tagged(sb, block, block, &ident); 1557 if (!bh) { 1558 printk(KERN_ERR "udf: Block %Lu of volume descriptor " 1559 "sequence is corrupted or we could not read " 1560 "it.\n", (unsigned long long)block); 1561 return 1; 1562 } 1563 1564 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1565 gd = (struct generic_desc *)bh->b_data; 1566 vdsn = le32_to_cpu(gd->volDescSeqNum); 1567 switch (ident) { 1568 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1569 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1570 if (vdsn >= curr->volDescSeqNum) { 1571 curr->volDescSeqNum = vdsn; 1572 curr->block = block; 1573 } 1574 break; 1575 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1576 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1577 if (vdsn >= curr->volDescSeqNum) { 1578 curr->volDescSeqNum = vdsn; 1579 curr->block = block; 1580 1581 vdp = (struct volDescPtr *)bh->b_data; 1582 next_s = le32_to_cpu( 1583 vdp->nextVolDescSeqExt.extLocation); 1584 next_e = le32_to_cpu( 1585 vdp->nextVolDescSeqExt.extLength); 1586 next_e = next_e >> sb->s_blocksize_bits; 1587 next_e += next_s; 1588 } 1589 break; 1590 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1591 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1592 if (vdsn >= curr->volDescSeqNum) { 1593 curr->volDescSeqNum = vdsn; 1594 curr->block = block; 1595 } 1596 break; 1597 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1598 curr = &vds[VDS_POS_PARTITION_DESC]; 1599 if (!curr->block) 1600 curr->block = block; 1601 break; 1602 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1603 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1604 if (vdsn >= curr->volDescSeqNum) { 1605 curr->volDescSeqNum = vdsn; 1606 curr->block = block; 1607 } 1608 break; 1609 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1610 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1611 if (vdsn >= curr->volDescSeqNum) { 1612 curr->volDescSeqNum = vdsn; 1613 curr->block = block; 1614 } 1615 break; 1616 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1617 vds[VDS_POS_TERMINATING_DESC].block = block; 1618 if (next_e) { 1619 block = next_s; 1620 lastblock = next_e; 1621 next_s = next_e = 0; 1622 } else 1623 done = 1; 1624 break; 1625 } 1626 brelse(bh); 1627 } 1628 /* 1629 * Now read interesting descriptors again and process them 1630 * in a suitable order 1631 */ 1632 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1633 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n"); 1634 return 1; 1635 } 1636 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1637 return 1; 1638 1639 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1640 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1641 return 1; 1642 1643 if (vds[VDS_POS_PARTITION_DESC].block) { 1644 /* 1645 * We rescan the whole descriptor sequence to find 1646 * partition descriptor blocks and process them. 1647 */ 1648 for (block = vds[VDS_POS_PARTITION_DESC].block; 1649 block < vds[VDS_POS_TERMINATING_DESC].block; 1650 block++) 1651 if (udf_load_partdesc(sb, block)) 1652 return 1; 1653 } 1654 1655 return 0; 1656 } 1657 1658 /* 1659 * udf_check_valid() 1660 */ 1661 static int udf_check_valid(struct super_block *sb, int novrs, int silent) 1662 { 1663 long block; 1664 struct udf_sb_info *sbi = UDF_SB(sb); 1665 1666 if (novrs) { 1667 udf_debug("Validity check skipped because of novrs option\n"); 1668 return 0; 1669 } 1670 /* Check that it is NSR02 compliant */ 1671 /* Process any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 1672 block = udf_vrs(sb, silent); 1673 if (block == -1) 1674 udf_debug("Failed to read byte 32768. Assuming open " 1675 "disc. Skipping validity check\n"); 1676 if (block && !sbi->s_last_block) 1677 sbi->s_last_block = udf_get_last_block(sb); 1678 return !block; 1679 } 1680 1681 static int udf_load_sequence(struct super_block *sb, kernel_lb_addr *fileset) 1682 { 1683 struct anchorVolDescPtr *anchor; 1684 uint16_t ident; 1685 struct buffer_head *bh; 1686 long main_s, main_e, reserve_s, reserve_e; 1687 int i; 1688 struct udf_sb_info *sbi; 1689 1690 if (!sb) 1691 return 1; 1692 sbi = UDF_SB(sb); 1693 1694 for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) { 1695 if (!sbi->s_anchor[i]) 1696 continue; 1697 1698 bh = udf_read_tagged(sb, sbi->s_anchor[i], sbi->s_anchor[i], 1699 &ident); 1700 if (!bh) 1701 continue; 1702 1703 anchor = (struct anchorVolDescPtr *)bh->b_data; 1704 1705 /* Locate the main sequence */ 1706 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1707 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1708 main_e = main_e >> sb->s_blocksize_bits; 1709 main_e += main_s; 1710 1711 /* Locate the reserve sequence */ 1712 reserve_s = le32_to_cpu( 1713 anchor->reserveVolDescSeqExt.extLocation); 1714 reserve_e = le32_to_cpu( 1715 anchor->reserveVolDescSeqExt.extLength); 1716 reserve_e = reserve_e >> sb->s_blocksize_bits; 1717 reserve_e += reserve_s; 1718 1719 brelse(bh); 1720 1721 /* Process the main & reserve sequences */ 1722 /* responsible for finding the PartitionDesc(s) */ 1723 if (!(udf_process_sequence(sb, main_s, main_e, 1724 fileset) && 1725 udf_process_sequence(sb, reserve_s, reserve_e, 1726 fileset))) 1727 break; 1728 } 1729 1730 if (i == ARRAY_SIZE(sbi->s_anchor)) { 1731 udf_debug("No Anchor block found\n"); 1732 return 1; 1733 } 1734 udf_debug("Using anchor in block %d\n", sbi->s_anchor[i]); 1735 1736 return 0; 1737 } 1738 1739 static void udf_open_lvid(struct super_block *sb) 1740 { 1741 struct udf_sb_info *sbi = UDF_SB(sb); 1742 struct buffer_head *bh = sbi->s_lvid_bh; 1743 struct logicalVolIntegrityDesc *lvid; 1744 struct logicalVolIntegrityDescImpUse *lvidiu; 1745 if (!bh) 1746 return; 1747 1748 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1749 lvidiu = udf_sb_lvidiu(sbi); 1750 1751 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1752 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1753 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1754 CURRENT_TIME); 1755 lvid->integrityType = LVID_INTEGRITY_TYPE_OPEN; 1756 1757 lvid->descTag.descCRC = cpu_to_le16( 1758 crc_itu_t(0, (char *)lvid + sizeof(tag), 1759 le16_to_cpu(lvid->descTag.descCRCLength))); 1760 1761 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1762 mark_buffer_dirty(bh); 1763 } 1764 1765 static void udf_close_lvid(struct super_block *sb) 1766 { 1767 struct udf_sb_info *sbi = UDF_SB(sb); 1768 struct buffer_head *bh = sbi->s_lvid_bh; 1769 struct logicalVolIntegrityDesc *lvid; 1770 struct logicalVolIntegrityDescImpUse *lvidiu; 1771 1772 if (!bh) 1773 return; 1774 1775 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1776 1777 if (lvid->integrityType != LVID_INTEGRITY_TYPE_OPEN) 1778 return; 1779 1780 lvidiu = udf_sb_lvidiu(sbi); 1781 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1782 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1783 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1784 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1785 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1786 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1787 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1788 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1789 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1790 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1791 1792 lvid->descTag.descCRC = cpu_to_le16( 1793 crc_itu_t(0, (char *)lvid + sizeof(tag), 1794 le16_to_cpu(lvid->descTag.descCRCLength))); 1795 1796 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1797 mark_buffer_dirty(bh); 1798 } 1799 1800 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1801 { 1802 int i; 1803 int nr_groups = bitmap->s_nr_groups; 1804 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1805 nr_groups); 1806 1807 for (i = 0; i < nr_groups; i++) 1808 if (bitmap->s_block_bitmap[i]) 1809 brelse(bitmap->s_block_bitmap[i]); 1810 1811 if (size <= PAGE_SIZE) 1812 kfree(bitmap); 1813 else 1814 vfree(bitmap); 1815 } 1816 1817 static void udf_free_partition(struct udf_part_map *map) 1818 { 1819 int i; 1820 struct udf_meta_data *mdata; 1821 1822 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1823 iput(map->s_uspace.s_table); 1824 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1825 iput(map->s_fspace.s_table); 1826 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1827 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1828 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1829 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1830 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1831 for (i = 0; i < 4; i++) 1832 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1833 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1834 mdata = &map->s_type_specific.s_metadata; 1835 iput(mdata->s_metadata_fe); 1836 mdata->s_metadata_fe = NULL; 1837 1838 iput(mdata->s_mirror_fe); 1839 mdata->s_mirror_fe = NULL; 1840 1841 iput(mdata->s_bitmap_fe); 1842 mdata->s_bitmap_fe = NULL; 1843 } 1844 } 1845 1846 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1847 { 1848 int i; 1849 struct inode *inode = NULL; 1850 struct udf_options uopt; 1851 kernel_lb_addr rootdir, fileset; 1852 struct udf_sb_info *sbi; 1853 1854 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1855 uopt.uid = -1; 1856 uopt.gid = -1; 1857 uopt.umask = 0; 1858 1859 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1860 if (!sbi) 1861 return -ENOMEM; 1862 1863 sb->s_fs_info = sbi; 1864 1865 mutex_init(&sbi->s_alloc_mutex); 1866 1867 if (!udf_parse_options((char *)options, &uopt, false)) 1868 goto error_out; 1869 1870 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1871 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1872 udf_error(sb, "udf_read_super", 1873 "utf8 cannot be combined with iocharset\n"); 1874 goto error_out; 1875 } 1876 #ifdef CONFIG_UDF_NLS 1877 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1878 uopt.nls_map = load_nls_default(); 1879 if (!uopt.nls_map) 1880 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1881 else 1882 udf_debug("Using default NLS map\n"); 1883 } 1884 #endif 1885 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1886 uopt.flags |= (1 << UDF_FLAG_UTF8); 1887 1888 fileset.logicalBlockNum = 0xFFFFFFFF; 1889 fileset.partitionReferenceNum = 0xFFFF; 1890 1891 sbi->s_flags = uopt.flags; 1892 sbi->s_uid = uopt.uid; 1893 sbi->s_gid = uopt.gid; 1894 sbi->s_umask = uopt.umask; 1895 sbi->s_nls_map = uopt.nls_map; 1896 1897 /* Set the block size for all transfers */ 1898 if (!sb_min_blocksize(sb, uopt.blocksize)) { 1899 udf_debug("Bad block size (%d)\n", uopt.blocksize); 1900 printk(KERN_ERR "udf: bad block size (%d)\n", uopt.blocksize); 1901 goto error_out; 1902 } 1903 1904 if (uopt.session == 0xFFFFFFFF) 1905 sbi->s_session = udf_get_last_session(sb); 1906 else 1907 sbi->s_session = uopt.session; 1908 1909 udf_debug("Multi-session=%d\n", sbi->s_session); 1910 1911 sbi->s_last_block = uopt.lastblock; 1912 sbi->s_anchor[0] = sbi->s_anchor[1] = 0; 1913 sbi->s_anchor[2] = uopt.anchor; 1914 1915 if (udf_check_valid(sb, uopt.novrs, silent)) { 1916 /* read volume recognition sequences */ 1917 printk(KERN_WARNING "UDF-fs: No VRS found\n"); 1918 goto error_out; 1919 } 1920 1921 udf_find_anchor(sb); 1922 1923 /* Fill in the rest of the superblock */ 1924 sb->s_op = &udf_sb_ops; 1925 sb->s_export_op = &udf_export_ops; 1926 sb->dq_op = NULL; 1927 sb->s_dirt = 0; 1928 sb->s_magic = UDF_SUPER_MAGIC; 1929 sb->s_time_gran = 1000; 1930 1931 if (udf_load_sequence(sb, &fileset)) { 1932 printk(KERN_WARNING "UDF-fs: No partition found (1)\n"); 1933 goto error_out; 1934 } 1935 1936 udf_debug("Lastblock=%d\n", sbi->s_last_block); 1937 1938 if (sbi->s_lvid_bh) { 1939 struct logicalVolIntegrityDescImpUse *lvidiu = 1940 udf_sb_lvidiu(sbi); 1941 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 1942 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 1943 /* uint16_t maxUDFWriteRev = 1944 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 1945 1946 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 1947 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x " 1948 "(max is %x)\n", 1949 le16_to_cpu(lvidiu->minUDFReadRev), 1950 UDF_MAX_READ_VERSION); 1951 goto error_out; 1952 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 1953 sb->s_flags |= MS_RDONLY; 1954 1955 sbi->s_udfrev = minUDFWriteRev; 1956 1957 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 1958 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 1959 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 1960 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 1961 } 1962 1963 if (!sbi->s_partitions) { 1964 printk(KERN_WARNING "UDF-fs: No partition found (2)\n"); 1965 goto error_out; 1966 } 1967 1968 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 1969 UDF_PART_FLAG_READ_ONLY) { 1970 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; " 1971 "forcing readonly mount\n"); 1972 sb->s_flags |= MS_RDONLY; 1973 } 1974 1975 if (udf_find_fileset(sb, &fileset, &rootdir)) { 1976 printk(KERN_WARNING "UDF-fs: No fileset found\n"); 1977 goto error_out; 1978 } 1979 1980 if (!silent) { 1981 timestamp ts; 1982 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 1983 udf_info("UDF: Mounting volume '%s', " 1984 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 1985 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day, 1986 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 1987 } 1988 if (!(sb->s_flags & MS_RDONLY)) 1989 udf_open_lvid(sb); 1990 1991 /* Assign the root inode */ 1992 /* assign inodes by physical block number */ 1993 /* perhaps it's not extensible enough, but for now ... */ 1994 inode = udf_iget(sb, rootdir); 1995 if (!inode) { 1996 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, " 1997 "partition=%d\n", 1998 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 1999 goto error_out; 2000 } 2001 2002 /* Allocate a dentry for the root inode */ 2003 sb->s_root = d_alloc_root(inode); 2004 if (!sb->s_root) { 2005 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n"); 2006 iput(inode); 2007 goto error_out; 2008 } 2009 sb->s_maxbytes = MAX_LFS_FILESIZE; 2010 return 0; 2011 2012 error_out: 2013 if (sbi->s_vat_inode) 2014 iput(sbi->s_vat_inode); 2015 if (sbi->s_partitions) 2016 for (i = 0; i < sbi->s_partitions; i++) 2017 udf_free_partition(&sbi->s_partmaps[i]); 2018 #ifdef CONFIG_UDF_NLS 2019 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2020 unload_nls(sbi->s_nls_map); 2021 #endif 2022 if (!(sb->s_flags & MS_RDONLY)) 2023 udf_close_lvid(sb); 2024 brelse(sbi->s_lvid_bh); 2025 2026 kfree(sbi->s_partmaps); 2027 kfree(sbi); 2028 sb->s_fs_info = NULL; 2029 2030 return -EINVAL; 2031 } 2032 2033 static void udf_error(struct super_block *sb, const char *function, 2034 const char *fmt, ...) 2035 { 2036 va_list args; 2037 2038 if (!(sb->s_flags & MS_RDONLY)) { 2039 /* mark sb error */ 2040 sb->s_dirt = 1; 2041 } 2042 va_start(args, fmt); 2043 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2044 va_end(args); 2045 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n", 2046 sb->s_id, function, error_buf); 2047 } 2048 2049 void udf_warning(struct super_block *sb, const char *function, 2050 const char *fmt, ...) 2051 { 2052 va_list args; 2053 2054 va_start(args, fmt); 2055 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2056 va_end(args); 2057 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n", 2058 sb->s_id, function, error_buf); 2059 } 2060 2061 static void udf_put_super(struct super_block *sb) 2062 { 2063 int i; 2064 struct udf_sb_info *sbi; 2065 2066 sbi = UDF_SB(sb); 2067 if (sbi->s_vat_inode) 2068 iput(sbi->s_vat_inode); 2069 if (sbi->s_partitions) 2070 for (i = 0; i < sbi->s_partitions; i++) 2071 udf_free_partition(&sbi->s_partmaps[i]); 2072 #ifdef CONFIG_UDF_NLS 2073 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2074 unload_nls(sbi->s_nls_map); 2075 #endif 2076 if (!(sb->s_flags & MS_RDONLY)) 2077 udf_close_lvid(sb); 2078 brelse(sbi->s_lvid_bh); 2079 kfree(sbi->s_partmaps); 2080 kfree(sb->s_fs_info); 2081 sb->s_fs_info = NULL; 2082 } 2083 2084 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2085 { 2086 struct super_block *sb = dentry->d_sb; 2087 struct udf_sb_info *sbi = UDF_SB(sb); 2088 struct logicalVolIntegrityDescImpUse *lvidiu; 2089 2090 if (sbi->s_lvid_bh != NULL) 2091 lvidiu = udf_sb_lvidiu(sbi); 2092 else 2093 lvidiu = NULL; 2094 2095 buf->f_type = UDF_SUPER_MAGIC; 2096 buf->f_bsize = sb->s_blocksize; 2097 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2098 buf->f_bfree = udf_count_free(sb); 2099 buf->f_bavail = buf->f_bfree; 2100 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2101 le32_to_cpu(lvidiu->numDirs)) : 0) 2102 + buf->f_bfree; 2103 buf->f_ffree = buf->f_bfree; 2104 /* __kernel_fsid_t f_fsid */ 2105 buf->f_namelen = UDF_NAME_LEN - 2; 2106 2107 return 0; 2108 } 2109 2110 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2111 struct udf_bitmap *bitmap) 2112 { 2113 struct buffer_head *bh = NULL; 2114 unsigned int accum = 0; 2115 int index; 2116 int block = 0, newblock; 2117 kernel_lb_addr loc; 2118 uint32_t bytes; 2119 uint8_t *ptr; 2120 uint16_t ident; 2121 struct spaceBitmapDesc *bm; 2122 2123 lock_kernel(); 2124 2125 loc.logicalBlockNum = bitmap->s_extPosition; 2126 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2127 bh = udf_read_ptagged(sb, loc, 0, &ident); 2128 2129 if (!bh) { 2130 printk(KERN_ERR "udf: udf_count_free failed\n"); 2131 goto out; 2132 } else if (ident != TAG_IDENT_SBD) { 2133 brelse(bh); 2134 printk(KERN_ERR "udf: udf_count_free failed\n"); 2135 goto out; 2136 } 2137 2138 bm = (struct spaceBitmapDesc *)bh->b_data; 2139 bytes = le32_to_cpu(bm->numOfBytes); 2140 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2141 ptr = (uint8_t *)bh->b_data; 2142 2143 while (bytes > 0) { 2144 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2145 accum += bitmap_weight((const unsigned long *)(ptr + index), 2146 cur_bytes * 8); 2147 bytes -= cur_bytes; 2148 if (bytes) { 2149 brelse(bh); 2150 newblock = udf_get_lb_pblock(sb, loc, ++block); 2151 bh = udf_tread(sb, newblock); 2152 if (!bh) { 2153 udf_debug("read failed\n"); 2154 goto out; 2155 } 2156 index = 0; 2157 ptr = (uint8_t *)bh->b_data; 2158 } 2159 } 2160 brelse(bh); 2161 2162 out: 2163 unlock_kernel(); 2164 2165 return accum; 2166 } 2167 2168 static unsigned int udf_count_free_table(struct super_block *sb, 2169 struct inode *table) 2170 { 2171 unsigned int accum = 0; 2172 uint32_t elen; 2173 kernel_lb_addr eloc; 2174 int8_t etype; 2175 struct extent_position epos; 2176 2177 lock_kernel(); 2178 2179 epos.block = UDF_I(table)->i_location; 2180 epos.offset = sizeof(struct unallocSpaceEntry); 2181 epos.bh = NULL; 2182 2183 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2184 accum += (elen >> table->i_sb->s_blocksize_bits); 2185 2186 brelse(epos.bh); 2187 2188 unlock_kernel(); 2189 2190 return accum; 2191 } 2192 2193 static unsigned int udf_count_free(struct super_block *sb) 2194 { 2195 unsigned int accum = 0; 2196 struct udf_sb_info *sbi; 2197 struct udf_part_map *map; 2198 2199 sbi = UDF_SB(sb); 2200 if (sbi->s_lvid_bh) { 2201 struct logicalVolIntegrityDesc *lvid = 2202 (struct logicalVolIntegrityDesc *) 2203 sbi->s_lvid_bh->b_data; 2204 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2205 accum = le32_to_cpu( 2206 lvid->freeSpaceTable[sbi->s_partition]); 2207 if (accum == 0xFFFFFFFF) 2208 accum = 0; 2209 } 2210 } 2211 2212 if (accum) 2213 return accum; 2214 2215 map = &sbi->s_partmaps[sbi->s_partition]; 2216 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2217 accum += udf_count_free_bitmap(sb, 2218 map->s_uspace.s_bitmap); 2219 } 2220 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2221 accum += udf_count_free_bitmap(sb, 2222 map->s_fspace.s_bitmap); 2223 } 2224 if (accum) 2225 return accum; 2226 2227 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2228 accum += udf_count_free_table(sb, 2229 map->s_uspace.s_table); 2230 } 2231 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2232 accum += udf_count_free_table(sb, 2233 map->s_fspace.s_table); 2234 } 2235 2236 return accum; 2237 } 2238