xref: /openbmc/linux/fs/udf/super.c (revision 4f3db074)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77 
78 #define VSD_FIRST_SECTOR_OFFSET		32768
79 #define VSD_MAX_SECTOR_OFFSET		0x800000
80 
81 enum { UDF_MAX_LINKS = 0xffff };
82 
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90 			    struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92 			     struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98 
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101 	struct logicalVolIntegrityDesc *lvid;
102 	unsigned int partnum;
103 	unsigned int offset;
104 
105 	if (!UDF_SB(sb)->s_lvid_bh)
106 		return NULL;
107 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108 	partnum = le32_to_cpu(lvid->numOfPartitions);
109 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
111 	     (2 * sizeof(uint32_t)) < partnum) {
112 		udf_err(sb, "Logical volume integrity descriptor corrupted "
113 			"(numOfPartitions = %u)!\n", partnum);
114 		return NULL;
115 	}
116 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
117 	offset = partnum * 2 * sizeof(uint32_t);
118 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120 
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 		      int flags, const char *dev_name, void *data)
124 {
125 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127 
128 static struct file_system_type udf_fstype = {
129 	.owner		= THIS_MODULE,
130 	.name		= "udf",
131 	.mount		= udf_mount,
132 	.kill_sb	= kill_block_super,
133 	.fs_flags	= FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136 
137 static struct kmem_cache *udf_inode_cachep;
138 
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 	struct udf_inode_info *ei;
142 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143 	if (!ei)
144 		return NULL;
145 
146 	ei->i_unique = 0;
147 	ei->i_lenExtents = 0;
148 	ei->i_next_alloc_block = 0;
149 	ei->i_next_alloc_goal = 0;
150 	ei->i_strat4096 = 0;
151 	init_rwsem(&ei->i_data_sem);
152 	ei->cached_extent.lstart = -1;
153 	spin_lock_init(&ei->i_extent_cache_lock);
154 
155 	return &ei->vfs_inode;
156 }
157 
158 static void udf_i_callback(struct rcu_head *head)
159 {
160 	struct inode *inode = container_of(head, struct inode, i_rcu);
161 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163 
164 static void udf_destroy_inode(struct inode *inode)
165 {
166 	call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168 
169 static void init_once(void *foo)
170 {
171 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172 
173 	ei->i_ext.i_data = NULL;
174 	inode_init_once(&ei->vfs_inode);
175 }
176 
177 static int __init init_inodecache(void)
178 {
179 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180 					     sizeof(struct udf_inode_info),
181 					     0, (SLAB_RECLAIM_ACCOUNT |
182 						 SLAB_MEM_SPREAD),
183 					     init_once);
184 	if (!udf_inode_cachep)
185 		return -ENOMEM;
186 	return 0;
187 }
188 
189 static void destroy_inodecache(void)
190 {
191 	/*
192 	 * Make sure all delayed rcu free inodes are flushed before we
193 	 * destroy cache.
194 	 */
195 	rcu_barrier();
196 	kmem_cache_destroy(udf_inode_cachep);
197 }
198 
199 /* Superblock operations */
200 static const struct super_operations udf_sb_ops = {
201 	.alloc_inode	= udf_alloc_inode,
202 	.destroy_inode	= udf_destroy_inode,
203 	.write_inode	= udf_write_inode,
204 	.evict_inode	= udf_evict_inode,
205 	.put_super	= udf_put_super,
206 	.sync_fs	= udf_sync_fs,
207 	.statfs		= udf_statfs,
208 	.remount_fs	= udf_remount_fs,
209 	.show_options	= udf_show_options,
210 };
211 
212 struct udf_options {
213 	unsigned char novrs;
214 	unsigned int blocksize;
215 	unsigned int session;
216 	unsigned int lastblock;
217 	unsigned int anchor;
218 	unsigned int volume;
219 	unsigned short partition;
220 	unsigned int fileset;
221 	unsigned int rootdir;
222 	unsigned int flags;
223 	umode_t umask;
224 	kgid_t gid;
225 	kuid_t uid;
226 	umode_t fmode;
227 	umode_t dmode;
228 	struct nls_table *nls_map;
229 };
230 
231 static int __init init_udf_fs(void)
232 {
233 	int err;
234 
235 	err = init_inodecache();
236 	if (err)
237 		goto out1;
238 	err = register_filesystem(&udf_fstype);
239 	if (err)
240 		goto out;
241 
242 	return 0;
243 
244 out:
245 	destroy_inodecache();
246 
247 out1:
248 	return err;
249 }
250 
251 static void __exit exit_udf_fs(void)
252 {
253 	unregister_filesystem(&udf_fstype);
254 	destroy_inodecache();
255 }
256 
257 module_init(init_udf_fs)
258 module_exit(exit_udf_fs)
259 
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 	struct udf_sb_info *sbi = UDF_SB(sb);
263 
264 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
265 				  GFP_KERNEL);
266 	if (!sbi->s_partmaps) {
267 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
268 			count);
269 		sbi->s_partitions = 0;
270 		return -ENOMEM;
271 	}
272 
273 	sbi->s_partitions = count;
274 	return 0;
275 }
276 
277 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
278 {
279 	int i;
280 	int nr_groups = bitmap->s_nr_groups;
281 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
282 						nr_groups);
283 
284 	for (i = 0; i < nr_groups; i++)
285 		if (bitmap->s_block_bitmap[i])
286 			brelse(bitmap->s_block_bitmap[i]);
287 
288 	if (size <= PAGE_SIZE)
289 		kfree(bitmap);
290 	else
291 		vfree(bitmap);
292 }
293 
294 static void udf_free_partition(struct udf_part_map *map)
295 {
296 	int i;
297 	struct udf_meta_data *mdata;
298 
299 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
300 		iput(map->s_uspace.s_table);
301 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
302 		iput(map->s_fspace.s_table);
303 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
304 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
305 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
306 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
307 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
308 		for (i = 0; i < 4; i++)
309 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
310 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
311 		mdata = &map->s_type_specific.s_metadata;
312 		iput(mdata->s_metadata_fe);
313 		mdata->s_metadata_fe = NULL;
314 
315 		iput(mdata->s_mirror_fe);
316 		mdata->s_mirror_fe = NULL;
317 
318 		iput(mdata->s_bitmap_fe);
319 		mdata->s_bitmap_fe = NULL;
320 	}
321 }
322 
323 static void udf_sb_free_partitions(struct super_block *sb)
324 {
325 	struct udf_sb_info *sbi = UDF_SB(sb);
326 	int i;
327 	if (sbi->s_partmaps == NULL)
328 		return;
329 	for (i = 0; i < sbi->s_partitions; i++)
330 		udf_free_partition(&sbi->s_partmaps[i]);
331 	kfree(sbi->s_partmaps);
332 	sbi->s_partmaps = NULL;
333 }
334 
335 static int udf_show_options(struct seq_file *seq, struct dentry *root)
336 {
337 	struct super_block *sb = root->d_sb;
338 	struct udf_sb_info *sbi = UDF_SB(sb);
339 
340 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
341 		seq_puts(seq, ",nostrict");
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
343 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
344 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
345 		seq_puts(seq, ",unhide");
346 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
347 		seq_puts(seq, ",undelete");
348 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
349 		seq_puts(seq, ",noadinicb");
350 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
351 		seq_puts(seq, ",shortad");
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
353 		seq_puts(seq, ",uid=forget");
354 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
355 		seq_puts(seq, ",uid=ignore");
356 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
357 		seq_puts(seq, ",gid=forget");
358 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
359 		seq_puts(seq, ",gid=ignore");
360 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
361 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
362 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
363 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
364 	if (sbi->s_umask != 0)
365 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
366 	if (sbi->s_fmode != UDF_INVALID_MODE)
367 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
368 	if (sbi->s_dmode != UDF_INVALID_MODE)
369 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
370 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
371 		seq_printf(seq, ",session=%u", sbi->s_session);
372 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
373 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
374 	if (sbi->s_anchor != 0)
375 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
376 	/*
377 	 * volume, partition, fileset and rootdir seem to be ignored
378 	 * currently
379 	 */
380 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
381 		seq_puts(seq, ",utf8");
382 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
383 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
384 
385 	return 0;
386 }
387 
388 /*
389  * udf_parse_options
390  *
391  * PURPOSE
392  *	Parse mount options.
393  *
394  * DESCRIPTION
395  *	The following mount options are supported:
396  *
397  *	gid=		Set the default group.
398  *	umask=		Set the default umask.
399  *	mode=		Set the default file permissions.
400  *	dmode=		Set the default directory permissions.
401  *	uid=		Set the default user.
402  *	bs=		Set the block size.
403  *	unhide		Show otherwise hidden files.
404  *	undelete	Show deleted files in lists.
405  *	adinicb		Embed data in the inode (default)
406  *	noadinicb	Don't embed data in the inode
407  *	shortad		Use short ad's
408  *	longad		Use long ad's (default)
409  *	nostrict	Unset strict conformance
410  *	iocharset=	Set the NLS character set
411  *
412  *	The remaining are for debugging and disaster recovery:
413  *
414  *	novrs		Skip volume sequence recognition
415  *
416  *	The following expect a offset from 0.
417  *
418  *	session=	Set the CDROM session (default= last session)
419  *	anchor=		Override standard anchor location. (default= 256)
420  *	volume=		Override the VolumeDesc location. (unused)
421  *	partition=	Override the PartitionDesc location. (unused)
422  *	lastblock=	Set the last block of the filesystem/
423  *
424  *	The following expect a offset from the partition root.
425  *
426  *	fileset=	Override the fileset block location. (unused)
427  *	rootdir=	Override the root directory location. (unused)
428  *		WARNING: overriding the rootdir to a non-directory may
429  *		yield highly unpredictable results.
430  *
431  * PRE-CONDITIONS
432  *	options		Pointer to mount options string.
433  *	uopts		Pointer to mount options variable.
434  *
435  * POST-CONDITIONS
436  *	<return>	1	Mount options parsed okay.
437  *	<return>	0	Error parsing mount options.
438  *
439  * HISTORY
440  *	July 1, 1997 - Andrew E. Mileski
441  *	Written, tested, and released.
442  */
443 
444 enum {
445 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
446 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
447 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
448 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
449 	Opt_rootdir, Opt_utf8, Opt_iocharset,
450 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
451 	Opt_fmode, Opt_dmode
452 };
453 
454 static const match_table_t tokens = {
455 	{Opt_novrs,	"novrs"},
456 	{Opt_nostrict,	"nostrict"},
457 	{Opt_bs,	"bs=%u"},
458 	{Opt_unhide,	"unhide"},
459 	{Opt_undelete,	"undelete"},
460 	{Opt_noadinicb,	"noadinicb"},
461 	{Opt_adinicb,	"adinicb"},
462 	{Opt_shortad,	"shortad"},
463 	{Opt_longad,	"longad"},
464 	{Opt_uforget,	"uid=forget"},
465 	{Opt_uignore,	"uid=ignore"},
466 	{Opt_gforget,	"gid=forget"},
467 	{Opt_gignore,	"gid=ignore"},
468 	{Opt_gid,	"gid=%u"},
469 	{Opt_uid,	"uid=%u"},
470 	{Opt_umask,	"umask=%o"},
471 	{Opt_session,	"session=%u"},
472 	{Opt_lastblock,	"lastblock=%u"},
473 	{Opt_anchor,	"anchor=%u"},
474 	{Opt_volume,	"volume=%u"},
475 	{Opt_partition,	"partition=%u"},
476 	{Opt_fileset,	"fileset=%u"},
477 	{Opt_rootdir,	"rootdir=%u"},
478 	{Opt_utf8,	"utf8"},
479 	{Opt_iocharset,	"iocharset=%s"},
480 	{Opt_fmode,     "mode=%o"},
481 	{Opt_dmode,     "dmode=%o"},
482 	{Opt_err,	NULL}
483 };
484 
485 static int udf_parse_options(char *options, struct udf_options *uopt,
486 			     bool remount)
487 {
488 	char *p;
489 	int option;
490 
491 	uopt->novrs = 0;
492 	uopt->partition = 0xFFFF;
493 	uopt->session = 0xFFFFFFFF;
494 	uopt->lastblock = 0;
495 	uopt->anchor = 0;
496 	uopt->volume = 0xFFFFFFFF;
497 	uopt->rootdir = 0xFFFFFFFF;
498 	uopt->fileset = 0xFFFFFFFF;
499 	uopt->nls_map = NULL;
500 
501 	if (!options)
502 		return 1;
503 
504 	while ((p = strsep(&options, ",")) != NULL) {
505 		substring_t args[MAX_OPT_ARGS];
506 		int token;
507 		unsigned n;
508 		if (!*p)
509 			continue;
510 
511 		token = match_token(p, tokens, args);
512 		switch (token) {
513 		case Opt_novrs:
514 			uopt->novrs = 1;
515 			break;
516 		case Opt_bs:
517 			if (match_int(&args[0], &option))
518 				return 0;
519 			n = option;
520 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
521 				return 0;
522 			uopt->blocksize = n;
523 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
524 			break;
525 		case Opt_unhide:
526 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
527 			break;
528 		case Opt_undelete:
529 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
530 			break;
531 		case Opt_noadinicb:
532 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
533 			break;
534 		case Opt_adinicb:
535 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
536 			break;
537 		case Opt_shortad:
538 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
539 			break;
540 		case Opt_longad:
541 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
542 			break;
543 		case Opt_gid:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->gid = make_kgid(current_user_ns(), option);
547 			if (!gid_valid(uopt->gid))
548 				return 0;
549 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
550 			break;
551 		case Opt_uid:
552 			if (match_int(args, &option))
553 				return 0;
554 			uopt->uid = make_kuid(current_user_ns(), option);
555 			if (!uid_valid(uopt->uid))
556 				return 0;
557 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
558 			break;
559 		case Opt_umask:
560 			if (match_octal(args, &option))
561 				return 0;
562 			uopt->umask = option;
563 			break;
564 		case Opt_nostrict:
565 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
566 			break;
567 		case Opt_session:
568 			if (match_int(args, &option))
569 				return 0;
570 			uopt->session = option;
571 			if (!remount)
572 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
573 			break;
574 		case Opt_lastblock:
575 			if (match_int(args, &option))
576 				return 0;
577 			uopt->lastblock = option;
578 			if (!remount)
579 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
580 			break;
581 		case Opt_anchor:
582 			if (match_int(args, &option))
583 				return 0;
584 			uopt->anchor = option;
585 			break;
586 		case Opt_volume:
587 			if (match_int(args, &option))
588 				return 0;
589 			uopt->volume = option;
590 			break;
591 		case Opt_partition:
592 			if (match_int(args, &option))
593 				return 0;
594 			uopt->partition = option;
595 			break;
596 		case Opt_fileset:
597 			if (match_int(args, &option))
598 				return 0;
599 			uopt->fileset = option;
600 			break;
601 		case Opt_rootdir:
602 			if (match_int(args, &option))
603 				return 0;
604 			uopt->rootdir = option;
605 			break;
606 		case Opt_utf8:
607 			uopt->flags |= (1 << UDF_FLAG_UTF8);
608 			break;
609 #ifdef CONFIG_UDF_NLS
610 		case Opt_iocharset:
611 			uopt->nls_map = load_nls(args[0].from);
612 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
613 			break;
614 #endif
615 		case Opt_uignore:
616 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
617 			break;
618 		case Opt_uforget:
619 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
620 			break;
621 		case Opt_gignore:
622 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
623 			break;
624 		case Opt_gforget:
625 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
626 			break;
627 		case Opt_fmode:
628 			if (match_octal(args, &option))
629 				return 0;
630 			uopt->fmode = option & 0777;
631 			break;
632 		case Opt_dmode:
633 			if (match_octal(args, &option))
634 				return 0;
635 			uopt->dmode = option & 0777;
636 			break;
637 		default:
638 			pr_err("bad mount option \"%s\" or missing value\n", p);
639 			return 0;
640 		}
641 	}
642 	return 1;
643 }
644 
645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
646 {
647 	struct udf_options uopt;
648 	struct udf_sb_info *sbi = UDF_SB(sb);
649 	int error = 0;
650 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
651 
652 	sync_filesystem(sb);
653 	if (lvidiu) {
654 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656 			return -EACCES;
657 	}
658 
659 	uopt.flags = sbi->s_flags;
660 	uopt.uid   = sbi->s_uid;
661 	uopt.gid   = sbi->s_gid;
662 	uopt.umask = sbi->s_umask;
663 	uopt.fmode = sbi->s_fmode;
664 	uopt.dmode = sbi->s_dmode;
665 
666 	if (!udf_parse_options(options, &uopt, true))
667 		return -EINVAL;
668 
669 	write_lock(&sbi->s_cred_lock);
670 	sbi->s_flags = uopt.flags;
671 	sbi->s_uid   = uopt.uid;
672 	sbi->s_gid   = uopt.gid;
673 	sbi->s_umask = uopt.umask;
674 	sbi->s_fmode = uopt.fmode;
675 	sbi->s_dmode = uopt.dmode;
676 	write_unlock(&sbi->s_cred_lock);
677 
678 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679 		goto out_unlock;
680 
681 	if (*flags & MS_RDONLY)
682 		udf_close_lvid(sb);
683 	else
684 		udf_open_lvid(sb);
685 
686 out_unlock:
687 	return error;
688 }
689 
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694 	struct volStructDesc *vsd = NULL;
695 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696 	int sectorsize;
697 	struct buffer_head *bh = NULL;
698 	int nsr02 = 0;
699 	int nsr03 = 0;
700 	struct udf_sb_info *sbi;
701 
702 	sbi = UDF_SB(sb);
703 	if (sb->s_blocksize < sizeof(struct volStructDesc))
704 		sectorsize = sizeof(struct volStructDesc);
705 	else
706 		sectorsize = sb->s_blocksize;
707 
708 	sector += (sbi->s_session << sb->s_blocksize_bits);
709 
710 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
711 		  (unsigned int)(sector >> sb->s_blocksize_bits),
712 		  sb->s_blocksize);
713 	/* Process the sequence (if applicable). The hard limit on the sector
714 	 * offset is arbitrary, hopefully large enough so that all valid UDF
715 	 * filesystems will be recognised. There is no mention of an upper
716 	 * bound to the size of the volume recognition area in the standard.
717 	 *  The limit will prevent the code to read all the sectors of a
718 	 * specially crafted image (like a bluray disc full of CD001 sectors),
719 	 * potentially causing minutes or even hours of uninterruptible I/O
720 	 * activity. This actually happened with uninitialised SSD partitions
721 	 * (all 0xFF) before the check for the limit and all valid IDs were
722 	 * added */
723 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724 	     sector += sectorsize) {
725 		/* Read a block */
726 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727 		if (!bh)
728 			break;
729 
730 		/* Look for ISO  descriptors */
731 		vsd = (struct volStructDesc *)(bh->b_data +
732 					      (sector & (sb->s_blocksize - 1)));
733 
734 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735 				    VSD_STD_ID_LEN)) {
736 			switch (vsd->structType) {
737 			case 0:
738 				udf_debug("ISO9660 Boot Record found\n");
739 				break;
740 			case 1:
741 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
742 				break;
743 			case 2:
744 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745 				break;
746 			case 3:
747 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
748 				break;
749 			case 255:
750 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751 				break;
752 			default:
753 				udf_debug("ISO9660 VRS (%u) found\n",
754 					  vsd->structType);
755 				break;
756 			}
757 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758 				    VSD_STD_ID_LEN))
759 			; /* nothing */
760 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761 				    VSD_STD_ID_LEN)) {
762 			brelse(bh);
763 			break;
764 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765 				    VSD_STD_ID_LEN))
766 			nsr02 = sector;
767 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768 				    VSD_STD_ID_LEN))
769 			nsr03 = sector;
770 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771 				    VSD_STD_ID_LEN))
772 			; /* nothing */
773 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774 				    VSD_STD_ID_LEN))
775 			; /* nothing */
776 		else {
777 			/* invalid id : end of volume recognition area */
778 			brelse(bh);
779 			break;
780 		}
781 		brelse(bh);
782 	}
783 
784 	if (nsr03)
785 		return nsr03;
786 	else if (nsr02)
787 		return nsr02;
788 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789 			VSD_FIRST_SECTOR_OFFSET)
790 		return -1;
791 	else
792 		return 0;
793 }
794 
795 static int udf_find_fileset(struct super_block *sb,
796 			    struct kernel_lb_addr *fileset,
797 			    struct kernel_lb_addr *root)
798 {
799 	struct buffer_head *bh = NULL;
800 	long lastblock;
801 	uint16_t ident;
802 	struct udf_sb_info *sbi;
803 
804 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805 	    fileset->partitionReferenceNum != 0xFFFF) {
806 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
807 
808 		if (!bh) {
809 			return 1;
810 		} else if (ident != TAG_IDENT_FSD) {
811 			brelse(bh);
812 			return 1;
813 		}
814 
815 	}
816 
817 	sbi = UDF_SB(sb);
818 	if (!bh) {
819 		/* Search backwards through the partitions */
820 		struct kernel_lb_addr newfileset;
821 
822 /* --> cvg: FIXME - is it reasonable? */
823 		return 1;
824 
825 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826 		     (newfileset.partitionReferenceNum != 0xFFFF &&
827 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
828 		      fileset->partitionReferenceNum == 0xFFFF);
829 		     newfileset.partitionReferenceNum--) {
830 			lastblock = sbi->s_partmaps
831 					[newfileset.partitionReferenceNum]
832 						.s_partition_len;
833 			newfileset.logicalBlockNum = 0;
834 
835 			do {
836 				bh = udf_read_ptagged(sb, &newfileset, 0,
837 						      &ident);
838 				if (!bh) {
839 					newfileset.logicalBlockNum++;
840 					continue;
841 				}
842 
843 				switch (ident) {
844 				case TAG_IDENT_SBD:
845 				{
846 					struct spaceBitmapDesc *sp;
847 					sp = (struct spaceBitmapDesc *)
848 								bh->b_data;
849 					newfileset.logicalBlockNum += 1 +
850 						((le32_to_cpu(sp->numOfBytes) +
851 						  sizeof(struct spaceBitmapDesc)
852 						  - 1) >> sb->s_blocksize_bits);
853 					brelse(bh);
854 					break;
855 				}
856 				case TAG_IDENT_FSD:
857 					*fileset = newfileset;
858 					break;
859 				default:
860 					newfileset.logicalBlockNum++;
861 					brelse(bh);
862 					bh = NULL;
863 					break;
864 				}
865 			} while (newfileset.logicalBlockNum < lastblock &&
866 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
867 				 fileset->partitionReferenceNum == 0xFFFF);
868 		}
869 	}
870 
871 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
873 		udf_debug("Fileset at block=%d, partition=%d\n",
874 			  fileset->logicalBlockNum,
875 			  fileset->partitionReferenceNum);
876 
877 		sbi->s_partition = fileset->partitionReferenceNum;
878 		udf_load_fileset(sb, bh, root);
879 		brelse(bh);
880 		return 0;
881 	}
882 	return 1;
883 }
884 
885 /*
886  * Load primary Volume Descriptor Sequence
887  *
888  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889  * should be tried.
890  */
891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893 	struct primaryVolDesc *pvoldesc;
894 	struct ustr *instr, *outstr;
895 	struct buffer_head *bh;
896 	uint16_t ident;
897 	int ret = -ENOMEM;
898 
899 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900 	if (!instr)
901 		return -ENOMEM;
902 
903 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
904 	if (!outstr)
905 		goto out1;
906 
907 	bh = udf_read_tagged(sb, block, block, &ident);
908 	if (!bh) {
909 		ret = -EAGAIN;
910 		goto out2;
911 	}
912 
913 	if (ident != TAG_IDENT_PVD) {
914 		ret = -EIO;
915 		goto out_bh;
916 	}
917 
918 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
919 
920 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
921 			      pvoldesc->recordingDateAndTime)) {
922 #ifdef UDFFS_DEBUG
923 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
924 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
925 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
926 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
927 #endif
928 	}
929 
930 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
931 		if (udf_CS0toUTF8(outstr, instr)) {
932 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
933 				outstr->u_len > 31 ? 31 : outstr->u_len);
934 			udf_debug("volIdent[] = '%s'\n",
935 				  UDF_SB(sb)->s_volume_ident);
936 		}
937 
938 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
939 		if (udf_CS0toUTF8(outstr, instr))
940 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
941 
942 	ret = 0;
943 out_bh:
944 	brelse(bh);
945 out2:
946 	kfree(outstr);
947 out1:
948 	kfree(instr);
949 	return ret;
950 }
951 
952 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
953 					u32 meta_file_loc, u32 partition_num)
954 {
955 	struct kernel_lb_addr addr;
956 	struct inode *metadata_fe;
957 
958 	addr.logicalBlockNum = meta_file_loc;
959 	addr.partitionReferenceNum = partition_num;
960 
961 	metadata_fe = udf_iget_special(sb, &addr);
962 
963 	if (IS_ERR(metadata_fe)) {
964 		udf_warn(sb, "metadata inode efe not found\n");
965 		return metadata_fe;
966 	}
967 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
968 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
969 		iput(metadata_fe);
970 		return ERR_PTR(-EIO);
971 	}
972 
973 	return metadata_fe;
974 }
975 
976 static int udf_load_metadata_files(struct super_block *sb, int partition)
977 {
978 	struct udf_sb_info *sbi = UDF_SB(sb);
979 	struct udf_part_map *map;
980 	struct udf_meta_data *mdata;
981 	struct kernel_lb_addr addr;
982 	struct inode *fe;
983 
984 	map = &sbi->s_partmaps[partition];
985 	mdata = &map->s_type_specific.s_metadata;
986 
987 	/* metadata address */
988 	udf_debug("Metadata file location: block = %d part = %d\n",
989 		  mdata->s_meta_file_loc, map->s_partition_num);
990 
991 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
992 					 map->s_partition_num);
993 	if (IS_ERR(fe)) {
994 		/* mirror file entry */
995 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
996 			  mdata->s_mirror_file_loc, map->s_partition_num);
997 
998 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
999 						 map->s_partition_num);
1000 
1001 		if (IS_ERR(fe)) {
1002 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1003 			return PTR_ERR(fe);
1004 		}
1005 		mdata->s_mirror_fe = fe;
1006 	} else
1007 		mdata->s_metadata_fe = fe;
1008 
1009 
1010 	/*
1011 	 * bitmap file entry
1012 	 * Note:
1013 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1014 	*/
1015 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1016 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1017 		addr.partitionReferenceNum = map->s_partition_num;
1018 
1019 		udf_debug("Bitmap file location: block = %d part = %d\n",
1020 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1021 
1022 		fe = udf_iget_special(sb, &addr);
1023 		if (IS_ERR(fe)) {
1024 			if (sb->s_flags & MS_RDONLY)
1025 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1026 			else {
1027 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1028 				return PTR_ERR(fe);
1029 			}
1030 		} else
1031 			mdata->s_bitmap_fe = fe;
1032 	}
1033 
1034 	udf_debug("udf_load_metadata_files Ok\n");
1035 	return 0;
1036 }
1037 
1038 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1039 			     struct kernel_lb_addr *root)
1040 {
1041 	struct fileSetDesc *fset;
1042 
1043 	fset = (struct fileSetDesc *)bh->b_data;
1044 
1045 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1046 
1047 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1048 
1049 	udf_debug("Rootdir at block=%d, partition=%d\n",
1050 		  root->logicalBlockNum, root->partitionReferenceNum);
1051 }
1052 
1053 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1054 {
1055 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1056 	return DIV_ROUND_UP(map->s_partition_len +
1057 			    (sizeof(struct spaceBitmapDesc) << 3),
1058 			    sb->s_blocksize * 8);
1059 }
1060 
1061 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1062 {
1063 	struct udf_bitmap *bitmap;
1064 	int nr_groups;
1065 	int size;
1066 
1067 	nr_groups = udf_compute_nr_groups(sb, index);
1068 	size = sizeof(struct udf_bitmap) +
1069 		(sizeof(struct buffer_head *) * nr_groups);
1070 
1071 	if (size <= PAGE_SIZE)
1072 		bitmap = kzalloc(size, GFP_KERNEL);
1073 	else
1074 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1075 
1076 	if (bitmap == NULL)
1077 		return NULL;
1078 
1079 	bitmap->s_nr_groups = nr_groups;
1080 	return bitmap;
1081 }
1082 
1083 static int udf_fill_partdesc_info(struct super_block *sb,
1084 		struct partitionDesc *p, int p_index)
1085 {
1086 	struct udf_part_map *map;
1087 	struct udf_sb_info *sbi = UDF_SB(sb);
1088 	struct partitionHeaderDesc *phd;
1089 
1090 	map = &sbi->s_partmaps[p_index];
1091 
1092 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1093 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1094 
1095 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1096 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1097 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1098 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1099 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1100 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1101 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1102 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1103 
1104 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1105 		  p_index, map->s_partition_type,
1106 		  map->s_partition_root, map->s_partition_len);
1107 
1108 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1109 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1110 		return 0;
1111 
1112 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1113 	if (phd->unallocSpaceTable.extLength) {
1114 		struct kernel_lb_addr loc = {
1115 			.logicalBlockNum = le32_to_cpu(
1116 				phd->unallocSpaceTable.extPosition),
1117 			.partitionReferenceNum = p_index,
1118 		};
1119 		struct inode *inode;
1120 
1121 		inode = udf_iget_special(sb, &loc);
1122 		if (IS_ERR(inode)) {
1123 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1124 				  p_index);
1125 			return PTR_ERR(inode);
1126 		}
1127 		map->s_uspace.s_table = inode;
1128 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1129 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1130 			  p_index, map->s_uspace.s_table->i_ino);
1131 	}
1132 
1133 	if (phd->unallocSpaceBitmap.extLength) {
1134 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135 		if (!bitmap)
1136 			return -ENOMEM;
1137 		map->s_uspace.s_bitmap = bitmap;
1138 		bitmap->s_extPosition = le32_to_cpu(
1139 				phd->unallocSpaceBitmap.extPosition);
1140 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1141 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1142 			  p_index, bitmap->s_extPosition);
1143 	}
1144 
1145 	if (phd->partitionIntegrityTable.extLength)
1146 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1147 
1148 	if (phd->freedSpaceTable.extLength) {
1149 		struct kernel_lb_addr loc = {
1150 			.logicalBlockNum = le32_to_cpu(
1151 				phd->freedSpaceTable.extPosition),
1152 			.partitionReferenceNum = p_index,
1153 		};
1154 		struct inode *inode;
1155 
1156 		inode = udf_iget_special(sb, &loc);
1157 		if (IS_ERR(inode)) {
1158 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1159 				  p_index);
1160 			return PTR_ERR(inode);
1161 		}
1162 		map->s_fspace.s_table = inode;
1163 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1164 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1165 			  p_index, map->s_fspace.s_table->i_ino);
1166 	}
1167 
1168 	if (phd->freedSpaceBitmap.extLength) {
1169 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1170 		if (!bitmap)
1171 			return -ENOMEM;
1172 		map->s_fspace.s_bitmap = bitmap;
1173 		bitmap->s_extPosition = le32_to_cpu(
1174 				phd->freedSpaceBitmap.extPosition);
1175 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1176 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1177 			  p_index, bitmap->s_extPosition);
1178 	}
1179 	return 0;
1180 }
1181 
1182 static void udf_find_vat_block(struct super_block *sb, int p_index,
1183 			       int type1_index, sector_t start_block)
1184 {
1185 	struct udf_sb_info *sbi = UDF_SB(sb);
1186 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1187 	sector_t vat_block;
1188 	struct kernel_lb_addr ino;
1189 	struct inode *inode;
1190 
1191 	/*
1192 	 * VAT file entry is in the last recorded block. Some broken disks have
1193 	 * it a few blocks before so try a bit harder...
1194 	 */
1195 	ino.partitionReferenceNum = type1_index;
1196 	for (vat_block = start_block;
1197 	     vat_block >= map->s_partition_root &&
1198 	     vat_block >= start_block - 3; vat_block--) {
1199 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1200 		inode = udf_iget_special(sb, &ino);
1201 		if (!IS_ERR(inode)) {
1202 			sbi->s_vat_inode = inode;
1203 			break;
1204 		}
1205 	}
1206 }
1207 
1208 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1209 {
1210 	struct udf_sb_info *sbi = UDF_SB(sb);
1211 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1212 	struct buffer_head *bh = NULL;
1213 	struct udf_inode_info *vati;
1214 	uint32_t pos;
1215 	struct virtualAllocationTable20 *vat20;
1216 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1217 
1218 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1219 	if (!sbi->s_vat_inode &&
1220 	    sbi->s_last_block != blocks - 1) {
1221 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1222 			  (unsigned long)sbi->s_last_block,
1223 			  (unsigned long)blocks - 1);
1224 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1225 	}
1226 	if (!sbi->s_vat_inode)
1227 		return -EIO;
1228 
1229 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1230 		map->s_type_specific.s_virtual.s_start_offset = 0;
1231 		map->s_type_specific.s_virtual.s_num_entries =
1232 			(sbi->s_vat_inode->i_size - 36) >> 2;
1233 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1234 		vati = UDF_I(sbi->s_vat_inode);
1235 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1236 			pos = udf_block_map(sbi->s_vat_inode, 0);
1237 			bh = sb_bread(sb, pos);
1238 			if (!bh)
1239 				return -EIO;
1240 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1241 		} else {
1242 			vat20 = (struct virtualAllocationTable20 *)
1243 							vati->i_ext.i_data;
1244 		}
1245 
1246 		map->s_type_specific.s_virtual.s_start_offset =
1247 			le16_to_cpu(vat20->lengthHeader);
1248 		map->s_type_specific.s_virtual.s_num_entries =
1249 			(sbi->s_vat_inode->i_size -
1250 				map->s_type_specific.s_virtual.
1251 					s_start_offset) >> 2;
1252 		brelse(bh);
1253 	}
1254 	return 0;
1255 }
1256 
1257 /*
1258  * Load partition descriptor block
1259  *
1260  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1261  * sequence.
1262  */
1263 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1264 {
1265 	struct buffer_head *bh;
1266 	struct partitionDesc *p;
1267 	struct udf_part_map *map;
1268 	struct udf_sb_info *sbi = UDF_SB(sb);
1269 	int i, type1_idx;
1270 	uint16_t partitionNumber;
1271 	uint16_t ident;
1272 	int ret;
1273 
1274 	bh = udf_read_tagged(sb, block, block, &ident);
1275 	if (!bh)
1276 		return -EAGAIN;
1277 	if (ident != TAG_IDENT_PD) {
1278 		ret = 0;
1279 		goto out_bh;
1280 	}
1281 
1282 	p = (struct partitionDesc *)bh->b_data;
1283 	partitionNumber = le16_to_cpu(p->partitionNumber);
1284 
1285 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1286 	for (i = 0; i < sbi->s_partitions; i++) {
1287 		map = &sbi->s_partmaps[i];
1288 		udf_debug("Searching map: (%d == %d)\n",
1289 			  map->s_partition_num, partitionNumber);
1290 		if (map->s_partition_num == partitionNumber &&
1291 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1292 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1293 			break;
1294 	}
1295 
1296 	if (i >= sbi->s_partitions) {
1297 		udf_debug("Partition (%d) not found in partition map\n",
1298 			  partitionNumber);
1299 		ret = 0;
1300 		goto out_bh;
1301 	}
1302 
1303 	ret = udf_fill_partdesc_info(sb, p, i);
1304 	if (ret < 0)
1305 		goto out_bh;
1306 
1307 	/*
1308 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1309 	 * PHYSICAL partitions are already set up
1310 	 */
1311 	type1_idx = i;
1312 #ifdef UDFFS_DEBUG
1313 	map = NULL; /* supress 'maybe used uninitialized' warning */
1314 #endif
1315 	for (i = 0; i < sbi->s_partitions; i++) {
1316 		map = &sbi->s_partmaps[i];
1317 
1318 		if (map->s_partition_num == partitionNumber &&
1319 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1320 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1321 		     map->s_partition_type == UDF_METADATA_MAP25))
1322 			break;
1323 	}
1324 
1325 	if (i >= sbi->s_partitions) {
1326 		ret = 0;
1327 		goto out_bh;
1328 	}
1329 
1330 	ret = udf_fill_partdesc_info(sb, p, i);
1331 	if (ret < 0)
1332 		goto out_bh;
1333 
1334 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1335 		ret = udf_load_metadata_files(sb, i);
1336 		if (ret < 0) {
1337 			udf_err(sb, "error loading MetaData partition map %d\n",
1338 				i);
1339 			goto out_bh;
1340 		}
1341 	} else {
1342 		/*
1343 		 * If we have a partition with virtual map, we don't handle
1344 		 * writing to it (we overwrite blocks instead of relocating
1345 		 * them).
1346 		 */
1347 		if (!(sb->s_flags & MS_RDONLY)) {
1348 			ret = -EACCES;
1349 			goto out_bh;
1350 		}
1351 		ret = udf_load_vat(sb, i, type1_idx);
1352 		if (ret < 0)
1353 			goto out_bh;
1354 	}
1355 	ret = 0;
1356 out_bh:
1357 	/* In case loading failed, we handle cleanup in udf_fill_super */
1358 	brelse(bh);
1359 	return ret;
1360 }
1361 
1362 static int udf_load_sparable_map(struct super_block *sb,
1363 				 struct udf_part_map *map,
1364 				 struct sparablePartitionMap *spm)
1365 {
1366 	uint32_t loc;
1367 	uint16_t ident;
1368 	struct sparingTable *st;
1369 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1370 	int i;
1371 	struct buffer_head *bh;
1372 
1373 	map->s_partition_type = UDF_SPARABLE_MAP15;
1374 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1375 	if (!is_power_of_2(sdata->s_packet_len)) {
1376 		udf_err(sb, "error loading logical volume descriptor: "
1377 			"Invalid packet length %u\n",
1378 			(unsigned)sdata->s_packet_len);
1379 		return -EIO;
1380 	}
1381 	if (spm->numSparingTables > 4) {
1382 		udf_err(sb, "error loading logical volume descriptor: "
1383 			"Too many sparing tables (%d)\n",
1384 			(int)spm->numSparingTables);
1385 		return -EIO;
1386 	}
1387 
1388 	for (i = 0; i < spm->numSparingTables; i++) {
1389 		loc = le32_to_cpu(spm->locSparingTable[i]);
1390 		bh = udf_read_tagged(sb, loc, loc, &ident);
1391 		if (!bh)
1392 			continue;
1393 
1394 		st = (struct sparingTable *)bh->b_data;
1395 		if (ident != 0 ||
1396 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1397 			    strlen(UDF_ID_SPARING)) ||
1398 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1399 							sb->s_blocksize) {
1400 			brelse(bh);
1401 			continue;
1402 		}
1403 
1404 		sdata->s_spar_map[i] = bh;
1405 	}
1406 	map->s_partition_func = udf_get_pblock_spar15;
1407 	return 0;
1408 }
1409 
1410 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1411 			       struct kernel_lb_addr *fileset)
1412 {
1413 	struct logicalVolDesc *lvd;
1414 	int i, offset;
1415 	uint8_t type;
1416 	struct udf_sb_info *sbi = UDF_SB(sb);
1417 	struct genericPartitionMap *gpm;
1418 	uint16_t ident;
1419 	struct buffer_head *bh;
1420 	unsigned int table_len;
1421 	int ret;
1422 
1423 	bh = udf_read_tagged(sb, block, block, &ident);
1424 	if (!bh)
1425 		return -EAGAIN;
1426 	BUG_ON(ident != TAG_IDENT_LVD);
1427 	lvd = (struct logicalVolDesc *)bh->b_data;
1428 	table_len = le32_to_cpu(lvd->mapTableLength);
1429 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1430 		udf_err(sb, "error loading logical volume descriptor: "
1431 			"Partition table too long (%u > %lu)\n", table_len,
1432 			sb->s_blocksize - sizeof(*lvd));
1433 		ret = -EIO;
1434 		goto out_bh;
1435 	}
1436 
1437 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1438 	if (ret)
1439 		goto out_bh;
1440 
1441 	for (i = 0, offset = 0;
1442 	     i < sbi->s_partitions && offset < table_len;
1443 	     i++, offset += gpm->partitionMapLength) {
1444 		struct udf_part_map *map = &sbi->s_partmaps[i];
1445 		gpm = (struct genericPartitionMap *)
1446 				&(lvd->partitionMaps[offset]);
1447 		type = gpm->partitionMapType;
1448 		if (type == 1) {
1449 			struct genericPartitionMap1 *gpm1 =
1450 				(struct genericPartitionMap1 *)gpm;
1451 			map->s_partition_type = UDF_TYPE1_MAP15;
1452 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1453 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1454 			map->s_partition_func = NULL;
1455 		} else if (type == 2) {
1456 			struct udfPartitionMap2 *upm2 =
1457 						(struct udfPartitionMap2 *)gpm;
1458 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1459 						strlen(UDF_ID_VIRTUAL))) {
1460 				u16 suf =
1461 					le16_to_cpu(((__le16 *)upm2->partIdent.
1462 							identSuffix)[0]);
1463 				if (suf < 0x0200) {
1464 					map->s_partition_type =
1465 							UDF_VIRTUAL_MAP15;
1466 					map->s_partition_func =
1467 							udf_get_pblock_virt15;
1468 				} else {
1469 					map->s_partition_type =
1470 							UDF_VIRTUAL_MAP20;
1471 					map->s_partition_func =
1472 							udf_get_pblock_virt20;
1473 				}
1474 			} else if (!strncmp(upm2->partIdent.ident,
1475 						UDF_ID_SPARABLE,
1476 						strlen(UDF_ID_SPARABLE))) {
1477 				ret = udf_load_sparable_map(sb, map,
1478 					(struct sparablePartitionMap *)gpm);
1479 				if (ret < 0)
1480 					goto out_bh;
1481 			} else if (!strncmp(upm2->partIdent.ident,
1482 						UDF_ID_METADATA,
1483 						strlen(UDF_ID_METADATA))) {
1484 				struct udf_meta_data *mdata =
1485 					&map->s_type_specific.s_metadata;
1486 				struct metadataPartitionMap *mdm =
1487 						(struct metadataPartitionMap *)
1488 						&(lvd->partitionMaps[offset]);
1489 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1490 					  i, type, UDF_ID_METADATA);
1491 
1492 				map->s_partition_type = UDF_METADATA_MAP25;
1493 				map->s_partition_func = udf_get_pblock_meta25;
1494 
1495 				mdata->s_meta_file_loc   =
1496 					le32_to_cpu(mdm->metadataFileLoc);
1497 				mdata->s_mirror_file_loc =
1498 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1499 				mdata->s_bitmap_file_loc =
1500 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1501 				mdata->s_alloc_unit_size =
1502 					le32_to_cpu(mdm->allocUnitSize);
1503 				mdata->s_align_unit_size =
1504 					le16_to_cpu(mdm->alignUnitSize);
1505 				if (mdm->flags & 0x01)
1506 					mdata->s_flags |= MF_DUPLICATE_MD;
1507 
1508 				udf_debug("Metadata Ident suffix=0x%x\n",
1509 					  le16_to_cpu(*(__le16 *)
1510 						      mdm->partIdent.identSuffix));
1511 				udf_debug("Metadata part num=%d\n",
1512 					  le16_to_cpu(mdm->partitionNum));
1513 				udf_debug("Metadata part alloc unit size=%d\n",
1514 					  le32_to_cpu(mdm->allocUnitSize));
1515 				udf_debug("Metadata file loc=%d\n",
1516 					  le32_to_cpu(mdm->metadataFileLoc));
1517 				udf_debug("Mirror file loc=%d\n",
1518 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1519 				udf_debug("Bitmap file loc=%d\n",
1520 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1521 				udf_debug("Flags: %d %d\n",
1522 					  mdata->s_flags, mdm->flags);
1523 			} else {
1524 				udf_debug("Unknown ident: %s\n",
1525 					  upm2->partIdent.ident);
1526 				continue;
1527 			}
1528 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1529 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1530 		}
1531 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1532 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1533 	}
1534 
1535 	if (fileset) {
1536 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1537 
1538 		*fileset = lelb_to_cpu(la->extLocation);
1539 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1540 			  fileset->logicalBlockNum,
1541 			  fileset->partitionReferenceNum);
1542 	}
1543 	if (lvd->integritySeqExt.extLength)
1544 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1545 	ret = 0;
1546 out_bh:
1547 	brelse(bh);
1548 	return ret;
1549 }
1550 
1551 /*
1552  * udf_load_logicalvolint
1553  *
1554  */
1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1556 {
1557 	struct buffer_head *bh = NULL;
1558 	uint16_t ident;
1559 	struct udf_sb_info *sbi = UDF_SB(sb);
1560 	struct logicalVolIntegrityDesc *lvid;
1561 
1562 	while (loc.extLength > 0 &&
1563 	       (bh = udf_read_tagged(sb, loc.extLocation,
1564 				     loc.extLocation, &ident)) &&
1565 	       ident == TAG_IDENT_LVID) {
1566 		sbi->s_lvid_bh = bh;
1567 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1568 
1569 		if (lvid->nextIntegrityExt.extLength)
1570 			udf_load_logicalvolint(sb,
1571 				leea_to_cpu(lvid->nextIntegrityExt));
1572 
1573 		if (sbi->s_lvid_bh != bh)
1574 			brelse(bh);
1575 		loc.extLength -= sb->s_blocksize;
1576 		loc.extLocation++;
1577 	}
1578 	if (sbi->s_lvid_bh != bh)
1579 		brelse(bh);
1580 }
1581 
1582 /*
1583  * Process a main/reserve volume descriptor sequence.
1584  *   @block		First block of first extent of the sequence.
1585  *   @lastblock		Lastblock of first extent of the sequence.
1586  *   @fileset		There we store extent containing root fileset
1587  *
1588  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1589  * sequence
1590  */
1591 static noinline int udf_process_sequence(
1592 		struct super_block *sb,
1593 		sector_t block, sector_t lastblock,
1594 		struct kernel_lb_addr *fileset)
1595 {
1596 	struct buffer_head *bh = NULL;
1597 	struct udf_vds_record vds[VDS_POS_LENGTH];
1598 	struct udf_vds_record *curr;
1599 	struct generic_desc *gd;
1600 	struct volDescPtr *vdp;
1601 	bool done = false;
1602 	uint32_t vdsn;
1603 	uint16_t ident;
1604 	long next_s = 0, next_e = 0;
1605 	int ret;
1606 
1607 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1608 
1609 	/*
1610 	 * Read the main descriptor sequence and find which descriptors
1611 	 * are in it.
1612 	 */
1613 	for (; (!done && block <= lastblock); block++) {
1614 
1615 		bh = udf_read_tagged(sb, block, block, &ident);
1616 		if (!bh) {
1617 			udf_err(sb,
1618 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1619 				(unsigned long long)block);
1620 			return -EAGAIN;
1621 		}
1622 
1623 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1624 		gd = (struct generic_desc *)bh->b_data;
1625 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1626 		switch (ident) {
1627 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1628 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1629 			if (vdsn >= curr->volDescSeqNum) {
1630 				curr->volDescSeqNum = vdsn;
1631 				curr->block = block;
1632 			}
1633 			break;
1634 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1635 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1636 			if (vdsn >= curr->volDescSeqNum) {
1637 				curr->volDescSeqNum = vdsn;
1638 				curr->block = block;
1639 
1640 				vdp = (struct volDescPtr *)bh->b_data;
1641 				next_s = le32_to_cpu(
1642 					vdp->nextVolDescSeqExt.extLocation);
1643 				next_e = le32_to_cpu(
1644 					vdp->nextVolDescSeqExt.extLength);
1645 				next_e = next_e >> sb->s_blocksize_bits;
1646 				next_e += next_s;
1647 			}
1648 			break;
1649 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1651 			if (vdsn >= curr->volDescSeqNum) {
1652 				curr->volDescSeqNum = vdsn;
1653 				curr->block = block;
1654 			}
1655 			break;
1656 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1657 			curr = &vds[VDS_POS_PARTITION_DESC];
1658 			if (!curr->block)
1659 				curr->block = block;
1660 			break;
1661 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1663 			if (vdsn >= curr->volDescSeqNum) {
1664 				curr->volDescSeqNum = vdsn;
1665 				curr->block = block;
1666 			}
1667 			break;
1668 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1669 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1670 			if (vdsn >= curr->volDescSeqNum) {
1671 				curr->volDescSeqNum = vdsn;
1672 				curr->block = block;
1673 			}
1674 			break;
1675 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1676 			vds[VDS_POS_TERMINATING_DESC].block = block;
1677 			if (next_e) {
1678 				block = next_s;
1679 				lastblock = next_e;
1680 				next_s = next_e = 0;
1681 			} else
1682 				done = true;
1683 			break;
1684 		}
1685 		brelse(bh);
1686 	}
1687 	/*
1688 	 * Now read interesting descriptors again and process them
1689 	 * in a suitable order
1690 	 */
1691 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1692 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1693 		return -EAGAIN;
1694 	}
1695 	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1696 	if (ret < 0)
1697 		return ret;
1698 
1699 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1700 		ret = udf_load_logicalvol(sb,
1701 					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1702 					  fileset);
1703 		if (ret < 0)
1704 			return ret;
1705 	}
1706 
1707 	if (vds[VDS_POS_PARTITION_DESC].block) {
1708 		/*
1709 		 * We rescan the whole descriptor sequence to find
1710 		 * partition descriptor blocks and process them.
1711 		 */
1712 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1713 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1714 		     block++) {
1715 			ret = udf_load_partdesc(sb, block);
1716 			if (ret < 0)
1717 				return ret;
1718 		}
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 /*
1725  * Load Volume Descriptor Sequence described by anchor in bh
1726  *
1727  * Returns <0 on error, 0 on success
1728  */
1729 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1730 			     struct kernel_lb_addr *fileset)
1731 {
1732 	struct anchorVolDescPtr *anchor;
1733 	sector_t main_s, main_e, reserve_s, reserve_e;
1734 	int ret;
1735 
1736 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1737 
1738 	/* Locate the main sequence */
1739 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1740 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1741 	main_e = main_e >> sb->s_blocksize_bits;
1742 	main_e += main_s;
1743 
1744 	/* Locate the reserve sequence */
1745 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1746 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1747 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1748 	reserve_e += reserve_s;
1749 
1750 	/* Process the main & reserve sequences */
1751 	/* responsible for finding the PartitionDesc(s) */
1752 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1753 	if (ret != -EAGAIN)
1754 		return ret;
1755 	udf_sb_free_partitions(sb);
1756 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1757 	if (ret < 0) {
1758 		udf_sb_free_partitions(sb);
1759 		/* No sequence was OK, return -EIO */
1760 		if (ret == -EAGAIN)
1761 			ret = -EIO;
1762 	}
1763 	return ret;
1764 }
1765 
1766 /*
1767  * Check whether there is an anchor block in the given block and
1768  * load Volume Descriptor Sequence if so.
1769  *
1770  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1771  * block
1772  */
1773 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1774 				  struct kernel_lb_addr *fileset)
1775 {
1776 	struct buffer_head *bh;
1777 	uint16_t ident;
1778 	int ret;
1779 
1780 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1781 	    udf_fixed_to_variable(block) >=
1782 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1783 		return -EAGAIN;
1784 
1785 	bh = udf_read_tagged(sb, block, block, &ident);
1786 	if (!bh)
1787 		return -EAGAIN;
1788 	if (ident != TAG_IDENT_AVDP) {
1789 		brelse(bh);
1790 		return -EAGAIN;
1791 	}
1792 	ret = udf_load_sequence(sb, bh, fileset);
1793 	brelse(bh);
1794 	return ret;
1795 }
1796 
1797 /*
1798  * Search for an anchor volume descriptor pointer.
1799  *
1800  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1801  * of anchors.
1802  */
1803 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1804 			    struct kernel_lb_addr *fileset)
1805 {
1806 	sector_t last[6];
1807 	int i;
1808 	struct udf_sb_info *sbi = UDF_SB(sb);
1809 	int last_count = 0;
1810 	int ret;
1811 
1812 	/* First try user provided anchor */
1813 	if (sbi->s_anchor) {
1814 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1815 		if (ret != -EAGAIN)
1816 			return ret;
1817 	}
1818 	/*
1819 	 * according to spec, anchor is in either:
1820 	 *     block 256
1821 	 *     lastblock-256
1822 	 *     lastblock
1823 	 *  however, if the disc isn't closed, it could be 512.
1824 	 */
1825 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1826 	if (ret != -EAGAIN)
1827 		return ret;
1828 	/*
1829 	 * The trouble is which block is the last one. Drives often misreport
1830 	 * this so we try various possibilities.
1831 	 */
1832 	last[last_count++] = *lastblock;
1833 	if (*lastblock >= 1)
1834 		last[last_count++] = *lastblock - 1;
1835 	last[last_count++] = *lastblock + 1;
1836 	if (*lastblock >= 2)
1837 		last[last_count++] = *lastblock - 2;
1838 	if (*lastblock >= 150)
1839 		last[last_count++] = *lastblock - 150;
1840 	if (*lastblock >= 152)
1841 		last[last_count++] = *lastblock - 152;
1842 
1843 	for (i = 0; i < last_count; i++) {
1844 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1845 				sb->s_blocksize_bits)
1846 			continue;
1847 		ret = udf_check_anchor_block(sb, last[i], fileset);
1848 		if (ret != -EAGAIN) {
1849 			if (!ret)
1850 				*lastblock = last[i];
1851 			return ret;
1852 		}
1853 		if (last[i] < 256)
1854 			continue;
1855 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1856 		if (ret != -EAGAIN) {
1857 			if (!ret)
1858 				*lastblock = last[i];
1859 			return ret;
1860 		}
1861 	}
1862 
1863 	/* Finally try block 512 in case media is open */
1864 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1865 }
1866 
1867 /*
1868  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1869  * area specified by it. The function expects sbi->s_lastblock to be the last
1870  * block on the media.
1871  *
1872  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1873  * was not found.
1874  */
1875 static int udf_find_anchor(struct super_block *sb,
1876 			   struct kernel_lb_addr *fileset)
1877 {
1878 	struct udf_sb_info *sbi = UDF_SB(sb);
1879 	sector_t lastblock = sbi->s_last_block;
1880 	int ret;
1881 
1882 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1883 	if (ret != -EAGAIN)
1884 		goto out;
1885 
1886 	/* No anchor found? Try VARCONV conversion of block numbers */
1887 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1888 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1889 	/* Firstly, we try to not convert number of the last block */
1890 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1891 	if (ret != -EAGAIN)
1892 		goto out;
1893 
1894 	lastblock = sbi->s_last_block;
1895 	/* Secondly, we try with converted number of the last block */
1896 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1897 	if (ret < 0) {
1898 		/* VARCONV didn't help. Clear it. */
1899 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1900 	}
1901 out:
1902 	if (ret == 0)
1903 		sbi->s_last_block = lastblock;
1904 	return ret;
1905 }
1906 
1907 /*
1908  * Check Volume Structure Descriptor, find Anchor block and load Volume
1909  * Descriptor Sequence.
1910  *
1911  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1912  * block was not found.
1913  */
1914 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1915 			int silent, struct kernel_lb_addr *fileset)
1916 {
1917 	struct udf_sb_info *sbi = UDF_SB(sb);
1918 	loff_t nsr_off;
1919 	int ret;
1920 
1921 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1922 		if (!silent)
1923 			udf_warn(sb, "Bad block size\n");
1924 		return -EINVAL;
1925 	}
1926 	sbi->s_last_block = uopt->lastblock;
1927 	if (!uopt->novrs) {
1928 		/* Check that it is NSR02 compliant */
1929 		nsr_off = udf_check_vsd(sb);
1930 		if (!nsr_off) {
1931 			if (!silent)
1932 				udf_warn(sb, "No VRS found\n");
1933 			return 0;
1934 		}
1935 		if (nsr_off == -1)
1936 			udf_debug("Failed to read sector at offset %d. "
1937 				  "Assuming open disc. Skipping validity "
1938 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1939 		if (!sbi->s_last_block)
1940 			sbi->s_last_block = udf_get_last_block(sb);
1941 	} else {
1942 		udf_debug("Validity check skipped because of novrs option\n");
1943 	}
1944 
1945 	/* Look for anchor block and load Volume Descriptor Sequence */
1946 	sbi->s_anchor = uopt->anchor;
1947 	ret = udf_find_anchor(sb, fileset);
1948 	if (ret < 0) {
1949 		if (!silent && ret == -EAGAIN)
1950 			udf_warn(sb, "No anchor found\n");
1951 		return ret;
1952 	}
1953 	return 0;
1954 }
1955 
1956 static void udf_open_lvid(struct super_block *sb)
1957 {
1958 	struct udf_sb_info *sbi = UDF_SB(sb);
1959 	struct buffer_head *bh = sbi->s_lvid_bh;
1960 	struct logicalVolIntegrityDesc *lvid;
1961 	struct logicalVolIntegrityDescImpUse *lvidiu;
1962 
1963 	if (!bh)
1964 		return;
1965 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1966 	lvidiu = udf_sb_lvidiu(sb);
1967 	if (!lvidiu)
1968 		return;
1969 
1970 	mutex_lock(&sbi->s_alloc_mutex);
1971 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1972 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1973 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1974 				CURRENT_TIME);
1975 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1976 
1977 	lvid->descTag.descCRC = cpu_to_le16(
1978 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1979 			le16_to_cpu(lvid->descTag.descCRCLength)));
1980 
1981 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1982 	mark_buffer_dirty(bh);
1983 	sbi->s_lvid_dirty = 0;
1984 	mutex_unlock(&sbi->s_alloc_mutex);
1985 	/* Make opening of filesystem visible on the media immediately */
1986 	sync_dirty_buffer(bh);
1987 }
1988 
1989 static void udf_close_lvid(struct super_block *sb)
1990 {
1991 	struct udf_sb_info *sbi = UDF_SB(sb);
1992 	struct buffer_head *bh = sbi->s_lvid_bh;
1993 	struct logicalVolIntegrityDesc *lvid;
1994 	struct logicalVolIntegrityDescImpUse *lvidiu;
1995 
1996 	if (!bh)
1997 		return;
1998 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1999 	lvidiu = udf_sb_lvidiu(sb);
2000 	if (!lvidiu)
2001 		return;
2002 
2003 	mutex_lock(&sbi->s_alloc_mutex);
2004 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2005 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2006 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2007 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2008 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2009 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2010 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2011 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2012 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2013 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2014 
2015 	lvid->descTag.descCRC = cpu_to_le16(
2016 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2017 				le16_to_cpu(lvid->descTag.descCRCLength)));
2018 
2019 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2020 	/*
2021 	 * We set buffer uptodate unconditionally here to avoid spurious
2022 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2023 	 * the buffer as !uptodate
2024 	 */
2025 	set_buffer_uptodate(bh);
2026 	mark_buffer_dirty(bh);
2027 	sbi->s_lvid_dirty = 0;
2028 	mutex_unlock(&sbi->s_alloc_mutex);
2029 	/* Make closing of filesystem visible on the media immediately */
2030 	sync_dirty_buffer(bh);
2031 }
2032 
2033 u64 lvid_get_unique_id(struct super_block *sb)
2034 {
2035 	struct buffer_head *bh;
2036 	struct udf_sb_info *sbi = UDF_SB(sb);
2037 	struct logicalVolIntegrityDesc *lvid;
2038 	struct logicalVolHeaderDesc *lvhd;
2039 	u64 uniqueID;
2040 	u64 ret;
2041 
2042 	bh = sbi->s_lvid_bh;
2043 	if (!bh)
2044 		return 0;
2045 
2046 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2047 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2048 
2049 	mutex_lock(&sbi->s_alloc_mutex);
2050 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2051 	if (!(++uniqueID & 0xFFFFFFFF))
2052 		uniqueID += 16;
2053 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2054 	mutex_unlock(&sbi->s_alloc_mutex);
2055 	mark_buffer_dirty(bh);
2056 
2057 	return ret;
2058 }
2059 
2060 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2061 {
2062 	int ret = -EINVAL;
2063 	struct inode *inode = NULL;
2064 	struct udf_options uopt;
2065 	struct kernel_lb_addr rootdir, fileset;
2066 	struct udf_sb_info *sbi;
2067 
2068 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2069 	uopt.uid = INVALID_UID;
2070 	uopt.gid = INVALID_GID;
2071 	uopt.umask = 0;
2072 	uopt.fmode = UDF_INVALID_MODE;
2073 	uopt.dmode = UDF_INVALID_MODE;
2074 
2075 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2076 	if (!sbi)
2077 		return -ENOMEM;
2078 
2079 	sb->s_fs_info = sbi;
2080 
2081 	mutex_init(&sbi->s_alloc_mutex);
2082 
2083 	if (!udf_parse_options((char *)options, &uopt, false))
2084 		goto parse_options_failure;
2085 
2086 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2087 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2088 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2089 		goto parse_options_failure;
2090 	}
2091 #ifdef CONFIG_UDF_NLS
2092 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2093 		uopt.nls_map = load_nls_default();
2094 		if (!uopt.nls_map)
2095 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2096 		else
2097 			udf_debug("Using default NLS map\n");
2098 	}
2099 #endif
2100 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2101 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2102 
2103 	fileset.logicalBlockNum = 0xFFFFFFFF;
2104 	fileset.partitionReferenceNum = 0xFFFF;
2105 
2106 	sbi->s_flags = uopt.flags;
2107 	sbi->s_uid = uopt.uid;
2108 	sbi->s_gid = uopt.gid;
2109 	sbi->s_umask = uopt.umask;
2110 	sbi->s_fmode = uopt.fmode;
2111 	sbi->s_dmode = uopt.dmode;
2112 	sbi->s_nls_map = uopt.nls_map;
2113 	rwlock_init(&sbi->s_cred_lock);
2114 
2115 	if (uopt.session == 0xFFFFFFFF)
2116 		sbi->s_session = udf_get_last_session(sb);
2117 	else
2118 		sbi->s_session = uopt.session;
2119 
2120 	udf_debug("Multi-session=%d\n", sbi->s_session);
2121 
2122 	/* Fill in the rest of the superblock */
2123 	sb->s_op = &udf_sb_ops;
2124 	sb->s_export_op = &udf_export_ops;
2125 
2126 	sb->s_magic = UDF_SUPER_MAGIC;
2127 	sb->s_time_gran = 1000;
2128 
2129 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2130 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2131 	} else {
2132 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2133 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2134 		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2135 			if (!silent)
2136 				pr_notice("Rescanning with blocksize %d\n",
2137 					  UDF_DEFAULT_BLOCKSIZE);
2138 			brelse(sbi->s_lvid_bh);
2139 			sbi->s_lvid_bh = NULL;
2140 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2141 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2142 		}
2143 	}
2144 	if (ret < 0) {
2145 		if (ret == -EAGAIN) {
2146 			udf_warn(sb, "No partition found (1)\n");
2147 			ret = -EINVAL;
2148 		}
2149 		goto error_out;
2150 	}
2151 
2152 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2153 
2154 	if (sbi->s_lvid_bh) {
2155 		struct logicalVolIntegrityDescImpUse *lvidiu =
2156 							udf_sb_lvidiu(sb);
2157 		uint16_t minUDFReadRev;
2158 		uint16_t minUDFWriteRev;
2159 
2160 		if (!lvidiu) {
2161 			ret = -EINVAL;
2162 			goto error_out;
2163 		}
2164 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2165 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2166 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2167 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2168 				minUDFReadRev,
2169 				UDF_MAX_READ_VERSION);
2170 			ret = -EINVAL;
2171 			goto error_out;
2172 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2173 			   !(sb->s_flags & MS_RDONLY)) {
2174 			ret = -EACCES;
2175 			goto error_out;
2176 		}
2177 
2178 		sbi->s_udfrev = minUDFWriteRev;
2179 
2180 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2181 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2182 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2183 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2184 	}
2185 
2186 	if (!sbi->s_partitions) {
2187 		udf_warn(sb, "No partition found (2)\n");
2188 		ret = -EINVAL;
2189 		goto error_out;
2190 	}
2191 
2192 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2193 			UDF_PART_FLAG_READ_ONLY &&
2194 	    !(sb->s_flags & MS_RDONLY)) {
2195 		ret = -EACCES;
2196 		goto error_out;
2197 	}
2198 
2199 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2200 		udf_warn(sb, "No fileset found\n");
2201 		ret = -EINVAL;
2202 		goto error_out;
2203 	}
2204 
2205 	if (!silent) {
2206 		struct timestamp ts;
2207 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2208 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2209 			 sbi->s_volume_ident,
2210 			 le16_to_cpu(ts.year), ts.month, ts.day,
2211 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2212 	}
2213 	if (!(sb->s_flags & MS_RDONLY))
2214 		udf_open_lvid(sb);
2215 
2216 	/* Assign the root inode */
2217 	/* assign inodes by physical block number */
2218 	/* perhaps it's not extensible enough, but for now ... */
2219 	inode = udf_iget(sb, &rootdir);
2220 	if (IS_ERR(inode)) {
2221 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2222 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2223 		ret = PTR_ERR(inode);
2224 		goto error_out;
2225 	}
2226 
2227 	/* Allocate a dentry for the root inode */
2228 	sb->s_root = d_make_root(inode);
2229 	if (!sb->s_root) {
2230 		udf_err(sb, "Couldn't allocate root dentry\n");
2231 		ret = -ENOMEM;
2232 		goto error_out;
2233 	}
2234 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2235 	sb->s_max_links = UDF_MAX_LINKS;
2236 	return 0;
2237 
2238 error_out:
2239 	iput(sbi->s_vat_inode);
2240 parse_options_failure:
2241 #ifdef CONFIG_UDF_NLS
2242 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2243 		unload_nls(sbi->s_nls_map);
2244 #endif
2245 	if (!(sb->s_flags & MS_RDONLY))
2246 		udf_close_lvid(sb);
2247 	brelse(sbi->s_lvid_bh);
2248 	udf_sb_free_partitions(sb);
2249 	kfree(sbi);
2250 	sb->s_fs_info = NULL;
2251 
2252 	return ret;
2253 }
2254 
2255 void _udf_err(struct super_block *sb, const char *function,
2256 	      const char *fmt, ...)
2257 {
2258 	struct va_format vaf;
2259 	va_list args;
2260 
2261 	va_start(args, fmt);
2262 
2263 	vaf.fmt = fmt;
2264 	vaf.va = &args;
2265 
2266 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2267 
2268 	va_end(args);
2269 }
2270 
2271 void _udf_warn(struct super_block *sb, const char *function,
2272 	       const char *fmt, ...)
2273 {
2274 	struct va_format vaf;
2275 	va_list args;
2276 
2277 	va_start(args, fmt);
2278 
2279 	vaf.fmt = fmt;
2280 	vaf.va = &args;
2281 
2282 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2283 
2284 	va_end(args);
2285 }
2286 
2287 static void udf_put_super(struct super_block *sb)
2288 {
2289 	struct udf_sb_info *sbi;
2290 
2291 	sbi = UDF_SB(sb);
2292 
2293 	iput(sbi->s_vat_inode);
2294 #ifdef CONFIG_UDF_NLS
2295 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2296 		unload_nls(sbi->s_nls_map);
2297 #endif
2298 	if (!(sb->s_flags & MS_RDONLY))
2299 		udf_close_lvid(sb);
2300 	brelse(sbi->s_lvid_bh);
2301 	udf_sb_free_partitions(sb);
2302 	mutex_destroy(&sbi->s_alloc_mutex);
2303 	kfree(sb->s_fs_info);
2304 	sb->s_fs_info = NULL;
2305 }
2306 
2307 static int udf_sync_fs(struct super_block *sb, int wait)
2308 {
2309 	struct udf_sb_info *sbi = UDF_SB(sb);
2310 
2311 	mutex_lock(&sbi->s_alloc_mutex);
2312 	if (sbi->s_lvid_dirty) {
2313 		/*
2314 		 * Blockdevice will be synced later so we don't have to submit
2315 		 * the buffer for IO
2316 		 */
2317 		mark_buffer_dirty(sbi->s_lvid_bh);
2318 		sbi->s_lvid_dirty = 0;
2319 	}
2320 	mutex_unlock(&sbi->s_alloc_mutex);
2321 
2322 	return 0;
2323 }
2324 
2325 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2326 {
2327 	struct super_block *sb = dentry->d_sb;
2328 	struct udf_sb_info *sbi = UDF_SB(sb);
2329 	struct logicalVolIntegrityDescImpUse *lvidiu;
2330 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2331 
2332 	lvidiu = udf_sb_lvidiu(sb);
2333 	buf->f_type = UDF_SUPER_MAGIC;
2334 	buf->f_bsize = sb->s_blocksize;
2335 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2336 	buf->f_bfree = udf_count_free(sb);
2337 	buf->f_bavail = buf->f_bfree;
2338 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2339 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2340 			+ buf->f_bfree;
2341 	buf->f_ffree = buf->f_bfree;
2342 	buf->f_namelen = UDF_NAME_LEN - 2;
2343 	buf->f_fsid.val[0] = (u32)id;
2344 	buf->f_fsid.val[1] = (u32)(id >> 32);
2345 
2346 	return 0;
2347 }
2348 
2349 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2350 					  struct udf_bitmap *bitmap)
2351 {
2352 	struct buffer_head *bh = NULL;
2353 	unsigned int accum = 0;
2354 	int index;
2355 	int block = 0, newblock;
2356 	struct kernel_lb_addr loc;
2357 	uint32_t bytes;
2358 	uint8_t *ptr;
2359 	uint16_t ident;
2360 	struct spaceBitmapDesc *bm;
2361 
2362 	loc.logicalBlockNum = bitmap->s_extPosition;
2363 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2364 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2365 
2366 	if (!bh) {
2367 		udf_err(sb, "udf_count_free failed\n");
2368 		goto out;
2369 	} else if (ident != TAG_IDENT_SBD) {
2370 		brelse(bh);
2371 		udf_err(sb, "udf_count_free failed\n");
2372 		goto out;
2373 	}
2374 
2375 	bm = (struct spaceBitmapDesc *)bh->b_data;
2376 	bytes = le32_to_cpu(bm->numOfBytes);
2377 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2378 	ptr = (uint8_t *)bh->b_data;
2379 
2380 	while (bytes > 0) {
2381 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2382 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2383 					cur_bytes * 8);
2384 		bytes -= cur_bytes;
2385 		if (bytes) {
2386 			brelse(bh);
2387 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2388 			bh = udf_tread(sb, newblock);
2389 			if (!bh) {
2390 				udf_debug("read failed\n");
2391 				goto out;
2392 			}
2393 			index = 0;
2394 			ptr = (uint8_t *)bh->b_data;
2395 		}
2396 	}
2397 	brelse(bh);
2398 out:
2399 	return accum;
2400 }
2401 
2402 static unsigned int udf_count_free_table(struct super_block *sb,
2403 					 struct inode *table)
2404 {
2405 	unsigned int accum = 0;
2406 	uint32_t elen;
2407 	struct kernel_lb_addr eloc;
2408 	int8_t etype;
2409 	struct extent_position epos;
2410 
2411 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2412 	epos.block = UDF_I(table)->i_location;
2413 	epos.offset = sizeof(struct unallocSpaceEntry);
2414 	epos.bh = NULL;
2415 
2416 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2417 		accum += (elen >> table->i_sb->s_blocksize_bits);
2418 
2419 	brelse(epos.bh);
2420 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2421 
2422 	return accum;
2423 }
2424 
2425 static unsigned int udf_count_free(struct super_block *sb)
2426 {
2427 	unsigned int accum = 0;
2428 	struct udf_sb_info *sbi;
2429 	struct udf_part_map *map;
2430 
2431 	sbi = UDF_SB(sb);
2432 	if (sbi->s_lvid_bh) {
2433 		struct logicalVolIntegrityDesc *lvid =
2434 			(struct logicalVolIntegrityDesc *)
2435 			sbi->s_lvid_bh->b_data;
2436 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2437 			accum = le32_to_cpu(
2438 					lvid->freeSpaceTable[sbi->s_partition]);
2439 			if (accum == 0xFFFFFFFF)
2440 				accum = 0;
2441 		}
2442 	}
2443 
2444 	if (accum)
2445 		return accum;
2446 
2447 	map = &sbi->s_partmaps[sbi->s_partition];
2448 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2449 		accum += udf_count_free_bitmap(sb,
2450 					       map->s_uspace.s_bitmap);
2451 	}
2452 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2453 		accum += udf_count_free_bitmap(sb,
2454 					       map->s_fspace.s_bitmap);
2455 	}
2456 	if (accum)
2457 		return accum;
2458 
2459 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2460 		accum += udf_count_free_table(sb,
2461 					      map->s_uspace.s_table);
2462 	}
2463 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2464 		accum += udf_count_free_table(sb,
2465 					      map->s_fspace.s_table);
2466 	}
2467 
2468 	return accum;
2469 }
2470