1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define UDF_DEFAULT_BLOCKSIZE 2048 77 78 #define VSD_FIRST_SECTOR_OFFSET 32768 79 #define VSD_MAX_SECTOR_OFFSET 0x800000 80 81 enum { UDF_MAX_LINKS = 0xffff }; 82 83 /* These are the "meat" - everything else is stuffing */ 84 static int udf_fill_super(struct super_block *, void *, int); 85 static void udf_put_super(struct super_block *); 86 static int udf_sync_fs(struct super_block *, int); 87 static int udf_remount_fs(struct super_block *, int *, char *); 88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 90 struct kernel_lb_addr *); 91 static void udf_load_fileset(struct super_block *, struct buffer_head *, 92 struct kernel_lb_addr *); 93 static void udf_open_lvid(struct super_block *); 94 static void udf_close_lvid(struct super_block *); 95 static unsigned int udf_count_free(struct super_block *); 96 static int udf_statfs(struct dentry *, struct kstatfs *); 97 static int udf_show_options(struct seq_file *, struct dentry *); 98 99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 100 { 101 struct logicalVolIntegrityDesc *lvid; 102 unsigned int partnum; 103 unsigned int offset; 104 105 if (!UDF_SB(sb)->s_lvid_bh) 106 return NULL; 107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 108 partnum = le32_to_cpu(lvid->numOfPartitions); 109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 110 offsetof(struct logicalVolIntegrityDesc, impUse)) / 111 (2 * sizeof(uint32_t)) < partnum) { 112 udf_err(sb, "Logical volume integrity descriptor corrupted " 113 "(numOfPartitions = %u)!\n", partnum); 114 return NULL; 115 } 116 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 117 offset = partnum * 2 * sizeof(uint32_t); 118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 119 } 120 121 /* UDF filesystem type */ 122 static struct dentry *udf_mount(struct file_system_type *fs_type, 123 int flags, const char *dev_name, void *data) 124 { 125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 126 } 127 128 static struct file_system_type udf_fstype = { 129 .owner = THIS_MODULE, 130 .name = "udf", 131 .mount = udf_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("udf"); 136 137 static struct kmem_cache *udf_inode_cachep; 138 139 static struct inode *udf_alloc_inode(struct super_block *sb) 140 { 141 struct udf_inode_info *ei; 142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 143 if (!ei) 144 return NULL; 145 146 ei->i_unique = 0; 147 ei->i_lenExtents = 0; 148 ei->i_next_alloc_block = 0; 149 ei->i_next_alloc_goal = 0; 150 ei->i_strat4096 = 0; 151 init_rwsem(&ei->i_data_sem); 152 ei->cached_extent.lstart = -1; 153 spin_lock_init(&ei->i_extent_cache_lock); 154 155 return &ei->vfs_inode; 156 } 157 158 static void udf_i_callback(struct rcu_head *head) 159 { 160 struct inode *inode = container_of(head, struct inode, i_rcu); 161 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 162 } 163 164 static void udf_destroy_inode(struct inode *inode) 165 { 166 call_rcu(&inode->i_rcu, udf_i_callback); 167 } 168 169 static void init_once(void *foo) 170 { 171 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 172 173 ei->i_ext.i_data = NULL; 174 inode_init_once(&ei->vfs_inode); 175 } 176 177 static int __init init_inodecache(void) 178 { 179 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 180 sizeof(struct udf_inode_info), 181 0, (SLAB_RECLAIM_ACCOUNT | 182 SLAB_MEM_SPREAD), 183 init_once); 184 if (!udf_inode_cachep) 185 return -ENOMEM; 186 return 0; 187 } 188 189 static void destroy_inodecache(void) 190 { 191 /* 192 * Make sure all delayed rcu free inodes are flushed before we 193 * destroy cache. 194 */ 195 rcu_barrier(); 196 kmem_cache_destroy(udf_inode_cachep); 197 } 198 199 /* Superblock operations */ 200 static const struct super_operations udf_sb_ops = { 201 .alloc_inode = udf_alloc_inode, 202 .destroy_inode = udf_destroy_inode, 203 .write_inode = udf_write_inode, 204 .evict_inode = udf_evict_inode, 205 .put_super = udf_put_super, 206 .sync_fs = udf_sync_fs, 207 .statfs = udf_statfs, 208 .remount_fs = udf_remount_fs, 209 .show_options = udf_show_options, 210 }; 211 212 struct udf_options { 213 unsigned char novrs; 214 unsigned int blocksize; 215 unsigned int session; 216 unsigned int lastblock; 217 unsigned int anchor; 218 unsigned int volume; 219 unsigned short partition; 220 unsigned int fileset; 221 unsigned int rootdir; 222 unsigned int flags; 223 umode_t umask; 224 kgid_t gid; 225 kuid_t uid; 226 umode_t fmode; 227 umode_t dmode; 228 struct nls_table *nls_map; 229 }; 230 231 static int __init init_udf_fs(void) 232 { 233 int err; 234 235 err = init_inodecache(); 236 if (err) 237 goto out1; 238 err = register_filesystem(&udf_fstype); 239 if (err) 240 goto out; 241 242 return 0; 243 244 out: 245 destroy_inodecache(); 246 247 out1: 248 return err; 249 } 250 251 static void __exit exit_udf_fs(void) 252 { 253 unregister_filesystem(&udf_fstype); 254 destroy_inodecache(); 255 } 256 257 module_init(init_udf_fs) 258 module_exit(exit_udf_fs) 259 260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 261 { 262 struct udf_sb_info *sbi = UDF_SB(sb); 263 264 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 265 GFP_KERNEL); 266 if (!sbi->s_partmaps) { 267 udf_err(sb, "Unable to allocate space for %d partition maps\n", 268 count); 269 sbi->s_partitions = 0; 270 return -ENOMEM; 271 } 272 273 sbi->s_partitions = count; 274 return 0; 275 } 276 277 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 278 { 279 int i; 280 int nr_groups = bitmap->s_nr_groups; 281 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 282 nr_groups); 283 284 for (i = 0; i < nr_groups; i++) 285 if (bitmap->s_block_bitmap[i]) 286 brelse(bitmap->s_block_bitmap[i]); 287 288 if (size <= PAGE_SIZE) 289 kfree(bitmap); 290 else 291 vfree(bitmap); 292 } 293 294 static void udf_free_partition(struct udf_part_map *map) 295 { 296 int i; 297 struct udf_meta_data *mdata; 298 299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 300 iput(map->s_uspace.s_table); 301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 302 iput(map->s_fspace.s_table); 303 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 304 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 305 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 306 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 307 if (map->s_partition_type == UDF_SPARABLE_MAP15) 308 for (i = 0; i < 4; i++) 309 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 310 else if (map->s_partition_type == UDF_METADATA_MAP25) { 311 mdata = &map->s_type_specific.s_metadata; 312 iput(mdata->s_metadata_fe); 313 mdata->s_metadata_fe = NULL; 314 315 iput(mdata->s_mirror_fe); 316 mdata->s_mirror_fe = NULL; 317 318 iput(mdata->s_bitmap_fe); 319 mdata->s_bitmap_fe = NULL; 320 } 321 } 322 323 static void udf_sb_free_partitions(struct super_block *sb) 324 { 325 struct udf_sb_info *sbi = UDF_SB(sb); 326 int i; 327 if (sbi->s_partmaps == NULL) 328 return; 329 for (i = 0; i < sbi->s_partitions; i++) 330 udf_free_partition(&sbi->s_partmaps[i]); 331 kfree(sbi->s_partmaps); 332 sbi->s_partmaps = NULL; 333 } 334 335 static int udf_show_options(struct seq_file *seq, struct dentry *root) 336 { 337 struct super_block *sb = root->d_sb; 338 struct udf_sb_info *sbi = UDF_SB(sb); 339 340 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 341 seq_puts(seq, ",nostrict"); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 343 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 345 seq_puts(seq, ",unhide"); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 347 seq_puts(seq, ",undelete"); 348 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 349 seq_puts(seq, ",noadinicb"); 350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 351 seq_puts(seq, ",shortad"); 352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 353 seq_puts(seq, ",uid=forget"); 354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 355 seq_puts(seq, ",uid=ignore"); 356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 357 seq_puts(seq, ",gid=forget"); 358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 359 seq_puts(seq, ",gid=ignore"); 360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 361 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 362 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 363 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 364 if (sbi->s_umask != 0) 365 seq_printf(seq, ",umask=%ho", sbi->s_umask); 366 if (sbi->s_fmode != UDF_INVALID_MODE) 367 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 368 if (sbi->s_dmode != UDF_INVALID_MODE) 369 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 371 seq_printf(seq, ",session=%u", sbi->s_session); 372 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 373 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 374 if (sbi->s_anchor != 0) 375 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 376 /* 377 * volume, partition, fileset and rootdir seem to be ignored 378 * currently 379 */ 380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 381 seq_puts(seq, ",utf8"); 382 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 383 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 384 385 return 0; 386 } 387 388 /* 389 * udf_parse_options 390 * 391 * PURPOSE 392 * Parse mount options. 393 * 394 * DESCRIPTION 395 * The following mount options are supported: 396 * 397 * gid= Set the default group. 398 * umask= Set the default umask. 399 * mode= Set the default file permissions. 400 * dmode= Set the default directory permissions. 401 * uid= Set the default user. 402 * bs= Set the block size. 403 * unhide Show otherwise hidden files. 404 * undelete Show deleted files in lists. 405 * adinicb Embed data in the inode (default) 406 * noadinicb Don't embed data in the inode 407 * shortad Use short ad's 408 * longad Use long ad's (default) 409 * nostrict Unset strict conformance 410 * iocharset= Set the NLS character set 411 * 412 * The remaining are for debugging and disaster recovery: 413 * 414 * novrs Skip volume sequence recognition 415 * 416 * The following expect a offset from 0. 417 * 418 * session= Set the CDROM session (default= last session) 419 * anchor= Override standard anchor location. (default= 256) 420 * volume= Override the VolumeDesc location. (unused) 421 * partition= Override the PartitionDesc location. (unused) 422 * lastblock= Set the last block of the filesystem/ 423 * 424 * The following expect a offset from the partition root. 425 * 426 * fileset= Override the fileset block location. (unused) 427 * rootdir= Override the root directory location. (unused) 428 * WARNING: overriding the rootdir to a non-directory may 429 * yield highly unpredictable results. 430 * 431 * PRE-CONDITIONS 432 * options Pointer to mount options string. 433 * uopts Pointer to mount options variable. 434 * 435 * POST-CONDITIONS 436 * <return> 1 Mount options parsed okay. 437 * <return> 0 Error parsing mount options. 438 * 439 * HISTORY 440 * July 1, 1997 - Andrew E. Mileski 441 * Written, tested, and released. 442 */ 443 444 enum { 445 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 446 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 447 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 448 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 449 Opt_rootdir, Opt_utf8, Opt_iocharset, 450 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 451 Opt_fmode, Opt_dmode 452 }; 453 454 static const match_table_t tokens = { 455 {Opt_novrs, "novrs"}, 456 {Opt_nostrict, "nostrict"}, 457 {Opt_bs, "bs=%u"}, 458 {Opt_unhide, "unhide"}, 459 {Opt_undelete, "undelete"}, 460 {Opt_noadinicb, "noadinicb"}, 461 {Opt_adinicb, "adinicb"}, 462 {Opt_shortad, "shortad"}, 463 {Opt_longad, "longad"}, 464 {Opt_uforget, "uid=forget"}, 465 {Opt_uignore, "uid=ignore"}, 466 {Opt_gforget, "gid=forget"}, 467 {Opt_gignore, "gid=ignore"}, 468 {Opt_gid, "gid=%u"}, 469 {Opt_uid, "uid=%u"}, 470 {Opt_umask, "umask=%o"}, 471 {Opt_session, "session=%u"}, 472 {Opt_lastblock, "lastblock=%u"}, 473 {Opt_anchor, "anchor=%u"}, 474 {Opt_volume, "volume=%u"}, 475 {Opt_partition, "partition=%u"}, 476 {Opt_fileset, "fileset=%u"}, 477 {Opt_rootdir, "rootdir=%u"}, 478 {Opt_utf8, "utf8"}, 479 {Opt_iocharset, "iocharset=%s"}, 480 {Opt_fmode, "mode=%o"}, 481 {Opt_dmode, "dmode=%o"}, 482 {Opt_err, NULL} 483 }; 484 485 static int udf_parse_options(char *options, struct udf_options *uopt, 486 bool remount) 487 { 488 char *p; 489 int option; 490 491 uopt->novrs = 0; 492 uopt->partition = 0xFFFF; 493 uopt->session = 0xFFFFFFFF; 494 uopt->lastblock = 0; 495 uopt->anchor = 0; 496 uopt->volume = 0xFFFFFFFF; 497 uopt->rootdir = 0xFFFFFFFF; 498 uopt->fileset = 0xFFFFFFFF; 499 uopt->nls_map = NULL; 500 501 if (!options) 502 return 1; 503 504 while ((p = strsep(&options, ",")) != NULL) { 505 substring_t args[MAX_OPT_ARGS]; 506 int token; 507 unsigned n; 508 if (!*p) 509 continue; 510 511 token = match_token(p, tokens, args); 512 switch (token) { 513 case Opt_novrs: 514 uopt->novrs = 1; 515 break; 516 case Opt_bs: 517 if (match_int(&args[0], &option)) 518 return 0; 519 n = option; 520 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 521 return 0; 522 uopt->blocksize = n; 523 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 524 break; 525 case Opt_unhide: 526 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 527 break; 528 case Opt_undelete: 529 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 530 break; 531 case Opt_noadinicb: 532 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 533 break; 534 case Opt_adinicb: 535 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 536 break; 537 case Opt_shortad: 538 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 539 break; 540 case Opt_longad: 541 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 542 break; 543 case Opt_gid: 544 if (match_int(args, &option)) 545 return 0; 546 uopt->gid = make_kgid(current_user_ns(), option); 547 if (!gid_valid(uopt->gid)) 548 return 0; 549 uopt->flags |= (1 << UDF_FLAG_GID_SET); 550 break; 551 case Opt_uid: 552 if (match_int(args, &option)) 553 return 0; 554 uopt->uid = make_kuid(current_user_ns(), option); 555 if (!uid_valid(uopt->uid)) 556 return 0; 557 uopt->flags |= (1 << UDF_FLAG_UID_SET); 558 break; 559 case Opt_umask: 560 if (match_octal(args, &option)) 561 return 0; 562 uopt->umask = option; 563 break; 564 case Opt_nostrict: 565 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 566 break; 567 case Opt_session: 568 if (match_int(args, &option)) 569 return 0; 570 uopt->session = option; 571 if (!remount) 572 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 573 break; 574 case Opt_lastblock: 575 if (match_int(args, &option)) 576 return 0; 577 uopt->lastblock = option; 578 if (!remount) 579 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 580 break; 581 case Opt_anchor: 582 if (match_int(args, &option)) 583 return 0; 584 uopt->anchor = option; 585 break; 586 case Opt_volume: 587 if (match_int(args, &option)) 588 return 0; 589 uopt->volume = option; 590 break; 591 case Opt_partition: 592 if (match_int(args, &option)) 593 return 0; 594 uopt->partition = option; 595 break; 596 case Opt_fileset: 597 if (match_int(args, &option)) 598 return 0; 599 uopt->fileset = option; 600 break; 601 case Opt_rootdir: 602 if (match_int(args, &option)) 603 return 0; 604 uopt->rootdir = option; 605 break; 606 case Opt_utf8: 607 uopt->flags |= (1 << UDF_FLAG_UTF8); 608 break; 609 #ifdef CONFIG_UDF_NLS 610 case Opt_iocharset: 611 uopt->nls_map = load_nls(args[0].from); 612 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 613 break; 614 #endif 615 case Opt_uignore: 616 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 617 break; 618 case Opt_uforget: 619 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 620 break; 621 case Opt_gignore: 622 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 623 break; 624 case Opt_gforget: 625 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 626 break; 627 case Opt_fmode: 628 if (match_octal(args, &option)) 629 return 0; 630 uopt->fmode = option & 0777; 631 break; 632 case Opt_dmode: 633 if (match_octal(args, &option)) 634 return 0; 635 uopt->dmode = option & 0777; 636 break; 637 default: 638 pr_err("bad mount option \"%s\" or missing value\n", p); 639 return 0; 640 } 641 } 642 return 1; 643 } 644 645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 646 { 647 struct udf_options uopt; 648 struct udf_sb_info *sbi = UDF_SB(sb); 649 int error = 0; 650 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 651 652 sync_filesystem(sb); 653 if (lvidiu) { 654 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 655 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 656 return -EACCES; 657 } 658 659 uopt.flags = sbi->s_flags; 660 uopt.uid = sbi->s_uid; 661 uopt.gid = sbi->s_gid; 662 uopt.umask = sbi->s_umask; 663 uopt.fmode = sbi->s_fmode; 664 uopt.dmode = sbi->s_dmode; 665 666 if (!udf_parse_options(options, &uopt, true)) 667 return -EINVAL; 668 669 write_lock(&sbi->s_cred_lock); 670 sbi->s_flags = uopt.flags; 671 sbi->s_uid = uopt.uid; 672 sbi->s_gid = uopt.gid; 673 sbi->s_umask = uopt.umask; 674 sbi->s_fmode = uopt.fmode; 675 sbi->s_dmode = uopt.dmode; 676 write_unlock(&sbi->s_cred_lock); 677 678 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 679 goto out_unlock; 680 681 if (*flags & MS_RDONLY) 682 udf_close_lvid(sb); 683 else 684 udf_open_lvid(sb); 685 686 out_unlock: 687 return error; 688 } 689 690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 692 static loff_t udf_check_vsd(struct super_block *sb) 693 { 694 struct volStructDesc *vsd = NULL; 695 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 696 int sectorsize; 697 struct buffer_head *bh = NULL; 698 int nsr02 = 0; 699 int nsr03 = 0; 700 struct udf_sb_info *sbi; 701 702 sbi = UDF_SB(sb); 703 if (sb->s_blocksize < sizeof(struct volStructDesc)) 704 sectorsize = sizeof(struct volStructDesc); 705 else 706 sectorsize = sb->s_blocksize; 707 708 sector += (sbi->s_session << sb->s_blocksize_bits); 709 710 udf_debug("Starting at sector %u (%ld byte sectors)\n", 711 (unsigned int)(sector >> sb->s_blocksize_bits), 712 sb->s_blocksize); 713 /* Process the sequence (if applicable). The hard limit on the sector 714 * offset is arbitrary, hopefully large enough so that all valid UDF 715 * filesystems will be recognised. There is no mention of an upper 716 * bound to the size of the volume recognition area in the standard. 717 * The limit will prevent the code to read all the sectors of a 718 * specially crafted image (like a bluray disc full of CD001 sectors), 719 * potentially causing minutes or even hours of uninterruptible I/O 720 * activity. This actually happened with uninitialised SSD partitions 721 * (all 0xFF) before the check for the limit and all valid IDs were 722 * added */ 723 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 724 sector += sectorsize) { 725 /* Read a block */ 726 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 727 if (!bh) 728 break; 729 730 /* Look for ISO descriptors */ 731 vsd = (struct volStructDesc *)(bh->b_data + 732 (sector & (sb->s_blocksize - 1))); 733 734 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 735 VSD_STD_ID_LEN)) { 736 switch (vsd->structType) { 737 case 0: 738 udf_debug("ISO9660 Boot Record found\n"); 739 break; 740 case 1: 741 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 742 break; 743 case 2: 744 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 745 break; 746 case 3: 747 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 748 break; 749 case 255: 750 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 751 break; 752 default: 753 udf_debug("ISO9660 VRS (%u) found\n", 754 vsd->structType); 755 break; 756 } 757 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 758 VSD_STD_ID_LEN)) 759 ; /* nothing */ 760 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 761 VSD_STD_ID_LEN)) { 762 brelse(bh); 763 break; 764 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 765 VSD_STD_ID_LEN)) 766 nsr02 = sector; 767 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 768 VSD_STD_ID_LEN)) 769 nsr03 = sector; 770 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 771 VSD_STD_ID_LEN)) 772 ; /* nothing */ 773 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 774 VSD_STD_ID_LEN)) 775 ; /* nothing */ 776 else { 777 /* invalid id : end of volume recognition area */ 778 brelse(bh); 779 break; 780 } 781 brelse(bh); 782 } 783 784 if (nsr03) 785 return nsr03; 786 else if (nsr02) 787 return nsr02; 788 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 789 VSD_FIRST_SECTOR_OFFSET) 790 return -1; 791 else 792 return 0; 793 } 794 795 static int udf_find_fileset(struct super_block *sb, 796 struct kernel_lb_addr *fileset, 797 struct kernel_lb_addr *root) 798 { 799 struct buffer_head *bh = NULL; 800 long lastblock; 801 uint16_t ident; 802 struct udf_sb_info *sbi; 803 804 if (fileset->logicalBlockNum != 0xFFFFFFFF || 805 fileset->partitionReferenceNum != 0xFFFF) { 806 bh = udf_read_ptagged(sb, fileset, 0, &ident); 807 808 if (!bh) { 809 return 1; 810 } else if (ident != TAG_IDENT_FSD) { 811 brelse(bh); 812 return 1; 813 } 814 815 } 816 817 sbi = UDF_SB(sb); 818 if (!bh) { 819 /* Search backwards through the partitions */ 820 struct kernel_lb_addr newfileset; 821 822 /* --> cvg: FIXME - is it reasonable? */ 823 return 1; 824 825 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 826 (newfileset.partitionReferenceNum != 0xFFFF && 827 fileset->logicalBlockNum == 0xFFFFFFFF && 828 fileset->partitionReferenceNum == 0xFFFF); 829 newfileset.partitionReferenceNum--) { 830 lastblock = sbi->s_partmaps 831 [newfileset.partitionReferenceNum] 832 .s_partition_len; 833 newfileset.logicalBlockNum = 0; 834 835 do { 836 bh = udf_read_ptagged(sb, &newfileset, 0, 837 &ident); 838 if (!bh) { 839 newfileset.logicalBlockNum++; 840 continue; 841 } 842 843 switch (ident) { 844 case TAG_IDENT_SBD: 845 { 846 struct spaceBitmapDesc *sp; 847 sp = (struct spaceBitmapDesc *) 848 bh->b_data; 849 newfileset.logicalBlockNum += 1 + 850 ((le32_to_cpu(sp->numOfBytes) + 851 sizeof(struct spaceBitmapDesc) 852 - 1) >> sb->s_blocksize_bits); 853 brelse(bh); 854 break; 855 } 856 case TAG_IDENT_FSD: 857 *fileset = newfileset; 858 break; 859 default: 860 newfileset.logicalBlockNum++; 861 brelse(bh); 862 bh = NULL; 863 break; 864 } 865 } while (newfileset.logicalBlockNum < lastblock && 866 fileset->logicalBlockNum == 0xFFFFFFFF && 867 fileset->partitionReferenceNum == 0xFFFF); 868 } 869 } 870 871 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 872 fileset->partitionReferenceNum != 0xFFFF) && bh) { 873 udf_debug("Fileset at block=%d, partition=%d\n", 874 fileset->logicalBlockNum, 875 fileset->partitionReferenceNum); 876 877 sbi->s_partition = fileset->partitionReferenceNum; 878 udf_load_fileset(sb, bh, root); 879 brelse(bh); 880 return 0; 881 } 882 return 1; 883 } 884 885 /* 886 * Load primary Volume Descriptor Sequence 887 * 888 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 889 * should be tried. 890 */ 891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 892 { 893 struct primaryVolDesc *pvoldesc; 894 struct ustr *instr, *outstr; 895 struct buffer_head *bh; 896 uint16_t ident; 897 int ret = -ENOMEM; 898 899 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 900 if (!instr) 901 return -ENOMEM; 902 903 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 904 if (!outstr) 905 goto out1; 906 907 bh = udf_read_tagged(sb, block, block, &ident); 908 if (!bh) { 909 ret = -EAGAIN; 910 goto out2; 911 } 912 913 if (ident != TAG_IDENT_PVD) { 914 ret = -EIO; 915 goto out_bh; 916 } 917 918 pvoldesc = (struct primaryVolDesc *)bh->b_data; 919 920 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 921 pvoldesc->recordingDateAndTime)) { 922 #ifdef UDFFS_DEBUG 923 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 924 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 925 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 926 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 927 #endif 928 } 929 930 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 931 if (udf_CS0toUTF8(outstr, instr)) { 932 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 933 outstr->u_len > 31 ? 31 : outstr->u_len); 934 udf_debug("volIdent[] = '%s'\n", 935 UDF_SB(sb)->s_volume_ident); 936 } 937 938 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 939 if (udf_CS0toUTF8(outstr, instr)) 940 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 941 942 ret = 0; 943 out_bh: 944 brelse(bh); 945 out2: 946 kfree(outstr); 947 out1: 948 kfree(instr); 949 return ret; 950 } 951 952 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 953 u32 meta_file_loc, u32 partition_num) 954 { 955 struct kernel_lb_addr addr; 956 struct inode *metadata_fe; 957 958 addr.logicalBlockNum = meta_file_loc; 959 addr.partitionReferenceNum = partition_num; 960 961 metadata_fe = udf_iget_special(sb, &addr); 962 963 if (IS_ERR(metadata_fe)) { 964 udf_warn(sb, "metadata inode efe not found\n"); 965 return metadata_fe; 966 } 967 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 968 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 969 iput(metadata_fe); 970 return ERR_PTR(-EIO); 971 } 972 973 return metadata_fe; 974 } 975 976 static int udf_load_metadata_files(struct super_block *sb, int partition) 977 { 978 struct udf_sb_info *sbi = UDF_SB(sb); 979 struct udf_part_map *map; 980 struct udf_meta_data *mdata; 981 struct kernel_lb_addr addr; 982 struct inode *fe; 983 984 map = &sbi->s_partmaps[partition]; 985 mdata = &map->s_type_specific.s_metadata; 986 987 /* metadata address */ 988 udf_debug("Metadata file location: block = %d part = %d\n", 989 mdata->s_meta_file_loc, map->s_partition_num); 990 991 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 992 map->s_partition_num); 993 if (IS_ERR(fe)) { 994 /* mirror file entry */ 995 udf_debug("Mirror metadata file location: block = %d part = %d\n", 996 mdata->s_mirror_file_loc, map->s_partition_num); 997 998 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 999 map->s_partition_num); 1000 1001 if (IS_ERR(fe)) { 1002 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 1003 return PTR_ERR(fe); 1004 } 1005 mdata->s_mirror_fe = fe; 1006 } else 1007 mdata->s_metadata_fe = fe; 1008 1009 1010 /* 1011 * bitmap file entry 1012 * Note: 1013 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1014 */ 1015 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1016 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1017 addr.partitionReferenceNum = map->s_partition_num; 1018 1019 udf_debug("Bitmap file location: block = %d part = %d\n", 1020 addr.logicalBlockNum, addr.partitionReferenceNum); 1021 1022 fe = udf_iget_special(sb, &addr); 1023 if (IS_ERR(fe)) { 1024 if (sb->s_flags & MS_RDONLY) 1025 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1026 else { 1027 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1028 return PTR_ERR(fe); 1029 } 1030 } else 1031 mdata->s_bitmap_fe = fe; 1032 } 1033 1034 udf_debug("udf_load_metadata_files Ok\n"); 1035 return 0; 1036 } 1037 1038 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1039 struct kernel_lb_addr *root) 1040 { 1041 struct fileSetDesc *fset; 1042 1043 fset = (struct fileSetDesc *)bh->b_data; 1044 1045 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1046 1047 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1048 1049 udf_debug("Rootdir at block=%d, partition=%d\n", 1050 root->logicalBlockNum, root->partitionReferenceNum); 1051 } 1052 1053 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1054 { 1055 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1056 return DIV_ROUND_UP(map->s_partition_len + 1057 (sizeof(struct spaceBitmapDesc) << 3), 1058 sb->s_blocksize * 8); 1059 } 1060 1061 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1062 { 1063 struct udf_bitmap *bitmap; 1064 int nr_groups; 1065 int size; 1066 1067 nr_groups = udf_compute_nr_groups(sb, index); 1068 size = sizeof(struct udf_bitmap) + 1069 (sizeof(struct buffer_head *) * nr_groups); 1070 1071 if (size <= PAGE_SIZE) 1072 bitmap = kzalloc(size, GFP_KERNEL); 1073 else 1074 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1075 1076 if (bitmap == NULL) 1077 return NULL; 1078 1079 bitmap->s_nr_groups = nr_groups; 1080 return bitmap; 1081 } 1082 1083 static int udf_fill_partdesc_info(struct super_block *sb, 1084 struct partitionDesc *p, int p_index) 1085 { 1086 struct udf_part_map *map; 1087 struct udf_sb_info *sbi = UDF_SB(sb); 1088 struct partitionHeaderDesc *phd; 1089 1090 map = &sbi->s_partmaps[p_index]; 1091 1092 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1093 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1094 1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1096 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1098 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1100 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1102 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1103 1104 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1105 p_index, map->s_partition_type, 1106 map->s_partition_root, map->s_partition_len); 1107 1108 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1109 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1110 return 0; 1111 1112 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1113 if (phd->unallocSpaceTable.extLength) { 1114 struct kernel_lb_addr loc = { 1115 .logicalBlockNum = le32_to_cpu( 1116 phd->unallocSpaceTable.extPosition), 1117 .partitionReferenceNum = p_index, 1118 }; 1119 struct inode *inode; 1120 1121 inode = udf_iget_special(sb, &loc); 1122 if (IS_ERR(inode)) { 1123 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1124 p_index); 1125 return PTR_ERR(inode); 1126 } 1127 map->s_uspace.s_table = inode; 1128 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1129 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1130 p_index, map->s_uspace.s_table->i_ino); 1131 } 1132 1133 if (phd->unallocSpaceBitmap.extLength) { 1134 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1135 if (!bitmap) 1136 return -ENOMEM; 1137 map->s_uspace.s_bitmap = bitmap; 1138 bitmap->s_extPosition = le32_to_cpu( 1139 phd->unallocSpaceBitmap.extPosition); 1140 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1141 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1142 p_index, bitmap->s_extPosition); 1143 } 1144 1145 if (phd->partitionIntegrityTable.extLength) 1146 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1147 1148 if (phd->freedSpaceTable.extLength) { 1149 struct kernel_lb_addr loc = { 1150 .logicalBlockNum = le32_to_cpu( 1151 phd->freedSpaceTable.extPosition), 1152 .partitionReferenceNum = p_index, 1153 }; 1154 struct inode *inode; 1155 1156 inode = udf_iget_special(sb, &loc); 1157 if (IS_ERR(inode)) { 1158 udf_debug("cannot load freedSpaceTable (part %d)\n", 1159 p_index); 1160 return PTR_ERR(inode); 1161 } 1162 map->s_fspace.s_table = inode; 1163 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1164 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1165 p_index, map->s_fspace.s_table->i_ino); 1166 } 1167 1168 if (phd->freedSpaceBitmap.extLength) { 1169 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1170 if (!bitmap) 1171 return -ENOMEM; 1172 map->s_fspace.s_bitmap = bitmap; 1173 bitmap->s_extPosition = le32_to_cpu( 1174 phd->freedSpaceBitmap.extPosition); 1175 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1176 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1177 p_index, bitmap->s_extPosition); 1178 } 1179 return 0; 1180 } 1181 1182 static void udf_find_vat_block(struct super_block *sb, int p_index, 1183 int type1_index, sector_t start_block) 1184 { 1185 struct udf_sb_info *sbi = UDF_SB(sb); 1186 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1187 sector_t vat_block; 1188 struct kernel_lb_addr ino; 1189 struct inode *inode; 1190 1191 /* 1192 * VAT file entry is in the last recorded block. Some broken disks have 1193 * it a few blocks before so try a bit harder... 1194 */ 1195 ino.partitionReferenceNum = type1_index; 1196 for (vat_block = start_block; 1197 vat_block >= map->s_partition_root && 1198 vat_block >= start_block - 3; vat_block--) { 1199 ino.logicalBlockNum = vat_block - map->s_partition_root; 1200 inode = udf_iget_special(sb, &ino); 1201 if (!IS_ERR(inode)) { 1202 sbi->s_vat_inode = inode; 1203 break; 1204 } 1205 } 1206 } 1207 1208 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1209 { 1210 struct udf_sb_info *sbi = UDF_SB(sb); 1211 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1212 struct buffer_head *bh = NULL; 1213 struct udf_inode_info *vati; 1214 uint32_t pos; 1215 struct virtualAllocationTable20 *vat20; 1216 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1217 1218 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1219 if (!sbi->s_vat_inode && 1220 sbi->s_last_block != blocks - 1) { 1221 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1222 (unsigned long)sbi->s_last_block, 1223 (unsigned long)blocks - 1); 1224 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1225 } 1226 if (!sbi->s_vat_inode) 1227 return -EIO; 1228 1229 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1230 map->s_type_specific.s_virtual.s_start_offset = 0; 1231 map->s_type_specific.s_virtual.s_num_entries = 1232 (sbi->s_vat_inode->i_size - 36) >> 2; 1233 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1234 vati = UDF_I(sbi->s_vat_inode); 1235 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1236 pos = udf_block_map(sbi->s_vat_inode, 0); 1237 bh = sb_bread(sb, pos); 1238 if (!bh) 1239 return -EIO; 1240 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1241 } else { 1242 vat20 = (struct virtualAllocationTable20 *) 1243 vati->i_ext.i_data; 1244 } 1245 1246 map->s_type_specific.s_virtual.s_start_offset = 1247 le16_to_cpu(vat20->lengthHeader); 1248 map->s_type_specific.s_virtual.s_num_entries = 1249 (sbi->s_vat_inode->i_size - 1250 map->s_type_specific.s_virtual. 1251 s_start_offset) >> 2; 1252 brelse(bh); 1253 } 1254 return 0; 1255 } 1256 1257 /* 1258 * Load partition descriptor block 1259 * 1260 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1261 * sequence. 1262 */ 1263 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1264 { 1265 struct buffer_head *bh; 1266 struct partitionDesc *p; 1267 struct udf_part_map *map; 1268 struct udf_sb_info *sbi = UDF_SB(sb); 1269 int i, type1_idx; 1270 uint16_t partitionNumber; 1271 uint16_t ident; 1272 int ret; 1273 1274 bh = udf_read_tagged(sb, block, block, &ident); 1275 if (!bh) 1276 return -EAGAIN; 1277 if (ident != TAG_IDENT_PD) { 1278 ret = 0; 1279 goto out_bh; 1280 } 1281 1282 p = (struct partitionDesc *)bh->b_data; 1283 partitionNumber = le16_to_cpu(p->partitionNumber); 1284 1285 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1286 for (i = 0; i < sbi->s_partitions; i++) { 1287 map = &sbi->s_partmaps[i]; 1288 udf_debug("Searching map: (%d == %d)\n", 1289 map->s_partition_num, partitionNumber); 1290 if (map->s_partition_num == partitionNumber && 1291 (map->s_partition_type == UDF_TYPE1_MAP15 || 1292 map->s_partition_type == UDF_SPARABLE_MAP15)) 1293 break; 1294 } 1295 1296 if (i >= sbi->s_partitions) { 1297 udf_debug("Partition (%d) not found in partition map\n", 1298 partitionNumber); 1299 ret = 0; 1300 goto out_bh; 1301 } 1302 1303 ret = udf_fill_partdesc_info(sb, p, i); 1304 if (ret < 0) 1305 goto out_bh; 1306 1307 /* 1308 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1309 * PHYSICAL partitions are already set up 1310 */ 1311 type1_idx = i; 1312 #ifdef UDFFS_DEBUG 1313 map = NULL; /* supress 'maybe used uninitialized' warning */ 1314 #endif 1315 for (i = 0; i < sbi->s_partitions; i++) { 1316 map = &sbi->s_partmaps[i]; 1317 1318 if (map->s_partition_num == partitionNumber && 1319 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1320 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1321 map->s_partition_type == UDF_METADATA_MAP25)) 1322 break; 1323 } 1324 1325 if (i >= sbi->s_partitions) { 1326 ret = 0; 1327 goto out_bh; 1328 } 1329 1330 ret = udf_fill_partdesc_info(sb, p, i); 1331 if (ret < 0) 1332 goto out_bh; 1333 1334 if (map->s_partition_type == UDF_METADATA_MAP25) { 1335 ret = udf_load_metadata_files(sb, i); 1336 if (ret < 0) { 1337 udf_err(sb, "error loading MetaData partition map %d\n", 1338 i); 1339 goto out_bh; 1340 } 1341 } else { 1342 /* 1343 * If we have a partition with virtual map, we don't handle 1344 * writing to it (we overwrite blocks instead of relocating 1345 * them). 1346 */ 1347 if (!(sb->s_flags & MS_RDONLY)) { 1348 ret = -EACCES; 1349 goto out_bh; 1350 } 1351 ret = udf_load_vat(sb, i, type1_idx); 1352 if (ret < 0) 1353 goto out_bh; 1354 } 1355 ret = 0; 1356 out_bh: 1357 /* In case loading failed, we handle cleanup in udf_fill_super */ 1358 brelse(bh); 1359 return ret; 1360 } 1361 1362 static int udf_load_sparable_map(struct super_block *sb, 1363 struct udf_part_map *map, 1364 struct sparablePartitionMap *spm) 1365 { 1366 uint32_t loc; 1367 uint16_t ident; 1368 struct sparingTable *st; 1369 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1370 int i; 1371 struct buffer_head *bh; 1372 1373 map->s_partition_type = UDF_SPARABLE_MAP15; 1374 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1375 if (!is_power_of_2(sdata->s_packet_len)) { 1376 udf_err(sb, "error loading logical volume descriptor: " 1377 "Invalid packet length %u\n", 1378 (unsigned)sdata->s_packet_len); 1379 return -EIO; 1380 } 1381 if (spm->numSparingTables > 4) { 1382 udf_err(sb, "error loading logical volume descriptor: " 1383 "Too many sparing tables (%d)\n", 1384 (int)spm->numSparingTables); 1385 return -EIO; 1386 } 1387 1388 for (i = 0; i < spm->numSparingTables; i++) { 1389 loc = le32_to_cpu(spm->locSparingTable[i]); 1390 bh = udf_read_tagged(sb, loc, loc, &ident); 1391 if (!bh) 1392 continue; 1393 1394 st = (struct sparingTable *)bh->b_data; 1395 if (ident != 0 || 1396 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1397 strlen(UDF_ID_SPARING)) || 1398 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1399 sb->s_blocksize) { 1400 brelse(bh); 1401 continue; 1402 } 1403 1404 sdata->s_spar_map[i] = bh; 1405 } 1406 map->s_partition_func = udf_get_pblock_spar15; 1407 return 0; 1408 } 1409 1410 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1411 struct kernel_lb_addr *fileset) 1412 { 1413 struct logicalVolDesc *lvd; 1414 int i, offset; 1415 uint8_t type; 1416 struct udf_sb_info *sbi = UDF_SB(sb); 1417 struct genericPartitionMap *gpm; 1418 uint16_t ident; 1419 struct buffer_head *bh; 1420 unsigned int table_len; 1421 int ret; 1422 1423 bh = udf_read_tagged(sb, block, block, &ident); 1424 if (!bh) 1425 return -EAGAIN; 1426 BUG_ON(ident != TAG_IDENT_LVD); 1427 lvd = (struct logicalVolDesc *)bh->b_data; 1428 table_len = le32_to_cpu(lvd->mapTableLength); 1429 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1430 udf_err(sb, "error loading logical volume descriptor: " 1431 "Partition table too long (%u > %lu)\n", table_len, 1432 sb->s_blocksize - sizeof(*lvd)); 1433 ret = -EIO; 1434 goto out_bh; 1435 } 1436 1437 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1438 if (ret) 1439 goto out_bh; 1440 1441 for (i = 0, offset = 0; 1442 i < sbi->s_partitions && offset < table_len; 1443 i++, offset += gpm->partitionMapLength) { 1444 struct udf_part_map *map = &sbi->s_partmaps[i]; 1445 gpm = (struct genericPartitionMap *) 1446 &(lvd->partitionMaps[offset]); 1447 type = gpm->partitionMapType; 1448 if (type == 1) { 1449 struct genericPartitionMap1 *gpm1 = 1450 (struct genericPartitionMap1 *)gpm; 1451 map->s_partition_type = UDF_TYPE1_MAP15; 1452 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1453 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1454 map->s_partition_func = NULL; 1455 } else if (type == 2) { 1456 struct udfPartitionMap2 *upm2 = 1457 (struct udfPartitionMap2 *)gpm; 1458 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1459 strlen(UDF_ID_VIRTUAL))) { 1460 u16 suf = 1461 le16_to_cpu(((__le16 *)upm2->partIdent. 1462 identSuffix)[0]); 1463 if (suf < 0x0200) { 1464 map->s_partition_type = 1465 UDF_VIRTUAL_MAP15; 1466 map->s_partition_func = 1467 udf_get_pblock_virt15; 1468 } else { 1469 map->s_partition_type = 1470 UDF_VIRTUAL_MAP20; 1471 map->s_partition_func = 1472 udf_get_pblock_virt20; 1473 } 1474 } else if (!strncmp(upm2->partIdent.ident, 1475 UDF_ID_SPARABLE, 1476 strlen(UDF_ID_SPARABLE))) { 1477 ret = udf_load_sparable_map(sb, map, 1478 (struct sparablePartitionMap *)gpm); 1479 if (ret < 0) 1480 goto out_bh; 1481 } else if (!strncmp(upm2->partIdent.ident, 1482 UDF_ID_METADATA, 1483 strlen(UDF_ID_METADATA))) { 1484 struct udf_meta_data *mdata = 1485 &map->s_type_specific.s_metadata; 1486 struct metadataPartitionMap *mdm = 1487 (struct metadataPartitionMap *) 1488 &(lvd->partitionMaps[offset]); 1489 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1490 i, type, UDF_ID_METADATA); 1491 1492 map->s_partition_type = UDF_METADATA_MAP25; 1493 map->s_partition_func = udf_get_pblock_meta25; 1494 1495 mdata->s_meta_file_loc = 1496 le32_to_cpu(mdm->metadataFileLoc); 1497 mdata->s_mirror_file_loc = 1498 le32_to_cpu(mdm->metadataMirrorFileLoc); 1499 mdata->s_bitmap_file_loc = 1500 le32_to_cpu(mdm->metadataBitmapFileLoc); 1501 mdata->s_alloc_unit_size = 1502 le32_to_cpu(mdm->allocUnitSize); 1503 mdata->s_align_unit_size = 1504 le16_to_cpu(mdm->alignUnitSize); 1505 if (mdm->flags & 0x01) 1506 mdata->s_flags |= MF_DUPLICATE_MD; 1507 1508 udf_debug("Metadata Ident suffix=0x%x\n", 1509 le16_to_cpu(*(__le16 *) 1510 mdm->partIdent.identSuffix)); 1511 udf_debug("Metadata part num=%d\n", 1512 le16_to_cpu(mdm->partitionNum)); 1513 udf_debug("Metadata part alloc unit size=%d\n", 1514 le32_to_cpu(mdm->allocUnitSize)); 1515 udf_debug("Metadata file loc=%d\n", 1516 le32_to_cpu(mdm->metadataFileLoc)); 1517 udf_debug("Mirror file loc=%d\n", 1518 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1519 udf_debug("Bitmap file loc=%d\n", 1520 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1521 udf_debug("Flags: %d %d\n", 1522 mdata->s_flags, mdm->flags); 1523 } else { 1524 udf_debug("Unknown ident: %s\n", 1525 upm2->partIdent.ident); 1526 continue; 1527 } 1528 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1529 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1530 } 1531 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1532 i, map->s_partition_num, type, map->s_volumeseqnum); 1533 } 1534 1535 if (fileset) { 1536 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1537 1538 *fileset = lelb_to_cpu(la->extLocation); 1539 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1540 fileset->logicalBlockNum, 1541 fileset->partitionReferenceNum); 1542 } 1543 if (lvd->integritySeqExt.extLength) 1544 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1545 ret = 0; 1546 out_bh: 1547 brelse(bh); 1548 return ret; 1549 } 1550 1551 /* 1552 * udf_load_logicalvolint 1553 * 1554 */ 1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1556 { 1557 struct buffer_head *bh = NULL; 1558 uint16_t ident; 1559 struct udf_sb_info *sbi = UDF_SB(sb); 1560 struct logicalVolIntegrityDesc *lvid; 1561 1562 while (loc.extLength > 0 && 1563 (bh = udf_read_tagged(sb, loc.extLocation, 1564 loc.extLocation, &ident)) && 1565 ident == TAG_IDENT_LVID) { 1566 sbi->s_lvid_bh = bh; 1567 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1568 1569 if (lvid->nextIntegrityExt.extLength) 1570 udf_load_logicalvolint(sb, 1571 leea_to_cpu(lvid->nextIntegrityExt)); 1572 1573 if (sbi->s_lvid_bh != bh) 1574 brelse(bh); 1575 loc.extLength -= sb->s_blocksize; 1576 loc.extLocation++; 1577 } 1578 if (sbi->s_lvid_bh != bh) 1579 brelse(bh); 1580 } 1581 1582 /* 1583 * Process a main/reserve volume descriptor sequence. 1584 * @block First block of first extent of the sequence. 1585 * @lastblock Lastblock of first extent of the sequence. 1586 * @fileset There we store extent containing root fileset 1587 * 1588 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1589 * sequence 1590 */ 1591 static noinline int udf_process_sequence( 1592 struct super_block *sb, 1593 sector_t block, sector_t lastblock, 1594 struct kernel_lb_addr *fileset) 1595 { 1596 struct buffer_head *bh = NULL; 1597 struct udf_vds_record vds[VDS_POS_LENGTH]; 1598 struct udf_vds_record *curr; 1599 struct generic_desc *gd; 1600 struct volDescPtr *vdp; 1601 bool done = false; 1602 uint32_t vdsn; 1603 uint16_t ident; 1604 long next_s = 0, next_e = 0; 1605 int ret; 1606 1607 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1608 1609 /* 1610 * Read the main descriptor sequence and find which descriptors 1611 * are in it. 1612 */ 1613 for (; (!done && block <= lastblock); block++) { 1614 1615 bh = udf_read_tagged(sb, block, block, &ident); 1616 if (!bh) { 1617 udf_err(sb, 1618 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1619 (unsigned long long)block); 1620 return -EAGAIN; 1621 } 1622 1623 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1624 gd = (struct generic_desc *)bh->b_data; 1625 vdsn = le32_to_cpu(gd->volDescSeqNum); 1626 switch (ident) { 1627 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1628 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1629 if (vdsn >= curr->volDescSeqNum) { 1630 curr->volDescSeqNum = vdsn; 1631 curr->block = block; 1632 } 1633 break; 1634 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1635 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1636 if (vdsn >= curr->volDescSeqNum) { 1637 curr->volDescSeqNum = vdsn; 1638 curr->block = block; 1639 1640 vdp = (struct volDescPtr *)bh->b_data; 1641 next_s = le32_to_cpu( 1642 vdp->nextVolDescSeqExt.extLocation); 1643 next_e = le32_to_cpu( 1644 vdp->nextVolDescSeqExt.extLength); 1645 next_e = next_e >> sb->s_blocksize_bits; 1646 next_e += next_s; 1647 } 1648 break; 1649 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1650 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1651 if (vdsn >= curr->volDescSeqNum) { 1652 curr->volDescSeqNum = vdsn; 1653 curr->block = block; 1654 } 1655 break; 1656 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1657 curr = &vds[VDS_POS_PARTITION_DESC]; 1658 if (!curr->block) 1659 curr->block = block; 1660 break; 1661 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1662 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1663 if (vdsn >= curr->volDescSeqNum) { 1664 curr->volDescSeqNum = vdsn; 1665 curr->block = block; 1666 } 1667 break; 1668 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1669 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1670 if (vdsn >= curr->volDescSeqNum) { 1671 curr->volDescSeqNum = vdsn; 1672 curr->block = block; 1673 } 1674 break; 1675 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1676 vds[VDS_POS_TERMINATING_DESC].block = block; 1677 if (next_e) { 1678 block = next_s; 1679 lastblock = next_e; 1680 next_s = next_e = 0; 1681 } else 1682 done = true; 1683 break; 1684 } 1685 brelse(bh); 1686 } 1687 /* 1688 * Now read interesting descriptors again and process them 1689 * in a suitable order 1690 */ 1691 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1692 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1693 return -EAGAIN; 1694 } 1695 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1696 if (ret < 0) 1697 return ret; 1698 1699 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1700 ret = udf_load_logicalvol(sb, 1701 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1702 fileset); 1703 if (ret < 0) 1704 return ret; 1705 } 1706 1707 if (vds[VDS_POS_PARTITION_DESC].block) { 1708 /* 1709 * We rescan the whole descriptor sequence to find 1710 * partition descriptor blocks and process them. 1711 */ 1712 for (block = vds[VDS_POS_PARTITION_DESC].block; 1713 block < vds[VDS_POS_TERMINATING_DESC].block; 1714 block++) { 1715 ret = udf_load_partdesc(sb, block); 1716 if (ret < 0) 1717 return ret; 1718 } 1719 } 1720 1721 return 0; 1722 } 1723 1724 /* 1725 * Load Volume Descriptor Sequence described by anchor in bh 1726 * 1727 * Returns <0 on error, 0 on success 1728 */ 1729 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1730 struct kernel_lb_addr *fileset) 1731 { 1732 struct anchorVolDescPtr *anchor; 1733 sector_t main_s, main_e, reserve_s, reserve_e; 1734 int ret; 1735 1736 anchor = (struct anchorVolDescPtr *)bh->b_data; 1737 1738 /* Locate the main sequence */ 1739 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1740 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1741 main_e = main_e >> sb->s_blocksize_bits; 1742 main_e += main_s; 1743 1744 /* Locate the reserve sequence */ 1745 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1746 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1747 reserve_e = reserve_e >> sb->s_blocksize_bits; 1748 reserve_e += reserve_s; 1749 1750 /* Process the main & reserve sequences */ 1751 /* responsible for finding the PartitionDesc(s) */ 1752 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1753 if (ret != -EAGAIN) 1754 return ret; 1755 udf_sb_free_partitions(sb); 1756 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1757 if (ret < 0) { 1758 udf_sb_free_partitions(sb); 1759 /* No sequence was OK, return -EIO */ 1760 if (ret == -EAGAIN) 1761 ret = -EIO; 1762 } 1763 return ret; 1764 } 1765 1766 /* 1767 * Check whether there is an anchor block in the given block and 1768 * load Volume Descriptor Sequence if so. 1769 * 1770 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1771 * block 1772 */ 1773 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1774 struct kernel_lb_addr *fileset) 1775 { 1776 struct buffer_head *bh; 1777 uint16_t ident; 1778 int ret; 1779 1780 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1781 udf_fixed_to_variable(block) >= 1782 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1783 return -EAGAIN; 1784 1785 bh = udf_read_tagged(sb, block, block, &ident); 1786 if (!bh) 1787 return -EAGAIN; 1788 if (ident != TAG_IDENT_AVDP) { 1789 brelse(bh); 1790 return -EAGAIN; 1791 } 1792 ret = udf_load_sequence(sb, bh, fileset); 1793 brelse(bh); 1794 return ret; 1795 } 1796 1797 /* 1798 * Search for an anchor volume descriptor pointer. 1799 * 1800 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1801 * of anchors. 1802 */ 1803 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1804 struct kernel_lb_addr *fileset) 1805 { 1806 sector_t last[6]; 1807 int i; 1808 struct udf_sb_info *sbi = UDF_SB(sb); 1809 int last_count = 0; 1810 int ret; 1811 1812 /* First try user provided anchor */ 1813 if (sbi->s_anchor) { 1814 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1815 if (ret != -EAGAIN) 1816 return ret; 1817 } 1818 /* 1819 * according to spec, anchor is in either: 1820 * block 256 1821 * lastblock-256 1822 * lastblock 1823 * however, if the disc isn't closed, it could be 512. 1824 */ 1825 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1826 if (ret != -EAGAIN) 1827 return ret; 1828 /* 1829 * The trouble is which block is the last one. Drives often misreport 1830 * this so we try various possibilities. 1831 */ 1832 last[last_count++] = *lastblock; 1833 if (*lastblock >= 1) 1834 last[last_count++] = *lastblock - 1; 1835 last[last_count++] = *lastblock + 1; 1836 if (*lastblock >= 2) 1837 last[last_count++] = *lastblock - 2; 1838 if (*lastblock >= 150) 1839 last[last_count++] = *lastblock - 150; 1840 if (*lastblock >= 152) 1841 last[last_count++] = *lastblock - 152; 1842 1843 for (i = 0; i < last_count; i++) { 1844 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1845 sb->s_blocksize_bits) 1846 continue; 1847 ret = udf_check_anchor_block(sb, last[i], fileset); 1848 if (ret != -EAGAIN) { 1849 if (!ret) 1850 *lastblock = last[i]; 1851 return ret; 1852 } 1853 if (last[i] < 256) 1854 continue; 1855 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1856 if (ret != -EAGAIN) { 1857 if (!ret) 1858 *lastblock = last[i]; 1859 return ret; 1860 } 1861 } 1862 1863 /* Finally try block 512 in case media is open */ 1864 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1865 } 1866 1867 /* 1868 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1869 * area specified by it. The function expects sbi->s_lastblock to be the last 1870 * block on the media. 1871 * 1872 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1873 * was not found. 1874 */ 1875 static int udf_find_anchor(struct super_block *sb, 1876 struct kernel_lb_addr *fileset) 1877 { 1878 struct udf_sb_info *sbi = UDF_SB(sb); 1879 sector_t lastblock = sbi->s_last_block; 1880 int ret; 1881 1882 ret = udf_scan_anchors(sb, &lastblock, fileset); 1883 if (ret != -EAGAIN) 1884 goto out; 1885 1886 /* No anchor found? Try VARCONV conversion of block numbers */ 1887 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1888 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1889 /* Firstly, we try to not convert number of the last block */ 1890 ret = udf_scan_anchors(sb, &lastblock, fileset); 1891 if (ret != -EAGAIN) 1892 goto out; 1893 1894 lastblock = sbi->s_last_block; 1895 /* Secondly, we try with converted number of the last block */ 1896 ret = udf_scan_anchors(sb, &lastblock, fileset); 1897 if (ret < 0) { 1898 /* VARCONV didn't help. Clear it. */ 1899 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1900 } 1901 out: 1902 if (ret == 0) 1903 sbi->s_last_block = lastblock; 1904 return ret; 1905 } 1906 1907 /* 1908 * Check Volume Structure Descriptor, find Anchor block and load Volume 1909 * Descriptor Sequence. 1910 * 1911 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1912 * block was not found. 1913 */ 1914 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1915 int silent, struct kernel_lb_addr *fileset) 1916 { 1917 struct udf_sb_info *sbi = UDF_SB(sb); 1918 loff_t nsr_off; 1919 int ret; 1920 1921 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1922 if (!silent) 1923 udf_warn(sb, "Bad block size\n"); 1924 return -EINVAL; 1925 } 1926 sbi->s_last_block = uopt->lastblock; 1927 if (!uopt->novrs) { 1928 /* Check that it is NSR02 compliant */ 1929 nsr_off = udf_check_vsd(sb); 1930 if (!nsr_off) { 1931 if (!silent) 1932 udf_warn(sb, "No VRS found\n"); 1933 return 0; 1934 } 1935 if (nsr_off == -1) 1936 udf_debug("Failed to read sector at offset %d. " 1937 "Assuming open disc. Skipping validity " 1938 "check\n", VSD_FIRST_SECTOR_OFFSET); 1939 if (!sbi->s_last_block) 1940 sbi->s_last_block = udf_get_last_block(sb); 1941 } else { 1942 udf_debug("Validity check skipped because of novrs option\n"); 1943 } 1944 1945 /* Look for anchor block and load Volume Descriptor Sequence */ 1946 sbi->s_anchor = uopt->anchor; 1947 ret = udf_find_anchor(sb, fileset); 1948 if (ret < 0) { 1949 if (!silent && ret == -EAGAIN) 1950 udf_warn(sb, "No anchor found\n"); 1951 return ret; 1952 } 1953 return 0; 1954 } 1955 1956 static void udf_open_lvid(struct super_block *sb) 1957 { 1958 struct udf_sb_info *sbi = UDF_SB(sb); 1959 struct buffer_head *bh = sbi->s_lvid_bh; 1960 struct logicalVolIntegrityDesc *lvid; 1961 struct logicalVolIntegrityDescImpUse *lvidiu; 1962 1963 if (!bh) 1964 return; 1965 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1966 lvidiu = udf_sb_lvidiu(sb); 1967 if (!lvidiu) 1968 return; 1969 1970 mutex_lock(&sbi->s_alloc_mutex); 1971 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1972 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1973 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1974 CURRENT_TIME); 1975 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1976 1977 lvid->descTag.descCRC = cpu_to_le16( 1978 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1979 le16_to_cpu(lvid->descTag.descCRCLength))); 1980 1981 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1982 mark_buffer_dirty(bh); 1983 sbi->s_lvid_dirty = 0; 1984 mutex_unlock(&sbi->s_alloc_mutex); 1985 /* Make opening of filesystem visible on the media immediately */ 1986 sync_dirty_buffer(bh); 1987 } 1988 1989 static void udf_close_lvid(struct super_block *sb) 1990 { 1991 struct udf_sb_info *sbi = UDF_SB(sb); 1992 struct buffer_head *bh = sbi->s_lvid_bh; 1993 struct logicalVolIntegrityDesc *lvid; 1994 struct logicalVolIntegrityDescImpUse *lvidiu; 1995 1996 if (!bh) 1997 return; 1998 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1999 lvidiu = udf_sb_lvidiu(sb); 2000 if (!lvidiu) 2001 return; 2002 2003 mutex_lock(&sbi->s_alloc_mutex); 2004 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2005 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2006 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 2007 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2008 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2009 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2010 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2011 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2012 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2013 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2014 2015 lvid->descTag.descCRC = cpu_to_le16( 2016 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2017 le16_to_cpu(lvid->descTag.descCRCLength))); 2018 2019 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2020 /* 2021 * We set buffer uptodate unconditionally here to avoid spurious 2022 * warnings from mark_buffer_dirty() when previous EIO has marked 2023 * the buffer as !uptodate 2024 */ 2025 set_buffer_uptodate(bh); 2026 mark_buffer_dirty(bh); 2027 sbi->s_lvid_dirty = 0; 2028 mutex_unlock(&sbi->s_alloc_mutex); 2029 /* Make closing of filesystem visible on the media immediately */ 2030 sync_dirty_buffer(bh); 2031 } 2032 2033 u64 lvid_get_unique_id(struct super_block *sb) 2034 { 2035 struct buffer_head *bh; 2036 struct udf_sb_info *sbi = UDF_SB(sb); 2037 struct logicalVolIntegrityDesc *lvid; 2038 struct logicalVolHeaderDesc *lvhd; 2039 u64 uniqueID; 2040 u64 ret; 2041 2042 bh = sbi->s_lvid_bh; 2043 if (!bh) 2044 return 0; 2045 2046 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2047 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2048 2049 mutex_lock(&sbi->s_alloc_mutex); 2050 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2051 if (!(++uniqueID & 0xFFFFFFFF)) 2052 uniqueID += 16; 2053 lvhd->uniqueID = cpu_to_le64(uniqueID); 2054 mutex_unlock(&sbi->s_alloc_mutex); 2055 mark_buffer_dirty(bh); 2056 2057 return ret; 2058 } 2059 2060 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2061 { 2062 int ret = -EINVAL; 2063 struct inode *inode = NULL; 2064 struct udf_options uopt; 2065 struct kernel_lb_addr rootdir, fileset; 2066 struct udf_sb_info *sbi; 2067 2068 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2069 uopt.uid = INVALID_UID; 2070 uopt.gid = INVALID_GID; 2071 uopt.umask = 0; 2072 uopt.fmode = UDF_INVALID_MODE; 2073 uopt.dmode = UDF_INVALID_MODE; 2074 2075 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2076 if (!sbi) 2077 return -ENOMEM; 2078 2079 sb->s_fs_info = sbi; 2080 2081 mutex_init(&sbi->s_alloc_mutex); 2082 2083 if (!udf_parse_options((char *)options, &uopt, false)) 2084 goto parse_options_failure; 2085 2086 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2087 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2088 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2089 goto parse_options_failure; 2090 } 2091 #ifdef CONFIG_UDF_NLS 2092 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2093 uopt.nls_map = load_nls_default(); 2094 if (!uopt.nls_map) 2095 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2096 else 2097 udf_debug("Using default NLS map\n"); 2098 } 2099 #endif 2100 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2101 uopt.flags |= (1 << UDF_FLAG_UTF8); 2102 2103 fileset.logicalBlockNum = 0xFFFFFFFF; 2104 fileset.partitionReferenceNum = 0xFFFF; 2105 2106 sbi->s_flags = uopt.flags; 2107 sbi->s_uid = uopt.uid; 2108 sbi->s_gid = uopt.gid; 2109 sbi->s_umask = uopt.umask; 2110 sbi->s_fmode = uopt.fmode; 2111 sbi->s_dmode = uopt.dmode; 2112 sbi->s_nls_map = uopt.nls_map; 2113 rwlock_init(&sbi->s_cred_lock); 2114 2115 if (uopt.session == 0xFFFFFFFF) 2116 sbi->s_session = udf_get_last_session(sb); 2117 else 2118 sbi->s_session = uopt.session; 2119 2120 udf_debug("Multi-session=%d\n", sbi->s_session); 2121 2122 /* Fill in the rest of the superblock */ 2123 sb->s_op = &udf_sb_ops; 2124 sb->s_export_op = &udf_export_ops; 2125 2126 sb->s_magic = UDF_SUPER_MAGIC; 2127 sb->s_time_gran = 1000; 2128 2129 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2130 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2131 } else { 2132 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2133 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2134 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2135 if (!silent) 2136 pr_notice("Rescanning with blocksize %d\n", 2137 UDF_DEFAULT_BLOCKSIZE); 2138 brelse(sbi->s_lvid_bh); 2139 sbi->s_lvid_bh = NULL; 2140 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2141 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2142 } 2143 } 2144 if (ret < 0) { 2145 if (ret == -EAGAIN) { 2146 udf_warn(sb, "No partition found (1)\n"); 2147 ret = -EINVAL; 2148 } 2149 goto error_out; 2150 } 2151 2152 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2153 2154 if (sbi->s_lvid_bh) { 2155 struct logicalVolIntegrityDescImpUse *lvidiu = 2156 udf_sb_lvidiu(sb); 2157 uint16_t minUDFReadRev; 2158 uint16_t minUDFWriteRev; 2159 2160 if (!lvidiu) { 2161 ret = -EINVAL; 2162 goto error_out; 2163 } 2164 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2165 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2166 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2167 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2168 minUDFReadRev, 2169 UDF_MAX_READ_VERSION); 2170 ret = -EINVAL; 2171 goto error_out; 2172 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2173 !(sb->s_flags & MS_RDONLY)) { 2174 ret = -EACCES; 2175 goto error_out; 2176 } 2177 2178 sbi->s_udfrev = minUDFWriteRev; 2179 2180 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2181 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2182 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2183 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2184 } 2185 2186 if (!sbi->s_partitions) { 2187 udf_warn(sb, "No partition found (2)\n"); 2188 ret = -EINVAL; 2189 goto error_out; 2190 } 2191 2192 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2193 UDF_PART_FLAG_READ_ONLY && 2194 !(sb->s_flags & MS_RDONLY)) { 2195 ret = -EACCES; 2196 goto error_out; 2197 } 2198 2199 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2200 udf_warn(sb, "No fileset found\n"); 2201 ret = -EINVAL; 2202 goto error_out; 2203 } 2204 2205 if (!silent) { 2206 struct timestamp ts; 2207 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2208 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2209 sbi->s_volume_ident, 2210 le16_to_cpu(ts.year), ts.month, ts.day, 2211 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2212 } 2213 if (!(sb->s_flags & MS_RDONLY)) 2214 udf_open_lvid(sb); 2215 2216 /* Assign the root inode */ 2217 /* assign inodes by physical block number */ 2218 /* perhaps it's not extensible enough, but for now ... */ 2219 inode = udf_iget(sb, &rootdir); 2220 if (IS_ERR(inode)) { 2221 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2222 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2223 ret = PTR_ERR(inode); 2224 goto error_out; 2225 } 2226 2227 /* Allocate a dentry for the root inode */ 2228 sb->s_root = d_make_root(inode); 2229 if (!sb->s_root) { 2230 udf_err(sb, "Couldn't allocate root dentry\n"); 2231 ret = -ENOMEM; 2232 goto error_out; 2233 } 2234 sb->s_maxbytes = MAX_LFS_FILESIZE; 2235 sb->s_max_links = UDF_MAX_LINKS; 2236 return 0; 2237 2238 error_out: 2239 iput(sbi->s_vat_inode); 2240 parse_options_failure: 2241 #ifdef CONFIG_UDF_NLS 2242 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2243 unload_nls(sbi->s_nls_map); 2244 #endif 2245 if (!(sb->s_flags & MS_RDONLY)) 2246 udf_close_lvid(sb); 2247 brelse(sbi->s_lvid_bh); 2248 udf_sb_free_partitions(sb); 2249 kfree(sbi); 2250 sb->s_fs_info = NULL; 2251 2252 return ret; 2253 } 2254 2255 void _udf_err(struct super_block *sb, const char *function, 2256 const char *fmt, ...) 2257 { 2258 struct va_format vaf; 2259 va_list args; 2260 2261 va_start(args, fmt); 2262 2263 vaf.fmt = fmt; 2264 vaf.va = &args; 2265 2266 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2267 2268 va_end(args); 2269 } 2270 2271 void _udf_warn(struct super_block *sb, const char *function, 2272 const char *fmt, ...) 2273 { 2274 struct va_format vaf; 2275 va_list args; 2276 2277 va_start(args, fmt); 2278 2279 vaf.fmt = fmt; 2280 vaf.va = &args; 2281 2282 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2283 2284 va_end(args); 2285 } 2286 2287 static void udf_put_super(struct super_block *sb) 2288 { 2289 struct udf_sb_info *sbi; 2290 2291 sbi = UDF_SB(sb); 2292 2293 iput(sbi->s_vat_inode); 2294 #ifdef CONFIG_UDF_NLS 2295 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2296 unload_nls(sbi->s_nls_map); 2297 #endif 2298 if (!(sb->s_flags & MS_RDONLY)) 2299 udf_close_lvid(sb); 2300 brelse(sbi->s_lvid_bh); 2301 udf_sb_free_partitions(sb); 2302 mutex_destroy(&sbi->s_alloc_mutex); 2303 kfree(sb->s_fs_info); 2304 sb->s_fs_info = NULL; 2305 } 2306 2307 static int udf_sync_fs(struct super_block *sb, int wait) 2308 { 2309 struct udf_sb_info *sbi = UDF_SB(sb); 2310 2311 mutex_lock(&sbi->s_alloc_mutex); 2312 if (sbi->s_lvid_dirty) { 2313 /* 2314 * Blockdevice will be synced later so we don't have to submit 2315 * the buffer for IO 2316 */ 2317 mark_buffer_dirty(sbi->s_lvid_bh); 2318 sbi->s_lvid_dirty = 0; 2319 } 2320 mutex_unlock(&sbi->s_alloc_mutex); 2321 2322 return 0; 2323 } 2324 2325 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2326 { 2327 struct super_block *sb = dentry->d_sb; 2328 struct udf_sb_info *sbi = UDF_SB(sb); 2329 struct logicalVolIntegrityDescImpUse *lvidiu; 2330 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2331 2332 lvidiu = udf_sb_lvidiu(sb); 2333 buf->f_type = UDF_SUPER_MAGIC; 2334 buf->f_bsize = sb->s_blocksize; 2335 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2336 buf->f_bfree = udf_count_free(sb); 2337 buf->f_bavail = buf->f_bfree; 2338 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2339 le32_to_cpu(lvidiu->numDirs)) : 0) 2340 + buf->f_bfree; 2341 buf->f_ffree = buf->f_bfree; 2342 buf->f_namelen = UDF_NAME_LEN - 2; 2343 buf->f_fsid.val[0] = (u32)id; 2344 buf->f_fsid.val[1] = (u32)(id >> 32); 2345 2346 return 0; 2347 } 2348 2349 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2350 struct udf_bitmap *bitmap) 2351 { 2352 struct buffer_head *bh = NULL; 2353 unsigned int accum = 0; 2354 int index; 2355 int block = 0, newblock; 2356 struct kernel_lb_addr loc; 2357 uint32_t bytes; 2358 uint8_t *ptr; 2359 uint16_t ident; 2360 struct spaceBitmapDesc *bm; 2361 2362 loc.logicalBlockNum = bitmap->s_extPosition; 2363 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2364 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2365 2366 if (!bh) { 2367 udf_err(sb, "udf_count_free failed\n"); 2368 goto out; 2369 } else if (ident != TAG_IDENT_SBD) { 2370 brelse(bh); 2371 udf_err(sb, "udf_count_free failed\n"); 2372 goto out; 2373 } 2374 2375 bm = (struct spaceBitmapDesc *)bh->b_data; 2376 bytes = le32_to_cpu(bm->numOfBytes); 2377 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2378 ptr = (uint8_t *)bh->b_data; 2379 2380 while (bytes > 0) { 2381 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2382 accum += bitmap_weight((const unsigned long *)(ptr + index), 2383 cur_bytes * 8); 2384 bytes -= cur_bytes; 2385 if (bytes) { 2386 brelse(bh); 2387 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2388 bh = udf_tread(sb, newblock); 2389 if (!bh) { 2390 udf_debug("read failed\n"); 2391 goto out; 2392 } 2393 index = 0; 2394 ptr = (uint8_t *)bh->b_data; 2395 } 2396 } 2397 brelse(bh); 2398 out: 2399 return accum; 2400 } 2401 2402 static unsigned int udf_count_free_table(struct super_block *sb, 2403 struct inode *table) 2404 { 2405 unsigned int accum = 0; 2406 uint32_t elen; 2407 struct kernel_lb_addr eloc; 2408 int8_t etype; 2409 struct extent_position epos; 2410 2411 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2412 epos.block = UDF_I(table)->i_location; 2413 epos.offset = sizeof(struct unallocSpaceEntry); 2414 epos.bh = NULL; 2415 2416 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2417 accum += (elen >> table->i_sb->s_blocksize_bits); 2418 2419 brelse(epos.bh); 2420 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2421 2422 return accum; 2423 } 2424 2425 static unsigned int udf_count_free(struct super_block *sb) 2426 { 2427 unsigned int accum = 0; 2428 struct udf_sb_info *sbi; 2429 struct udf_part_map *map; 2430 2431 sbi = UDF_SB(sb); 2432 if (sbi->s_lvid_bh) { 2433 struct logicalVolIntegrityDesc *lvid = 2434 (struct logicalVolIntegrityDesc *) 2435 sbi->s_lvid_bh->b_data; 2436 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2437 accum = le32_to_cpu( 2438 lvid->freeSpaceTable[sbi->s_partition]); 2439 if (accum == 0xFFFFFFFF) 2440 accum = 0; 2441 } 2442 } 2443 2444 if (accum) 2445 return accum; 2446 2447 map = &sbi->s_partmaps[sbi->s_partition]; 2448 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2449 accum += udf_count_free_bitmap(sb, 2450 map->s_uspace.s_bitmap); 2451 } 2452 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2453 accum += udf_count_free_bitmap(sb, 2454 map->s_fspace.s_bitmap); 2455 } 2456 if (accum) 2457 return accum; 2458 2459 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2460 accum += udf_count_free_table(sb, 2461 map->s_uspace.s_table); 2462 } 2463 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2464 accum += udf_count_free_table(sb, 2465 map->s_fspace.s_table); 2466 } 2467 2468 return accum; 2469 } 2470