xref: /openbmc/linux/fs/udf/super.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 			    struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 			     struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104 
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 	struct logicalVolIntegrityDesc *lvid;
108 	unsigned int partnum;
109 	unsigned int offset;
110 
111 	if (!UDF_SB(sb)->s_lvid_bh)
112 		return NULL;
113 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 	partnum = le32_to_cpu(lvid->numOfPartitions);
115 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 	     (2 * sizeof(uint32_t)) < partnum) {
118 		udf_err(sb, "Logical volume integrity descriptor corrupted "
119 			"(numOfPartitions = %u)!\n", partnum);
120 		return NULL;
121 	}
122 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
123 	offset = partnum * 2 * sizeof(uint32_t);
124 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126 
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 		      int flags, const char *dev_name, void *data)
130 {
131 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133 
134 static struct file_system_type udf_fstype = {
135 	.owner		= THIS_MODULE,
136 	.name		= "udf",
137 	.mount		= udf_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142 
143 static struct kmem_cache *udf_inode_cachep;
144 
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147 	struct udf_inode_info *ei;
148 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 	if (!ei)
150 		return NULL;
151 
152 	ei->i_unique = 0;
153 	ei->i_lenExtents = 0;
154 	ei->i_next_alloc_block = 0;
155 	ei->i_next_alloc_goal = 0;
156 	ei->i_strat4096 = 0;
157 	init_rwsem(&ei->i_data_sem);
158 	ei->cached_extent.lstart = -1;
159 	spin_lock_init(&ei->i_extent_cache_lock);
160 
161 	return &ei->vfs_inode;
162 }
163 
164 static void udf_i_callback(struct rcu_head *head)
165 {
166 	struct inode *inode = container_of(head, struct inode, i_rcu);
167 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169 
170 static void udf_destroy_inode(struct inode *inode)
171 {
172 	call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174 
175 static void init_once(void *foo)
176 {
177 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178 
179 	ei->i_ext.i_data = NULL;
180 	inode_init_once(&ei->vfs_inode);
181 }
182 
183 static int __init init_inodecache(void)
184 {
185 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 					     sizeof(struct udf_inode_info),
187 					     0, (SLAB_RECLAIM_ACCOUNT |
188 						 SLAB_MEM_SPREAD |
189 						 SLAB_ACCOUNT),
190 					     init_once);
191 	if (!udf_inode_cachep)
192 		return -ENOMEM;
193 	return 0;
194 }
195 
196 static void destroy_inodecache(void)
197 {
198 	/*
199 	 * Make sure all delayed rcu free inodes are flushed before we
200 	 * destroy cache.
201 	 */
202 	rcu_barrier();
203 	kmem_cache_destroy(udf_inode_cachep);
204 }
205 
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 	.alloc_inode	= udf_alloc_inode,
209 	.destroy_inode	= udf_destroy_inode,
210 	.write_inode	= udf_write_inode,
211 	.evict_inode	= udf_evict_inode,
212 	.put_super	= udf_put_super,
213 	.sync_fs	= udf_sync_fs,
214 	.statfs		= udf_statfs,
215 	.remount_fs	= udf_remount_fs,
216 	.show_options	= udf_show_options,
217 };
218 
219 struct udf_options {
220 	unsigned char novrs;
221 	unsigned int blocksize;
222 	unsigned int session;
223 	unsigned int lastblock;
224 	unsigned int anchor;
225 	unsigned int flags;
226 	umode_t umask;
227 	kgid_t gid;
228 	kuid_t uid;
229 	umode_t fmode;
230 	umode_t dmode;
231 	struct nls_table *nls_map;
232 };
233 
234 static int __init init_udf_fs(void)
235 {
236 	int err;
237 
238 	err = init_inodecache();
239 	if (err)
240 		goto out1;
241 	err = register_filesystem(&udf_fstype);
242 	if (err)
243 		goto out;
244 
245 	return 0;
246 
247 out:
248 	destroy_inodecache();
249 
250 out1:
251 	return err;
252 }
253 
254 static void __exit exit_udf_fs(void)
255 {
256 	unregister_filesystem(&udf_fstype);
257 	destroy_inodecache();
258 }
259 
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 	struct udf_sb_info *sbi = UDF_SB(sb);
263 
264 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 	if (!sbi->s_partmaps) {
266 		sbi->s_partitions = 0;
267 		return -ENOMEM;
268 	}
269 
270 	sbi->s_partitions = count;
271 	return 0;
272 }
273 
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276 	int i;
277 	int nr_groups = bitmap->s_nr_groups;
278 
279 	for (i = 0; i < nr_groups; i++)
280 		if (bitmap->s_block_bitmap[i])
281 			brelse(bitmap->s_block_bitmap[i]);
282 
283 	kvfree(bitmap);
284 }
285 
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288 	int i;
289 	struct udf_meta_data *mdata;
290 
291 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 		iput(map->s_uspace.s_table);
293 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 		iput(map->s_fspace.s_table);
295 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 		for (i = 0; i < 4; i++)
301 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 		mdata = &map->s_type_specific.s_metadata;
304 		iput(mdata->s_metadata_fe);
305 		mdata->s_metadata_fe = NULL;
306 
307 		iput(mdata->s_mirror_fe);
308 		mdata->s_mirror_fe = NULL;
309 
310 		iput(mdata->s_bitmap_fe);
311 		mdata->s_bitmap_fe = NULL;
312 	}
313 }
314 
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317 	struct udf_sb_info *sbi = UDF_SB(sb);
318 	int i;
319 
320 	if (!sbi->s_partmaps)
321 		return;
322 	for (i = 0; i < sbi->s_partitions; i++)
323 		udf_free_partition(&sbi->s_partmaps[i]);
324 	kfree(sbi->s_partmaps);
325 	sbi->s_partmaps = NULL;
326 }
327 
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330 	struct super_block *sb = root->d_sb;
331 	struct udf_sb_info *sbi = UDF_SB(sb);
332 
333 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 		seq_puts(seq, ",nostrict");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 		seq_puts(seq, ",unhide");
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 		seq_puts(seq, ",undelete");
341 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 		seq_puts(seq, ",noadinicb");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 		seq_puts(seq, ",shortad");
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 		seq_puts(seq, ",uid=forget");
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 		seq_puts(seq, ",gid=forget");
349 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 	if (sbi->s_umask != 0)
354 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 	if (sbi->s_fmode != UDF_INVALID_MODE)
356 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 	if (sbi->s_dmode != UDF_INVALID_MODE)
358 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 		seq_printf(seq, ",session=%d", sbi->s_session);
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 	if (sbi->s_anchor != 0)
364 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 		seq_puts(seq, ",utf8");
367 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369 
370 	return 0;
371 }
372 
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *	Parse mount options.
378  *
379  * DESCRIPTION
380  *	The following mount options are supported:
381  *
382  *	gid=		Set the default group.
383  *	umask=		Set the default umask.
384  *	mode=		Set the default file permissions.
385  *	dmode=		Set the default directory permissions.
386  *	uid=		Set the default user.
387  *	bs=		Set the block size.
388  *	unhide		Show otherwise hidden files.
389  *	undelete	Show deleted files in lists.
390  *	adinicb		Embed data in the inode (default)
391  *	noadinicb	Don't embed data in the inode
392  *	shortad		Use short ad's
393  *	longad		Use long ad's (default)
394  *	nostrict	Unset strict conformance
395  *	iocharset=	Set the NLS character set
396  *
397  *	The remaining are for debugging and disaster recovery:
398  *
399  *	novrs		Skip volume sequence recognition
400  *
401  *	The following expect a offset from 0.
402  *
403  *	session=	Set the CDROM session (default= last session)
404  *	anchor=		Override standard anchor location. (default= 256)
405  *	volume=		Override the VolumeDesc location. (unused)
406  *	partition=	Override the PartitionDesc location. (unused)
407  *	lastblock=	Set the last block of the filesystem/
408  *
409  *	The following expect a offset from the partition root.
410  *
411  *	fileset=	Override the fileset block location. (unused)
412  *	rootdir=	Override the root directory location. (unused)
413  *		WARNING: overriding the rootdir to a non-directory may
414  *		yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *	options		Pointer to mount options string.
418  *	uopts		Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *	<return>	1	Mount options parsed okay.
422  *	<return>	0	Error parsing mount options.
423  *
424  * HISTORY
425  *	July 1, 1997 - Andrew E. Mileski
426  *	Written, tested, and released.
427  */
428 
429 enum {
430 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 	Opt_rootdir, Opt_utf8, Opt_iocharset,
435 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 	Opt_fmode, Opt_dmode
437 };
438 
439 static const match_table_t tokens = {
440 	{Opt_novrs,	"novrs"},
441 	{Opt_nostrict,	"nostrict"},
442 	{Opt_bs,	"bs=%u"},
443 	{Opt_unhide,	"unhide"},
444 	{Opt_undelete,	"undelete"},
445 	{Opt_noadinicb,	"noadinicb"},
446 	{Opt_adinicb,	"adinicb"},
447 	{Opt_shortad,	"shortad"},
448 	{Opt_longad,	"longad"},
449 	{Opt_uforget,	"uid=forget"},
450 	{Opt_uignore,	"uid=ignore"},
451 	{Opt_gforget,	"gid=forget"},
452 	{Opt_gignore,	"gid=ignore"},
453 	{Opt_gid,	"gid=%u"},
454 	{Opt_uid,	"uid=%u"},
455 	{Opt_umask,	"umask=%o"},
456 	{Opt_session,	"session=%u"},
457 	{Opt_lastblock,	"lastblock=%u"},
458 	{Opt_anchor,	"anchor=%u"},
459 	{Opt_volume,	"volume=%u"},
460 	{Opt_partition,	"partition=%u"},
461 	{Opt_fileset,	"fileset=%u"},
462 	{Opt_rootdir,	"rootdir=%u"},
463 	{Opt_utf8,	"utf8"},
464 	{Opt_iocharset,	"iocharset=%s"},
465 	{Opt_fmode,     "mode=%o"},
466 	{Opt_dmode,     "dmode=%o"},
467 	{Opt_err,	NULL}
468 };
469 
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471 			     bool remount)
472 {
473 	char *p;
474 	int option;
475 
476 	uopt->novrs = 0;
477 	uopt->session = 0xFFFFFFFF;
478 	uopt->lastblock = 0;
479 	uopt->anchor = 0;
480 
481 	if (!options)
482 		return 1;
483 
484 	while ((p = strsep(&options, ",")) != NULL) {
485 		substring_t args[MAX_OPT_ARGS];
486 		int token;
487 		unsigned n;
488 		if (!*p)
489 			continue;
490 
491 		token = match_token(p, tokens, args);
492 		switch (token) {
493 		case Opt_novrs:
494 			uopt->novrs = 1;
495 			break;
496 		case Opt_bs:
497 			if (match_int(&args[0], &option))
498 				return 0;
499 			n = option;
500 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501 				return 0;
502 			uopt->blocksize = n;
503 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504 			break;
505 		case Opt_unhide:
506 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507 			break;
508 		case Opt_undelete:
509 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510 			break;
511 		case Opt_noadinicb:
512 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513 			break;
514 		case Opt_adinicb:
515 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516 			break;
517 		case Opt_shortad:
518 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519 			break;
520 		case Opt_longad:
521 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522 			break;
523 		case Opt_gid:
524 			if (match_int(args, &option))
525 				return 0;
526 			uopt->gid = make_kgid(current_user_ns(), option);
527 			if (!gid_valid(uopt->gid))
528 				return 0;
529 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
530 			break;
531 		case Opt_uid:
532 			if (match_int(args, &option))
533 				return 0;
534 			uopt->uid = make_kuid(current_user_ns(), option);
535 			if (!uid_valid(uopt->uid))
536 				return 0;
537 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
538 			break;
539 		case Opt_umask:
540 			if (match_octal(args, &option))
541 				return 0;
542 			uopt->umask = option;
543 			break;
544 		case Opt_nostrict:
545 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546 			break;
547 		case Opt_session:
548 			if (match_int(args, &option))
549 				return 0;
550 			uopt->session = option;
551 			if (!remount)
552 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553 			break;
554 		case Opt_lastblock:
555 			if (match_int(args, &option))
556 				return 0;
557 			uopt->lastblock = option;
558 			if (!remount)
559 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560 			break;
561 		case Opt_anchor:
562 			if (match_int(args, &option))
563 				return 0;
564 			uopt->anchor = option;
565 			break;
566 		case Opt_volume:
567 		case Opt_partition:
568 		case Opt_fileset:
569 		case Opt_rootdir:
570 			/* Ignored (never implemented properly) */
571 			break;
572 		case Opt_utf8:
573 			uopt->flags |= (1 << UDF_FLAG_UTF8);
574 			break;
575 		case Opt_iocharset:
576 			if (!remount) {
577 				if (uopt->nls_map)
578 					unload_nls(uopt->nls_map);
579 				uopt->nls_map = load_nls(args[0].from);
580 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
581 			}
582 			break;
583 		case Opt_uforget:
584 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 			break;
586 		case Opt_uignore:
587 		case Opt_gignore:
588 			/* These options are superseeded by uid=<number> */
589 			break;
590 		case Opt_gforget:
591 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
592 			break;
593 		case Opt_fmode:
594 			if (match_octal(args, &option))
595 				return 0;
596 			uopt->fmode = option & 0777;
597 			break;
598 		case Opt_dmode:
599 			if (match_octal(args, &option))
600 				return 0;
601 			uopt->dmode = option & 0777;
602 			break;
603 		default:
604 			pr_err("bad mount option \"%s\" or missing value\n", p);
605 			return 0;
606 		}
607 	}
608 	return 1;
609 }
610 
611 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
612 {
613 	struct udf_options uopt;
614 	struct udf_sb_info *sbi = UDF_SB(sb);
615 	int error = 0;
616 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
617 
618 	sync_filesystem(sb);
619 	if (lvidiu) {
620 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
621 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
622 			return -EACCES;
623 	}
624 
625 	uopt.flags = sbi->s_flags;
626 	uopt.uid   = sbi->s_uid;
627 	uopt.gid   = sbi->s_gid;
628 	uopt.umask = sbi->s_umask;
629 	uopt.fmode = sbi->s_fmode;
630 	uopt.dmode = sbi->s_dmode;
631 	uopt.nls_map = NULL;
632 
633 	if (!udf_parse_options(options, &uopt, true))
634 		return -EINVAL;
635 
636 	write_lock(&sbi->s_cred_lock);
637 	sbi->s_flags = uopt.flags;
638 	sbi->s_uid   = uopt.uid;
639 	sbi->s_gid   = uopt.gid;
640 	sbi->s_umask = uopt.umask;
641 	sbi->s_fmode = uopt.fmode;
642 	sbi->s_dmode = uopt.dmode;
643 	write_unlock(&sbi->s_cred_lock);
644 
645 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
646 		goto out_unlock;
647 
648 	if (*flags & SB_RDONLY)
649 		udf_close_lvid(sb);
650 	else
651 		udf_open_lvid(sb);
652 
653 out_unlock:
654 	return error;
655 }
656 
657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659 static loff_t udf_check_vsd(struct super_block *sb)
660 {
661 	struct volStructDesc *vsd = NULL;
662 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
663 	int sectorsize;
664 	struct buffer_head *bh = NULL;
665 	int nsr02 = 0;
666 	int nsr03 = 0;
667 	struct udf_sb_info *sbi;
668 
669 	sbi = UDF_SB(sb);
670 	if (sb->s_blocksize < sizeof(struct volStructDesc))
671 		sectorsize = sizeof(struct volStructDesc);
672 	else
673 		sectorsize = sb->s_blocksize;
674 
675 	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
676 
677 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
678 		  (unsigned int)(sector >> sb->s_blocksize_bits),
679 		  sb->s_blocksize);
680 	/* Process the sequence (if applicable). The hard limit on the sector
681 	 * offset is arbitrary, hopefully large enough so that all valid UDF
682 	 * filesystems will be recognised. There is no mention of an upper
683 	 * bound to the size of the volume recognition area in the standard.
684 	 *  The limit will prevent the code to read all the sectors of a
685 	 * specially crafted image (like a bluray disc full of CD001 sectors),
686 	 * potentially causing minutes or even hours of uninterruptible I/O
687 	 * activity. This actually happened with uninitialised SSD partitions
688 	 * (all 0xFF) before the check for the limit and all valid IDs were
689 	 * added */
690 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
691 	     sector += sectorsize) {
692 		/* Read a block */
693 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694 		if (!bh)
695 			break;
696 
697 		/* Look for ISO  descriptors */
698 		vsd = (struct volStructDesc *)(bh->b_data +
699 					      (sector & (sb->s_blocksize - 1)));
700 
701 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
702 				    VSD_STD_ID_LEN)) {
703 			switch (vsd->structType) {
704 			case 0:
705 				udf_debug("ISO9660 Boot Record found\n");
706 				break;
707 			case 1:
708 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
709 				break;
710 			case 2:
711 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
712 				break;
713 			case 3:
714 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
715 				break;
716 			case 255:
717 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
718 				break;
719 			default:
720 				udf_debug("ISO9660 VRS (%u) found\n",
721 					  vsd->structType);
722 				break;
723 			}
724 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
725 				    VSD_STD_ID_LEN))
726 			; /* nothing */
727 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
728 				    VSD_STD_ID_LEN)) {
729 			brelse(bh);
730 			break;
731 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
732 				    VSD_STD_ID_LEN))
733 			nsr02 = sector;
734 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
735 				    VSD_STD_ID_LEN))
736 			nsr03 = sector;
737 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
738 				    VSD_STD_ID_LEN))
739 			; /* nothing */
740 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
741 				    VSD_STD_ID_LEN))
742 			; /* nothing */
743 		else {
744 			/* invalid id : end of volume recognition area */
745 			brelse(bh);
746 			break;
747 		}
748 		brelse(bh);
749 	}
750 
751 	if (nsr03)
752 		return nsr03;
753 	else if (nsr02)
754 		return nsr02;
755 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
756 			VSD_FIRST_SECTOR_OFFSET)
757 		return -1;
758 	else
759 		return 0;
760 }
761 
762 static int udf_find_fileset(struct super_block *sb,
763 			    struct kernel_lb_addr *fileset,
764 			    struct kernel_lb_addr *root)
765 {
766 	struct buffer_head *bh = NULL;
767 	uint16_t ident;
768 
769 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
770 	    fileset->partitionReferenceNum != 0xFFFF) {
771 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
772 
773 		if (!bh) {
774 			return 1;
775 		} else if (ident != TAG_IDENT_FSD) {
776 			brelse(bh);
777 			return 1;
778 		}
779 
780 		udf_debug("Fileset at block=%u, partition=%u\n",
781 			  fileset->logicalBlockNum,
782 			  fileset->partitionReferenceNum);
783 
784 		UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
785 		udf_load_fileset(sb, bh, root);
786 		brelse(bh);
787 		return 0;
788 	}
789 	return 1;
790 }
791 
792 /*
793  * Load primary Volume Descriptor Sequence
794  *
795  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
796  * should be tried.
797  */
798 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
799 {
800 	struct primaryVolDesc *pvoldesc;
801 	uint8_t *outstr;
802 	struct buffer_head *bh;
803 	uint16_t ident;
804 	int ret = -ENOMEM;
805 #ifdef UDFFS_DEBUG
806 	struct timestamp *ts;
807 #endif
808 
809 	outstr = kmalloc(128, GFP_NOFS);
810 	if (!outstr)
811 		return -ENOMEM;
812 
813 	bh = udf_read_tagged(sb, block, block, &ident);
814 	if (!bh) {
815 		ret = -EAGAIN;
816 		goto out2;
817 	}
818 
819 	if (ident != TAG_IDENT_PVD) {
820 		ret = -EIO;
821 		goto out_bh;
822 	}
823 
824 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
825 
826 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
827 			      pvoldesc->recordingDateAndTime);
828 #ifdef UDFFS_DEBUG
829 	ts = &pvoldesc->recordingDateAndTime;
830 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
831 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
832 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
833 #endif
834 
835 
836 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
837 	if (ret < 0)
838 		goto out_bh;
839 
840 	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
841 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
842 
843 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
844 	if (ret < 0)
845 		goto out_bh;
846 
847 	outstr[ret] = 0;
848 	udf_debug("volSetIdent[] = '%s'\n", outstr);
849 
850 	ret = 0;
851 out_bh:
852 	brelse(bh);
853 out2:
854 	kfree(outstr);
855 	return ret;
856 }
857 
858 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
859 					u32 meta_file_loc, u32 partition_ref)
860 {
861 	struct kernel_lb_addr addr;
862 	struct inode *metadata_fe;
863 
864 	addr.logicalBlockNum = meta_file_loc;
865 	addr.partitionReferenceNum = partition_ref;
866 
867 	metadata_fe = udf_iget_special(sb, &addr);
868 
869 	if (IS_ERR(metadata_fe)) {
870 		udf_warn(sb, "metadata inode efe not found\n");
871 		return metadata_fe;
872 	}
873 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
874 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
875 		iput(metadata_fe);
876 		return ERR_PTR(-EIO);
877 	}
878 
879 	return metadata_fe;
880 }
881 
882 static int udf_load_metadata_files(struct super_block *sb, int partition,
883 				   int type1_index)
884 {
885 	struct udf_sb_info *sbi = UDF_SB(sb);
886 	struct udf_part_map *map;
887 	struct udf_meta_data *mdata;
888 	struct kernel_lb_addr addr;
889 	struct inode *fe;
890 
891 	map = &sbi->s_partmaps[partition];
892 	mdata = &map->s_type_specific.s_metadata;
893 	mdata->s_phys_partition_ref = type1_index;
894 
895 	/* metadata address */
896 	udf_debug("Metadata file location: block = %u part = %u\n",
897 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
898 
899 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
900 					 mdata->s_phys_partition_ref);
901 	if (IS_ERR(fe)) {
902 		/* mirror file entry */
903 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
904 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
905 
906 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
907 						 mdata->s_phys_partition_ref);
908 
909 		if (IS_ERR(fe)) {
910 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
911 			return PTR_ERR(fe);
912 		}
913 		mdata->s_mirror_fe = fe;
914 	} else
915 		mdata->s_metadata_fe = fe;
916 
917 
918 	/*
919 	 * bitmap file entry
920 	 * Note:
921 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
922 	*/
923 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
924 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
925 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
926 
927 		udf_debug("Bitmap file location: block = %u part = %u\n",
928 			  addr.logicalBlockNum, addr.partitionReferenceNum);
929 
930 		fe = udf_iget_special(sb, &addr);
931 		if (IS_ERR(fe)) {
932 			if (sb_rdonly(sb))
933 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
934 			else {
935 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
936 				return PTR_ERR(fe);
937 			}
938 		} else
939 			mdata->s_bitmap_fe = fe;
940 	}
941 
942 	udf_debug("udf_load_metadata_files Ok\n");
943 	return 0;
944 }
945 
946 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
947 			     struct kernel_lb_addr *root)
948 {
949 	struct fileSetDesc *fset;
950 
951 	fset = (struct fileSetDesc *)bh->b_data;
952 
953 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
954 
955 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
956 
957 	udf_debug("Rootdir at block=%u, partition=%u\n",
958 		  root->logicalBlockNum, root->partitionReferenceNum);
959 }
960 
961 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
962 {
963 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
964 	return DIV_ROUND_UP(map->s_partition_len +
965 			    (sizeof(struct spaceBitmapDesc) << 3),
966 			    sb->s_blocksize * 8);
967 }
968 
969 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
970 {
971 	struct udf_bitmap *bitmap;
972 	int nr_groups;
973 	int size;
974 
975 	nr_groups = udf_compute_nr_groups(sb, index);
976 	size = sizeof(struct udf_bitmap) +
977 		(sizeof(struct buffer_head *) * nr_groups);
978 
979 	if (size <= PAGE_SIZE)
980 		bitmap = kzalloc(size, GFP_KERNEL);
981 	else
982 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
983 
984 	if (!bitmap)
985 		return NULL;
986 
987 	bitmap->s_nr_groups = nr_groups;
988 	return bitmap;
989 }
990 
991 static int udf_fill_partdesc_info(struct super_block *sb,
992 		struct partitionDesc *p, int p_index)
993 {
994 	struct udf_part_map *map;
995 	struct udf_sb_info *sbi = UDF_SB(sb);
996 	struct partitionHeaderDesc *phd;
997 
998 	map = &sbi->s_partmaps[p_index];
999 
1000 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1001 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1002 
1003 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1004 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1005 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1006 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1007 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1008 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1009 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1010 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1011 
1012 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1013 		  p_index, map->s_partition_type,
1014 		  map->s_partition_root, map->s_partition_len);
1015 
1016 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1017 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1018 		return 0;
1019 
1020 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1021 	if (phd->unallocSpaceTable.extLength) {
1022 		struct kernel_lb_addr loc = {
1023 			.logicalBlockNum = le32_to_cpu(
1024 				phd->unallocSpaceTable.extPosition),
1025 			.partitionReferenceNum = p_index,
1026 		};
1027 		struct inode *inode;
1028 
1029 		inode = udf_iget_special(sb, &loc);
1030 		if (IS_ERR(inode)) {
1031 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1032 				  p_index);
1033 			return PTR_ERR(inode);
1034 		}
1035 		map->s_uspace.s_table = inode;
1036 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1037 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1038 			  p_index, map->s_uspace.s_table->i_ino);
1039 	}
1040 
1041 	if (phd->unallocSpaceBitmap.extLength) {
1042 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1043 		if (!bitmap)
1044 			return -ENOMEM;
1045 		map->s_uspace.s_bitmap = bitmap;
1046 		bitmap->s_extPosition = le32_to_cpu(
1047 				phd->unallocSpaceBitmap.extPosition);
1048 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1049 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1050 			  p_index, bitmap->s_extPosition);
1051 	}
1052 
1053 	if (phd->partitionIntegrityTable.extLength)
1054 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1055 
1056 	if (phd->freedSpaceTable.extLength) {
1057 		struct kernel_lb_addr loc = {
1058 			.logicalBlockNum = le32_to_cpu(
1059 				phd->freedSpaceTable.extPosition),
1060 			.partitionReferenceNum = p_index,
1061 		};
1062 		struct inode *inode;
1063 
1064 		inode = udf_iget_special(sb, &loc);
1065 		if (IS_ERR(inode)) {
1066 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1067 				  p_index);
1068 			return PTR_ERR(inode);
1069 		}
1070 		map->s_fspace.s_table = inode;
1071 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1072 		udf_debug("freedSpaceTable (part %d) @ %lu\n",
1073 			  p_index, map->s_fspace.s_table->i_ino);
1074 	}
1075 
1076 	if (phd->freedSpaceBitmap.extLength) {
1077 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1078 		if (!bitmap)
1079 			return -ENOMEM;
1080 		map->s_fspace.s_bitmap = bitmap;
1081 		bitmap->s_extPosition = le32_to_cpu(
1082 				phd->freedSpaceBitmap.extPosition);
1083 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1084 		udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1085 			  p_index, bitmap->s_extPosition);
1086 	}
1087 	return 0;
1088 }
1089 
1090 static void udf_find_vat_block(struct super_block *sb, int p_index,
1091 			       int type1_index, sector_t start_block)
1092 {
1093 	struct udf_sb_info *sbi = UDF_SB(sb);
1094 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1095 	sector_t vat_block;
1096 	struct kernel_lb_addr ino;
1097 	struct inode *inode;
1098 
1099 	/*
1100 	 * VAT file entry is in the last recorded block. Some broken disks have
1101 	 * it a few blocks before so try a bit harder...
1102 	 */
1103 	ino.partitionReferenceNum = type1_index;
1104 	for (vat_block = start_block;
1105 	     vat_block >= map->s_partition_root &&
1106 	     vat_block >= start_block - 3; vat_block--) {
1107 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1108 		inode = udf_iget_special(sb, &ino);
1109 		if (!IS_ERR(inode)) {
1110 			sbi->s_vat_inode = inode;
1111 			break;
1112 		}
1113 	}
1114 }
1115 
1116 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1117 {
1118 	struct udf_sb_info *sbi = UDF_SB(sb);
1119 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1120 	struct buffer_head *bh = NULL;
1121 	struct udf_inode_info *vati;
1122 	uint32_t pos;
1123 	struct virtualAllocationTable20 *vat20;
1124 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1125 			  sb->s_blocksize_bits;
1126 
1127 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1128 	if (!sbi->s_vat_inode &&
1129 	    sbi->s_last_block != blocks - 1) {
1130 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1131 			  (unsigned long)sbi->s_last_block,
1132 			  (unsigned long)blocks - 1);
1133 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1134 	}
1135 	if (!sbi->s_vat_inode)
1136 		return -EIO;
1137 
1138 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1139 		map->s_type_specific.s_virtual.s_start_offset = 0;
1140 		map->s_type_specific.s_virtual.s_num_entries =
1141 			(sbi->s_vat_inode->i_size - 36) >> 2;
1142 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1143 		vati = UDF_I(sbi->s_vat_inode);
1144 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1145 			pos = udf_block_map(sbi->s_vat_inode, 0);
1146 			bh = sb_bread(sb, pos);
1147 			if (!bh)
1148 				return -EIO;
1149 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1150 		} else {
1151 			vat20 = (struct virtualAllocationTable20 *)
1152 							vati->i_ext.i_data;
1153 		}
1154 
1155 		map->s_type_specific.s_virtual.s_start_offset =
1156 			le16_to_cpu(vat20->lengthHeader);
1157 		map->s_type_specific.s_virtual.s_num_entries =
1158 			(sbi->s_vat_inode->i_size -
1159 				map->s_type_specific.s_virtual.
1160 					s_start_offset) >> 2;
1161 		brelse(bh);
1162 	}
1163 	return 0;
1164 }
1165 
1166 /*
1167  * Load partition descriptor block
1168  *
1169  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1170  * sequence.
1171  */
1172 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1173 {
1174 	struct buffer_head *bh;
1175 	struct partitionDesc *p;
1176 	struct udf_part_map *map;
1177 	struct udf_sb_info *sbi = UDF_SB(sb);
1178 	int i, type1_idx;
1179 	uint16_t partitionNumber;
1180 	uint16_t ident;
1181 	int ret;
1182 
1183 	bh = udf_read_tagged(sb, block, block, &ident);
1184 	if (!bh)
1185 		return -EAGAIN;
1186 	if (ident != TAG_IDENT_PD) {
1187 		ret = 0;
1188 		goto out_bh;
1189 	}
1190 
1191 	p = (struct partitionDesc *)bh->b_data;
1192 	partitionNumber = le16_to_cpu(p->partitionNumber);
1193 
1194 	/* First scan for TYPE1 and SPARABLE partitions */
1195 	for (i = 0; i < sbi->s_partitions; i++) {
1196 		map = &sbi->s_partmaps[i];
1197 		udf_debug("Searching map: (%u == %u)\n",
1198 			  map->s_partition_num, partitionNumber);
1199 		if (map->s_partition_num == partitionNumber &&
1200 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1201 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1202 			break;
1203 	}
1204 
1205 	if (i >= sbi->s_partitions) {
1206 		udf_debug("Partition (%u) not found in partition map\n",
1207 			  partitionNumber);
1208 		ret = 0;
1209 		goto out_bh;
1210 	}
1211 
1212 	ret = udf_fill_partdesc_info(sb, p, i);
1213 	if (ret < 0)
1214 		goto out_bh;
1215 
1216 	/*
1217 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1218 	 * PHYSICAL partitions are already set up
1219 	 */
1220 	type1_idx = i;
1221 #ifdef UDFFS_DEBUG
1222 	map = NULL; /* supress 'maybe used uninitialized' warning */
1223 #endif
1224 	for (i = 0; i < sbi->s_partitions; i++) {
1225 		map = &sbi->s_partmaps[i];
1226 
1227 		if (map->s_partition_num == partitionNumber &&
1228 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1229 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1230 		     map->s_partition_type == UDF_METADATA_MAP25))
1231 			break;
1232 	}
1233 
1234 	if (i >= sbi->s_partitions) {
1235 		ret = 0;
1236 		goto out_bh;
1237 	}
1238 
1239 	ret = udf_fill_partdesc_info(sb, p, i);
1240 	if (ret < 0)
1241 		goto out_bh;
1242 
1243 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1244 		ret = udf_load_metadata_files(sb, i, type1_idx);
1245 		if (ret < 0) {
1246 			udf_err(sb, "error loading MetaData partition map %d\n",
1247 				i);
1248 			goto out_bh;
1249 		}
1250 	} else {
1251 		/*
1252 		 * If we have a partition with virtual map, we don't handle
1253 		 * writing to it (we overwrite blocks instead of relocating
1254 		 * them).
1255 		 */
1256 		if (!sb_rdonly(sb)) {
1257 			ret = -EACCES;
1258 			goto out_bh;
1259 		}
1260 		ret = udf_load_vat(sb, i, type1_idx);
1261 		if (ret < 0)
1262 			goto out_bh;
1263 	}
1264 	ret = 0;
1265 out_bh:
1266 	/* In case loading failed, we handle cleanup in udf_fill_super */
1267 	brelse(bh);
1268 	return ret;
1269 }
1270 
1271 static int udf_load_sparable_map(struct super_block *sb,
1272 				 struct udf_part_map *map,
1273 				 struct sparablePartitionMap *spm)
1274 {
1275 	uint32_t loc;
1276 	uint16_t ident;
1277 	struct sparingTable *st;
1278 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1279 	int i;
1280 	struct buffer_head *bh;
1281 
1282 	map->s_partition_type = UDF_SPARABLE_MAP15;
1283 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1284 	if (!is_power_of_2(sdata->s_packet_len)) {
1285 		udf_err(sb, "error loading logical volume descriptor: "
1286 			"Invalid packet length %u\n",
1287 			(unsigned)sdata->s_packet_len);
1288 		return -EIO;
1289 	}
1290 	if (spm->numSparingTables > 4) {
1291 		udf_err(sb, "error loading logical volume descriptor: "
1292 			"Too many sparing tables (%d)\n",
1293 			(int)spm->numSparingTables);
1294 		return -EIO;
1295 	}
1296 
1297 	for (i = 0; i < spm->numSparingTables; i++) {
1298 		loc = le32_to_cpu(spm->locSparingTable[i]);
1299 		bh = udf_read_tagged(sb, loc, loc, &ident);
1300 		if (!bh)
1301 			continue;
1302 
1303 		st = (struct sparingTable *)bh->b_data;
1304 		if (ident != 0 ||
1305 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1306 			    strlen(UDF_ID_SPARING)) ||
1307 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1308 							sb->s_blocksize) {
1309 			brelse(bh);
1310 			continue;
1311 		}
1312 
1313 		sdata->s_spar_map[i] = bh;
1314 	}
1315 	map->s_partition_func = udf_get_pblock_spar15;
1316 	return 0;
1317 }
1318 
1319 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1320 			       struct kernel_lb_addr *fileset)
1321 {
1322 	struct logicalVolDesc *lvd;
1323 	int i, offset;
1324 	uint8_t type;
1325 	struct udf_sb_info *sbi = UDF_SB(sb);
1326 	struct genericPartitionMap *gpm;
1327 	uint16_t ident;
1328 	struct buffer_head *bh;
1329 	unsigned int table_len;
1330 	int ret;
1331 
1332 	bh = udf_read_tagged(sb, block, block, &ident);
1333 	if (!bh)
1334 		return -EAGAIN;
1335 	BUG_ON(ident != TAG_IDENT_LVD);
1336 	lvd = (struct logicalVolDesc *)bh->b_data;
1337 	table_len = le32_to_cpu(lvd->mapTableLength);
1338 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1339 		udf_err(sb, "error loading logical volume descriptor: "
1340 			"Partition table too long (%u > %lu)\n", table_len,
1341 			sb->s_blocksize - sizeof(*lvd));
1342 		ret = -EIO;
1343 		goto out_bh;
1344 	}
1345 
1346 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1347 	if (ret)
1348 		goto out_bh;
1349 
1350 	for (i = 0, offset = 0;
1351 	     i < sbi->s_partitions && offset < table_len;
1352 	     i++, offset += gpm->partitionMapLength) {
1353 		struct udf_part_map *map = &sbi->s_partmaps[i];
1354 		gpm = (struct genericPartitionMap *)
1355 				&(lvd->partitionMaps[offset]);
1356 		type = gpm->partitionMapType;
1357 		if (type == 1) {
1358 			struct genericPartitionMap1 *gpm1 =
1359 				(struct genericPartitionMap1 *)gpm;
1360 			map->s_partition_type = UDF_TYPE1_MAP15;
1361 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1362 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1363 			map->s_partition_func = NULL;
1364 		} else if (type == 2) {
1365 			struct udfPartitionMap2 *upm2 =
1366 						(struct udfPartitionMap2 *)gpm;
1367 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1368 						strlen(UDF_ID_VIRTUAL))) {
1369 				u16 suf =
1370 					le16_to_cpu(((__le16 *)upm2->partIdent.
1371 							identSuffix)[0]);
1372 				if (suf < 0x0200) {
1373 					map->s_partition_type =
1374 							UDF_VIRTUAL_MAP15;
1375 					map->s_partition_func =
1376 							udf_get_pblock_virt15;
1377 				} else {
1378 					map->s_partition_type =
1379 							UDF_VIRTUAL_MAP20;
1380 					map->s_partition_func =
1381 							udf_get_pblock_virt20;
1382 				}
1383 			} else if (!strncmp(upm2->partIdent.ident,
1384 						UDF_ID_SPARABLE,
1385 						strlen(UDF_ID_SPARABLE))) {
1386 				ret = udf_load_sparable_map(sb, map,
1387 					(struct sparablePartitionMap *)gpm);
1388 				if (ret < 0)
1389 					goto out_bh;
1390 			} else if (!strncmp(upm2->partIdent.ident,
1391 						UDF_ID_METADATA,
1392 						strlen(UDF_ID_METADATA))) {
1393 				struct udf_meta_data *mdata =
1394 					&map->s_type_specific.s_metadata;
1395 				struct metadataPartitionMap *mdm =
1396 						(struct metadataPartitionMap *)
1397 						&(lvd->partitionMaps[offset]);
1398 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1399 					  i, type, UDF_ID_METADATA);
1400 
1401 				map->s_partition_type = UDF_METADATA_MAP25;
1402 				map->s_partition_func = udf_get_pblock_meta25;
1403 
1404 				mdata->s_meta_file_loc   =
1405 					le32_to_cpu(mdm->metadataFileLoc);
1406 				mdata->s_mirror_file_loc =
1407 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1408 				mdata->s_bitmap_file_loc =
1409 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1410 				mdata->s_alloc_unit_size =
1411 					le32_to_cpu(mdm->allocUnitSize);
1412 				mdata->s_align_unit_size =
1413 					le16_to_cpu(mdm->alignUnitSize);
1414 				if (mdm->flags & 0x01)
1415 					mdata->s_flags |= MF_DUPLICATE_MD;
1416 
1417 				udf_debug("Metadata Ident suffix=0x%x\n",
1418 					  le16_to_cpu(*(__le16 *)
1419 						      mdm->partIdent.identSuffix));
1420 				udf_debug("Metadata part num=%u\n",
1421 					  le16_to_cpu(mdm->partitionNum));
1422 				udf_debug("Metadata part alloc unit size=%u\n",
1423 					  le32_to_cpu(mdm->allocUnitSize));
1424 				udf_debug("Metadata file loc=%u\n",
1425 					  le32_to_cpu(mdm->metadataFileLoc));
1426 				udf_debug("Mirror file loc=%u\n",
1427 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1428 				udf_debug("Bitmap file loc=%u\n",
1429 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1430 				udf_debug("Flags: %d %u\n",
1431 					  mdata->s_flags, mdm->flags);
1432 			} else {
1433 				udf_debug("Unknown ident: %s\n",
1434 					  upm2->partIdent.ident);
1435 				continue;
1436 			}
1437 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1438 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1439 		}
1440 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1441 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1442 	}
1443 
1444 	if (fileset) {
1445 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1446 
1447 		*fileset = lelb_to_cpu(la->extLocation);
1448 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1449 			  fileset->logicalBlockNum,
1450 			  fileset->partitionReferenceNum);
1451 	}
1452 	if (lvd->integritySeqExt.extLength)
1453 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1454 	ret = 0;
1455 out_bh:
1456 	brelse(bh);
1457 	return ret;
1458 }
1459 
1460 /*
1461  * Find the prevailing Logical Volume Integrity Descriptor.
1462  */
1463 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1464 {
1465 	struct buffer_head *bh, *final_bh;
1466 	uint16_t ident;
1467 	struct udf_sb_info *sbi = UDF_SB(sb);
1468 	struct logicalVolIntegrityDesc *lvid;
1469 	int indirections = 0;
1470 
1471 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1472 		final_bh = NULL;
1473 		while (loc.extLength > 0 &&
1474 			(bh = udf_read_tagged(sb, loc.extLocation,
1475 					loc.extLocation, &ident))) {
1476 			if (ident != TAG_IDENT_LVID) {
1477 				brelse(bh);
1478 				break;
1479 			}
1480 
1481 			brelse(final_bh);
1482 			final_bh = bh;
1483 
1484 			loc.extLength -= sb->s_blocksize;
1485 			loc.extLocation++;
1486 		}
1487 
1488 		if (!final_bh)
1489 			return;
1490 
1491 		brelse(sbi->s_lvid_bh);
1492 		sbi->s_lvid_bh = final_bh;
1493 
1494 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1495 		if (lvid->nextIntegrityExt.extLength == 0)
1496 			return;
1497 
1498 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1499 	}
1500 
1501 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1502 		UDF_MAX_LVID_NESTING);
1503 	brelse(sbi->s_lvid_bh);
1504 	sbi->s_lvid_bh = NULL;
1505 }
1506 
1507 /*
1508  * Step for reallocation of table of partition descriptor sequence numbers.
1509  * Must be power of 2.
1510  */
1511 #define PART_DESC_ALLOC_STEP 32
1512 
1513 struct part_desc_seq_scan_data {
1514 	struct udf_vds_record rec;
1515 	u32 partnum;
1516 };
1517 
1518 struct desc_seq_scan_data {
1519 	struct udf_vds_record vds[VDS_POS_LENGTH];
1520 	unsigned int size_part_descs;
1521 	unsigned int num_part_descs;
1522 	struct part_desc_seq_scan_data *part_descs_loc;
1523 };
1524 
1525 static struct udf_vds_record *handle_partition_descriptor(
1526 				struct buffer_head *bh,
1527 				struct desc_seq_scan_data *data)
1528 {
1529 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1530 	int partnum;
1531 	int i;
1532 
1533 	partnum = le16_to_cpu(desc->partitionNumber);
1534 	for (i = 0; i < data->num_part_descs; i++)
1535 		if (partnum == data->part_descs_loc[i].partnum)
1536 			return &(data->part_descs_loc[i].rec);
1537 	if (data->num_part_descs >= data->size_part_descs) {
1538 		struct part_desc_seq_scan_data *new_loc;
1539 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1540 
1541 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1542 		if (!new_loc)
1543 			return ERR_PTR(-ENOMEM);
1544 		memcpy(new_loc, data->part_descs_loc,
1545 		       data->size_part_descs * sizeof(*new_loc));
1546 		kfree(data->part_descs_loc);
1547 		data->part_descs_loc = new_loc;
1548 		data->size_part_descs = new_size;
1549 	}
1550 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1551 }
1552 
1553 
1554 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1555 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1556 {
1557 	switch (ident) {
1558 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1559 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1560 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1561 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1562 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1563 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1564 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1565 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1566 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1567 		return handle_partition_descriptor(bh, data);
1568 	}
1569 	return NULL;
1570 }
1571 
1572 /*
1573  * Process a main/reserve volume descriptor sequence.
1574  *   @block		First block of first extent of the sequence.
1575  *   @lastblock		Lastblock of first extent of the sequence.
1576  *   @fileset		There we store extent containing root fileset
1577  *
1578  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1579  * sequence
1580  */
1581 static noinline int udf_process_sequence(
1582 		struct super_block *sb,
1583 		sector_t block, sector_t lastblock,
1584 		struct kernel_lb_addr *fileset)
1585 {
1586 	struct buffer_head *bh = NULL;
1587 	struct udf_vds_record *curr;
1588 	struct generic_desc *gd;
1589 	struct volDescPtr *vdp;
1590 	bool done = false;
1591 	uint32_t vdsn;
1592 	uint16_t ident;
1593 	int ret;
1594 	unsigned int indirections = 0;
1595 	struct desc_seq_scan_data data;
1596 	unsigned int i;
1597 
1598 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1599 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1600 	data.num_part_descs = 0;
1601 	data.part_descs_loc = kcalloc(data.size_part_descs,
1602 				      sizeof(*data.part_descs_loc),
1603 				      GFP_KERNEL);
1604 	if (!data.part_descs_loc)
1605 		return -ENOMEM;
1606 
1607 	/*
1608 	 * Read the main descriptor sequence and find which descriptors
1609 	 * are in it.
1610 	 */
1611 	for (; (!done && block <= lastblock); block++) {
1612 		bh = udf_read_tagged(sb, block, block, &ident);
1613 		if (!bh)
1614 			break;
1615 
1616 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1617 		gd = (struct generic_desc *)bh->b_data;
1618 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1619 		switch (ident) {
1620 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1621 			if (++indirections > UDF_MAX_TD_NESTING) {
1622 				udf_err(sb, "too many Volume Descriptor "
1623 					"Pointers (max %u supported)\n",
1624 					UDF_MAX_TD_NESTING);
1625 				brelse(bh);
1626 				return -EIO;
1627 			}
1628 
1629 			vdp = (struct volDescPtr *)bh->b_data;
1630 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1631 			lastblock = le32_to_cpu(
1632 				vdp->nextVolDescSeqExt.extLength) >>
1633 				sb->s_blocksize_bits;
1634 			lastblock += block - 1;
1635 			/* For loop is going to increment 'block' again */
1636 			block--;
1637 			break;
1638 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1639 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1640 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1641 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1642 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1643 			curr = get_volume_descriptor_record(ident, bh, &data);
1644 			if (IS_ERR(curr)) {
1645 				brelse(bh);
1646 				return PTR_ERR(curr);
1647 			}
1648 			/* Descriptor we don't care about? */
1649 			if (!curr)
1650 				break;
1651 			if (vdsn >= curr->volDescSeqNum) {
1652 				curr->volDescSeqNum = vdsn;
1653 				curr->block = block;
1654 			}
1655 			break;
1656 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1657 			done = true;
1658 			break;
1659 		}
1660 		brelse(bh);
1661 	}
1662 	/*
1663 	 * Now read interesting descriptors again and process them
1664 	 * in a suitable order
1665 	 */
1666 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1667 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1668 		return -EAGAIN;
1669 	}
1670 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1671 	if (ret < 0)
1672 		return ret;
1673 
1674 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1675 		ret = udf_load_logicalvol(sb,
1676 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1677 				fileset);
1678 		if (ret < 0)
1679 			return ret;
1680 	}
1681 
1682 	/* Now handle prevailing Partition Descriptors */
1683 	for (i = 0; i < data.num_part_descs; i++) {
1684 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1685 		if (ret < 0)
1686 			return ret;
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 /*
1693  * Load Volume Descriptor Sequence described by anchor in bh
1694  *
1695  * Returns <0 on error, 0 on success
1696  */
1697 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1698 			     struct kernel_lb_addr *fileset)
1699 {
1700 	struct anchorVolDescPtr *anchor;
1701 	sector_t main_s, main_e, reserve_s, reserve_e;
1702 	int ret;
1703 
1704 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1705 
1706 	/* Locate the main sequence */
1707 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1708 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1709 	main_e = main_e >> sb->s_blocksize_bits;
1710 	main_e += main_s - 1;
1711 
1712 	/* Locate the reserve sequence */
1713 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1714 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1715 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1716 	reserve_e += reserve_s - 1;
1717 
1718 	/* Process the main & reserve sequences */
1719 	/* responsible for finding the PartitionDesc(s) */
1720 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1721 	if (ret != -EAGAIN)
1722 		return ret;
1723 	udf_sb_free_partitions(sb);
1724 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1725 	if (ret < 0) {
1726 		udf_sb_free_partitions(sb);
1727 		/* No sequence was OK, return -EIO */
1728 		if (ret == -EAGAIN)
1729 			ret = -EIO;
1730 	}
1731 	return ret;
1732 }
1733 
1734 /*
1735  * Check whether there is an anchor block in the given block and
1736  * load Volume Descriptor Sequence if so.
1737  *
1738  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1739  * block
1740  */
1741 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1742 				  struct kernel_lb_addr *fileset)
1743 {
1744 	struct buffer_head *bh;
1745 	uint16_t ident;
1746 	int ret;
1747 
1748 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1749 	    udf_fixed_to_variable(block) >=
1750 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1751 		return -EAGAIN;
1752 
1753 	bh = udf_read_tagged(sb, block, block, &ident);
1754 	if (!bh)
1755 		return -EAGAIN;
1756 	if (ident != TAG_IDENT_AVDP) {
1757 		brelse(bh);
1758 		return -EAGAIN;
1759 	}
1760 	ret = udf_load_sequence(sb, bh, fileset);
1761 	brelse(bh);
1762 	return ret;
1763 }
1764 
1765 /*
1766  * Search for an anchor volume descriptor pointer.
1767  *
1768  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1769  * of anchors.
1770  */
1771 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1772 			    struct kernel_lb_addr *fileset)
1773 {
1774 	sector_t last[6];
1775 	int i;
1776 	struct udf_sb_info *sbi = UDF_SB(sb);
1777 	int last_count = 0;
1778 	int ret;
1779 
1780 	/* First try user provided anchor */
1781 	if (sbi->s_anchor) {
1782 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1783 		if (ret != -EAGAIN)
1784 			return ret;
1785 	}
1786 	/*
1787 	 * according to spec, anchor is in either:
1788 	 *     block 256
1789 	 *     lastblock-256
1790 	 *     lastblock
1791 	 *  however, if the disc isn't closed, it could be 512.
1792 	 */
1793 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1794 	if (ret != -EAGAIN)
1795 		return ret;
1796 	/*
1797 	 * The trouble is which block is the last one. Drives often misreport
1798 	 * this so we try various possibilities.
1799 	 */
1800 	last[last_count++] = *lastblock;
1801 	if (*lastblock >= 1)
1802 		last[last_count++] = *lastblock - 1;
1803 	last[last_count++] = *lastblock + 1;
1804 	if (*lastblock >= 2)
1805 		last[last_count++] = *lastblock - 2;
1806 	if (*lastblock >= 150)
1807 		last[last_count++] = *lastblock - 150;
1808 	if (*lastblock >= 152)
1809 		last[last_count++] = *lastblock - 152;
1810 
1811 	for (i = 0; i < last_count; i++) {
1812 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1813 				sb->s_blocksize_bits)
1814 			continue;
1815 		ret = udf_check_anchor_block(sb, last[i], fileset);
1816 		if (ret != -EAGAIN) {
1817 			if (!ret)
1818 				*lastblock = last[i];
1819 			return ret;
1820 		}
1821 		if (last[i] < 256)
1822 			continue;
1823 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1824 		if (ret != -EAGAIN) {
1825 			if (!ret)
1826 				*lastblock = last[i];
1827 			return ret;
1828 		}
1829 	}
1830 
1831 	/* Finally try block 512 in case media is open */
1832 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1833 }
1834 
1835 /*
1836  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1837  * area specified by it. The function expects sbi->s_lastblock to be the last
1838  * block on the media.
1839  *
1840  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1841  * was not found.
1842  */
1843 static int udf_find_anchor(struct super_block *sb,
1844 			   struct kernel_lb_addr *fileset)
1845 {
1846 	struct udf_sb_info *sbi = UDF_SB(sb);
1847 	sector_t lastblock = sbi->s_last_block;
1848 	int ret;
1849 
1850 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1851 	if (ret != -EAGAIN)
1852 		goto out;
1853 
1854 	/* No anchor found? Try VARCONV conversion of block numbers */
1855 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1856 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1857 	/* Firstly, we try to not convert number of the last block */
1858 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1859 	if (ret != -EAGAIN)
1860 		goto out;
1861 
1862 	lastblock = sbi->s_last_block;
1863 	/* Secondly, we try with converted number of the last block */
1864 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1865 	if (ret < 0) {
1866 		/* VARCONV didn't help. Clear it. */
1867 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1868 	}
1869 out:
1870 	if (ret == 0)
1871 		sbi->s_last_block = lastblock;
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Check Volume Structure Descriptor, find Anchor block and load Volume
1877  * Descriptor Sequence.
1878  *
1879  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1880  * block was not found.
1881  */
1882 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1883 			int silent, struct kernel_lb_addr *fileset)
1884 {
1885 	struct udf_sb_info *sbi = UDF_SB(sb);
1886 	loff_t nsr_off;
1887 	int ret;
1888 
1889 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1890 		if (!silent)
1891 			udf_warn(sb, "Bad block size\n");
1892 		return -EINVAL;
1893 	}
1894 	sbi->s_last_block = uopt->lastblock;
1895 	if (!uopt->novrs) {
1896 		/* Check that it is NSR02 compliant */
1897 		nsr_off = udf_check_vsd(sb);
1898 		if (!nsr_off) {
1899 			if (!silent)
1900 				udf_warn(sb, "No VRS found\n");
1901 			return -EINVAL;
1902 		}
1903 		if (nsr_off == -1)
1904 			udf_debug("Failed to read sector at offset %d. "
1905 				  "Assuming open disc. Skipping validity "
1906 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1907 		if (!sbi->s_last_block)
1908 			sbi->s_last_block = udf_get_last_block(sb);
1909 	} else {
1910 		udf_debug("Validity check skipped because of novrs option\n");
1911 	}
1912 
1913 	/* Look for anchor block and load Volume Descriptor Sequence */
1914 	sbi->s_anchor = uopt->anchor;
1915 	ret = udf_find_anchor(sb, fileset);
1916 	if (ret < 0) {
1917 		if (!silent && ret == -EAGAIN)
1918 			udf_warn(sb, "No anchor found\n");
1919 		return ret;
1920 	}
1921 	return 0;
1922 }
1923 
1924 static void udf_open_lvid(struct super_block *sb)
1925 {
1926 	struct udf_sb_info *sbi = UDF_SB(sb);
1927 	struct buffer_head *bh = sbi->s_lvid_bh;
1928 	struct logicalVolIntegrityDesc *lvid;
1929 	struct logicalVolIntegrityDescImpUse *lvidiu;
1930 	struct timespec64 ts;
1931 
1932 	if (!bh)
1933 		return;
1934 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1935 	lvidiu = udf_sb_lvidiu(sb);
1936 	if (!lvidiu)
1937 		return;
1938 
1939 	mutex_lock(&sbi->s_alloc_mutex);
1940 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1941 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1942 	ktime_get_real_ts64(&ts);
1943 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1944 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1945 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1946 	else
1947 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1948 
1949 	lvid->descTag.descCRC = cpu_to_le16(
1950 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1951 			le16_to_cpu(lvid->descTag.descCRCLength)));
1952 
1953 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1954 	mark_buffer_dirty(bh);
1955 	sbi->s_lvid_dirty = 0;
1956 	mutex_unlock(&sbi->s_alloc_mutex);
1957 	/* Make opening of filesystem visible on the media immediately */
1958 	sync_dirty_buffer(bh);
1959 }
1960 
1961 static void udf_close_lvid(struct super_block *sb)
1962 {
1963 	struct udf_sb_info *sbi = UDF_SB(sb);
1964 	struct buffer_head *bh = sbi->s_lvid_bh;
1965 	struct logicalVolIntegrityDesc *lvid;
1966 	struct logicalVolIntegrityDescImpUse *lvidiu;
1967 	struct timespec64 ts;
1968 
1969 	if (!bh)
1970 		return;
1971 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1972 	lvidiu = udf_sb_lvidiu(sb);
1973 	if (!lvidiu)
1974 		return;
1975 
1976 	mutex_lock(&sbi->s_alloc_mutex);
1977 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1978 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1979 	ktime_get_real_ts64(&ts);
1980 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1981 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1982 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1983 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1984 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1985 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1986 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1987 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
1988 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1989 
1990 	lvid->descTag.descCRC = cpu_to_le16(
1991 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1992 				le16_to_cpu(lvid->descTag.descCRCLength)));
1993 
1994 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1995 	/*
1996 	 * We set buffer uptodate unconditionally here to avoid spurious
1997 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1998 	 * the buffer as !uptodate
1999 	 */
2000 	set_buffer_uptodate(bh);
2001 	mark_buffer_dirty(bh);
2002 	sbi->s_lvid_dirty = 0;
2003 	mutex_unlock(&sbi->s_alloc_mutex);
2004 	/* Make closing of filesystem visible on the media immediately */
2005 	sync_dirty_buffer(bh);
2006 }
2007 
2008 u64 lvid_get_unique_id(struct super_block *sb)
2009 {
2010 	struct buffer_head *bh;
2011 	struct udf_sb_info *sbi = UDF_SB(sb);
2012 	struct logicalVolIntegrityDesc *lvid;
2013 	struct logicalVolHeaderDesc *lvhd;
2014 	u64 uniqueID;
2015 	u64 ret;
2016 
2017 	bh = sbi->s_lvid_bh;
2018 	if (!bh)
2019 		return 0;
2020 
2021 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2022 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2023 
2024 	mutex_lock(&sbi->s_alloc_mutex);
2025 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2026 	if (!(++uniqueID & 0xFFFFFFFF))
2027 		uniqueID += 16;
2028 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2029 	mutex_unlock(&sbi->s_alloc_mutex);
2030 	mark_buffer_dirty(bh);
2031 
2032 	return ret;
2033 }
2034 
2035 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2036 {
2037 	int ret = -EINVAL;
2038 	struct inode *inode = NULL;
2039 	struct udf_options uopt;
2040 	struct kernel_lb_addr rootdir, fileset;
2041 	struct udf_sb_info *sbi;
2042 	bool lvid_open = false;
2043 
2044 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2045 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2046 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2047 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2048 	uopt.umask = 0;
2049 	uopt.fmode = UDF_INVALID_MODE;
2050 	uopt.dmode = UDF_INVALID_MODE;
2051 	uopt.nls_map = NULL;
2052 
2053 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2054 	if (!sbi)
2055 		return -ENOMEM;
2056 
2057 	sb->s_fs_info = sbi;
2058 
2059 	mutex_init(&sbi->s_alloc_mutex);
2060 
2061 	if (!udf_parse_options((char *)options, &uopt, false))
2062 		goto parse_options_failure;
2063 
2064 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2065 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2066 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2067 		goto parse_options_failure;
2068 	}
2069 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2070 		uopt.nls_map = load_nls_default();
2071 		if (!uopt.nls_map)
2072 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2073 		else
2074 			udf_debug("Using default NLS map\n");
2075 	}
2076 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2077 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2078 
2079 	fileset.logicalBlockNum = 0xFFFFFFFF;
2080 	fileset.partitionReferenceNum = 0xFFFF;
2081 
2082 	sbi->s_flags = uopt.flags;
2083 	sbi->s_uid = uopt.uid;
2084 	sbi->s_gid = uopt.gid;
2085 	sbi->s_umask = uopt.umask;
2086 	sbi->s_fmode = uopt.fmode;
2087 	sbi->s_dmode = uopt.dmode;
2088 	sbi->s_nls_map = uopt.nls_map;
2089 	rwlock_init(&sbi->s_cred_lock);
2090 
2091 	if (uopt.session == 0xFFFFFFFF)
2092 		sbi->s_session = udf_get_last_session(sb);
2093 	else
2094 		sbi->s_session = uopt.session;
2095 
2096 	udf_debug("Multi-session=%d\n", sbi->s_session);
2097 
2098 	/* Fill in the rest of the superblock */
2099 	sb->s_op = &udf_sb_ops;
2100 	sb->s_export_op = &udf_export_ops;
2101 
2102 	sb->s_magic = UDF_SUPER_MAGIC;
2103 	sb->s_time_gran = 1000;
2104 
2105 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2106 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2107 	} else {
2108 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2109 		while (uopt.blocksize <= 4096) {
2110 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2111 			if (ret < 0) {
2112 				if (!silent && ret != -EACCES) {
2113 					pr_notice("Scanning with blocksize %u failed\n",
2114 						  uopt.blocksize);
2115 				}
2116 				brelse(sbi->s_lvid_bh);
2117 				sbi->s_lvid_bh = NULL;
2118 				/*
2119 				 * EACCES is special - we want to propagate to
2120 				 * upper layers that we cannot handle RW mount.
2121 				 */
2122 				if (ret == -EACCES)
2123 					break;
2124 			} else
2125 				break;
2126 
2127 			uopt.blocksize <<= 1;
2128 		}
2129 	}
2130 	if (ret < 0) {
2131 		if (ret == -EAGAIN) {
2132 			udf_warn(sb, "No partition found (1)\n");
2133 			ret = -EINVAL;
2134 		}
2135 		goto error_out;
2136 	}
2137 
2138 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2139 
2140 	if (sbi->s_lvid_bh) {
2141 		struct logicalVolIntegrityDescImpUse *lvidiu =
2142 							udf_sb_lvidiu(sb);
2143 		uint16_t minUDFReadRev;
2144 		uint16_t minUDFWriteRev;
2145 
2146 		if (!lvidiu) {
2147 			ret = -EINVAL;
2148 			goto error_out;
2149 		}
2150 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2151 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2152 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2153 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2154 				minUDFReadRev,
2155 				UDF_MAX_READ_VERSION);
2156 			ret = -EINVAL;
2157 			goto error_out;
2158 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2159 			   !sb_rdonly(sb)) {
2160 			ret = -EACCES;
2161 			goto error_out;
2162 		}
2163 
2164 		sbi->s_udfrev = minUDFWriteRev;
2165 
2166 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2167 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2168 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2169 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2170 	}
2171 
2172 	if (!sbi->s_partitions) {
2173 		udf_warn(sb, "No partition found (2)\n");
2174 		ret = -EINVAL;
2175 		goto error_out;
2176 	}
2177 
2178 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2179 			UDF_PART_FLAG_READ_ONLY &&
2180 	    !sb_rdonly(sb)) {
2181 		ret = -EACCES;
2182 		goto error_out;
2183 	}
2184 
2185 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2186 		udf_warn(sb, "No fileset found\n");
2187 		ret = -EINVAL;
2188 		goto error_out;
2189 	}
2190 
2191 	if (!silent) {
2192 		struct timestamp ts;
2193 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2194 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2195 			 sbi->s_volume_ident,
2196 			 le16_to_cpu(ts.year), ts.month, ts.day,
2197 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2198 	}
2199 	if (!sb_rdonly(sb)) {
2200 		udf_open_lvid(sb);
2201 		lvid_open = true;
2202 	}
2203 
2204 	/* Assign the root inode */
2205 	/* assign inodes by physical block number */
2206 	/* perhaps it's not extensible enough, but for now ... */
2207 	inode = udf_iget(sb, &rootdir);
2208 	if (IS_ERR(inode)) {
2209 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2210 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2211 		ret = PTR_ERR(inode);
2212 		goto error_out;
2213 	}
2214 
2215 	/* Allocate a dentry for the root inode */
2216 	sb->s_root = d_make_root(inode);
2217 	if (!sb->s_root) {
2218 		udf_err(sb, "Couldn't allocate root dentry\n");
2219 		ret = -ENOMEM;
2220 		goto error_out;
2221 	}
2222 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2223 	sb->s_max_links = UDF_MAX_LINKS;
2224 	return 0;
2225 
2226 error_out:
2227 	iput(sbi->s_vat_inode);
2228 parse_options_failure:
2229 	if (uopt.nls_map)
2230 		unload_nls(uopt.nls_map);
2231 	if (lvid_open)
2232 		udf_close_lvid(sb);
2233 	brelse(sbi->s_lvid_bh);
2234 	udf_sb_free_partitions(sb);
2235 	kfree(sbi);
2236 	sb->s_fs_info = NULL;
2237 
2238 	return ret;
2239 }
2240 
2241 void _udf_err(struct super_block *sb, const char *function,
2242 	      const char *fmt, ...)
2243 {
2244 	struct va_format vaf;
2245 	va_list args;
2246 
2247 	va_start(args, fmt);
2248 
2249 	vaf.fmt = fmt;
2250 	vaf.va = &args;
2251 
2252 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2253 
2254 	va_end(args);
2255 }
2256 
2257 void _udf_warn(struct super_block *sb, const char *function,
2258 	       const char *fmt, ...)
2259 {
2260 	struct va_format vaf;
2261 	va_list args;
2262 
2263 	va_start(args, fmt);
2264 
2265 	vaf.fmt = fmt;
2266 	vaf.va = &args;
2267 
2268 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2269 
2270 	va_end(args);
2271 }
2272 
2273 static void udf_put_super(struct super_block *sb)
2274 {
2275 	struct udf_sb_info *sbi;
2276 
2277 	sbi = UDF_SB(sb);
2278 
2279 	iput(sbi->s_vat_inode);
2280 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2281 		unload_nls(sbi->s_nls_map);
2282 	if (!sb_rdonly(sb))
2283 		udf_close_lvid(sb);
2284 	brelse(sbi->s_lvid_bh);
2285 	udf_sb_free_partitions(sb);
2286 	mutex_destroy(&sbi->s_alloc_mutex);
2287 	kfree(sb->s_fs_info);
2288 	sb->s_fs_info = NULL;
2289 }
2290 
2291 static int udf_sync_fs(struct super_block *sb, int wait)
2292 {
2293 	struct udf_sb_info *sbi = UDF_SB(sb);
2294 
2295 	mutex_lock(&sbi->s_alloc_mutex);
2296 	if (sbi->s_lvid_dirty) {
2297 		/*
2298 		 * Blockdevice will be synced later so we don't have to submit
2299 		 * the buffer for IO
2300 		 */
2301 		mark_buffer_dirty(sbi->s_lvid_bh);
2302 		sbi->s_lvid_dirty = 0;
2303 	}
2304 	mutex_unlock(&sbi->s_alloc_mutex);
2305 
2306 	return 0;
2307 }
2308 
2309 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2310 {
2311 	struct super_block *sb = dentry->d_sb;
2312 	struct udf_sb_info *sbi = UDF_SB(sb);
2313 	struct logicalVolIntegrityDescImpUse *lvidiu;
2314 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2315 
2316 	lvidiu = udf_sb_lvidiu(sb);
2317 	buf->f_type = UDF_SUPER_MAGIC;
2318 	buf->f_bsize = sb->s_blocksize;
2319 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2320 	buf->f_bfree = udf_count_free(sb);
2321 	buf->f_bavail = buf->f_bfree;
2322 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2323 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2324 			+ buf->f_bfree;
2325 	buf->f_ffree = buf->f_bfree;
2326 	buf->f_namelen = UDF_NAME_LEN;
2327 	buf->f_fsid.val[0] = (u32)id;
2328 	buf->f_fsid.val[1] = (u32)(id >> 32);
2329 
2330 	return 0;
2331 }
2332 
2333 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2334 					  struct udf_bitmap *bitmap)
2335 {
2336 	struct buffer_head *bh = NULL;
2337 	unsigned int accum = 0;
2338 	int index;
2339 	udf_pblk_t block = 0, newblock;
2340 	struct kernel_lb_addr loc;
2341 	uint32_t bytes;
2342 	uint8_t *ptr;
2343 	uint16_t ident;
2344 	struct spaceBitmapDesc *bm;
2345 
2346 	loc.logicalBlockNum = bitmap->s_extPosition;
2347 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2348 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2349 
2350 	if (!bh) {
2351 		udf_err(sb, "udf_count_free failed\n");
2352 		goto out;
2353 	} else if (ident != TAG_IDENT_SBD) {
2354 		brelse(bh);
2355 		udf_err(sb, "udf_count_free failed\n");
2356 		goto out;
2357 	}
2358 
2359 	bm = (struct spaceBitmapDesc *)bh->b_data;
2360 	bytes = le32_to_cpu(bm->numOfBytes);
2361 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2362 	ptr = (uint8_t *)bh->b_data;
2363 
2364 	while (bytes > 0) {
2365 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2366 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2367 					cur_bytes * 8);
2368 		bytes -= cur_bytes;
2369 		if (bytes) {
2370 			brelse(bh);
2371 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2372 			bh = udf_tread(sb, newblock);
2373 			if (!bh) {
2374 				udf_debug("read failed\n");
2375 				goto out;
2376 			}
2377 			index = 0;
2378 			ptr = (uint8_t *)bh->b_data;
2379 		}
2380 	}
2381 	brelse(bh);
2382 out:
2383 	return accum;
2384 }
2385 
2386 static unsigned int udf_count_free_table(struct super_block *sb,
2387 					 struct inode *table)
2388 {
2389 	unsigned int accum = 0;
2390 	uint32_t elen;
2391 	struct kernel_lb_addr eloc;
2392 	int8_t etype;
2393 	struct extent_position epos;
2394 
2395 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2396 	epos.block = UDF_I(table)->i_location;
2397 	epos.offset = sizeof(struct unallocSpaceEntry);
2398 	epos.bh = NULL;
2399 
2400 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2401 		accum += (elen >> table->i_sb->s_blocksize_bits);
2402 
2403 	brelse(epos.bh);
2404 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2405 
2406 	return accum;
2407 }
2408 
2409 static unsigned int udf_count_free(struct super_block *sb)
2410 {
2411 	unsigned int accum = 0;
2412 	struct udf_sb_info *sbi;
2413 	struct udf_part_map *map;
2414 
2415 	sbi = UDF_SB(sb);
2416 	if (sbi->s_lvid_bh) {
2417 		struct logicalVolIntegrityDesc *lvid =
2418 			(struct logicalVolIntegrityDesc *)
2419 			sbi->s_lvid_bh->b_data;
2420 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2421 			accum = le32_to_cpu(
2422 					lvid->freeSpaceTable[sbi->s_partition]);
2423 			if (accum == 0xFFFFFFFF)
2424 				accum = 0;
2425 		}
2426 	}
2427 
2428 	if (accum)
2429 		return accum;
2430 
2431 	map = &sbi->s_partmaps[sbi->s_partition];
2432 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2433 		accum += udf_count_free_bitmap(sb,
2434 					       map->s_uspace.s_bitmap);
2435 	}
2436 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2437 		accum += udf_count_free_bitmap(sb,
2438 					       map->s_fspace.s_bitmap);
2439 	}
2440 	if (accum)
2441 		return accum;
2442 
2443 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2444 		accum += udf_count_free_table(sb,
2445 					      map->s_uspace.s_table);
2446 	}
2447 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2448 		accum += udf_count_free_table(sb,
2449 					      map->s_fspace.s_table);
2450 	}
2451 
2452 	return accum;
2453 }
2454 
2455 MODULE_AUTHOR("Ben Fennema");
2456 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2457 MODULE_LICENSE("GPL");
2458 module_init(init_udf_fs)
2459 module_exit(exit_udf_fs)
2460