1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 #define VSD_FIRST_SECTOR_OFFSET 32768 80 #define VSD_MAX_SECTOR_OFFSET 0x800000 81 82 enum { UDF_MAX_LINKS = 0xffff }; 83 84 /* These are the "meat" - everything else is stuffing */ 85 static int udf_fill_super(struct super_block *, void *, int); 86 static void udf_put_super(struct super_block *); 87 static int udf_sync_fs(struct super_block *, int); 88 static int udf_remount_fs(struct super_block *, int *, char *); 89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 91 struct kernel_lb_addr *); 92 static void udf_load_fileset(struct super_block *, struct buffer_head *, 93 struct kernel_lb_addr *); 94 static void udf_open_lvid(struct super_block *); 95 static void udf_close_lvid(struct super_block *); 96 static unsigned int udf_count_free(struct super_block *); 97 static int udf_statfs(struct dentry *, struct kstatfs *); 98 static int udf_show_options(struct seq_file *, struct dentry *); 99 100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 101 { 102 struct logicalVolIntegrityDesc *lvid; 103 unsigned int partnum; 104 unsigned int offset; 105 106 if (!UDF_SB(sb)->s_lvid_bh) 107 return NULL; 108 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 109 partnum = le32_to_cpu(lvid->numOfPartitions); 110 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 111 offsetof(struct logicalVolIntegrityDesc, impUse)) / 112 (2 * sizeof(uint32_t)) < partnum) { 113 udf_err(sb, "Logical volume integrity descriptor corrupted " 114 "(numOfPartitions = %u)!\n", partnum); 115 return NULL; 116 } 117 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 118 offset = partnum * 2 * sizeof(uint32_t); 119 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 120 } 121 122 /* UDF filesystem type */ 123 static struct dentry *udf_mount(struct file_system_type *fs_type, 124 int flags, const char *dev_name, void *data) 125 { 126 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 127 } 128 129 static struct file_system_type udf_fstype = { 130 .owner = THIS_MODULE, 131 .name = "udf", 132 .mount = udf_mount, 133 .kill_sb = kill_block_super, 134 .fs_flags = FS_REQUIRES_DEV, 135 }; 136 MODULE_ALIAS_FS("udf"); 137 138 static struct kmem_cache *udf_inode_cachep; 139 140 static struct inode *udf_alloc_inode(struct super_block *sb) 141 { 142 struct udf_inode_info *ei; 143 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 144 if (!ei) 145 return NULL; 146 147 ei->i_unique = 0; 148 ei->i_lenExtents = 0; 149 ei->i_next_alloc_block = 0; 150 ei->i_next_alloc_goal = 0; 151 ei->i_strat4096 = 0; 152 init_rwsem(&ei->i_data_sem); 153 ei->cached_extent.lstart = -1; 154 spin_lock_init(&ei->i_extent_cache_lock); 155 156 return &ei->vfs_inode; 157 } 158 159 static void udf_i_callback(struct rcu_head *head) 160 { 161 struct inode *inode = container_of(head, struct inode, i_rcu); 162 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 163 } 164 165 static void udf_destroy_inode(struct inode *inode) 166 { 167 call_rcu(&inode->i_rcu, udf_i_callback); 168 } 169 170 static void init_once(void *foo) 171 { 172 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 173 174 ei->i_ext.i_data = NULL; 175 inode_init_once(&ei->vfs_inode); 176 } 177 178 static int init_inodecache(void) 179 { 180 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 181 sizeof(struct udf_inode_info), 182 0, (SLAB_RECLAIM_ACCOUNT | 183 SLAB_MEM_SPREAD), 184 init_once); 185 if (!udf_inode_cachep) 186 return -ENOMEM; 187 return 0; 188 } 189 190 static void destroy_inodecache(void) 191 { 192 /* 193 * Make sure all delayed rcu free inodes are flushed before we 194 * destroy cache. 195 */ 196 rcu_barrier(); 197 kmem_cache_destroy(udf_inode_cachep); 198 } 199 200 /* Superblock operations */ 201 static const struct super_operations udf_sb_ops = { 202 .alloc_inode = udf_alloc_inode, 203 .destroy_inode = udf_destroy_inode, 204 .write_inode = udf_write_inode, 205 .evict_inode = udf_evict_inode, 206 .put_super = udf_put_super, 207 .sync_fs = udf_sync_fs, 208 .statfs = udf_statfs, 209 .remount_fs = udf_remount_fs, 210 .show_options = udf_show_options, 211 }; 212 213 struct udf_options { 214 unsigned char novrs; 215 unsigned int blocksize; 216 unsigned int session; 217 unsigned int lastblock; 218 unsigned int anchor; 219 unsigned int volume; 220 unsigned short partition; 221 unsigned int fileset; 222 unsigned int rootdir; 223 unsigned int flags; 224 umode_t umask; 225 kgid_t gid; 226 kuid_t uid; 227 umode_t fmode; 228 umode_t dmode; 229 struct nls_table *nls_map; 230 }; 231 232 static int __init init_udf_fs(void) 233 { 234 int err; 235 236 err = init_inodecache(); 237 if (err) 238 goto out1; 239 err = register_filesystem(&udf_fstype); 240 if (err) 241 goto out; 242 243 return 0; 244 245 out: 246 destroy_inodecache(); 247 248 out1: 249 return err; 250 } 251 252 static void __exit exit_udf_fs(void) 253 { 254 unregister_filesystem(&udf_fstype); 255 destroy_inodecache(); 256 } 257 258 module_init(init_udf_fs) 259 module_exit(exit_udf_fs) 260 261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 262 { 263 struct udf_sb_info *sbi = UDF_SB(sb); 264 265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 266 GFP_KERNEL); 267 if (!sbi->s_partmaps) { 268 udf_err(sb, "Unable to allocate space for %d partition maps\n", 269 count); 270 sbi->s_partitions = 0; 271 return -ENOMEM; 272 } 273 274 sbi->s_partitions = count; 275 return 0; 276 } 277 278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 279 { 280 int i; 281 int nr_groups = bitmap->s_nr_groups; 282 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 283 nr_groups); 284 285 for (i = 0; i < nr_groups; i++) 286 if (bitmap->s_block_bitmap[i]) 287 brelse(bitmap->s_block_bitmap[i]); 288 289 if (size <= PAGE_SIZE) 290 kfree(bitmap); 291 else 292 vfree(bitmap); 293 } 294 295 static void udf_free_partition(struct udf_part_map *map) 296 { 297 int i; 298 struct udf_meta_data *mdata; 299 300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 301 iput(map->s_uspace.s_table); 302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 303 iput(map->s_fspace.s_table); 304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 305 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 307 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 308 if (map->s_partition_type == UDF_SPARABLE_MAP15) 309 for (i = 0; i < 4; i++) 310 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 311 else if (map->s_partition_type == UDF_METADATA_MAP25) { 312 mdata = &map->s_type_specific.s_metadata; 313 iput(mdata->s_metadata_fe); 314 mdata->s_metadata_fe = NULL; 315 316 iput(mdata->s_mirror_fe); 317 mdata->s_mirror_fe = NULL; 318 319 iput(mdata->s_bitmap_fe); 320 mdata->s_bitmap_fe = NULL; 321 } 322 } 323 324 static void udf_sb_free_partitions(struct super_block *sb) 325 { 326 struct udf_sb_info *sbi = UDF_SB(sb); 327 int i; 328 if (sbi->s_partmaps == NULL) 329 return; 330 for (i = 0; i < sbi->s_partitions; i++) 331 udf_free_partition(&sbi->s_partmaps[i]); 332 kfree(sbi->s_partmaps); 333 sbi->s_partmaps = NULL; 334 } 335 336 static int udf_show_options(struct seq_file *seq, struct dentry *root) 337 { 338 struct super_block *sb = root->d_sb; 339 struct udf_sb_info *sbi = UDF_SB(sb); 340 341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 342 seq_puts(seq, ",nostrict"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 344 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 346 seq_puts(seq, ",unhide"); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 348 seq_puts(seq, ",undelete"); 349 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 350 seq_puts(seq, ",noadinicb"); 351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 352 seq_puts(seq, ",shortad"); 353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 354 seq_puts(seq, ",uid=forget"); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 356 seq_puts(seq, ",uid=ignore"); 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 358 seq_puts(seq, ",gid=forget"); 359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 360 seq_puts(seq, ",gid=ignore"); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 362 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 364 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 365 if (sbi->s_umask != 0) 366 seq_printf(seq, ",umask=%ho", sbi->s_umask); 367 if (sbi->s_fmode != UDF_INVALID_MODE) 368 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 369 if (sbi->s_dmode != UDF_INVALID_MODE) 370 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 371 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 372 seq_printf(seq, ",session=%u", sbi->s_session); 373 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 374 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 375 if (sbi->s_anchor != 0) 376 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 377 /* 378 * volume, partition, fileset and rootdir seem to be ignored 379 * currently 380 */ 381 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 382 seq_puts(seq, ",utf8"); 383 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 384 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 385 386 return 0; 387 } 388 389 /* 390 * udf_parse_options 391 * 392 * PURPOSE 393 * Parse mount options. 394 * 395 * DESCRIPTION 396 * The following mount options are supported: 397 * 398 * gid= Set the default group. 399 * umask= Set the default umask. 400 * mode= Set the default file permissions. 401 * dmode= Set the default directory permissions. 402 * uid= Set the default user. 403 * bs= Set the block size. 404 * unhide Show otherwise hidden files. 405 * undelete Show deleted files in lists. 406 * adinicb Embed data in the inode (default) 407 * noadinicb Don't embed data in the inode 408 * shortad Use short ad's 409 * longad Use long ad's (default) 410 * nostrict Unset strict conformance 411 * iocharset= Set the NLS character set 412 * 413 * The remaining are for debugging and disaster recovery: 414 * 415 * novrs Skip volume sequence recognition 416 * 417 * The following expect a offset from 0. 418 * 419 * session= Set the CDROM session (default= last session) 420 * anchor= Override standard anchor location. (default= 256) 421 * volume= Override the VolumeDesc location. (unused) 422 * partition= Override the PartitionDesc location. (unused) 423 * lastblock= Set the last block of the filesystem/ 424 * 425 * The following expect a offset from the partition root. 426 * 427 * fileset= Override the fileset block location. (unused) 428 * rootdir= Override the root directory location. (unused) 429 * WARNING: overriding the rootdir to a non-directory may 430 * yield highly unpredictable results. 431 * 432 * PRE-CONDITIONS 433 * options Pointer to mount options string. 434 * uopts Pointer to mount options variable. 435 * 436 * POST-CONDITIONS 437 * <return> 1 Mount options parsed okay. 438 * <return> 0 Error parsing mount options. 439 * 440 * HISTORY 441 * July 1, 1997 - Andrew E. Mileski 442 * Written, tested, and released. 443 */ 444 445 enum { 446 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 447 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 448 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 449 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 450 Opt_rootdir, Opt_utf8, Opt_iocharset, 451 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 452 Opt_fmode, Opt_dmode 453 }; 454 455 static const match_table_t tokens = { 456 {Opt_novrs, "novrs"}, 457 {Opt_nostrict, "nostrict"}, 458 {Opt_bs, "bs=%u"}, 459 {Opt_unhide, "unhide"}, 460 {Opt_undelete, "undelete"}, 461 {Opt_noadinicb, "noadinicb"}, 462 {Opt_adinicb, "adinicb"}, 463 {Opt_shortad, "shortad"}, 464 {Opt_longad, "longad"}, 465 {Opt_uforget, "uid=forget"}, 466 {Opt_uignore, "uid=ignore"}, 467 {Opt_gforget, "gid=forget"}, 468 {Opt_gignore, "gid=ignore"}, 469 {Opt_gid, "gid=%u"}, 470 {Opt_uid, "uid=%u"}, 471 {Opt_umask, "umask=%o"}, 472 {Opt_session, "session=%u"}, 473 {Opt_lastblock, "lastblock=%u"}, 474 {Opt_anchor, "anchor=%u"}, 475 {Opt_volume, "volume=%u"}, 476 {Opt_partition, "partition=%u"}, 477 {Opt_fileset, "fileset=%u"}, 478 {Opt_rootdir, "rootdir=%u"}, 479 {Opt_utf8, "utf8"}, 480 {Opt_iocharset, "iocharset=%s"}, 481 {Opt_fmode, "mode=%o"}, 482 {Opt_dmode, "dmode=%o"}, 483 {Opt_err, NULL} 484 }; 485 486 static int udf_parse_options(char *options, struct udf_options *uopt, 487 bool remount) 488 { 489 char *p; 490 int option; 491 492 uopt->novrs = 0; 493 uopt->partition = 0xFFFF; 494 uopt->session = 0xFFFFFFFF; 495 uopt->lastblock = 0; 496 uopt->anchor = 0; 497 uopt->volume = 0xFFFFFFFF; 498 uopt->rootdir = 0xFFFFFFFF; 499 uopt->fileset = 0xFFFFFFFF; 500 uopt->nls_map = NULL; 501 502 if (!options) 503 return 1; 504 505 while ((p = strsep(&options, ",")) != NULL) { 506 substring_t args[MAX_OPT_ARGS]; 507 int token; 508 if (!*p) 509 continue; 510 511 token = match_token(p, tokens, args); 512 switch (token) { 513 case Opt_novrs: 514 uopt->novrs = 1; 515 break; 516 case Opt_bs: 517 if (match_int(&args[0], &option)) 518 return 0; 519 uopt->blocksize = option; 520 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 521 break; 522 case Opt_unhide: 523 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 524 break; 525 case Opt_undelete: 526 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 527 break; 528 case Opt_noadinicb: 529 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 530 break; 531 case Opt_adinicb: 532 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 533 break; 534 case Opt_shortad: 535 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 536 break; 537 case Opt_longad: 538 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 539 break; 540 case Opt_gid: 541 if (match_int(args, &option)) 542 return 0; 543 uopt->gid = make_kgid(current_user_ns(), option); 544 if (!gid_valid(uopt->gid)) 545 return 0; 546 uopt->flags |= (1 << UDF_FLAG_GID_SET); 547 break; 548 case Opt_uid: 549 if (match_int(args, &option)) 550 return 0; 551 uopt->uid = make_kuid(current_user_ns(), option); 552 if (!uid_valid(uopt->uid)) 553 return 0; 554 uopt->flags |= (1 << UDF_FLAG_UID_SET); 555 break; 556 case Opt_umask: 557 if (match_octal(args, &option)) 558 return 0; 559 uopt->umask = option; 560 break; 561 case Opt_nostrict: 562 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 563 break; 564 case Opt_session: 565 if (match_int(args, &option)) 566 return 0; 567 uopt->session = option; 568 if (!remount) 569 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 570 break; 571 case Opt_lastblock: 572 if (match_int(args, &option)) 573 return 0; 574 uopt->lastblock = option; 575 if (!remount) 576 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 577 break; 578 case Opt_anchor: 579 if (match_int(args, &option)) 580 return 0; 581 uopt->anchor = option; 582 break; 583 case Opt_volume: 584 if (match_int(args, &option)) 585 return 0; 586 uopt->volume = option; 587 break; 588 case Opt_partition: 589 if (match_int(args, &option)) 590 return 0; 591 uopt->partition = option; 592 break; 593 case Opt_fileset: 594 if (match_int(args, &option)) 595 return 0; 596 uopt->fileset = option; 597 break; 598 case Opt_rootdir: 599 if (match_int(args, &option)) 600 return 0; 601 uopt->rootdir = option; 602 break; 603 case Opt_utf8: 604 uopt->flags |= (1 << UDF_FLAG_UTF8); 605 break; 606 #ifdef CONFIG_UDF_NLS 607 case Opt_iocharset: 608 uopt->nls_map = load_nls(args[0].from); 609 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 610 break; 611 #endif 612 case Opt_uignore: 613 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 614 break; 615 case Opt_uforget: 616 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 617 break; 618 case Opt_gignore: 619 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 620 break; 621 case Opt_gforget: 622 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 623 break; 624 case Opt_fmode: 625 if (match_octal(args, &option)) 626 return 0; 627 uopt->fmode = option & 0777; 628 break; 629 case Opt_dmode: 630 if (match_octal(args, &option)) 631 return 0; 632 uopt->dmode = option & 0777; 633 break; 634 default: 635 pr_err("bad mount option \"%s\" or missing value\n", p); 636 return 0; 637 } 638 } 639 return 1; 640 } 641 642 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 643 { 644 struct udf_options uopt; 645 struct udf_sb_info *sbi = UDF_SB(sb); 646 int error = 0; 647 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 648 649 if (lvidiu) { 650 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 651 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 652 return -EACCES; 653 } 654 655 uopt.flags = sbi->s_flags; 656 uopt.uid = sbi->s_uid; 657 uopt.gid = sbi->s_gid; 658 uopt.umask = sbi->s_umask; 659 uopt.fmode = sbi->s_fmode; 660 uopt.dmode = sbi->s_dmode; 661 662 if (!udf_parse_options(options, &uopt, true)) 663 return -EINVAL; 664 665 write_lock(&sbi->s_cred_lock); 666 sbi->s_flags = uopt.flags; 667 sbi->s_uid = uopt.uid; 668 sbi->s_gid = uopt.gid; 669 sbi->s_umask = uopt.umask; 670 sbi->s_fmode = uopt.fmode; 671 sbi->s_dmode = uopt.dmode; 672 write_unlock(&sbi->s_cred_lock); 673 674 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 675 goto out_unlock; 676 677 if (*flags & MS_RDONLY) 678 udf_close_lvid(sb); 679 else 680 udf_open_lvid(sb); 681 682 out_unlock: 683 return error; 684 } 685 686 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 687 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 688 static loff_t udf_check_vsd(struct super_block *sb) 689 { 690 struct volStructDesc *vsd = NULL; 691 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 692 int sectorsize; 693 struct buffer_head *bh = NULL; 694 int nsr02 = 0; 695 int nsr03 = 0; 696 struct udf_sb_info *sbi; 697 698 sbi = UDF_SB(sb); 699 if (sb->s_blocksize < sizeof(struct volStructDesc)) 700 sectorsize = sizeof(struct volStructDesc); 701 else 702 sectorsize = sb->s_blocksize; 703 704 sector += (sbi->s_session << sb->s_blocksize_bits); 705 706 udf_debug("Starting at sector %u (%ld byte sectors)\n", 707 (unsigned int)(sector >> sb->s_blocksize_bits), 708 sb->s_blocksize); 709 /* Process the sequence (if applicable). The hard limit on the sector 710 * offset is arbitrary, hopefully large enough so that all valid UDF 711 * filesystems will be recognised. There is no mention of an upper 712 * bound to the size of the volume recognition area in the standard. 713 * The limit will prevent the code to read all the sectors of a 714 * specially crafted image (like a bluray disc full of CD001 sectors), 715 * potentially causing minutes or even hours of uninterruptible I/O 716 * activity. This actually happened with uninitialised SSD partitions 717 * (all 0xFF) before the check for the limit and all valid IDs were 718 * added */ 719 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 720 sector += sectorsize) { 721 /* Read a block */ 722 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 723 if (!bh) 724 break; 725 726 /* Look for ISO descriptors */ 727 vsd = (struct volStructDesc *)(bh->b_data + 728 (sector & (sb->s_blocksize - 1))); 729 730 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 731 VSD_STD_ID_LEN)) { 732 switch (vsd->structType) { 733 case 0: 734 udf_debug("ISO9660 Boot Record found\n"); 735 break; 736 case 1: 737 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 738 break; 739 case 2: 740 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 741 break; 742 case 3: 743 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 744 break; 745 case 255: 746 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 747 break; 748 default: 749 udf_debug("ISO9660 VRS (%u) found\n", 750 vsd->structType); 751 break; 752 } 753 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 754 VSD_STD_ID_LEN)) 755 ; /* nothing */ 756 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 757 VSD_STD_ID_LEN)) { 758 brelse(bh); 759 break; 760 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 761 VSD_STD_ID_LEN)) 762 nsr02 = sector; 763 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 764 VSD_STD_ID_LEN)) 765 nsr03 = sector; 766 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 767 VSD_STD_ID_LEN)) 768 ; /* nothing */ 769 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 770 VSD_STD_ID_LEN)) 771 ; /* nothing */ 772 else { 773 /* invalid id : end of volume recognition area */ 774 brelse(bh); 775 break; 776 } 777 brelse(bh); 778 } 779 780 if (nsr03) 781 return nsr03; 782 else if (nsr02) 783 return nsr02; 784 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 785 VSD_FIRST_SECTOR_OFFSET) 786 return -1; 787 else 788 return 0; 789 } 790 791 static int udf_find_fileset(struct super_block *sb, 792 struct kernel_lb_addr *fileset, 793 struct kernel_lb_addr *root) 794 { 795 struct buffer_head *bh = NULL; 796 long lastblock; 797 uint16_t ident; 798 struct udf_sb_info *sbi; 799 800 if (fileset->logicalBlockNum != 0xFFFFFFFF || 801 fileset->partitionReferenceNum != 0xFFFF) { 802 bh = udf_read_ptagged(sb, fileset, 0, &ident); 803 804 if (!bh) { 805 return 1; 806 } else if (ident != TAG_IDENT_FSD) { 807 brelse(bh); 808 return 1; 809 } 810 811 } 812 813 sbi = UDF_SB(sb); 814 if (!bh) { 815 /* Search backwards through the partitions */ 816 struct kernel_lb_addr newfileset; 817 818 /* --> cvg: FIXME - is it reasonable? */ 819 return 1; 820 821 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 822 (newfileset.partitionReferenceNum != 0xFFFF && 823 fileset->logicalBlockNum == 0xFFFFFFFF && 824 fileset->partitionReferenceNum == 0xFFFF); 825 newfileset.partitionReferenceNum--) { 826 lastblock = sbi->s_partmaps 827 [newfileset.partitionReferenceNum] 828 .s_partition_len; 829 newfileset.logicalBlockNum = 0; 830 831 do { 832 bh = udf_read_ptagged(sb, &newfileset, 0, 833 &ident); 834 if (!bh) { 835 newfileset.logicalBlockNum++; 836 continue; 837 } 838 839 switch (ident) { 840 case TAG_IDENT_SBD: 841 { 842 struct spaceBitmapDesc *sp; 843 sp = (struct spaceBitmapDesc *) 844 bh->b_data; 845 newfileset.logicalBlockNum += 1 + 846 ((le32_to_cpu(sp->numOfBytes) + 847 sizeof(struct spaceBitmapDesc) 848 - 1) >> sb->s_blocksize_bits); 849 brelse(bh); 850 break; 851 } 852 case TAG_IDENT_FSD: 853 *fileset = newfileset; 854 break; 855 default: 856 newfileset.logicalBlockNum++; 857 brelse(bh); 858 bh = NULL; 859 break; 860 } 861 } while (newfileset.logicalBlockNum < lastblock && 862 fileset->logicalBlockNum == 0xFFFFFFFF && 863 fileset->partitionReferenceNum == 0xFFFF); 864 } 865 } 866 867 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 868 fileset->partitionReferenceNum != 0xFFFF) && bh) { 869 udf_debug("Fileset at block=%d, partition=%d\n", 870 fileset->logicalBlockNum, 871 fileset->partitionReferenceNum); 872 873 sbi->s_partition = fileset->partitionReferenceNum; 874 udf_load_fileset(sb, bh, root); 875 brelse(bh); 876 return 0; 877 } 878 return 1; 879 } 880 881 /* 882 * Load primary Volume Descriptor Sequence 883 * 884 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 885 * should be tried. 886 */ 887 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 888 { 889 struct primaryVolDesc *pvoldesc; 890 struct ustr *instr, *outstr; 891 struct buffer_head *bh; 892 uint16_t ident; 893 int ret = -ENOMEM; 894 895 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 896 if (!instr) 897 return -ENOMEM; 898 899 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 900 if (!outstr) 901 goto out1; 902 903 bh = udf_read_tagged(sb, block, block, &ident); 904 if (!bh) { 905 ret = -EAGAIN; 906 goto out2; 907 } 908 909 if (ident != TAG_IDENT_PVD) { 910 ret = -EIO; 911 goto out_bh; 912 } 913 914 pvoldesc = (struct primaryVolDesc *)bh->b_data; 915 916 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 917 pvoldesc->recordingDateAndTime)) { 918 #ifdef UDFFS_DEBUG 919 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 920 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 921 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 922 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 923 #endif 924 } 925 926 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 927 if (udf_CS0toUTF8(outstr, instr)) { 928 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 929 outstr->u_len > 31 ? 31 : outstr->u_len); 930 udf_debug("volIdent[] = '%s'\n", 931 UDF_SB(sb)->s_volume_ident); 932 } 933 934 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 935 if (udf_CS0toUTF8(outstr, instr)) 936 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 937 938 ret = 0; 939 out_bh: 940 brelse(bh); 941 out2: 942 kfree(outstr); 943 out1: 944 kfree(instr); 945 return ret; 946 } 947 948 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 949 u32 meta_file_loc, u32 partition_num) 950 { 951 struct kernel_lb_addr addr; 952 struct inode *metadata_fe; 953 954 addr.logicalBlockNum = meta_file_loc; 955 addr.partitionReferenceNum = partition_num; 956 957 metadata_fe = udf_iget(sb, &addr); 958 959 if (metadata_fe == NULL) 960 udf_warn(sb, "metadata inode efe not found\n"); 961 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 962 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 963 iput(metadata_fe); 964 metadata_fe = NULL; 965 } 966 967 return metadata_fe; 968 } 969 970 static int udf_load_metadata_files(struct super_block *sb, int partition) 971 { 972 struct udf_sb_info *sbi = UDF_SB(sb); 973 struct udf_part_map *map; 974 struct udf_meta_data *mdata; 975 struct kernel_lb_addr addr; 976 977 map = &sbi->s_partmaps[partition]; 978 mdata = &map->s_type_specific.s_metadata; 979 980 /* metadata address */ 981 udf_debug("Metadata file location: block = %d part = %d\n", 982 mdata->s_meta_file_loc, map->s_partition_num); 983 984 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 985 mdata->s_meta_file_loc, map->s_partition_num); 986 987 if (mdata->s_metadata_fe == NULL) { 988 /* mirror file entry */ 989 udf_debug("Mirror metadata file location: block = %d part = %d\n", 990 mdata->s_mirror_file_loc, map->s_partition_num); 991 992 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 993 mdata->s_mirror_file_loc, map->s_partition_num); 994 995 if (mdata->s_mirror_fe == NULL) { 996 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 997 return -EIO; 998 } 999 } 1000 1001 /* 1002 * bitmap file entry 1003 * Note: 1004 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1005 */ 1006 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1007 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1008 addr.partitionReferenceNum = map->s_partition_num; 1009 1010 udf_debug("Bitmap file location: block = %d part = %d\n", 1011 addr.logicalBlockNum, addr.partitionReferenceNum); 1012 1013 mdata->s_bitmap_fe = udf_iget(sb, &addr); 1014 if (mdata->s_bitmap_fe == NULL) { 1015 if (sb->s_flags & MS_RDONLY) 1016 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1017 else { 1018 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1019 return -EIO; 1020 } 1021 } 1022 } 1023 1024 udf_debug("udf_load_metadata_files Ok\n"); 1025 return 0; 1026 } 1027 1028 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1029 struct kernel_lb_addr *root) 1030 { 1031 struct fileSetDesc *fset; 1032 1033 fset = (struct fileSetDesc *)bh->b_data; 1034 1035 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1036 1037 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1038 1039 udf_debug("Rootdir at block=%d, partition=%d\n", 1040 root->logicalBlockNum, root->partitionReferenceNum); 1041 } 1042 1043 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1044 { 1045 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1046 return DIV_ROUND_UP(map->s_partition_len + 1047 (sizeof(struct spaceBitmapDesc) << 3), 1048 sb->s_blocksize * 8); 1049 } 1050 1051 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1052 { 1053 struct udf_bitmap *bitmap; 1054 int nr_groups; 1055 int size; 1056 1057 nr_groups = udf_compute_nr_groups(sb, index); 1058 size = sizeof(struct udf_bitmap) + 1059 (sizeof(struct buffer_head *) * nr_groups); 1060 1061 if (size <= PAGE_SIZE) 1062 bitmap = kzalloc(size, GFP_KERNEL); 1063 else 1064 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1065 1066 if (bitmap == NULL) 1067 return NULL; 1068 1069 bitmap->s_nr_groups = nr_groups; 1070 return bitmap; 1071 } 1072 1073 static int udf_fill_partdesc_info(struct super_block *sb, 1074 struct partitionDesc *p, int p_index) 1075 { 1076 struct udf_part_map *map; 1077 struct udf_sb_info *sbi = UDF_SB(sb); 1078 struct partitionHeaderDesc *phd; 1079 1080 map = &sbi->s_partmaps[p_index]; 1081 1082 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1083 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1084 1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1086 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1088 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1090 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1092 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1093 1094 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1095 p_index, map->s_partition_type, 1096 map->s_partition_root, map->s_partition_len); 1097 1098 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1099 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1100 return 0; 1101 1102 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1103 if (phd->unallocSpaceTable.extLength) { 1104 struct kernel_lb_addr loc = { 1105 .logicalBlockNum = le32_to_cpu( 1106 phd->unallocSpaceTable.extPosition), 1107 .partitionReferenceNum = p_index, 1108 }; 1109 1110 map->s_uspace.s_table = udf_iget(sb, &loc); 1111 if (!map->s_uspace.s_table) { 1112 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1113 p_index); 1114 return -EIO; 1115 } 1116 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1117 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1118 p_index, map->s_uspace.s_table->i_ino); 1119 } 1120 1121 if (phd->unallocSpaceBitmap.extLength) { 1122 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1123 if (!bitmap) 1124 return -ENOMEM; 1125 map->s_uspace.s_bitmap = bitmap; 1126 bitmap->s_extPosition = le32_to_cpu( 1127 phd->unallocSpaceBitmap.extPosition); 1128 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1129 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1130 p_index, bitmap->s_extPosition); 1131 } 1132 1133 if (phd->partitionIntegrityTable.extLength) 1134 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1135 1136 if (phd->freedSpaceTable.extLength) { 1137 struct kernel_lb_addr loc = { 1138 .logicalBlockNum = le32_to_cpu( 1139 phd->freedSpaceTable.extPosition), 1140 .partitionReferenceNum = p_index, 1141 }; 1142 1143 map->s_fspace.s_table = udf_iget(sb, &loc); 1144 if (!map->s_fspace.s_table) { 1145 udf_debug("cannot load freedSpaceTable (part %d)\n", 1146 p_index); 1147 return -EIO; 1148 } 1149 1150 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1151 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1152 p_index, map->s_fspace.s_table->i_ino); 1153 } 1154 1155 if (phd->freedSpaceBitmap.extLength) { 1156 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1157 if (!bitmap) 1158 return -ENOMEM; 1159 map->s_fspace.s_bitmap = bitmap; 1160 bitmap->s_extPosition = le32_to_cpu( 1161 phd->freedSpaceBitmap.extPosition); 1162 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1163 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1164 p_index, bitmap->s_extPosition); 1165 } 1166 return 0; 1167 } 1168 1169 static void udf_find_vat_block(struct super_block *sb, int p_index, 1170 int type1_index, sector_t start_block) 1171 { 1172 struct udf_sb_info *sbi = UDF_SB(sb); 1173 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1174 sector_t vat_block; 1175 struct kernel_lb_addr ino; 1176 1177 /* 1178 * VAT file entry is in the last recorded block. Some broken disks have 1179 * it a few blocks before so try a bit harder... 1180 */ 1181 ino.partitionReferenceNum = type1_index; 1182 for (vat_block = start_block; 1183 vat_block >= map->s_partition_root && 1184 vat_block >= start_block - 3 && 1185 !sbi->s_vat_inode; vat_block--) { 1186 ino.logicalBlockNum = vat_block - map->s_partition_root; 1187 sbi->s_vat_inode = udf_iget(sb, &ino); 1188 } 1189 } 1190 1191 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1192 { 1193 struct udf_sb_info *sbi = UDF_SB(sb); 1194 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1195 struct buffer_head *bh = NULL; 1196 struct udf_inode_info *vati; 1197 uint32_t pos; 1198 struct virtualAllocationTable20 *vat20; 1199 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1200 1201 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1202 if (!sbi->s_vat_inode && 1203 sbi->s_last_block != blocks - 1) { 1204 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1205 (unsigned long)sbi->s_last_block, 1206 (unsigned long)blocks - 1); 1207 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1208 } 1209 if (!sbi->s_vat_inode) 1210 return -EIO; 1211 1212 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1213 map->s_type_specific.s_virtual.s_start_offset = 0; 1214 map->s_type_specific.s_virtual.s_num_entries = 1215 (sbi->s_vat_inode->i_size - 36) >> 2; 1216 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1217 vati = UDF_I(sbi->s_vat_inode); 1218 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1219 pos = udf_block_map(sbi->s_vat_inode, 0); 1220 bh = sb_bread(sb, pos); 1221 if (!bh) 1222 return -EIO; 1223 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1224 } else { 1225 vat20 = (struct virtualAllocationTable20 *) 1226 vati->i_ext.i_data; 1227 } 1228 1229 map->s_type_specific.s_virtual.s_start_offset = 1230 le16_to_cpu(vat20->lengthHeader); 1231 map->s_type_specific.s_virtual.s_num_entries = 1232 (sbi->s_vat_inode->i_size - 1233 map->s_type_specific.s_virtual. 1234 s_start_offset) >> 2; 1235 brelse(bh); 1236 } 1237 return 0; 1238 } 1239 1240 /* 1241 * Load partition descriptor block 1242 * 1243 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1244 * sequence. 1245 */ 1246 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1247 { 1248 struct buffer_head *bh; 1249 struct partitionDesc *p; 1250 struct udf_part_map *map; 1251 struct udf_sb_info *sbi = UDF_SB(sb); 1252 int i, type1_idx; 1253 uint16_t partitionNumber; 1254 uint16_t ident; 1255 int ret; 1256 1257 bh = udf_read_tagged(sb, block, block, &ident); 1258 if (!bh) 1259 return -EAGAIN; 1260 if (ident != TAG_IDENT_PD) { 1261 ret = 0; 1262 goto out_bh; 1263 } 1264 1265 p = (struct partitionDesc *)bh->b_data; 1266 partitionNumber = le16_to_cpu(p->partitionNumber); 1267 1268 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1269 for (i = 0; i < sbi->s_partitions; i++) { 1270 map = &sbi->s_partmaps[i]; 1271 udf_debug("Searching map: (%d == %d)\n", 1272 map->s_partition_num, partitionNumber); 1273 if (map->s_partition_num == partitionNumber && 1274 (map->s_partition_type == UDF_TYPE1_MAP15 || 1275 map->s_partition_type == UDF_SPARABLE_MAP15)) 1276 break; 1277 } 1278 1279 if (i >= sbi->s_partitions) { 1280 udf_debug("Partition (%d) not found in partition map\n", 1281 partitionNumber); 1282 ret = 0; 1283 goto out_bh; 1284 } 1285 1286 ret = udf_fill_partdesc_info(sb, p, i); 1287 if (ret < 0) 1288 goto out_bh; 1289 1290 /* 1291 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1292 * PHYSICAL partitions are already set up 1293 */ 1294 type1_idx = i; 1295 #ifdef UDFFS_DEBUG 1296 map = NULL; /* supress 'maybe used uninitialized' warning */ 1297 #endif 1298 for (i = 0; i < sbi->s_partitions; i++) { 1299 map = &sbi->s_partmaps[i]; 1300 1301 if (map->s_partition_num == partitionNumber && 1302 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1303 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1304 map->s_partition_type == UDF_METADATA_MAP25)) 1305 break; 1306 } 1307 1308 if (i >= sbi->s_partitions) { 1309 ret = 0; 1310 goto out_bh; 1311 } 1312 1313 ret = udf_fill_partdesc_info(sb, p, i); 1314 if (ret < 0) 1315 goto out_bh; 1316 1317 if (map->s_partition_type == UDF_METADATA_MAP25) { 1318 ret = udf_load_metadata_files(sb, i); 1319 if (ret < 0) { 1320 udf_err(sb, "error loading MetaData partition map %d\n", 1321 i); 1322 goto out_bh; 1323 } 1324 } else { 1325 /* 1326 * If we have a partition with virtual map, we don't handle 1327 * writing to it (we overwrite blocks instead of relocating 1328 * them). 1329 */ 1330 if (!(sb->s_flags & MS_RDONLY)) { 1331 ret = -EACCES; 1332 goto out_bh; 1333 } 1334 ret = udf_load_vat(sb, i, type1_idx); 1335 if (ret < 0) 1336 goto out_bh; 1337 } 1338 ret = 0; 1339 out_bh: 1340 /* In case loading failed, we handle cleanup in udf_fill_super */ 1341 brelse(bh); 1342 return ret; 1343 } 1344 1345 static int udf_load_sparable_map(struct super_block *sb, 1346 struct udf_part_map *map, 1347 struct sparablePartitionMap *spm) 1348 { 1349 uint32_t loc; 1350 uint16_t ident; 1351 struct sparingTable *st; 1352 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1353 int i; 1354 struct buffer_head *bh; 1355 1356 map->s_partition_type = UDF_SPARABLE_MAP15; 1357 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1358 if (!is_power_of_2(sdata->s_packet_len)) { 1359 udf_err(sb, "error loading logical volume descriptor: " 1360 "Invalid packet length %u\n", 1361 (unsigned)sdata->s_packet_len); 1362 return -EIO; 1363 } 1364 if (spm->numSparingTables > 4) { 1365 udf_err(sb, "error loading logical volume descriptor: " 1366 "Too many sparing tables (%d)\n", 1367 (int)spm->numSparingTables); 1368 return -EIO; 1369 } 1370 1371 for (i = 0; i < spm->numSparingTables; i++) { 1372 loc = le32_to_cpu(spm->locSparingTable[i]); 1373 bh = udf_read_tagged(sb, loc, loc, &ident); 1374 if (!bh) 1375 continue; 1376 1377 st = (struct sparingTable *)bh->b_data; 1378 if (ident != 0 || 1379 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1380 strlen(UDF_ID_SPARING)) || 1381 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1382 sb->s_blocksize) { 1383 brelse(bh); 1384 continue; 1385 } 1386 1387 sdata->s_spar_map[i] = bh; 1388 } 1389 map->s_partition_func = udf_get_pblock_spar15; 1390 return 0; 1391 } 1392 1393 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1394 struct kernel_lb_addr *fileset) 1395 { 1396 struct logicalVolDesc *lvd; 1397 int i, offset; 1398 uint8_t type; 1399 struct udf_sb_info *sbi = UDF_SB(sb); 1400 struct genericPartitionMap *gpm; 1401 uint16_t ident; 1402 struct buffer_head *bh; 1403 unsigned int table_len; 1404 int ret; 1405 1406 bh = udf_read_tagged(sb, block, block, &ident); 1407 if (!bh) 1408 return -EAGAIN; 1409 BUG_ON(ident != TAG_IDENT_LVD); 1410 lvd = (struct logicalVolDesc *)bh->b_data; 1411 table_len = le32_to_cpu(lvd->mapTableLength); 1412 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1413 udf_err(sb, "error loading logical volume descriptor: " 1414 "Partition table too long (%u > %lu)\n", table_len, 1415 sb->s_blocksize - sizeof(*lvd)); 1416 ret = -EIO; 1417 goto out_bh; 1418 } 1419 1420 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1421 if (ret) 1422 goto out_bh; 1423 1424 for (i = 0, offset = 0; 1425 i < sbi->s_partitions && offset < table_len; 1426 i++, offset += gpm->partitionMapLength) { 1427 struct udf_part_map *map = &sbi->s_partmaps[i]; 1428 gpm = (struct genericPartitionMap *) 1429 &(lvd->partitionMaps[offset]); 1430 type = gpm->partitionMapType; 1431 if (type == 1) { 1432 struct genericPartitionMap1 *gpm1 = 1433 (struct genericPartitionMap1 *)gpm; 1434 map->s_partition_type = UDF_TYPE1_MAP15; 1435 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1436 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1437 map->s_partition_func = NULL; 1438 } else if (type == 2) { 1439 struct udfPartitionMap2 *upm2 = 1440 (struct udfPartitionMap2 *)gpm; 1441 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1442 strlen(UDF_ID_VIRTUAL))) { 1443 u16 suf = 1444 le16_to_cpu(((__le16 *)upm2->partIdent. 1445 identSuffix)[0]); 1446 if (suf < 0x0200) { 1447 map->s_partition_type = 1448 UDF_VIRTUAL_MAP15; 1449 map->s_partition_func = 1450 udf_get_pblock_virt15; 1451 } else { 1452 map->s_partition_type = 1453 UDF_VIRTUAL_MAP20; 1454 map->s_partition_func = 1455 udf_get_pblock_virt20; 1456 } 1457 } else if (!strncmp(upm2->partIdent.ident, 1458 UDF_ID_SPARABLE, 1459 strlen(UDF_ID_SPARABLE))) { 1460 ret = udf_load_sparable_map(sb, map, 1461 (struct sparablePartitionMap *)gpm); 1462 if (ret < 0) 1463 goto out_bh; 1464 } else if (!strncmp(upm2->partIdent.ident, 1465 UDF_ID_METADATA, 1466 strlen(UDF_ID_METADATA))) { 1467 struct udf_meta_data *mdata = 1468 &map->s_type_specific.s_metadata; 1469 struct metadataPartitionMap *mdm = 1470 (struct metadataPartitionMap *) 1471 &(lvd->partitionMaps[offset]); 1472 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1473 i, type, UDF_ID_METADATA); 1474 1475 map->s_partition_type = UDF_METADATA_MAP25; 1476 map->s_partition_func = udf_get_pblock_meta25; 1477 1478 mdata->s_meta_file_loc = 1479 le32_to_cpu(mdm->metadataFileLoc); 1480 mdata->s_mirror_file_loc = 1481 le32_to_cpu(mdm->metadataMirrorFileLoc); 1482 mdata->s_bitmap_file_loc = 1483 le32_to_cpu(mdm->metadataBitmapFileLoc); 1484 mdata->s_alloc_unit_size = 1485 le32_to_cpu(mdm->allocUnitSize); 1486 mdata->s_align_unit_size = 1487 le16_to_cpu(mdm->alignUnitSize); 1488 if (mdm->flags & 0x01) 1489 mdata->s_flags |= MF_DUPLICATE_MD; 1490 1491 udf_debug("Metadata Ident suffix=0x%x\n", 1492 le16_to_cpu(*(__le16 *) 1493 mdm->partIdent.identSuffix)); 1494 udf_debug("Metadata part num=%d\n", 1495 le16_to_cpu(mdm->partitionNum)); 1496 udf_debug("Metadata part alloc unit size=%d\n", 1497 le32_to_cpu(mdm->allocUnitSize)); 1498 udf_debug("Metadata file loc=%d\n", 1499 le32_to_cpu(mdm->metadataFileLoc)); 1500 udf_debug("Mirror file loc=%d\n", 1501 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1502 udf_debug("Bitmap file loc=%d\n", 1503 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1504 udf_debug("Flags: %d %d\n", 1505 mdata->s_flags, mdm->flags); 1506 } else { 1507 udf_debug("Unknown ident: %s\n", 1508 upm2->partIdent.ident); 1509 continue; 1510 } 1511 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1512 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1513 } 1514 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1515 i, map->s_partition_num, type, map->s_volumeseqnum); 1516 } 1517 1518 if (fileset) { 1519 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1520 1521 *fileset = lelb_to_cpu(la->extLocation); 1522 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1523 fileset->logicalBlockNum, 1524 fileset->partitionReferenceNum); 1525 } 1526 if (lvd->integritySeqExt.extLength) 1527 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1528 ret = 0; 1529 out_bh: 1530 brelse(bh); 1531 return ret; 1532 } 1533 1534 /* 1535 * udf_load_logicalvolint 1536 * 1537 */ 1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1539 { 1540 struct buffer_head *bh = NULL; 1541 uint16_t ident; 1542 struct udf_sb_info *sbi = UDF_SB(sb); 1543 struct logicalVolIntegrityDesc *lvid; 1544 1545 while (loc.extLength > 0 && 1546 (bh = udf_read_tagged(sb, loc.extLocation, 1547 loc.extLocation, &ident)) && 1548 ident == TAG_IDENT_LVID) { 1549 sbi->s_lvid_bh = bh; 1550 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1551 1552 if (lvid->nextIntegrityExt.extLength) 1553 udf_load_logicalvolint(sb, 1554 leea_to_cpu(lvid->nextIntegrityExt)); 1555 1556 if (sbi->s_lvid_bh != bh) 1557 brelse(bh); 1558 loc.extLength -= sb->s_blocksize; 1559 loc.extLocation++; 1560 } 1561 if (sbi->s_lvid_bh != bh) 1562 brelse(bh); 1563 } 1564 1565 /* 1566 * Process a main/reserve volume descriptor sequence. 1567 * @block First block of first extent of the sequence. 1568 * @lastblock Lastblock of first extent of the sequence. 1569 * @fileset There we store extent containing root fileset 1570 * 1571 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1572 * sequence 1573 */ 1574 static noinline int udf_process_sequence( 1575 struct super_block *sb, 1576 sector_t block, sector_t lastblock, 1577 struct kernel_lb_addr *fileset) 1578 { 1579 struct buffer_head *bh = NULL; 1580 struct udf_vds_record vds[VDS_POS_LENGTH]; 1581 struct udf_vds_record *curr; 1582 struct generic_desc *gd; 1583 struct volDescPtr *vdp; 1584 int done = 0; 1585 uint32_t vdsn; 1586 uint16_t ident; 1587 long next_s = 0, next_e = 0; 1588 int ret; 1589 1590 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1591 1592 /* 1593 * Read the main descriptor sequence and find which descriptors 1594 * are in it. 1595 */ 1596 for (; (!done && block <= lastblock); block++) { 1597 1598 bh = udf_read_tagged(sb, block, block, &ident); 1599 if (!bh) { 1600 udf_err(sb, 1601 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1602 (unsigned long long)block); 1603 return -EAGAIN; 1604 } 1605 1606 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1607 gd = (struct generic_desc *)bh->b_data; 1608 vdsn = le32_to_cpu(gd->volDescSeqNum); 1609 switch (ident) { 1610 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1611 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1612 if (vdsn >= curr->volDescSeqNum) { 1613 curr->volDescSeqNum = vdsn; 1614 curr->block = block; 1615 } 1616 break; 1617 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1618 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1619 if (vdsn >= curr->volDescSeqNum) { 1620 curr->volDescSeqNum = vdsn; 1621 curr->block = block; 1622 1623 vdp = (struct volDescPtr *)bh->b_data; 1624 next_s = le32_to_cpu( 1625 vdp->nextVolDescSeqExt.extLocation); 1626 next_e = le32_to_cpu( 1627 vdp->nextVolDescSeqExt.extLength); 1628 next_e = next_e >> sb->s_blocksize_bits; 1629 next_e += next_s; 1630 } 1631 break; 1632 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1633 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1634 if (vdsn >= curr->volDescSeqNum) { 1635 curr->volDescSeqNum = vdsn; 1636 curr->block = block; 1637 } 1638 break; 1639 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1640 curr = &vds[VDS_POS_PARTITION_DESC]; 1641 if (!curr->block) 1642 curr->block = block; 1643 break; 1644 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1645 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1646 if (vdsn >= curr->volDescSeqNum) { 1647 curr->volDescSeqNum = vdsn; 1648 curr->block = block; 1649 } 1650 break; 1651 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1652 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1653 if (vdsn >= curr->volDescSeqNum) { 1654 curr->volDescSeqNum = vdsn; 1655 curr->block = block; 1656 } 1657 break; 1658 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1659 vds[VDS_POS_TERMINATING_DESC].block = block; 1660 if (next_e) { 1661 block = next_s; 1662 lastblock = next_e; 1663 next_s = next_e = 0; 1664 } else 1665 done = 1; 1666 break; 1667 } 1668 brelse(bh); 1669 } 1670 /* 1671 * Now read interesting descriptors again and process them 1672 * in a suitable order 1673 */ 1674 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1675 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1676 return -EAGAIN; 1677 } 1678 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1679 if (ret < 0) 1680 return ret; 1681 1682 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1683 ret = udf_load_logicalvol(sb, 1684 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1685 fileset); 1686 if (ret < 0) 1687 return ret; 1688 } 1689 1690 if (vds[VDS_POS_PARTITION_DESC].block) { 1691 /* 1692 * We rescan the whole descriptor sequence to find 1693 * partition descriptor blocks and process them. 1694 */ 1695 for (block = vds[VDS_POS_PARTITION_DESC].block; 1696 block < vds[VDS_POS_TERMINATING_DESC].block; 1697 block++) { 1698 ret = udf_load_partdesc(sb, block); 1699 if (ret < 0) 1700 return ret; 1701 } 1702 } 1703 1704 return 0; 1705 } 1706 1707 /* 1708 * Load Volume Descriptor Sequence described by anchor in bh 1709 * 1710 * Returns <0 on error, 0 on success 1711 */ 1712 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1713 struct kernel_lb_addr *fileset) 1714 { 1715 struct anchorVolDescPtr *anchor; 1716 sector_t main_s, main_e, reserve_s, reserve_e; 1717 int ret; 1718 1719 anchor = (struct anchorVolDescPtr *)bh->b_data; 1720 1721 /* Locate the main sequence */ 1722 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1723 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1724 main_e = main_e >> sb->s_blocksize_bits; 1725 main_e += main_s; 1726 1727 /* Locate the reserve sequence */ 1728 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1729 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1730 reserve_e = reserve_e >> sb->s_blocksize_bits; 1731 reserve_e += reserve_s; 1732 1733 /* Process the main & reserve sequences */ 1734 /* responsible for finding the PartitionDesc(s) */ 1735 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1736 if (ret != -EAGAIN) 1737 return ret; 1738 udf_sb_free_partitions(sb); 1739 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1740 if (ret < 0) { 1741 udf_sb_free_partitions(sb); 1742 /* No sequence was OK, return -EIO */ 1743 if (ret == -EAGAIN) 1744 ret = -EIO; 1745 } 1746 return ret; 1747 } 1748 1749 /* 1750 * Check whether there is an anchor block in the given block and 1751 * load Volume Descriptor Sequence if so. 1752 * 1753 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1754 * block 1755 */ 1756 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1757 struct kernel_lb_addr *fileset) 1758 { 1759 struct buffer_head *bh; 1760 uint16_t ident; 1761 int ret; 1762 1763 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1764 udf_fixed_to_variable(block) >= 1765 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1766 return -EAGAIN; 1767 1768 bh = udf_read_tagged(sb, block, block, &ident); 1769 if (!bh) 1770 return -EAGAIN; 1771 if (ident != TAG_IDENT_AVDP) { 1772 brelse(bh); 1773 return -EAGAIN; 1774 } 1775 ret = udf_load_sequence(sb, bh, fileset); 1776 brelse(bh); 1777 return ret; 1778 } 1779 1780 /* 1781 * Search for an anchor volume descriptor pointer. 1782 * 1783 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1784 * of anchors. 1785 */ 1786 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1787 struct kernel_lb_addr *fileset) 1788 { 1789 sector_t last[6]; 1790 int i; 1791 struct udf_sb_info *sbi = UDF_SB(sb); 1792 int last_count = 0; 1793 int ret; 1794 1795 /* First try user provided anchor */ 1796 if (sbi->s_anchor) { 1797 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1798 if (ret != -EAGAIN) 1799 return ret; 1800 } 1801 /* 1802 * according to spec, anchor is in either: 1803 * block 256 1804 * lastblock-256 1805 * lastblock 1806 * however, if the disc isn't closed, it could be 512. 1807 */ 1808 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1809 if (ret != -EAGAIN) 1810 return ret; 1811 /* 1812 * The trouble is which block is the last one. Drives often misreport 1813 * this so we try various possibilities. 1814 */ 1815 last[last_count++] = *lastblock; 1816 if (*lastblock >= 1) 1817 last[last_count++] = *lastblock - 1; 1818 last[last_count++] = *lastblock + 1; 1819 if (*lastblock >= 2) 1820 last[last_count++] = *lastblock - 2; 1821 if (*lastblock >= 150) 1822 last[last_count++] = *lastblock - 150; 1823 if (*lastblock >= 152) 1824 last[last_count++] = *lastblock - 152; 1825 1826 for (i = 0; i < last_count; i++) { 1827 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1828 sb->s_blocksize_bits) 1829 continue; 1830 ret = udf_check_anchor_block(sb, last[i], fileset); 1831 if (ret != -EAGAIN) { 1832 if (!ret) 1833 *lastblock = last[i]; 1834 return ret; 1835 } 1836 if (last[i] < 256) 1837 continue; 1838 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1839 if (ret != -EAGAIN) { 1840 if (!ret) 1841 *lastblock = last[i]; 1842 return ret; 1843 } 1844 } 1845 1846 /* Finally try block 512 in case media is open */ 1847 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1848 } 1849 1850 /* 1851 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1852 * area specified by it. The function expects sbi->s_lastblock to be the last 1853 * block on the media. 1854 * 1855 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1856 * was not found. 1857 */ 1858 static int udf_find_anchor(struct super_block *sb, 1859 struct kernel_lb_addr *fileset) 1860 { 1861 struct udf_sb_info *sbi = UDF_SB(sb); 1862 sector_t lastblock = sbi->s_last_block; 1863 int ret; 1864 1865 ret = udf_scan_anchors(sb, &lastblock, fileset); 1866 if (ret != -EAGAIN) 1867 goto out; 1868 1869 /* No anchor found? Try VARCONV conversion of block numbers */ 1870 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1871 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1872 /* Firstly, we try to not convert number of the last block */ 1873 ret = udf_scan_anchors(sb, &lastblock, fileset); 1874 if (ret != -EAGAIN) 1875 goto out; 1876 1877 lastblock = sbi->s_last_block; 1878 /* Secondly, we try with converted number of the last block */ 1879 ret = udf_scan_anchors(sb, &lastblock, fileset); 1880 if (ret < 0) { 1881 /* VARCONV didn't help. Clear it. */ 1882 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1883 } 1884 out: 1885 if (ret == 0) 1886 sbi->s_last_block = lastblock; 1887 return ret; 1888 } 1889 1890 /* 1891 * Check Volume Structure Descriptor, find Anchor block and load Volume 1892 * Descriptor Sequence. 1893 * 1894 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1895 * block was not found. 1896 */ 1897 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1898 int silent, struct kernel_lb_addr *fileset) 1899 { 1900 struct udf_sb_info *sbi = UDF_SB(sb); 1901 loff_t nsr_off; 1902 int ret; 1903 1904 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1905 if (!silent) 1906 udf_warn(sb, "Bad block size\n"); 1907 return -EINVAL; 1908 } 1909 sbi->s_last_block = uopt->lastblock; 1910 if (!uopt->novrs) { 1911 /* Check that it is NSR02 compliant */ 1912 nsr_off = udf_check_vsd(sb); 1913 if (!nsr_off) { 1914 if (!silent) 1915 udf_warn(sb, "No VRS found\n"); 1916 return 0; 1917 } 1918 if (nsr_off == -1) 1919 udf_debug("Failed to read sector at offset %d. " 1920 "Assuming open disc. Skipping validity " 1921 "check\n", VSD_FIRST_SECTOR_OFFSET); 1922 if (!sbi->s_last_block) 1923 sbi->s_last_block = udf_get_last_block(sb); 1924 } else { 1925 udf_debug("Validity check skipped because of novrs option\n"); 1926 } 1927 1928 /* Look for anchor block and load Volume Descriptor Sequence */ 1929 sbi->s_anchor = uopt->anchor; 1930 ret = udf_find_anchor(sb, fileset); 1931 if (ret < 0) { 1932 if (!silent && ret == -EAGAIN) 1933 udf_warn(sb, "No anchor found\n"); 1934 return ret; 1935 } 1936 return 0; 1937 } 1938 1939 static void udf_open_lvid(struct super_block *sb) 1940 { 1941 struct udf_sb_info *sbi = UDF_SB(sb); 1942 struct buffer_head *bh = sbi->s_lvid_bh; 1943 struct logicalVolIntegrityDesc *lvid; 1944 struct logicalVolIntegrityDescImpUse *lvidiu; 1945 1946 if (!bh) 1947 return; 1948 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1949 lvidiu = udf_sb_lvidiu(sb); 1950 if (!lvidiu) 1951 return; 1952 1953 mutex_lock(&sbi->s_alloc_mutex); 1954 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1955 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1956 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1957 CURRENT_TIME); 1958 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1959 1960 lvid->descTag.descCRC = cpu_to_le16( 1961 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1962 le16_to_cpu(lvid->descTag.descCRCLength))); 1963 1964 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1965 mark_buffer_dirty(bh); 1966 sbi->s_lvid_dirty = 0; 1967 mutex_unlock(&sbi->s_alloc_mutex); 1968 /* Make opening of filesystem visible on the media immediately */ 1969 sync_dirty_buffer(bh); 1970 } 1971 1972 static void udf_close_lvid(struct super_block *sb) 1973 { 1974 struct udf_sb_info *sbi = UDF_SB(sb); 1975 struct buffer_head *bh = sbi->s_lvid_bh; 1976 struct logicalVolIntegrityDesc *lvid; 1977 struct logicalVolIntegrityDescImpUse *lvidiu; 1978 1979 if (!bh) 1980 return; 1981 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1982 lvidiu = udf_sb_lvidiu(sb); 1983 if (!lvidiu) 1984 return; 1985 1986 mutex_lock(&sbi->s_alloc_mutex); 1987 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1988 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1989 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1990 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1991 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1992 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1993 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1994 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1995 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1996 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1997 1998 lvid->descTag.descCRC = cpu_to_le16( 1999 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2000 le16_to_cpu(lvid->descTag.descCRCLength))); 2001 2002 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2003 /* 2004 * We set buffer uptodate unconditionally here to avoid spurious 2005 * warnings from mark_buffer_dirty() when previous EIO has marked 2006 * the buffer as !uptodate 2007 */ 2008 set_buffer_uptodate(bh); 2009 mark_buffer_dirty(bh); 2010 sbi->s_lvid_dirty = 0; 2011 mutex_unlock(&sbi->s_alloc_mutex); 2012 /* Make closing of filesystem visible on the media immediately */ 2013 sync_dirty_buffer(bh); 2014 } 2015 2016 u64 lvid_get_unique_id(struct super_block *sb) 2017 { 2018 struct buffer_head *bh; 2019 struct udf_sb_info *sbi = UDF_SB(sb); 2020 struct logicalVolIntegrityDesc *lvid; 2021 struct logicalVolHeaderDesc *lvhd; 2022 u64 uniqueID; 2023 u64 ret; 2024 2025 bh = sbi->s_lvid_bh; 2026 if (!bh) 2027 return 0; 2028 2029 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2030 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2031 2032 mutex_lock(&sbi->s_alloc_mutex); 2033 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2034 if (!(++uniqueID & 0xFFFFFFFF)) 2035 uniqueID += 16; 2036 lvhd->uniqueID = cpu_to_le64(uniqueID); 2037 mutex_unlock(&sbi->s_alloc_mutex); 2038 mark_buffer_dirty(bh); 2039 2040 return ret; 2041 } 2042 2043 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2044 { 2045 int ret = -EINVAL; 2046 struct inode *inode = NULL; 2047 struct udf_options uopt; 2048 struct kernel_lb_addr rootdir, fileset; 2049 struct udf_sb_info *sbi; 2050 2051 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2052 uopt.uid = INVALID_UID; 2053 uopt.gid = INVALID_GID; 2054 uopt.umask = 0; 2055 uopt.fmode = UDF_INVALID_MODE; 2056 uopt.dmode = UDF_INVALID_MODE; 2057 2058 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2059 if (!sbi) 2060 return -ENOMEM; 2061 2062 sb->s_fs_info = sbi; 2063 2064 mutex_init(&sbi->s_alloc_mutex); 2065 2066 if (!udf_parse_options((char *)options, &uopt, false)) 2067 goto error_out; 2068 2069 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2070 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2071 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2072 goto error_out; 2073 } 2074 #ifdef CONFIG_UDF_NLS 2075 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2076 uopt.nls_map = load_nls_default(); 2077 if (!uopt.nls_map) 2078 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2079 else 2080 udf_debug("Using default NLS map\n"); 2081 } 2082 #endif 2083 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2084 uopt.flags |= (1 << UDF_FLAG_UTF8); 2085 2086 fileset.logicalBlockNum = 0xFFFFFFFF; 2087 fileset.partitionReferenceNum = 0xFFFF; 2088 2089 sbi->s_flags = uopt.flags; 2090 sbi->s_uid = uopt.uid; 2091 sbi->s_gid = uopt.gid; 2092 sbi->s_umask = uopt.umask; 2093 sbi->s_fmode = uopt.fmode; 2094 sbi->s_dmode = uopt.dmode; 2095 sbi->s_nls_map = uopt.nls_map; 2096 rwlock_init(&sbi->s_cred_lock); 2097 2098 if (uopt.session == 0xFFFFFFFF) 2099 sbi->s_session = udf_get_last_session(sb); 2100 else 2101 sbi->s_session = uopt.session; 2102 2103 udf_debug("Multi-session=%d\n", sbi->s_session); 2104 2105 /* Fill in the rest of the superblock */ 2106 sb->s_op = &udf_sb_ops; 2107 sb->s_export_op = &udf_export_ops; 2108 2109 sb->s_magic = UDF_SUPER_MAGIC; 2110 sb->s_time_gran = 1000; 2111 2112 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2113 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2114 } else { 2115 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2116 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2117 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2118 if (!silent) 2119 pr_notice("Rescanning with blocksize %d\n", 2120 UDF_DEFAULT_BLOCKSIZE); 2121 brelse(sbi->s_lvid_bh); 2122 sbi->s_lvid_bh = NULL; 2123 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2124 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2125 } 2126 } 2127 if (ret < 0) { 2128 if (ret == -EAGAIN) { 2129 udf_warn(sb, "No partition found (1)\n"); 2130 ret = -EINVAL; 2131 } 2132 goto error_out; 2133 } 2134 2135 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2136 2137 if (sbi->s_lvid_bh) { 2138 struct logicalVolIntegrityDescImpUse *lvidiu = 2139 udf_sb_lvidiu(sb); 2140 uint16_t minUDFReadRev; 2141 uint16_t minUDFWriteRev; 2142 2143 if (!lvidiu) { 2144 ret = -EINVAL; 2145 goto error_out; 2146 } 2147 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2148 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2149 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2150 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2151 minUDFReadRev, 2152 UDF_MAX_READ_VERSION); 2153 ret = -EINVAL; 2154 goto error_out; 2155 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2156 !(sb->s_flags & MS_RDONLY)) { 2157 ret = -EACCES; 2158 goto error_out; 2159 } 2160 2161 sbi->s_udfrev = minUDFWriteRev; 2162 2163 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2164 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2165 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2166 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2167 } 2168 2169 if (!sbi->s_partitions) { 2170 udf_warn(sb, "No partition found (2)\n"); 2171 ret = -EINVAL; 2172 goto error_out; 2173 } 2174 2175 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2176 UDF_PART_FLAG_READ_ONLY && 2177 !(sb->s_flags & MS_RDONLY)) { 2178 ret = -EACCES; 2179 goto error_out; 2180 } 2181 2182 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2183 udf_warn(sb, "No fileset found\n"); 2184 ret = -EINVAL; 2185 goto error_out; 2186 } 2187 2188 if (!silent) { 2189 struct timestamp ts; 2190 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2191 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2192 sbi->s_volume_ident, 2193 le16_to_cpu(ts.year), ts.month, ts.day, 2194 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2195 } 2196 if (!(sb->s_flags & MS_RDONLY)) 2197 udf_open_lvid(sb); 2198 2199 /* Assign the root inode */ 2200 /* assign inodes by physical block number */ 2201 /* perhaps it's not extensible enough, but for now ... */ 2202 inode = udf_iget(sb, &rootdir); 2203 if (!inode) { 2204 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2205 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2206 ret = -EIO; 2207 goto error_out; 2208 } 2209 2210 /* Allocate a dentry for the root inode */ 2211 sb->s_root = d_make_root(inode); 2212 if (!sb->s_root) { 2213 udf_err(sb, "Couldn't allocate root dentry\n"); 2214 ret = -ENOMEM; 2215 goto error_out; 2216 } 2217 sb->s_maxbytes = MAX_LFS_FILESIZE; 2218 sb->s_max_links = UDF_MAX_LINKS; 2219 return 0; 2220 2221 error_out: 2222 if (sbi->s_vat_inode) 2223 iput(sbi->s_vat_inode); 2224 #ifdef CONFIG_UDF_NLS 2225 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2226 unload_nls(sbi->s_nls_map); 2227 #endif 2228 if (!(sb->s_flags & MS_RDONLY)) 2229 udf_close_lvid(sb); 2230 brelse(sbi->s_lvid_bh); 2231 udf_sb_free_partitions(sb); 2232 kfree(sbi); 2233 sb->s_fs_info = NULL; 2234 2235 return ret; 2236 } 2237 2238 void _udf_err(struct super_block *sb, const char *function, 2239 const char *fmt, ...) 2240 { 2241 struct va_format vaf; 2242 va_list args; 2243 2244 va_start(args, fmt); 2245 2246 vaf.fmt = fmt; 2247 vaf.va = &args; 2248 2249 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2250 2251 va_end(args); 2252 } 2253 2254 void _udf_warn(struct super_block *sb, const char *function, 2255 const char *fmt, ...) 2256 { 2257 struct va_format vaf; 2258 va_list args; 2259 2260 va_start(args, fmt); 2261 2262 vaf.fmt = fmt; 2263 vaf.va = &args; 2264 2265 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2266 2267 va_end(args); 2268 } 2269 2270 static void udf_put_super(struct super_block *sb) 2271 { 2272 struct udf_sb_info *sbi; 2273 2274 sbi = UDF_SB(sb); 2275 2276 if (sbi->s_vat_inode) 2277 iput(sbi->s_vat_inode); 2278 #ifdef CONFIG_UDF_NLS 2279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2280 unload_nls(sbi->s_nls_map); 2281 #endif 2282 if (!(sb->s_flags & MS_RDONLY)) 2283 udf_close_lvid(sb); 2284 brelse(sbi->s_lvid_bh); 2285 udf_sb_free_partitions(sb); 2286 kfree(sb->s_fs_info); 2287 sb->s_fs_info = NULL; 2288 } 2289 2290 static int udf_sync_fs(struct super_block *sb, int wait) 2291 { 2292 struct udf_sb_info *sbi = UDF_SB(sb); 2293 2294 mutex_lock(&sbi->s_alloc_mutex); 2295 if (sbi->s_lvid_dirty) { 2296 /* 2297 * Blockdevice will be synced later so we don't have to submit 2298 * the buffer for IO 2299 */ 2300 mark_buffer_dirty(sbi->s_lvid_bh); 2301 sbi->s_lvid_dirty = 0; 2302 } 2303 mutex_unlock(&sbi->s_alloc_mutex); 2304 2305 return 0; 2306 } 2307 2308 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2309 { 2310 struct super_block *sb = dentry->d_sb; 2311 struct udf_sb_info *sbi = UDF_SB(sb); 2312 struct logicalVolIntegrityDescImpUse *lvidiu; 2313 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2314 2315 lvidiu = udf_sb_lvidiu(sb); 2316 buf->f_type = UDF_SUPER_MAGIC; 2317 buf->f_bsize = sb->s_blocksize; 2318 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2319 buf->f_bfree = udf_count_free(sb); 2320 buf->f_bavail = buf->f_bfree; 2321 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2322 le32_to_cpu(lvidiu->numDirs)) : 0) 2323 + buf->f_bfree; 2324 buf->f_ffree = buf->f_bfree; 2325 buf->f_namelen = UDF_NAME_LEN - 2; 2326 buf->f_fsid.val[0] = (u32)id; 2327 buf->f_fsid.val[1] = (u32)(id >> 32); 2328 2329 return 0; 2330 } 2331 2332 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2333 struct udf_bitmap *bitmap) 2334 { 2335 struct buffer_head *bh = NULL; 2336 unsigned int accum = 0; 2337 int index; 2338 int block = 0, newblock; 2339 struct kernel_lb_addr loc; 2340 uint32_t bytes; 2341 uint8_t *ptr; 2342 uint16_t ident; 2343 struct spaceBitmapDesc *bm; 2344 2345 loc.logicalBlockNum = bitmap->s_extPosition; 2346 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2347 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2348 2349 if (!bh) { 2350 udf_err(sb, "udf_count_free failed\n"); 2351 goto out; 2352 } else if (ident != TAG_IDENT_SBD) { 2353 brelse(bh); 2354 udf_err(sb, "udf_count_free failed\n"); 2355 goto out; 2356 } 2357 2358 bm = (struct spaceBitmapDesc *)bh->b_data; 2359 bytes = le32_to_cpu(bm->numOfBytes); 2360 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2361 ptr = (uint8_t *)bh->b_data; 2362 2363 while (bytes > 0) { 2364 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2365 accum += bitmap_weight((const unsigned long *)(ptr + index), 2366 cur_bytes * 8); 2367 bytes -= cur_bytes; 2368 if (bytes) { 2369 brelse(bh); 2370 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2371 bh = udf_tread(sb, newblock); 2372 if (!bh) { 2373 udf_debug("read failed\n"); 2374 goto out; 2375 } 2376 index = 0; 2377 ptr = (uint8_t *)bh->b_data; 2378 } 2379 } 2380 brelse(bh); 2381 out: 2382 return accum; 2383 } 2384 2385 static unsigned int udf_count_free_table(struct super_block *sb, 2386 struct inode *table) 2387 { 2388 unsigned int accum = 0; 2389 uint32_t elen; 2390 struct kernel_lb_addr eloc; 2391 int8_t etype; 2392 struct extent_position epos; 2393 2394 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2395 epos.block = UDF_I(table)->i_location; 2396 epos.offset = sizeof(struct unallocSpaceEntry); 2397 epos.bh = NULL; 2398 2399 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2400 accum += (elen >> table->i_sb->s_blocksize_bits); 2401 2402 brelse(epos.bh); 2403 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2404 2405 return accum; 2406 } 2407 2408 static unsigned int udf_count_free(struct super_block *sb) 2409 { 2410 unsigned int accum = 0; 2411 struct udf_sb_info *sbi; 2412 struct udf_part_map *map; 2413 2414 sbi = UDF_SB(sb); 2415 if (sbi->s_lvid_bh) { 2416 struct logicalVolIntegrityDesc *lvid = 2417 (struct logicalVolIntegrityDesc *) 2418 sbi->s_lvid_bh->b_data; 2419 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2420 accum = le32_to_cpu( 2421 lvid->freeSpaceTable[sbi->s_partition]); 2422 if (accum == 0xFFFFFFFF) 2423 accum = 0; 2424 } 2425 } 2426 2427 if (accum) 2428 return accum; 2429 2430 map = &sbi->s_partmaps[sbi->s_partition]; 2431 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2432 accum += udf_count_free_bitmap(sb, 2433 map->s_uspace.s_bitmap); 2434 } 2435 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2436 accum += udf_count_free_bitmap(sb, 2437 map->s_fspace.s_bitmap); 2438 } 2439 if (accum) 2440 return accum; 2441 2442 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2443 accum += udf_count_free_table(sb, 2444 map->s_uspace.s_table); 2445 } 2446 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2447 accum += udf_count_free_table(sb, 2448 map->s_fspace.s_table); 2449 } 2450 2451 return accum; 2452 } 2453