1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 96 struct kernel_lb_addr *); 97 static void udf_load_fileset(struct super_block *, struct buffer_head *, 98 struct kernel_lb_addr *); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 116 offsetof(struct logicalVolIntegrityDesc, impUse)) / 117 (2 * sizeof(uint32_t)) < partnum) { 118 udf_err(sb, "Logical volume integrity descriptor corrupted " 119 "(numOfPartitions = %u)!\n", partnum); 120 return NULL; 121 } 122 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 123 offset = partnum * 2 * sizeof(uint32_t); 124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 125 } 126 127 /* UDF filesystem type */ 128 static struct dentry *udf_mount(struct file_system_type *fs_type, 129 int flags, const char *dev_name, void *data) 130 { 131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 132 } 133 134 static struct file_system_type udf_fstype = { 135 .owner = THIS_MODULE, 136 .name = "udf", 137 .mount = udf_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("udf"); 142 143 static struct kmem_cache *udf_inode_cachep; 144 145 static struct inode *udf_alloc_inode(struct super_block *sb) 146 { 147 struct udf_inode_info *ei; 148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 149 if (!ei) 150 return NULL; 151 152 ei->i_unique = 0; 153 ei->i_lenExtents = 0; 154 ei->i_next_alloc_block = 0; 155 ei->i_next_alloc_goal = 0; 156 ei->i_strat4096 = 0; 157 init_rwsem(&ei->i_data_sem); 158 ei->cached_extent.lstart = -1; 159 spin_lock_init(&ei->i_extent_cache_lock); 160 161 return &ei->vfs_inode; 162 } 163 164 static void udf_i_callback(struct rcu_head *head) 165 { 166 struct inode *inode = container_of(head, struct inode, i_rcu); 167 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 168 } 169 170 static void udf_destroy_inode(struct inode *inode) 171 { 172 call_rcu(&inode->i_rcu, udf_i_callback); 173 } 174 175 static void init_once(void *foo) 176 { 177 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 178 179 ei->i_ext.i_data = NULL; 180 inode_init_once(&ei->vfs_inode); 181 } 182 183 static int __init init_inodecache(void) 184 { 185 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 186 sizeof(struct udf_inode_info), 187 0, (SLAB_RECLAIM_ACCOUNT | 188 SLAB_MEM_SPREAD | 189 SLAB_ACCOUNT), 190 init_once); 191 if (!udf_inode_cachep) 192 return -ENOMEM; 193 return 0; 194 } 195 196 static void destroy_inodecache(void) 197 { 198 /* 199 * Make sure all delayed rcu free inodes are flushed before we 200 * destroy cache. 201 */ 202 rcu_barrier(); 203 kmem_cache_destroy(udf_inode_cachep); 204 } 205 206 /* Superblock operations */ 207 static const struct super_operations udf_sb_ops = { 208 .alloc_inode = udf_alloc_inode, 209 .destroy_inode = udf_destroy_inode, 210 .write_inode = udf_write_inode, 211 .evict_inode = udf_evict_inode, 212 .put_super = udf_put_super, 213 .sync_fs = udf_sync_fs, 214 .statfs = udf_statfs, 215 .remount_fs = udf_remount_fs, 216 .show_options = udf_show_options, 217 }; 218 219 struct udf_options { 220 unsigned char novrs; 221 unsigned int blocksize; 222 unsigned int session; 223 unsigned int lastblock; 224 unsigned int anchor; 225 unsigned int flags; 226 umode_t umask; 227 kgid_t gid; 228 kuid_t uid; 229 umode_t fmode; 230 umode_t dmode; 231 struct nls_table *nls_map; 232 }; 233 234 static int __init init_udf_fs(void) 235 { 236 int err; 237 238 err = init_inodecache(); 239 if (err) 240 goto out1; 241 err = register_filesystem(&udf_fstype); 242 if (err) 243 goto out; 244 245 return 0; 246 247 out: 248 destroy_inodecache(); 249 250 out1: 251 return err; 252 } 253 254 static void __exit exit_udf_fs(void) 255 { 256 unregister_filesystem(&udf_fstype); 257 destroy_inodecache(); 258 } 259 260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 261 { 262 struct udf_sb_info *sbi = UDF_SB(sb); 263 264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 265 if (!sbi->s_partmaps) { 266 sbi->s_partitions = 0; 267 return -ENOMEM; 268 } 269 270 sbi->s_partitions = count; 271 return 0; 272 } 273 274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 275 { 276 int i; 277 int nr_groups = bitmap->s_nr_groups; 278 279 for (i = 0; i < nr_groups; i++) 280 if (bitmap->s_block_bitmap[i]) 281 brelse(bitmap->s_block_bitmap[i]); 282 283 kvfree(bitmap); 284 } 285 286 static void udf_free_partition(struct udf_part_map *map) 287 { 288 int i; 289 struct udf_meta_data *mdata; 290 291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 292 iput(map->s_uspace.s_table); 293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 294 iput(map->s_fspace.s_table); 295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 296 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 298 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 299 if (map->s_partition_type == UDF_SPARABLE_MAP15) 300 for (i = 0; i < 4; i++) 301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 302 else if (map->s_partition_type == UDF_METADATA_MAP25) { 303 mdata = &map->s_type_specific.s_metadata; 304 iput(mdata->s_metadata_fe); 305 mdata->s_metadata_fe = NULL; 306 307 iput(mdata->s_mirror_fe); 308 mdata->s_mirror_fe = NULL; 309 310 iput(mdata->s_bitmap_fe); 311 mdata->s_bitmap_fe = NULL; 312 } 313 } 314 315 static void udf_sb_free_partitions(struct super_block *sb) 316 { 317 struct udf_sb_info *sbi = UDF_SB(sb); 318 int i; 319 320 if (!sbi->s_partmaps) 321 return; 322 for (i = 0; i < sbi->s_partitions; i++) 323 udf_free_partition(&sbi->s_partmaps[i]); 324 kfree(sbi->s_partmaps); 325 sbi->s_partmaps = NULL; 326 } 327 328 static int udf_show_options(struct seq_file *seq, struct dentry *root) 329 { 330 struct super_block *sb = root->d_sb; 331 struct udf_sb_info *sbi = UDF_SB(sb); 332 333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 334 seq_puts(seq, ",nostrict"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 336 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 338 seq_puts(seq, ",unhide"); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 340 seq_puts(seq, ",undelete"); 341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 342 seq_puts(seq, ",noadinicb"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 344 seq_puts(seq, ",shortad"); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 346 seq_puts(seq, ",uid=forget"); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 348 seq_puts(seq, ",gid=forget"); 349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 353 if (sbi->s_umask != 0) 354 seq_printf(seq, ",umask=%ho", sbi->s_umask); 355 if (sbi->s_fmode != UDF_INVALID_MODE) 356 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 357 if (sbi->s_dmode != UDF_INVALID_MODE) 358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 360 seq_printf(seq, ",session=%d", sbi->s_session); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 363 if (sbi->s_anchor != 0) 364 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 366 seq_puts(seq, ",utf8"); 367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 369 370 return 0; 371 } 372 373 /* 374 * udf_parse_options 375 * 376 * PURPOSE 377 * Parse mount options. 378 * 379 * DESCRIPTION 380 * The following mount options are supported: 381 * 382 * gid= Set the default group. 383 * umask= Set the default umask. 384 * mode= Set the default file permissions. 385 * dmode= Set the default directory permissions. 386 * uid= Set the default user. 387 * bs= Set the block size. 388 * unhide Show otherwise hidden files. 389 * undelete Show deleted files in lists. 390 * adinicb Embed data in the inode (default) 391 * noadinicb Don't embed data in the inode 392 * shortad Use short ad's 393 * longad Use long ad's (default) 394 * nostrict Unset strict conformance 395 * iocharset= Set the NLS character set 396 * 397 * The remaining are for debugging and disaster recovery: 398 * 399 * novrs Skip volume sequence recognition 400 * 401 * The following expect a offset from 0. 402 * 403 * session= Set the CDROM session (default= last session) 404 * anchor= Override standard anchor location. (default= 256) 405 * volume= Override the VolumeDesc location. (unused) 406 * partition= Override the PartitionDesc location. (unused) 407 * lastblock= Set the last block of the filesystem/ 408 * 409 * The following expect a offset from the partition root. 410 * 411 * fileset= Override the fileset block location. (unused) 412 * rootdir= Override the root directory location. (unused) 413 * WARNING: overriding the rootdir to a non-directory may 414 * yield highly unpredictable results. 415 * 416 * PRE-CONDITIONS 417 * options Pointer to mount options string. 418 * uopts Pointer to mount options variable. 419 * 420 * POST-CONDITIONS 421 * <return> 1 Mount options parsed okay. 422 * <return> 0 Error parsing mount options. 423 * 424 * HISTORY 425 * July 1, 1997 - Andrew E. Mileski 426 * Written, tested, and released. 427 */ 428 429 enum { 430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 434 Opt_rootdir, Opt_utf8, Opt_iocharset, 435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 436 Opt_fmode, Opt_dmode 437 }; 438 439 static const match_table_t tokens = { 440 {Opt_novrs, "novrs"}, 441 {Opt_nostrict, "nostrict"}, 442 {Opt_bs, "bs=%u"}, 443 {Opt_unhide, "unhide"}, 444 {Opt_undelete, "undelete"}, 445 {Opt_noadinicb, "noadinicb"}, 446 {Opt_adinicb, "adinicb"}, 447 {Opt_shortad, "shortad"}, 448 {Opt_longad, "longad"}, 449 {Opt_uforget, "uid=forget"}, 450 {Opt_uignore, "uid=ignore"}, 451 {Opt_gforget, "gid=forget"}, 452 {Opt_gignore, "gid=ignore"}, 453 {Opt_gid, "gid=%u"}, 454 {Opt_uid, "uid=%u"}, 455 {Opt_umask, "umask=%o"}, 456 {Opt_session, "session=%u"}, 457 {Opt_lastblock, "lastblock=%u"}, 458 {Opt_anchor, "anchor=%u"}, 459 {Opt_volume, "volume=%u"}, 460 {Opt_partition, "partition=%u"}, 461 {Opt_fileset, "fileset=%u"}, 462 {Opt_rootdir, "rootdir=%u"}, 463 {Opt_utf8, "utf8"}, 464 {Opt_iocharset, "iocharset=%s"}, 465 {Opt_fmode, "mode=%o"}, 466 {Opt_dmode, "dmode=%o"}, 467 {Opt_err, NULL} 468 }; 469 470 static int udf_parse_options(char *options, struct udf_options *uopt, 471 bool remount) 472 { 473 char *p; 474 int option; 475 476 uopt->novrs = 0; 477 uopt->session = 0xFFFFFFFF; 478 uopt->lastblock = 0; 479 uopt->anchor = 0; 480 481 if (!options) 482 return 1; 483 484 while ((p = strsep(&options, ",")) != NULL) { 485 substring_t args[MAX_OPT_ARGS]; 486 int token; 487 unsigned n; 488 if (!*p) 489 continue; 490 491 token = match_token(p, tokens, args); 492 switch (token) { 493 case Opt_novrs: 494 uopt->novrs = 1; 495 break; 496 case Opt_bs: 497 if (match_int(&args[0], &option)) 498 return 0; 499 n = option; 500 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 501 return 0; 502 uopt->blocksize = n; 503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 504 break; 505 case Opt_unhide: 506 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 507 break; 508 case Opt_undelete: 509 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 510 break; 511 case Opt_noadinicb: 512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 513 break; 514 case Opt_adinicb: 515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 516 break; 517 case Opt_shortad: 518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 519 break; 520 case Opt_longad: 521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 522 break; 523 case Opt_gid: 524 if (match_int(args, &option)) 525 return 0; 526 uopt->gid = make_kgid(current_user_ns(), option); 527 if (!gid_valid(uopt->gid)) 528 return 0; 529 uopt->flags |= (1 << UDF_FLAG_GID_SET); 530 break; 531 case Opt_uid: 532 if (match_int(args, &option)) 533 return 0; 534 uopt->uid = make_kuid(current_user_ns(), option); 535 if (!uid_valid(uopt->uid)) 536 return 0; 537 uopt->flags |= (1 << UDF_FLAG_UID_SET); 538 break; 539 case Opt_umask: 540 if (match_octal(args, &option)) 541 return 0; 542 uopt->umask = option; 543 break; 544 case Opt_nostrict: 545 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 546 break; 547 case Opt_session: 548 if (match_int(args, &option)) 549 return 0; 550 uopt->session = option; 551 if (!remount) 552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 553 break; 554 case Opt_lastblock: 555 if (match_int(args, &option)) 556 return 0; 557 uopt->lastblock = option; 558 if (!remount) 559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 560 break; 561 case Opt_anchor: 562 if (match_int(args, &option)) 563 return 0; 564 uopt->anchor = option; 565 break; 566 case Opt_volume: 567 case Opt_partition: 568 case Opt_fileset: 569 case Opt_rootdir: 570 /* Ignored (never implemented properly) */ 571 break; 572 case Opt_utf8: 573 uopt->flags |= (1 << UDF_FLAG_UTF8); 574 break; 575 case Opt_iocharset: 576 if (!remount) { 577 if (uopt->nls_map) 578 unload_nls(uopt->nls_map); 579 uopt->nls_map = load_nls(args[0].from); 580 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 581 } 582 break; 583 case Opt_uforget: 584 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 585 break; 586 case Opt_uignore: 587 case Opt_gignore: 588 /* These options are superseeded by uid=<number> */ 589 break; 590 case Opt_gforget: 591 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 592 break; 593 case Opt_fmode: 594 if (match_octal(args, &option)) 595 return 0; 596 uopt->fmode = option & 0777; 597 break; 598 case Opt_dmode: 599 if (match_octal(args, &option)) 600 return 0; 601 uopt->dmode = option & 0777; 602 break; 603 default: 604 pr_err("bad mount option \"%s\" or missing value\n", p); 605 return 0; 606 } 607 } 608 return 1; 609 } 610 611 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 612 { 613 struct udf_options uopt; 614 struct udf_sb_info *sbi = UDF_SB(sb); 615 int error = 0; 616 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 617 618 sync_filesystem(sb); 619 if (lvidiu) { 620 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 621 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY)) 622 return -EACCES; 623 } 624 625 uopt.flags = sbi->s_flags; 626 uopt.uid = sbi->s_uid; 627 uopt.gid = sbi->s_gid; 628 uopt.umask = sbi->s_umask; 629 uopt.fmode = sbi->s_fmode; 630 uopt.dmode = sbi->s_dmode; 631 uopt.nls_map = NULL; 632 633 if (!udf_parse_options(options, &uopt, true)) 634 return -EINVAL; 635 636 write_lock(&sbi->s_cred_lock); 637 sbi->s_flags = uopt.flags; 638 sbi->s_uid = uopt.uid; 639 sbi->s_gid = uopt.gid; 640 sbi->s_umask = uopt.umask; 641 sbi->s_fmode = uopt.fmode; 642 sbi->s_dmode = uopt.dmode; 643 write_unlock(&sbi->s_cred_lock); 644 645 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 646 goto out_unlock; 647 648 if (*flags & SB_RDONLY) 649 udf_close_lvid(sb); 650 else 651 udf_open_lvid(sb); 652 653 out_unlock: 654 return error; 655 } 656 657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 659 static loff_t udf_check_vsd(struct super_block *sb) 660 { 661 struct volStructDesc *vsd = NULL; 662 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 663 int sectorsize; 664 struct buffer_head *bh = NULL; 665 int nsr02 = 0; 666 int nsr03 = 0; 667 struct udf_sb_info *sbi; 668 669 sbi = UDF_SB(sb); 670 if (sb->s_blocksize < sizeof(struct volStructDesc)) 671 sectorsize = sizeof(struct volStructDesc); 672 else 673 sectorsize = sb->s_blocksize; 674 675 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits); 676 677 udf_debug("Starting at sector %u (%lu byte sectors)\n", 678 (unsigned int)(sector >> sb->s_blocksize_bits), 679 sb->s_blocksize); 680 /* Process the sequence (if applicable). The hard limit on the sector 681 * offset is arbitrary, hopefully large enough so that all valid UDF 682 * filesystems will be recognised. There is no mention of an upper 683 * bound to the size of the volume recognition area in the standard. 684 * The limit will prevent the code to read all the sectors of a 685 * specially crafted image (like a bluray disc full of CD001 sectors), 686 * potentially causing minutes or even hours of uninterruptible I/O 687 * activity. This actually happened with uninitialised SSD partitions 688 * (all 0xFF) before the check for the limit and all valid IDs were 689 * added */ 690 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 691 sector += sectorsize) { 692 /* Read a block */ 693 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 694 if (!bh) 695 break; 696 697 /* Look for ISO descriptors */ 698 vsd = (struct volStructDesc *)(bh->b_data + 699 (sector & (sb->s_blocksize - 1))); 700 701 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 702 VSD_STD_ID_LEN)) { 703 switch (vsd->structType) { 704 case 0: 705 udf_debug("ISO9660 Boot Record found\n"); 706 break; 707 case 1: 708 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 709 break; 710 case 2: 711 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 712 break; 713 case 3: 714 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 715 break; 716 case 255: 717 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 718 break; 719 default: 720 udf_debug("ISO9660 VRS (%u) found\n", 721 vsd->structType); 722 break; 723 } 724 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 725 VSD_STD_ID_LEN)) 726 ; /* nothing */ 727 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 728 VSD_STD_ID_LEN)) { 729 brelse(bh); 730 break; 731 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 732 VSD_STD_ID_LEN)) 733 nsr02 = sector; 734 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 735 VSD_STD_ID_LEN)) 736 nsr03 = sector; 737 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 738 VSD_STD_ID_LEN)) 739 ; /* nothing */ 740 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 741 VSD_STD_ID_LEN)) 742 ; /* nothing */ 743 else { 744 /* invalid id : end of volume recognition area */ 745 brelse(bh); 746 break; 747 } 748 brelse(bh); 749 } 750 751 if (nsr03) 752 return nsr03; 753 else if (nsr02) 754 return nsr02; 755 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 756 VSD_FIRST_SECTOR_OFFSET) 757 return -1; 758 else 759 return 0; 760 } 761 762 static int udf_find_fileset(struct super_block *sb, 763 struct kernel_lb_addr *fileset, 764 struct kernel_lb_addr *root) 765 { 766 struct buffer_head *bh = NULL; 767 uint16_t ident; 768 769 if (fileset->logicalBlockNum != 0xFFFFFFFF || 770 fileset->partitionReferenceNum != 0xFFFF) { 771 bh = udf_read_ptagged(sb, fileset, 0, &ident); 772 773 if (!bh) { 774 return 1; 775 } else if (ident != TAG_IDENT_FSD) { 776 brelse(bh); 777 return 1; 778 } 779 780 udf_debug("Fileset at block=%u, partition=%u\n", 781 fileset->logicalBlockNum, 782 fileset->partitionReferenceNum); 783 784 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 785 udf_load_fileset(sb, bh, root); 786 brelse(bh); 787 return 0; 788 } 789 return 1; 790 } 791 792 /* 793 * Load primary Volume Descriptor Sequence 794 * 795 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 796 * should be tried. 797 */ 798 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 799 { 800 struct primaryVolDesc *pvoldesc; 801 uint8_t *outstr; 802 struct buffer_head *bh; 803 uint16_t ident; 804 int ret = -ENOMEM; 805 #ifdef UDFFS_DEBUG 806 struct timestamp *ts; 807 #endif 808 809 outstr = kmalloc(128, GFP_NOFS); 810 if (!outstr) 811 return -ENOMEM; 812 813 bh = udf_read_tagged(sb, block, block, &ident); 814 if (!bh) { 815 ret = -EAGAIN; 816 goto out2; 817 } 818 819 if (ident != TAG_IDENT_PVD) { 820 ret = -EIO; 821 goto out_bh; 822 } 823 824 pvoldesc = (struct primaryVolDesc *)bh->b_data; 825 826 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 827 pvoldesc->recordingDateAndTime); 828 #ifdef UDFFS_DEBUG 829 ts = &pvoldesc->recordingDateAndTime; 830 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 831 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 832 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 833 #endif 834 835 836 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 837 if (ret < 0) 838 goto out_bh; 839 840 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 841 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 842 843 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 844 if (ret < 0) 845 goto out_bh; 846 847 outstr[ret] = 0; 848 udf_debug("volSetIdent[] = '%s'\n", outstr); 849 850 ret = 0; 851 out_bh: 852 brelse(bh); 853 out2: 854 kfree(outstr); 855 return ret; 856 } 857 858 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 859 u32 meta_file_loc, u32 partition_ref) 860 { 861 struct kernel_lb_addr addr; 862 struct inode *metadata_fe; 863 864 addr.logicalBlockNum = meta_file_loc; 865 addr.partitionReferenceNum = partition_ref; 866 867 metadata_fe = udf_iget_special(sb, &addr); 868 869 if (IS_ERR(metadata_fe)) { 870 udf_warn(sb, "metadata inode efe not found\n"); 871 return metadata_fe; 872 } 873 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 874 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 875 iput(metadata_fe); 876 return ERR_PTR(-EIO); 877 } 878 879 return metadata_fe; 880 } 881 882 static int udf_load_metadata_files(struct super_block *sb, int partition, 883 int type1_index) 884 { 885 struct udf_sb_info *sbi = UDF_SB(sb); 886 struct udf_part_map *map; 887 struct udf_meta_data *mdata; 888 struct kernel_lb_addr addr; 889 struct inode *fe; 890 891 map = &sbi->s_partmaps[partition]; 892 mdata = &map->s_type_specific.s_metadata; 893 mdata->s_phys_partition_ref = type1_index; 894 895 /* metadata address */ 896 udf_debug("Metadata file location: block = %u part = %u\n", 897 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 898 899 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 900 mdata->s_phys_partition_ref); 901 if (IS_ERR(fe)) { 902 /* mirror file entry */ 903 udf_debug("Mirror metadata file location: block = %u part = %u\n", 904 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 905 906 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 907 mdata->s_phys_partition_ref); 908 909 if (IS_ERR(fe)) { 910 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 911 return PTR_ERR(fe); 912 } 913 mdata->s_mirror_fe = fe; 914 } else 915 mdata->s_metadata_fe = fe; 916 917 918 /* 919 * bitmap file entry 920 * Note: 921 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 922 */ 923 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 924 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 925 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 926 927 udf_debug("Bitmap file location: block = %u part = %u\n", 928 addr.logicalBlockNum, addr.partitionReferenceNum); 929 930 fe = udf_iget_special(sb, &addr); 931 if (IS_ERR(fe)) { 932 if (sb_rdonly(sb)) 933 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 934 else { 935 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 936 return PTR_ERR(fe); 937 } 938 } else 939 mdata->s_bitmap_fe = fe; 940 } 941 942 udf_debug("udf_load_metadata_files Ok\n"); 943 return 0; 944 } 945 946 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 947 struct kernel_lb_addr *root) 948 { 949 struct fileSetDesc *fset; 950 951 fset = (struct fileSetDesc *)bh->b_data; 952 953 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 954 955 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 956 957 udf_debug("Rootdir at block=%u, partition=%u\n", 958 root->logicalBlockNum, root->partitionReferenceNum); 959 } 960 961 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 962 { 963 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 964 return DIV_ROUND_UP(map->s_partition_len + 965 (sizeof(struct spaceBitmapDesc) << 3), 966 sb->s_blocksize * 8); 967 } 968 969 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 970 { 971 struct udf_bitmap *bitmap; 972 int nr_groups; 973 int size; 974 975 nr_groups = udf_compute_nr_groups(sb, index); 976 size = sizeof(struct udf_bitmap) + 977 (sizeof(struct buffer_head *) * nr_groups); 978 979 if (size <= PAGE_SIZE) 980 bitmap = kzalloc(size, GFP_KERNEL); 981 else 982 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 983 984 if (!bitmap) 985 return NULL; 986 987 bitmap->s_nr_groups = nr_groups; 988 return bitmap; 989 } 990 991 static int udf_fill_partdesc_info(struct super_block *sb, 992 struct partitionDesc *p, int p_index) 993 { 994 struct udf_part_map *map; 995 struct udf_sb_info *sbi = UDF_SB(sb); 996 struct partitionHeaderDesc *phd; 997 998 map = &sbi->s_partmaps[p_index]; 999 1000 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1001 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1002 1003 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1004 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1005 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1006 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1007 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1008 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1009 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1010 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1011 1012 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1013 p_index, map->s_partition_type, 1014 map->s_partition_root, map->s_partition_len); 1015 1016 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1017 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1018 return 0; 1019 1020 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1021 if (phd->unallocSpaceTable.extLength) { 1022 struct kernel_lb_addr loc = { 1023 .logicalBlockNum = le32_to_cpu( 1024 phd->unallocSpaceTable.extPosition), 1025 .partitionReferenceNum = p_index, 1026 }; 1027 struct inode *inode; 1028 1029 inode = udf_iget_special(sb, &loc); 1030 if (IS_ERR(inode)) { 1031 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1032 p_index); 1033 return PTR_ERR(inode); 1034 } 1035 map->s_uspace.s_table = inode; 1036 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1037 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1038 p_index, map->s_uspace.s_table->i_ino); 1039 } 1040 1041 if (phd->unallocSpaceBitmap.extLength) { 1042 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1043 if (!bitmap) 1044 return -ENOMEM; 1045 map->s_uspace.s_bitmap = bitmap; 1046 bitmap->s_extPosition = le32_to_cpu( 1047 phd->unallocSpaceBitmap.extPosition); 1048 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1049 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1050 p_index, bitmap->s_extPosition); 1051 } 1052 1053 if (phd->partitionIntegrityTable.extLength) 1054 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1055 1056 if (phd->freedSpaceTable.extLength) { 1057 struct kernel_lb_addr loc = { 1058 .logicalBlockNum = le32_to_cpu( 1059 phd->freedSpaceTable.extPosition), 1060 .partitionReferenceNum = p_index, 1061 }; 1062 struct inode *inode; 1063 1064 inode = udf_iget_special(sb, &loc); 1065 if (IS_ERR(inode)) { 1066 udf_debug("cannot load freedSpaceTable (part %d)\n", 1067 p_index); 1068 return PTR_ERR(inode); 1069 } 1070 map->s_fspace.s_table = inode; 1071 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1072 udf_debug("freedSpaceTable (part %d) @ %lu\n", 1073 p_index, map->s_fspace.s_table->i_ino); 1074 } 1075 1076 if (phd->freedSpaceBitmap.extLength) { 1077 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1078 if (!bitmap) 1079 return -ENOMEM; 1080 map->s_fspace.s_bitmap = bitmap; 1081 bitmap->s_extPosition = le32_to_cpu( 1082 phd->freedSpaceBitmap.extPosition); 1083 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1084 udf_debug("freedSpaceBitmap (part %d) @ %u\n", 1085 p_index, bitmap->s_extPosition); 1086 } 1087 return 0; 1088 } 1089 1090 static void udf_find_vat_block(struct super_block *sb, int p_index, 1091 int type1_index, sector_t start_block) 1092 { 1093 struct udf_sb_info *sbi = UDF_SB(sb); 1094 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1095 sector_t vat_block; 1096 struct kernel_lb_addr ino; 1097 struct inode *inode; 1098 1099 /* 1100 * VAT file entry is in the last recorded block. Some broken disks have 1101 * it a few blocks before so try a bit harder... 1102 */ 1103 ino.partitionReferenceNum = type1_index; 1104 for (vat_block = start_block; 1105 vat_block >= map->s_partition_root && 1106 vat_block >= start_block - 3; vat_block--) { 1107 ino.logicalBlockNum = vat_block - map->s_partition_root; 1108 inode = udf_iget_special(sb, &ino); 1109 if (!IS_ERR(inode)) { 1110 sbi->s_vat_inode = inode; 1111 break; 1112 } 1113 } 1114 } 1115 1116 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1117 { 1118 struct udf_sb_info *sbi = UDF_SB(sb); 1119 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1120 struct buffer_head *bh = NULL; 1121 struct udf_inode_info *vati; 1122 uint32_t pos; 1123 struct virtualAllocationTable20 *vat20; 1124 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1125 sb->s_blocksize_bits; 1126 1127 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1128 if (!sbi->s_vat_inode && 1129 sbi->s_last_block != blocks - 1) { 1130 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1131 (unsigned long)sbi->s_last_block, 1132 (unsigned long)blocks - 1); 1133 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1134 } 1135 if (!sbi->s_vat_inode) 1136 return -EIO; 1137 1138 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1139 map->s_type_specific.s_virtual.s_start_offset = 0; 1140 map->s_type_specific.s_virtual.s_num_entries = 1141 (sbi->s_vat_inode->i_size - 36) >> 2; 1142 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1143 vati = UDF_I(sbi->s_vat_inode); 1144 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1145 pos = udf_block_map(sbi->s_vat_inode, 0); 1146 bh = sb_bread(sb, pos); 1147 if (!bh) 1148 return -EIO; 1149 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1150 } else { 1151 vat20 = (struct virtualAllocationTable20 *) 1152 vati->i_ext.i_data; 1153 } 1154 1155 map->s_type_specific.s_virtual.s_start_offset = 1156 le16_to_cpu(vat20->lengthHeader); 1157 map->s_type_specific.s_virtual.s_num_entries = 1158 (sbi->s_vat_inode->i_size - 1159 map->s_type_specific.s_virtual. 1160 s_start_offset) >> 2; 1161 brelse(bh); 1162 } 1163 return 0; 1164 } 1165 1166 /* 1167 * Load partition descriptor block 1168 * 1169 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1170 * sequence. 1171 */ 1172 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1173 { 1174 struct buffer_head *bh; 1175 struct partitionDesc *p; 1176 struct udf_part_map *map; 1177 struct udf_sb_info *sbi = UDF_SB(sb); 1178 int i, type1_idx; 1179 uint16_t partitionNumber; 1180 uint16_t ident; 1181 int ret; 1182 1183 bh = udf_read_tagged(sb, block, block, &ident); 1184 if (!bh) 1185 return -EAGAIN; 1186 if (ident != TAG_IDENT_PD) { 1187 ret = 0; 1188 goto out_bh; 1189 } 1190 1191 p = (struct partitionDesc *)bh->b_data; 1192 partitionNumber = le16_to_cpu(p->partitionNumber); 1193 1194 /* First scan for TYPE1 and SPARABLE partitions */ 1195 for (i = 0; i < sbi->s_partitions; i++) { 1196 map = &sbi->s_partmaps[i]; 1197 udf_debug("Searching map: (%u == %u)\n", 1198 map->s_partition_num, partitionNumber); 1199 if (map->s_partition_num == partitionNumber && 1200 (map->s_partition_type == UDF_TYPE1_MAP15 || 1201 map->s_partition_type == UDF_SPARABLE_MAP15)) 1202 break; 1203 } 1204 1205 if (i >= sbi->s_partitions) { 1206 udf_debug("Partition (%u) not found in partition map\n", 1207 partitionNumber); 1208 ret = 0; 1209 goto out_bh; 1210 } 1211 1212 ret = udf_fill_partdesc_info(sb, p, i); 1213 if (ret < 0) 1214 goto out_bh; 1215 1216 /* 1217 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1218 * PHYSICAL partitions are already set up 1219 */ 1220 type1_idx = i; 1221 #ifdef UDFFS_DEBUG 1222 map = NULL; /* supress 'maybe used uninitialized' warning */ 1223 #endif 1224 for (i = 0; i < sbi->s_partitions; i++) { 1225 map = &sbi->s_partmaps[i]; 1226 1227 if (map->s_partition_num == partitionNumber && 1228 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1229 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1230 map->s_partition_type == UDF_METADATA_MAP25)) 1231 break; 1232 } 1233 1234 if (i >= sbi->s_partitions) { 1235 ret = 0; 1236 goto out_bh; 1237 } 1238 1239 ret = udf_fill_partdesc_info(sb, p, i); 1240 if (ret < 0) 1241 goto out_bh; 1242 1243 if (map->s_partition_type == UDF_METADATA_MAP25) { 1244 ret = udf_load_metadata_files(sb, i, type1_idx); 1245 if (ret < 0) { 1246 udf_err(sb, "error loading MetaData partition map %d\n", 1247 i); 1248 goto out_bh; 1249 } 1250 } else { 1251 /* 1252 * If we have a partition with virtual map, we don't handle 1253 * writing to it (we overwrite blocks instead of relocating 1254 * them). 1255 */ 1256 if (!sb_rdonly(sb)) { 1257 ret = -EACCES; 1258 goto out_bh; 1259 } 1260 ret = udf_load_vat(sb, i, type1_idx); 1261 if (ret < 0) 1262 goto out_bh; 1263 } 1264 ret = 0; 1265 out_bh: 1266 /* In case loading failed, we handle cleanup in udf_fill_super */ 1267 brelse(bh); 1268 return ret; 1269 } 1270 1271 static int udf_load_sparable_map(struct super_block *sb, 1272 struct udf_part_map *map, 1273 struct sparablePartitionMap *spm) 1274 { 1275 uint32_t loc; 1276 uint16_t ident; 1277 struct sparingTable *st; 1278 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1279 int i; 1280 struct buffer_head *bh; 1281 1282 map->s_partition_type = UDF_SPARABLE_MAP15; 1283 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1284 if (!is_power_of_2(sdata->s_packet_len)) { 1285 udf_err(sb, "error loading logical volume descriptor: " 1286 "Invalid packet length %u\n", 1287 (unsigned)sdata->s_packet_len); 1288 return -EIO; 1289 } 1290 if (spm->numSparingTables > 4) { 1291 udf_err(sb, "error loading logical volume descriptor: " 1292 "Too many sparing tables (%d)\n", 1293 (int)spm->numSparingTables); 1294 return -EIO; 1295 } 1296 1297 for (i = 0; i < spm->numSparingTables; i++) { 1298 loc = le32_to_cpu(spm->locSparingTable[i]); 1299 bh = udf_read_tagged(sb, loc, loc, &ident); 1300 if (!bh) 1301 continue; 1302 1303 st = (struct sparingTable *)bh->b_data; 1304 if (ident != 0 || 1305 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1306 strlen(UDF_ID_SPARING)) || 1307 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1308 sb->s_blocksize) { 1309 brelse(bh); 1310 continue; 1311 } 1312 1313 sdata->s_spar_map[i] = bh; 1314 } 1315 map->s_partition_func = udf_get_pblock_spar15; 1316 return 0; 1317 } 1318 1319 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1320 struct kernel_lb_addr *fileset) 1321 { 1322 struct logicalVolDesc *lvd; 1323 int i, offset; 1324 uint8_t type; 1325 struct udf_sb_info *sbi = UDF_SB(sb); 1326 struct genericPartitionMap *gpm; 1327 uint16_t ident; 1328 struct buffer_head *bh; 1329 unsigned int table_len; 1330 int ret; 1331 1332 bh = udf_read_tagged(sb, block, block, &ident); 1333 if (!bh) 1334 return -EAGAIN; 1335 BUG_ON(ident != TAG_IDENT_LVD); 1336 lvd = (struct logicalVolDesc *)bh->b_data; 1337 table_len = le32_to_cpu(lvd->mapTableLength); 1338 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1339 udf_err(sb, "error loading logical volume descriptor: " 1340 "Partition table too long (%u > %lu)\n", table_len, 1341 sb->s_blocksize - sizeof(*lvd)); 1342 ret = -EIO; 1343 goto out_bh; 1344 } 1345 1346 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1347 if (ret) 1348 goto out_bh; 1349 1350 for (i = 0, offset = 0; 1351 i < sbi->s_partitions && offset < table_len; 1352 i++, offset += gpm->partitionMapLength) { 1353 struct udf_part_map *map = &sbi->s_partmaps[i]; 1354 gpm = (struct genericPartitionMap *) 1355 &(lvd->partitionMaps[offset]); 1356 type = gpm->partitionMapType; 1357 if (type == 1) { 1358 struct genericPartitionMap1 *gpm1 = 1359 (struct genericPartitionMap1 *)gpm; 1360 map->s_partition_type = UDF_TYPE1_MAP15; 1361 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1362 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1363 map->s_partition_func = NULL; 1364 } else if (type == 2) { 1365 struct udfPartitionMap2 *upm2 = 1366 (struct udfPartitionMap2 *)gpm; 1367 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1368 strlen(UDF_ID_VIRTUAL))) { 1369 u16 suf = 1370 le16_to_cpu(((__le16 *)upm2->partIdent. 1371 identSuffix)[0]); 1372 if (suf < 0x0200) { 1373 map->s_partition_type = 1374 UDF_VIRTUAL_MAP15; 1375 map->s_partition_func = 1376 udf_get_pblock_virt15; 1377 } else { 1378 map->s_partition_type = 1379 UDF_VIRTUAL_MAP20; 1380 map->s_partition_func = 1381 udf_get_pblock_virt20; 1382 } 1383 } else if (!strncmp(upm2->partIdent.ident, 1384 UDF_ID_SPARABLE, 1385 strlen(UDF_ID_SPARABLE))) { 1386 ret = udf_load_sparable_map(sb, map, 1387 (struct sparablePartitionMap *)gpm); 1388 if (ret < 0) 1389 goto out_bh; 1390 } else if (!strncmp(upm2->partIdent.ident, 1391 UDF_ID_METADATA, 1392 strlen(UDF_ID_METADATA))) { 1393 struct udf_meta_data *mdata = 1394 &map->s_type_specific.s_metadata; 1395 struct metadataPartitionMap *mdm = 1396 (struct metadataPartitionMap *) 1397 &(lvd->partitionMaps[offset]); 1398 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1399 i, type, UDF_ID_METADATA); 1400 1401 map->s_partition_type = UDF_METADATA_MAP25; 1402 map->s_partition_func = udf_get_pblock_meta25; 1403 1404 mdata->s_meta_file_loc = 1405 le32_to_cpu(mdm->metadataFileLoc); 1406 mdata->s_mirror_file_loc = 1407 le32_to_cpu(mdm->metadataMirrorFileLoc); 1408 mdata->s_bitmap_file_loc = 1409 le32_to_cpu(mdm->metadataBitmapFileLoc); 1410 mdata->s_alloc_unit_size = 1411 le32_to_cpu(mdm->allocUnitSize); 1412 mdata->s_align_unit_size = 1413 le16_to_cpu(mdm->alignUnitSize); 1414 if (mdm->flags & 0x01) 1415 mdata->s_flags |= MF_DUPLICATE_MD; 1416 1417 udf_debug("Metadata Ident suffix=0x%x\n", 1418 le16_to_cpu(*(__le16 *) 1419 mdm->partIdent.identSuffix)); 1420 udf_debug("Metadata part num=%u\n", 1421 le16_to_cpu(mdm->partitionNum)); 1422 udf_debug("Metadata part alloc unit size=%u\n", 1423 le32_to_cpu(mdm->allocUnitSize)); 1424 udf_debug("Metadata file loc=%u\n", 1425 le32_to_cpu(mdm->metadataFileLoc)); 1426 udf_debug("Mirror file loc=%u\n", 1427 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1428 udf_debug("Bitmap file loc=%u\n", 1429 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1430 udf_debug("Flags: %d %u\n", 1431 mdata->s_flags, mdm->flags); 1432 } else { 1433 udf_debug("Unknown ident: %s\n", 1434 upm2->partIdent.ident); 1435 continue; 1436 } 1437 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1438 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1439 } 1440 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1441 i, map->s_partition_num, type, map->s_volumeseqnum); 1442 } 1443 1444 if (fileset) { 1445 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1446 1447 *fileset = lelb_to_cpu(la->extLocation); 1448 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1449 fileset->logicalBlockNum, 1450 fileset->partitionReferenceNum); 1451 } 1452 if (lvd->integritySeqExt.extLength) 1453 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1454 ret = 0; 1455 out_bh: 1456 brelse(bh); 1457 return ret; 1458 } 1459 1460 /* 1461 * Find the prevailing Logical Volume Integrity Descriptor. 1462 */ 1463 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1464 { 1465 struct buffer_head *bh, *final_bh; 1466 uint16_t ident; 1467 struct udf_sb_info *sbi = UDF_SB(sb); 1468 struct logicalVolIntegrityDesc *lvid; 1469 int indirections = 0; 1470 1471 while (++indirections <= UDF_MAX_LVID_NESTING) { 1472 final_bh = NULL; 1473 while (loc.extLength > 0 && 1474 (bh = udf_read_tagged(sb, loc.extLocation, 1475 loc.extLocation, &ident))) { 1476 if (ident != TAG_IDENT_LVID) { 1477 brelse(bh); 1478 break; 1479 } 1480 1481 brelse(final_bh); 1482 final_bh = bh; 1483 1484 loc.extLength -= sb->s_blocksize; 1485 loc.extLocation++; 1486 } 1487 1488 if (!final_bh) 1489 return; 1490 1491 brelse(sbi->s_lvid_bh); 1492 sbi->s_lvid_bh = final_bh; 1493 1494 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1495 if (lvid->nextIntegrityExt.extLength == 0) 1496 return; 1497 1498 loc = leea_to_cpu(lvid->nextIntegrityExt); 1499 } 1500 1501 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1502 UDF_MAX_LVID_NESTING); 1503 brelse(sbi->s_lvid_bh); 1504 sbi->s_lvid_bh = NULL; 1505 } 1506 1507 /* 1508 * Step for reallocation of table of partition descriptor sequence numbers. 1509 * Must be power of 2. 1510 */ 1511 #define PART_DESC_ALLOC_STEP 32 1512 1513 struct part_desc_seq_scan_data { 1514 struct udf_vds_record rec; 1515 u32 partnum; 1516 }; 1517 1518 struct desc_seq_scan_data { 1519 struct udf_vds_record vds[VDS_POS_LENGTH]; 1520 unsigned int size_part_descs; 1521 unsigned int num_part_descs; 1522 struct part_desc_seq_scan_data *part_descs_loc; 1523 }; 1524 1525 static struct udf_vds_record *handle_partition_descriptor( 1526 struct buffer_head *bh, 1527 struct desc_seq_scan_data *data) 1528 { 1529 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1530 int partnum; 1531 int i; 1532 1533 partnum = le16_to_cpu(desc->partitionNumber); 1534 for (i = 0; i < data->num_part_descs; i++) 1535 if (partnum == data->part_descs_loc[i].partnum) 1536 return &(data->part_descs_loc[i].rec); 1537 if (data->num_part_descs >= data->size_part_descs) { 1538 struct part_desc_seq_scan_data *new_loc; 1539 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1540 1541 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1542 if (!new_loc) 1543 return ERR_PTR(-ENOMEM); 1544 memcpy(new_loc, data->part_descs_loc, 1545 data->size_part_descs * sizeof(*new_loc)); 1546 kfree(data->part_descs_loc); 1547 data->part_descs_loc = new_loc; 1548 data->size_part_descs = new_size; 1549 } 1550 return &(data->part_descs_loc[data->num_part_descs++].rec); 1551 } 1552 1553 1554 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1555 struct buffer_head *bh, struct desc_seq_scan_data *data) 1556 { 1557 switch (ident) { 1558 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1559 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1560 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1561 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1562 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1563 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1564 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1565 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1566 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1567 return handle_partition_descriptor(bh, data); 1568 } 1569 return NULL; 1570 } 1571 1572 /* 1573 * Process a main/reserve volume descriptor sequence. 1574 * @block First block of first extent of the sequence. 1575 * @lastblock Lastblock of first extent of the sequence. 1576 * @fileset There we store extent containing root fileset 1577 * 1578 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1579 * sequence 1580 */ 1581 static noinline int udf_process_sequence( 1582 struct super_block *sb, 1583 sector_t block, sector_t lastblock, 1584 struct kernel_lb_addr *fileset) 1585 { 1586 struct buffer_head *bh = NULL; 1587 struct udf_vds_record *curr; 1588 struct generic_desc *gd; 1589 struct volDescPtr *vdp; 1590 bool done = false; 1591 uint32_t vdsn; 1592 uint16_t ident; 1593 int ret; 1594 unsigned int indirections = 0; 1595 struct desc_seq_scan_data data; 1596 unsigned int i; 1597 1598 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1599 data.size_part_descs = PART_DESC_ALLOC_STEP; 1600 data.num_part_descs = 0; 1601 data.part_descs_loc = kcalloc(data.size_part_descs, 1602 sizeof(*data.part_descs_loc), 1603 GFP_KERNEL); 1604 if (!data.part_descs_loc) 1605 return -ENOMEM; 1606 1607 /* 1608 * Read the main descriptor sequence and find which descriptors 1609 * are in it. 1610 */ 1611 for (; (!done && block <= lastblock); block++) { 1612 bh = udf_read_tagged(sb, block, block, &ident); 1613 if (!bh) 1614 break; 1615 1616 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1617 gd = (struct generic_desc *)bh->b_data; 1618 vdsn = le32_to_cpu(gd->volDescSeqNum); 1619 switch (ident) { 1620 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1621 if (++indirections > UDF_MAX_TD_NESTING) { 1622 udf_err(sb, "too many Volume Descriptor " 1623 "Pointers (max %u supported)\n", 1624 UDF_MAX_TD_NESTING); 1625 brelse(bh); 1626 return -EIO; 1627 } 1628 1629 vdp = (struct volDescPtr *)bh->b_data; 1630 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1631 lastblock = le32_to_cpu( 1632 vdp->nextVolDescSeqExt.extLength) >> 1633 sb->s_blocksize_bits; 1634 lastblock += block - 1; 1635 /* For loop is going to increment 'block' again */ 1636 block--; 1637 break; 1638 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1639 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1640 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1641 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1642 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1643 curr = get_volume_descriptor_record(ident, bh, &data); 1644 if (IS_ERR(curr)) { 1645 brelse(bh); 1646 return PTR_ERR(curr); 1647 } 1648 /* Descriptor we don't care about? */ 1649 if (!curr) 1650 break; 1651 if (vdsn >= curr->volDescSeqNum) { 1652 curr->volDescSeqNum = vdsn; 1653 curr->block = block; 1654 } 1655 break; 1656 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1657 done = true; 1658 break; 1659 } 1660 brelse(bh); 1661 } 1662 /* 1663 * Now read interesting descriptors again and process them 1664 * in a suitable order 1665 */ 1666 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1667 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1668 return -EAGAIN; 1669 } 1670 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1671 if (ret < 0) 1672 return ret; 1673 1674 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1675 ret = udf_load_logicalvol(sb, 1676 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1677 fileset); 1678 if (ret < 0) 1679 return ret; 1680 } 1681 1682 /* Now handle prevailing Partition Descriptors */ 1683 for (i = 0; i < data.num_part_descs; i++) { 1684 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1685 if (ret < 0) 1686 return ret; 1687 } 1688 1689 return 0; 1690 } 1691 1692 /* 1693 * Load Volume Descriptor Sequence described by anchor in bh 1694 * 1695 * Returns <0 on error, 0 on success 1696 */ 1697 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1698 struct kernel_lb_addr *fileset) 1699 { 1700 struct anchorVolDescPtr *anchor; 1701 sector_t main_s, main_e, reserve_s, reserve_e; 1702 int ret; 1703 1704 anchor = (struct anchorVolDescPtr *)bh->b_data; 1705 1706 /* Locate the main sequence */ 1707 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1708 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1709 main_e = main_e >> sb->s_blocksize_bits; 1710 main_e += main_s - 1; 1711 1712 /* Locate the reserve sequence */ 1713 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1714 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1715 reserve_e = reserve_e >> sb->s_blocksize_bits; 1716 reserve_e += reserve_s - 1; 1717 1718 /* Process the main & reserve sequences */ 1719 /* responsible for finding the PartitionDesc(s) */ 1720 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1721 if (ret != -EAGAIN) 1722 return ret; 1723 udf_sb_free_partitions(sb); 1724 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1725 if (ret < 0) { 1726 udf_sb_free_partitions(sb); 1727 /* No sequence was OK, return -EIO */ 1728 if (ret == -EAGAIN) 1729 ret = -EIO; 1730 } 1731 return ret; 1732 } 1733 1734 /* 1735 * Check whether there is an anchor block in the given block and 1736 * load Volume Descriptor Sequence if so. 1737 * 1738 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1739 * block 1740 */ 1741 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1742 struct kernel_lb_addr *fileset) 1743 { 1744 struct buffer_head *bh; 1745 uint16_t ident; 1746 int ret; 1747 1748 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1749 udf_fixed_to_variable(block) >= 1750 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1751 return -EAGAIN; 1752 1753 bh = udf_read_tagged(sb, block, block, &ident); 1754 if (!bh) 1755 return -EAGAIN; 1756 if (ident != TAG_IDENT_AVDP) { 1757 brelse(bh); 1758 return -EAGAIN; 1759 } 1760 ret = udf_load_sequence(sb, bh, fileset); 1761 brelse(bh); 1762 return ret; 1763 } 1764 1765 /* 1766 * Search for an anchor volume descriptor pointer. 1767 * 1768 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1769 * of anchors. 1770 */ 1771 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1772 struct kernel_lb_addr *fileset) 1773 { 1774 sector_t last[6]; 1775 int i; 1776 struct udf_sb_info *sbi = UDF_SB(sb); 1777 int last_count = 0; 1778 int ret; 1779 1780 /* First try user provided anchor */ 1781 if (sbi->s_anchor) { 1782 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1783 if (ret != -EAGAIN) 1784 return ret; 1785 } 1786 /* 1787 * according to spec, anchor is in either: 1788 * block 256 1789 * lastblock-256 1790 * lastblock 1791 * however, if the disc isn't closed, it could be 512. 1792 */ 1793 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1794 if (ret != -EAGAIN) 1795 return ret; 1796 /* 1797 * The trouble is which block is the last one. Drives often misreport 1798 * this so we try various possibilities. 1799 */ 1800 last[last_count++] = *lastblock; 1801 if (*lastblock >= 1) 1802 last[last_count++] = *lastblock - 1; 1803 last[last_count++] = *lastblock + 1; 1804 if (*lastblock >= 2) 1805 last[last_count++] = *lastblock - 2; 1806 if (*lastblock >= 150) 1807 last[last_count++] = *lastblock - 150; 1808 if (*lastblock >= 152) 1809 last[last_count++] = *lastblock - 152; 1810 1811 for (i = 0; i < last_count; i++) { 1812 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1813 sb->s_blocksize_bits) 1814 continue; 1815 ret = udf_check_anchor_block(sb, last[i], fileset); 1816 if (ret != -EAGAIN) { 1817 if (!ret) 1818 *lastblock = last[i]; 1819 return ret; 1820 } 1821 if (last[i] < 256) 1822 continue; 1823 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1824 if (ret != -EAGAIN) { 1825 if (!ret) 1826 *lastblock = last[i]; 1827 return ret; 1828 } 1829 } 1830 1831 /* Finally try block 512 in case media is open */ 1832 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1833 } 1834 1835 /* 1836 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1837 * area specified by it. The function expects sbi->s_lastblock to be the last 1838 * block on the media. 1839 * 1840 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1841 * was not found. 1842 */ 1843 static int udf_find_anchor(struct super_block *sb, 1844 struct kernel_lb_addr *fileset) 1845 { 1846 struct udf_sb_info *sbi = UDF_SB(sb); 1847 sector_t lastblock = sbi->s_last_block; 1848 int ret; 1849 1850 ret = udf_scan_anchors(sb, &lastblock, fileset); 1851 if (ret != -EAGAIN) 1852 goto out; 1853 1854 /* No anchor found? Try VARCONV conversion of block numbers */ 1855 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1856 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1857 /* Firstly, we try to not convert number of the last block */ 1858 ret = udf_scan_anchors(sb, &lastblock, fileset); 1859 if (ret != -EAGAIN) 1860 goto out; 1861 1862 lastblock = sbi->s_last_block; 1863 /* Secondly, we try with converted number of the last block */ 1864 ret = udf_scan_anchors(sb, &lastblock, fileset); 1865 if (ret < 0) { 1866 /* VARCONV didn't help. Clear it. */ 1867 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1868 } 1869 out: 1870 if (ret == 0) 1871 sbi->s_last_block = lastblock; 1872 return ret; 1873 } 1874 1875 /* 1876 * Check Volume Structure Descriptor, find Anchor block and load Volume 1877 * Descriptor Sequence. 1878 * 1879 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1880 * block was not found. 1881 */ 1882 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1883 int silent, struct kernel_lb_addr *fileset) 1884 { 1885 struct udf_sb_info *sbi = UDF_SB(sb); 1886 loff_t nsr_off; 1887 int ret; 1888 1889 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1890 if (!silent) 1891 udf_warn(sb, "Bad block size\n"); 1892 return -EINVAL; 1893 } 1894 sbi->s_last_block = uopt->lastblock; 1895 if (!uopt->novrs) { 1896 /* Check that it is NSR02 compliant */ 1897 nsr_off = udf_check_vsd(sb); 1898 if (!nsr_off) { 1899 if (!silent) 1900 udf_warn(sb, "No VRS found\n"); 1901 return -EINVAL; 1902 } 1903 if (nsr_off == -1) 1904 udf_debug("Failed to read sector at offset %d. " 1905 "Assuming open disc. Skipping validity " 1906 "check\n", VSD_FIRST_SECTOR_OFFSET); 1907 if (!sbi->s_last_block) 1908 sbi->s_last_block = udf_get_last_block(sb); 1909 } else { 1910 udf_debug("Validity check skipped because of novrs option\n"); 1911 } 1912 1913 /* Look for anchor block and load Volume Descriptor Sequence */ 1914 sbi->s_anchor = uopt->anchor; 1915 ret = udf_find_anchor(sb, fileset); 1916 if (ret < 0) { 1917 if (!silent && ret == -EAGAIN) 1918 udf_warn(sb, "No anchor found\n"); 1919 return ret; 1920 } 1921 return 0; 1922 } 1923 1924 static void udf_open_lvid(struct super_block *sb) 1925 { 1926 struct udf_sb_info *sbi = UDF_SB(sb); 1927 struct buffer_head *bh = sbi->s_lvid_bh; 1928 struct logicalVolIntegrityDesc *lvid; 1929 struct logicalVolIntegrityDescImpUse *lvidiu; 1930 struct timespec64 ts; 1931 1932 if (!bh) 1933 return; 1934 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1935 lvidiu = udf_sb_lvidiu(sb); 1936 if (!lvidiu) 1937 return; 1938 1939 mutex_lock(&sbi->s_alloc_mutex); 1940 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1941 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1942 ktime_get_real_ts64(&ts); 1943 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1944 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 1945 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1946 else 1947 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 1948 1949 lvid->descTag.descCRC = cpu_to_le16( 1950 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1951 le16_to_cpu(lvid->descTag.descCRCLength))); 1952 1953 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1954 mark_buffer_dirty(bh); 1955 sbi->s_lvid_dirty = 0; 1956 mutex_unlock(&sbi->s_alloc_mutex); 1957 /* Make opening of filesystem visible on the media immediately */ 1958 sync_dirty_buffer(bh); 1959 } 1960 1961 static void udf_close_lvid(struct super_block *sb) 1962 { 1963 struct udf_sb_info *sbi = UDF_SB(sb); 1964 struct buffer_head *bh = sbi->s_lvid_bh; 1965 struct logicalVolIntegrityDesc *lvid; 1966 struct logicalVolIntegrityDescImpUse *lvidiu; 1967 struct timespec64 ts; 1968 1969 if (!bh) 1970 return; 1971 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1972 lvidiu = udf_sb_lvidiu(sb); 1973 if (!lvidiu) 1974 return; 1975 1976 mutex_lock(&sbi->s_alloc_mutex); 1977 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1978 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1979 ktime_get_real_ts64(&ts); 1980 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1981 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1982 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1983 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1984 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1985 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1986 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1987 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 1988 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1989 1990 lvid->descTag.descCRC = cpu_to_le16( 1991 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1992 le16_to_cpu(lvid->descTag.descCRCLength))); 1993 1994 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1995 /* 1996 * We set buffer uptodate unconditionally here to avoid spurious 1997 * warnings from mark_buffer_dirty() when previous EIO has marked 1998 * the buffer as !uptodate 1999 */ 2000 set_buffer_uptodate(bh); 2001 mark_buffer_dirty(bh); 2002 sbi->s_lvid_dirty = 0; 2003 mutex_unlock(&sbi->s_alloc_mutex); 2004 /* Make closing of filesystem visible on the media immediately */ 2005 sync_dirty_buffer(bh); 2006 } 2007 2008 u64 lvid_get_unique_id(struct super_block *sb) 2009 { 2010 struct buffer_head *bh; 2011 struct udf_sb_info *sbi = UDF_SB(sb); 2012 struct logicalVolIntegrityDesc *lvid; 2013 struct logicalVolHeaderDesc *lvhd; 2014 u64 uniqueID; 2015 u64 ret; 2016 2017 bh = sbi->s_lvid_bh; 2018 if (!bh) 2019 return 0; 2020 2021 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2022 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2023 2024 mutex_lock(&sbi->s_alloc_mutex); 2025 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2026 if (!(++uniqueID & 0xFFFFFFFF)) 2027 uniqueID += 16; 2028 lvhd->uniqueID = cpu_to_le64(uniqueID); 2029 mutex_unlock(&sbi->s_alloc_mutex); 2030 mark_buffer_dirty(bh); 2031 2032 return ret; 2033 } 2034 2035 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2036 { 2037 int ret = -EINVAL; 2038 struct inode *inode = NULL; 2039 struct udf_options uopt; 2040 struct kernel_lb_addr rootdir, fileset; 2041 struct udf_sb_info *sbi; 2042 bool lvid_open = false; 2043 2044 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2045 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2046 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2047 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2048 uopt.umask = 0; 2049 uopt.fmode = UDF_INVALID_MODE; 2050 uopt.dmode = UDF_INVALID_MODE; 2051 uopt.nls_map = NULL; 2052 2053 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2054 if (!sbi) 2055 return -ENOMEM; 2056 2057 sb->s_fs_info = sbi; 2058 2059 mutex_init(&sbi->s_alloc_mutex); 2060 2061 if (!udf_parse_options((char *)options, &uopt, false)) 2062 goto parse_options_failure; 2063 2064 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2065 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2066 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2067 goto parse_options_failure; 2068 } 2069 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2070 uopt.nls_map = load_nls_default(); 2071 if (!uopt.nls_map) 2072 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2073 else 2074 udf_debug("Using default NLS map\n"); 2075 } 2076 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2077 uopt.flags |= (1 << UDF_FLAG_UTF8); 2078 2079 fileset.logicalBlockNum = 0xFFFFFFFF; 2080 fileset.partitionReferenceNum = 0xFFFF; 2081 2082 sbi->s_flags = uopt.flags; 2083 sbi->s_uid = uopt.uid; 2084 sbi->s_gid = uopt.gid; 2085 sbi->s_umask = uopt.umask; 2086 sbi->s_fmode = uopt.fmode; 2087 sbi->s_dmode = uopt.dmode; 2088 sbi->s_nls_map = uopt.nls_map; 2089 rwlock_init(&sbi->s_cred_lock); 2090 2091 if (uopt.session == 0xFFFFFFFF) 2092 sbi->s_session = udf_get_last_session(sb); 2093 else 2094 sbi->s_session = uopt.session; 2095 2096 udf_debug("Multi-session=%d\n", sbi->s_session); 2097 2098 /* Fill in the rest of the superblock */ 2099 sb->s_op = &udf_sb_ops; 2100 sb->s_export_op = &udf_export_ops; 2101 2102 sb->s_magic = UDF_SUPER_MAGIC; 2103 sb->s_time_gran = 1000; 2104 2105 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2106 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2107 } else { 2108 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2109 while (uopt.blocksize <= 4096) { 2110 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2111 if (ret < 0) { 2112 if (!silent && ret != -EACCES) { 2113 pr_notice("Scanning with blocksize %u failed\n", 2114 uopt.blocksize); 2115 } 2116 brelse(sbi->s_lvid_bh); 2117 sbi->s_lvid_bh = NULL; 2118 /* 2119 * EACCES is special - we want to propagate to 2120 * upper layers that we cannot handle RW mount. 2121 */ 2122 if (ret == -EACCES) 2123 break; 2124 } else 2125 break; 2126 2127 uopt.blocksize <<= 1; 2128 } 2129 } 2130 if (ret < 0) { 2131 if (ret == -EAGAIN) { 2132 udf_warn(sb, "No partition found (1)\n"); 2133 ret = -EINVAL; 2134 } 2135 goto error_out; 2136 } 2137 2138 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2139 2140 if (sbi->s_lvid_bh) { 2141 struct logicalVolIntegrityDescImpUse *lvidiu = 2142 udf_sb_lvidiu(sb); 2143 uint16_t minUDFReadRev; 2144 uint16_t minUDFWriteRev; 2145 2146 if (!lvidiu) { 2147 ret = -EINVAL; 2148 goto error_out; 2149 } 2150 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2151 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2152 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2153 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2154 minUDFReadRev, 2155 UDF_MAX_READ_VERSION); 2156 ret = -EINVAL; 2157 goto error_out; 2158 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2159 !sb_rdonly(sb)) { 2160 ret = -EACCES; 2161 goto error_out; 2162 } 2163 2164 sbi->s_udfrev = minUDFWriteRev; 2165 2166 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2167 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2168 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2169 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2170 } 2171 2172 if (!sbi->s_partitions) { 2173 udf_warn(sb, "No partition found (2)\n"); 2174 ret = -EINVAL; 2175 goto error_out; 2176 } 2177 2178 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2179 UDF_PART_FLAG_READ_ONLY && 2180 !sb_rdonly(sb)) { 2181 ret = -EACCES; 2182 goto error_out; 2183 } 2184 2185 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2186 udf_warn(sb, "No fileset found\n"); 2187 ret = -EINVAL; 2188 goto error_out; 2189 } 2190 2191 if (!silent) { 2192 struct timestamp ts; 2193 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2194 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2195 sbi->s_volume_ident, 2196 le16_to_cpu(ts.year), ts.month, ts.day, 2197 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2198 } 2199 if (!sb_rdonly(sb)) { 2200 udf_open_lvid(sb); 2201 lvid_open = true; 2202 } 2203 2204 /* Assign the root inode */ 2205 /* assign inodes by physical block number */ 2206 /* perhaps it's not extensible enough, but for now ... */ 2207 inode = udf_iget(sb, &rootdir); 2208 if (IS_ERR(inode)) { 2209 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2210 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2211 ret = PTR_ERR(inode); 2212 goto error_out; 2213 } 2214 2215 /* Allocate a dentry for the root inode */ 2216 sb->s_root = d_make_root(inode); 2217 if (!sb->s_root) { 2218 udf_err(sb, "Couldn't allocate root dentry\n"); 2219 ret = -ENOMEM; 2220 goto error_out; 2221 } 2222 sb->s_maxbytes = MAX_LFS_FILESIZE; 2223 sb->s_max_links = UDF_MAX_LINKS; 2224 return 0; 2225 2226 error_out: 2227 iput(sbi->s_vat_inode); 2228 parse_options_failure: 2229 if (uopt.nls_map) 2230 unload_nls(uopt.nls_map); 2231 if (lvid_open) 2232 udf_close_lvid(sb); 2233 brelse(sbi->s_lvid_bh); 2234 udf_sb_free_partitions(sb); 2235 kfree(sbi); 2236 sb->s_fs_info = NULL; 2237 2238 return ret; 2239 } 2240 2241 void _udf_err(struct super_block *sb, const char *function, 2242 const char *fmt, ...) 2243 { 2244 struct va_format vaf; 2245 va_list args; 2246 2247 va_start(args, fmt); 2248 2249 vaf.fmt = fmt; 2250 vaf.va = &args; 2251 2252 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2253 2254 va_end(args); 2255 } 2256 2257 void _udf_warn(struct super_block *sb, const char *function, 2258 const char *fmt, ...) 2259 { 2260 struct va_format vaf; 2261 va_list args; 2262 2263 va_start(args, fmt); 2264 2265 vaf.fmt = fmt; 2266 vaf.va = &args; 2267 2268 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2269 2270 va_end(args); 2271 } 2272 2273 static void udf_put_super(struct super_block *sb) 2274 { 2275 struct udf_sb_info *sbi; 2276 2277 sbi = UDF_SB(sb); 2278 2279 iput(sbi->s_vat_inode); 2280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2281 unload_nls(sbi->s_nls_map); 2282 if (!sb_rdonly(sb)) 2283 udf_close_lvid(sb); 2284 brelse(sbi->s_lvid_bh); 2285 udf_sb_free_partitions(sb); 2286 mutex_destroy(&sbi->s_alloc_mutex); 2287 kfree(sb->s_fs_info); 2288 sb->s_fs_info = NULL; 2289 } 2290 2291 static int udf_sync_fs(struct super_block *sb, int wait) 2292 { 2293 struct udf_sb_info *sbi = UDF_SB(sb); 2294 2295 mutex_lock(&sbi->s_alloc_mutex); 2296 if (sbi->s_lvid_dirty) { 2297 /* 2298 * Blockdevice will be synced later so we don't have to submit 2299 * the buffer for IO 2300 */ 2301 mark_buffer_dirty(sbi->s_lvid_bh); 2302 sbi->s_lvid_dirty = 0; 2303 } 2304 mutex_unlock(&sbi->s_alloc_mutex); 2305 2306 return 0; 2307 } 2308 2309 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2310 { 2311 struct super_block *sb = dentry->d_sb; 2312 struct udf_sb_info *sbi = UDF_SB(sb); 2313 struct logicalVolIntegrityDescImpUse *lvidiu; 2314 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2315 2316 lvidiu = udf_sb_lvidiu(sb); 2317 buf->f_type = UDF_SUPER_MAGIC; 2318 buf->f_bsize = sb->s_blocksize; 2319 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2320 buf->f_bfree = udf_count_free(sb); 2321 buf->f_bavail = buf->f_bfree; 2322 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2323 le32_to_cpu(lvidiu->numDirs)) : 0) 2324 + buf->f_bfree; 2325 buf->f_ffree = buf->f_bfree; 2326 buf->f_namelen = UDF_NAME_LEN; 2327 buf->f_fsid.val[0] = (u32)id; 2328 buf->f_fsid.val[1] = (u32)(id >> 32); 2329 2330 return 0; 2331 } 2332 2333 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2334 struct udf_bitmap *bitmap) 2335 { 2336 struct buffer_head *bh = NULL; 2337 unsigned int accum = 0; 2338 int index; 2339 udf_pblk_t block = 0, newblock; 2340 struct kernel_lb_addr loc; 2341 uint32_t bytes; 2342 uint8_t *ptr; 2343 uint16_t ident; 2344 struct spaceBitmapDesc *bm; 2345 2346 loc.logicalBlockNum = bitmap->s_extPosition; 2347 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2348 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2349 2350 if (!bh) { 2351 udf_err(sb, "udf_count_free failed\n"); 2352 goto out; 2353 } else if (ident != TAG_IDENT_SBD) { 2354 brelse(bh); 2355 udf_err(sb, "udf_count_free failed\n"); 2356 goto out; 2357 } 2358 2359 bm = (struct spaceBitmapDesc *)bh->b_data; 2360 bytes = le32_to_cpu(bm->numOfBytes); 2361 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2362 ptr = (uint8_t *)bh->b_data; 2363 2364 while (bytes > 0) { 2365 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2366 accum += bitmap_weight((const unsigned long *)(ptr + index), 2367 cur_bytes * 8); 2368 bytes -= cur_bytes; 2369 if (bytes) { 2370 brelse(bh); 2371 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2372 bh = udf_tread(sb, newblock); 2373 if (!bh) { 2374 udf_debug("read failed\n"); 2375 goto out; 2376 } 2377 index = 0; 2378 ptr = (uint8_t *)bh->b_data; 2379 } 2380 } 2381 brelse(bh); 2382 out: 2383 return accum; 2384 } 2385 2386 static unsigned int udf_count_free_table(struct super_block *sb, 2387 struct inode *table) 2388 { 2389 unsigned int accum = 0; 2390 uint32_t elen; 2391 struct kernel_lb_addr eloc; 2392 int8_t etype; 2393 struct extent_position epos; 2394 2395 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2396 epos.block = UDF_I(table)->i_location; 2397 epos.offset = sizeof(struct unallocSpaceEntry); 2398 epos.bh = NULL; 2399 2400 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2401 accum += (elen >> table->i_sb->s_blocksize_bits); 2402 2403 brelse(epos.bh); 2404 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2405 2406 return accum; 2407 } 2408 2409 static unsigned int udf_count_free(struct super_block *sb) 2410 { 2411 unsigned int accum = 0; 2412 struct udf_sb_info *sbi; 2413 struct udf_part_map *map; 2414 2415 sbi = UDF_SB(sb); 2416 if (sbi->s_lvid_bh) { 2417 struct logicalVolIntegrityDesc *lvid = 2418 (struct logicalVolIntegrityDesc *) 2419 sbi->s_lvid_bh->b_data; 2420 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2421 accum = le32_to_cpu( 2422 lvid->freeSpaceTable[sbi->s_partition]); 2423 if (accum == 0xFFFFFFFF) 2424 accum = 0; 2425 } 2426 } 2427 2428 if (accum) 2429 return accum; 2430 2431 map = &sbi->s_partmaps[sbi->s_partition]; 2432 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2433 accum += udf_count_free_bitmap(sb, 2434 map->s_uspace.s_bitmap); 2435 } 2436 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2437 accum += udf_count_free_bitmap(sb, 2438 map->s_fspace.s_bitmap); 2439 } 2440 if (accum) 2441 return accum; 2442 2443 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2444 accum += udf_count_free_table(sb, 2445 map->s_uspace.s_table); 2446 } 2447 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2448 accum += udf_count_free_table(sb, 2449 map->s_fspace.s_table); 2450 } 2451 2452 return accum; 2453 } 2454 2455 MODULE_AUTHOR("Ben Fennema"); 2456 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2457 MODULE_LICENSE("GPL"); 2458 module_init(init_udf_fs) 2459 module_exit(exit_udf_fs) 2460