1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define UDF_DEFAULT_BLOCKSIZE 2048 77 78 #define VSD_FIRST_SECTOR_OFFSET 32768 79 #define VSD_MAX_SECTOR_OFFSET 0x800000 80 81 /* 82 * Maximum number of Terminating Descriptor / Logical Volume Integrity 83 * Descriptor redirections. The chosen numbers are arbitrary - just that we 84 * hopefully don't limit any real use of rewritten inode on write-once media 85 * but avoid looping for too long on corrupted media. 86 */ 87 #define UDF_MAX_TD_NESTING 64 88 #define UDF_MAX_LVID_NESTING 1000 89 90 enum { UDF_MAX_LINKS = 0xffff }; 91 92 /* These are the "meat" - everything else is stuffing */ 93 static int udf_fill_super(struct super_block *, void *, int); 94 static void udf_put_super(struct super_block *); 95 static int udf_sync_fs(struct super_block *, int); 96 static int udf_remount_fs(struct super_block *, int *, char *); 97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 99 struct kernel_lb_addr *); 100 static void udf_load_fileset(struct super_block *, struct buffer_head *, 101 struct kernel_lb_addr *); 102 static void udf_open_lvid(struct super_block *); 103 static void udf_close_lvid(struct super_block *); 104 static unsigned int udf_count_free(struct super_block *); 105 static int udf_statfs(struct dentry *, struct kstatfs *); 106 static int udf_show_options(struct seq_file *, struct dentry *); 107 108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 109 { 110 struct logicalVolIntegrityDesc *lvid; 111 unsigned int partnum; 112 unsigned int offset; 113 114 if (!UDF_SB(sb)->s_lvid_bh) 115 return NULL; 116 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 117 partnum = le32_to_cpu(lvid->numOfPartitions); 118 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 119 offsetof(struct logicalVolIntegrityDesc, impUse)) / 120 (2 * sizeof(uint32_t)) < partnum) { 121 udf_err(sb, "Logical volume integrity descriptor corrupted " 122 "(numOfPartitions = %u)!\n", partnum); 123 return NULL; 124 } 125 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 126 offset = partnum * 2 * sizeof(uint32_t); 127 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 128 } 129 130 /* UDF filesystem type */ 131 static struct dentry *udf_mount(struct file_system_type *fs_type, 132 int flags, const char *dev_name, void *data) 133 { 134 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 135 } 136 137 static struct file_system_type udf_fstype = { 138 .owner = THIS_MODULE, 139 .name = "udf", 140 .mount = udf_mount, 141 .kill_sb = kill_block_super, 142 .fs_flags = FS_REQUIRES_DEV, 143 }; 144 MODULE_ALIAS_FS("udf"); 145 146 static struct kmem_cache *udf_inode_cachep; 147 148 static struct inode *udf_alloc_inode(struct super_block *sb) 149 { 150 struct udf_inode_info *ei; 151 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 152 if (!ei) 153 return NULL; 154 155 ei->i_unique = 0; 156 ei->i_lenExtents = 0; 157 ei->i_next_alloc_block = 0; 158 ei->i_next_alloc_goal = 0; 159 ei->i_strat4096 = 0; 160 init_rwsem(&ei->i_data_sem); 161 ei->cached_extent.lstart = -1; 162 spin_lock_init(&ei->i_extent_cache_lock); 163 164 return &ei->vfs_inode; 165 } 166 167 static void udf_i_callback(struct rcu_head *head) 168 { 169 struct inode *inode = container_of(head, struct inode, i_rcu); 170 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 171 } 172 173 static void udf_destroy_inode(struct inode *inode) 174 { 175 call_rcu(&inode->i_rcu, udf_i_callback); 176 } 177 178 static void init_once(void *foo) 179 { 180 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 181 182 ei->i_ext.i_data = NULL; 183 inode_init_once(&ei->vfs_inode); 184 } 185 186 static int __init init_inodecache(void) 187 { 188 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 189 sizeof(struct udf_inode_info), 190 0, (SLAB_RECLAIM_ACCOUNT | 191 SLAB_MEM_SPREAD | 192 SLAB_ACCOUNT), 193 init_once); 194 if (!udf_inode_cachep) 195 return -ENOMEM; 196 return 0; 197 } 198 199 static void destroy_inodecache(void) 200 { 201 /* 202 * Make sure all delayed rcu free inodes are flushed before we 203 * destroy cache. 204 */ 205 rcu_barrier(); 206 kmem_cache_destroy(udf_inode_cachep); 207 } 208 209 /* Superblock operations */ 210 static const struct super_operations udf_sb_ops = { 211 .alloc_inode = udf_alloc_inode, 212 .destroy_inode = udf_destroy_inode, 213 .write_inode = udf_write_inode, 214 .evict_inode = udf_evict_inode, 215 .put_super = udf_put_super, 216 .sync_fs = udf_sync_fs, 217 .statfs = udf_statfs, 218 .remount_fs = udf_remount_fs, 219 .show_options = udf_show_options, 220 }; 221 222 struct udf_options { 223 unsigned char novrs; 224 unsigned int blocksize; 225 unsigned int session; 226 unsigned int lastblock; 227 unsigned int anchor; 228 unsigned int volume; 229 unsigned short partition; 230 unsigned int fileset; 231 unsigned int rootdir; 232 unsigned int flags; 233 umode_t umask; 234 kgid_t gid; 235 kuid_t uid; 236 umode_t fmode; 237 umode_t dmode; 238 struct nls_table *nls_map; 239 }; 240 241 static int __init init_udf_fs(void) 242 { 243 int err; 244 245 err = init_inodecache(); 246 if (err) 247 goto out1; 248 err = register_filesystem(&udf_fstype); 249 if (err) 250 goto out; 251 252 return 0; 253 254 out: 255 destroy_inodecache(); 256 257 out1: 258 return err; 259 } 260 261 static void __exit exit_udf_fs(void) 262 { 263 unregister_filesystem(&udf_fstype); 264 destroy_inodecache(); 265 } 266 267 module_init(init_udf_fs) 268 module_exit(exit_udf_fs) 269 270 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 271 { 272 struct udf_sb_info *sbi = UDF_SB(sb); 273 274 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 275 GFP_KERNEL); 276 if (!sbi->s_partmaps) { 277 udf_err(sb, "Unable to allocate space for %d partition maps\n", 278 count); 279 sbi->s_partitions = 0; 280 return -ENOMEM; 281 } 282 283 sbi->s_partitions = count; 284 return 0; 285 } 286 287 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 288 { 289 int i; 290 int nr_groups = bitmap->s_nr_groups; 291 292 for (i = 0; i < nr_groups; i++) 293 if (bitmap->s_block_bitmap[i]) 294 brelse(bitmap->s_block_bitmap[i]); 295 296 kvfree(bitmap); 297 } 298 299 static void udf_free_partition(struct udf_part_map *map) 300 { 301 int i; 302 struct udf_meta_data *mdata; 303 304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 305 iput(map->s_uspace.s_table); 306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 307 iput(map->s_fspace.s_table); 308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 309 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 310 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 311 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 312 if (map->s_partition_type == UDF_SPARABLE_MAP15) 313 for (i = 0; i < 4; i++) 314 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 315 else if (map->s_partition_type == UDF_METADATA_MAP25) { 316 mdata = &map->s_type_specific.s_metadata; 317 iput(mdata->s_metadata_fe); 318 mdata->s_metadata_fe = NULL; 319 320 iput(mdata->s_mirror_fe); 321 mdata->s_mirror_fe = NULL; 322 323 iput(mdata->s_bitmap_fe); 324 mdata->s_bitmap_fe = NULL; 325 } 326 } 327 328 static void udf_sb_free_partitions(struct super_block *sb) 329 { 330 struct udf_sb_info *sbi = UDF_SB(sb); 331 int i; 332 if (sbi->s_partmaps == NULL) 333 return; 334 for (i = 0; i < sbi->s_partitions; i++) 335 udf_free_partition(&sbi->s_partmaps[i]); 336 kfree(sbi->s_partmaps); 337 sbi->s_partmaps = NULL; 338 } 339 340 static int udf_show_options(struct seq_file *seq, struct dentry *root) 341 { 342 struct super_block *sb = root->d_sb; 343 struct udf_sb_info *sbi = UDF_SB(sb); 344 345 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 346 seq_puts(seq, ",nostrict"); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 348 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 350 seq_puts(seq, ",unhide"); 351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 352 seq_puts(seq, ",undelete"); 353 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 354 seq_puts(seq, ",noadinicb"); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 356 seq_puts(seq, ",shortad"); 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 358 seq_puts(seq, ",uid=forget"); 359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 360 seq_puts(seq, ",uid=ignore"); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 362 seq_puts(seq, ",gid=forget"); 363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 364 seq_puts(seq, ",gid=ignore"); 365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 366 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 368 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 369 if (sbi->s_umask != 0) 370 seq_printf(seq, ",umask=%ho", sbi->s_umask); 371 if (sbi->s_fmode != UDF_INVALID_MODE) 372 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 373 if (sbi->s_dmode != UDF_INVALID_MODE) 374 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 375 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 376 seq_printf(seq, ",session=%u", sbi->s_session); 377 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 378 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 379 if (sbi->s_anchor != 0) 380 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 381 /* 382 * volume, partition, fileset and rootdir seem to be ignored 383 * currently 384 */ 385 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 386 seq_puts(seq, ",utf8"); 387 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 388 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 389 390 return 0; 391 } 392 393 /* 394 * udf_parse_options 395 * 396 * PURPOSE 397 * Parse mount options. 398 * 399 * DESCRIPTION 400 * The following mount options are supported: 401 * 402 * gid= Set the default group. 403 * umask= Set the default umask. 404 * mode= Set the default file permissions. 405 * dmode= Set the default directory permissions. 406 * uid= Set the default user. 407 * bs= Set the block size. 408 * unhide Show otherwise hidden files. 409 * undelete Show deleted files in lists. 410 * adinicb Embed data in the inode (default) 411 * noadinicb Don't embed data in the inode 412 * shortad Use short ad's 413 * longad Use long ad's (default) 414 * nostrict Unset strict conformance 415 * iocharset= Set the NLS character set 416 * 417 * The remaining are for debugging and disaster recovery: 418 * 419 * novrs Skip volume sequence recognition 420 * 421 * The following expect a offset from 0. 422 * 423 * session= Set the CDROM session (default= last session) 424 * anchor= Override standard anchor location. (default= 256) 425 * volume= Override the VolumeDesc location. (unused) 426 * partition= Override the PartitionDesc location. (unused) 427 * lastblock= Set the last block of the filesystem/ 428 * 429 * The following expect a offset from the partition root. 430 * 431 * fileset= Override the fileset block location. (unused) 432 * rootdir= Override the root directory location. (unused) 433 * WARNING: overriding the rootdir to a non-directory may 434 * yield highly unpredictable results. 435 * 436 * PRE-CONDITIONS 437 * options Pointer to mount options string. 438 * uopts Pointer to mount options variable. 439 * 440 * POST-CONDITIONS 441 * <return> 1 Mount options parsed okay. 442 * <return> 0 Error parsing mount options. 443 * 444 * HISTORY 445 * July 1, 1997 - Andrew E. Mileski 446 * Written, tested, and released. 447 */ 448 449 enum { 450 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 451 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 452 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 453 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 454 Opt_rootdir, Opt_utf8, Opt_iocharset, 455 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 456 Opt_fmode, Opt_dmode 457 }; 458 459 static const match_table_t tokens = { 460 {Opt_novrs, "novrs"}, 461 {Opt_nostrict, "nostrict"}, 462 {Opt_bs, "bs=%u"}, 463 {Opt_unhide, "unhide"}, 464 {Opt_undelete, "undelete"}, 465 {Opt_noadinicb, "noadinicb"}, 466 {Opt_adinicb, "adinicb"}, 467 {Opt_shortad, "shortad"}, 468 {Opt_longad, "longad"}, 469 {Opt_uforget, "uid=forget"}, 470 {Opt_uignore, "uid=ignore"}, 471 {Opt_gforget, "gid=forget"}, 472 {Opt_gignore, "gid=ignore"}, 473 {Opt_gid, "gid=%u"}, 474 {Opt_uid, "uid=%u"}, 475 {Opt_umask, "umask=%o"}, 476 {Opt_session, "session=%u"}, 477 {Opt_lastblock, "lastblock=%u"}, 478 {Opt_anchor, "anchor=%u"}, 479 {Opt_volume, "volume=%u"}, 480 {Opt_partition, "partition=%u"}, 481 {Opt_fileset, "fileset=%u"}, 482 {Opt_rootdir, "rootdir=%u"}, 483 {Opt_utf8, "utf8"}, 484 {Opt_iocharset, "iocharset=%s"}, 485 {Opt_fmode, "mode=%o"}, 486 {Opt_dmode, "dmode=%o"}, 487 {Opt_err, NULL} 488 }; 489 490 static int udf_parse_options(char *options, struct udf_options *uopt, 491 bool remount) 492 { 493 char *p; 494 int option; 495 496 uopt->novrs = 0; 497 uopt->partition = 0xFFFF; 498 uopt->session = 0xFFFFFFFF; 499 uopt->lastblock = 0; 500 uopt->anchor = 0; 501 uopt->volume = 0xFFFFFFFF; 502 uopt->rootdir = 0xFFFFFFFF; 503 uopt->fileset = 0xFFFFFFFF; 504 uopt->nls_map = NULL; 505 506 if (!options) 507 return 1; 508 509 while ((p = strsep(&options, ",")) != NULL) { 510 substring_t args[MAX_OPT_ARGS]; 511 int token; 512 unsigned n; 513 if (!*p) 514 continue; 515 516 token = match_token(p, tokens, args); 517 switch (token) { 518 case Opt_novrs: 519 uopt->novrs = 1; 520 break; 521 case Opt_bs: 522 if (match_int(&args[0], &option)) 523 return 0; 524 n = option; 525 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 526 return 0; 527 uopt->blocksize = n; 528 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 529 break; 530 case Opt_unhide: 531 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 532 break; 533 case Opt_undelete: 534 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 535 break; 536 case Opt_noadinicb: 537 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 538 break; 539 case Opt_adinicb: 540 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 541 break; 542 case Opt_shortad: 543 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 544 break; 545 case Opt_longad: 546 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 547 break; 548 case Opt_gid: 549 if (match_int(args, &option)) 550 return 0; 551 uopt->gid = make_kgid(current_user_ns(), option); 552 if (!gid_valid(uopt->gid)) 553 return 0; 554 uopt->flags |= (1 << UDF_FLAG_GID_SET); 555 break; 556 case Opt_uid: 557 if (match_int(args, &option)) 558 return 0; 559 uopt->uid = make_kuid(current_user_ns(), option); 560 if (!uid_valid(uopt->uid)) 561 return 0; 562 uopt->flags |= (1 << UDF_FLAG_UID_SET); 563 break; 564 case Opt_umask: 565 if (match_octal(args, &option)) 566 return 0; 567 uopt->umask = option; 568 break; 569 case Opt_nostrict: 570 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 571 break; 572 case Opt_session: 573 if (match_int(args, &option)) 574 return 0; 575 uopt->session = option; 576 if (!remount) 577 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 578 break; 579 case Opt_lastblock: 580 if (match_int(args, &option)) 581 return 0; 582 uopt->lastblock = option; 583 if (!remount) 584 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 585 break; 586 case Opt_anchor: 587 if (match_int(args, &option)) 588 return 0; 589 uopt->anchor = option; 590 break; 591 case Opt_volume: 592 if (match_int(args, &option)) 593 return 0; 594 uopt->volume = option; 595 break; 596 case Opt_partition: 597 if (match_int(args, &option)) 598 return 0; 599 uopt->partition = option; 600 break; 601 case Opt_fileset: 602 if (match_int(args, &option)) 603 return 0; 604 uopt->fileset = option; 605 break; 606 case Opt_rootdir: 607 if (match_int(args, &option)) 608 return 0; 609 uopt->rootdir = option; 610 break; 611 case Opt_utf8: 612 uopt->flags |= (1 << UDF_FLAG_UTF8); 613 break; 614 #ifdef CONFIG_UDF_NLS 615 case Opt_iocharset: 616 uopt->nls_map = load_nls(args[0].from); 617 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 618 break; 619 #endif 620 case Opt_uignore: 621 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 622 break; 623 case Opt_uforget: 624 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 625 break; 626 case Opt_gignore: 627 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 628 break; 629 case Opt_gforget: 630 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 631 break; 632 case Opt_fmode: 633 if (match_octal(args, &option)) 634 return 0; 635 uopt->fmode = option & 0777; 636 break; 637 case Opt_dmode: 638 if (match_octal(args, &option)) 639 return 0; 640 uopt->dmode = option & 0777; 641 break; 642 default: 643 pr_err("bad mount option \"%s\" or missing value\n", p); 644 return 0; 645 } 646 } 647 return 1; 648 } 649 650 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 651 { 652 struct udf_options uopt; 653 struct udf_sb_info *sbi = UDF_SB(sb); 654 int error = 0; 655 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 656 657 sync_filesystem(sb); 658 if (lvidiu) { 659 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 660 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 661 return -EACCES; 662 } 663 664 uopt.flags = sbi->s_flags; 665 uopt.uid = sbi->s_uid; 666 uopt.gid = sbi->s_gid; 667 uopt.umask = sbi->s_umask; 668 uopt.fmode = sbi->s_fmode; 669 uopt.dmode = sbi->s_dmode; 670 671 if (!udf_parse_options(options, &uopt, true)) 672 return -EINVAL; 673 674 write_lock(&sbi->s_cred_lock); 675 sbi->s_flags = uopt.flags; 676 sbi->s_uid = uopt.uid; 677 sbi->s_gid = uopt.gid; 678 sbi->s_umask = uopt.umask; 679 sbi->s_fmode = uopt.fmode; 680 sbi->s_dmode = uopt.dmode; 681 write_unlock(&sbi->s_cred_lock); 682 683 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 684 goto out_unlock; 685 686 if (*flags & MS_RDONLY) 687 udf_close_lvid(sb); 688 else 689 udf_open_lvid(sb); 690 691 out_unlock: 692 return error; 693 } 694 695 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 696 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 697 static loff_t udf_check_vsd(struct super_block *sb) 698 { 699 struct volStructDesc *vsd = NULL; 700 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 701 int sectorsize; 702 struct buffer_head *bh = NULL; 703 int nsr02 = 0; 704 int nsr03 = 0; 705 struct udf_sb_info *sbi; 706 707 sbi = UDF_SB(sb); 708 if (sb->s_blocksize < sizeof(struct volStructDesc)) 709 sectorsize = sizeof(struct volStructDesc); 710 else 711 sectorsize = sb->s_blocksize; 712 713 sector += (sbi->s_session << sb->s_blocksize_bits); 714 715 udf_debug("Starting at sector %u (%ld byte sectors)\n", 716 (unsigned int)(sector >> sb->s_blocksize_bits), 717 sb->s_blocksize); 718 /* Process the sequence (if applicable). The hard limit on the sector 719 * offset is arbitrary, hopefully large enough so that all valid UDF 720 * filesystems will be recognised. There is no mention of an upper 721 * bound to the size of the volume recognition area in the standard. 722 * The limit will prevent the code to read all the sectors of a 723 * specially crafted image (like a bluray disc full of CD001 sectors), 724 * potentially causing minutes or even hours of uninterruptible I/O 725 * activity. This actually happened with uninitialised SSD partitions 726 * (all 0xFF) before the check for the limit and all valid IDs were 727 * added */ 728 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 729 sector += sectorsize) { 730 /* Read a block */ 731 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 732 if (!bh) 733 break; 734 735 /* Look for ISO descriptors */ 736 vsd = (struct volStructDesc *)(bh->b_data + 737 (sector & (sb->s_blocksize - 1))); 738 739 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 740 VSD_STD_ID_LEN)) { 741 switch (vsd->structType) { 742 case 0: 743 udf_debug("ISO9660 Boot Record found\n"); 744 break; 745 case 1: 746 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 747 break; 748 case 2: 749 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 750 break; 751 case 3: 752 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 753 break; 754 case 255: 755 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 756 break; 757 default: 758 udf_debug("ISO9660 VRS (%u) found\n", 759 vsd->structType); 760 break; 761 } 762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 763 VSD_STD_ID_LEN)) 764 ; /* nothing */ 765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 766 VSD_STD_ID_LEN)) { 767 brelse(bh); 768 break; 769 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 770 VSD_STD_ID_LEN)) 771 nsr02 = sector; 772 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 773 VSD_STD_ID_LEN)) 774 nsr03 = sector; 775 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 776 VSD_STD_ID_LEN)) 777 ; /* nothing */ 778 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 779 VSD_STD_ID_LEN)) 780 ; /* nothing */ 781 else { 782 /* invalid id : end of volume recognition area */ 783 brelse(bh); 784 break; 785 } 786 brelse(bh); 787 } 788 789 if (nsr03) 790 return nsr03; 791 else if (nsr02) 792 return nsr02; 793 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 794 VSD_FIRST_SECTOR_OFFSET) 795 return -1; 796 else 797 return 0; 798 } 799 800 static int udf_find_fileset(struct super_block *sb, 801 struct kernel_lb_addr *fileset, 802 struct kernel_lb_addr *root) 803 { 804 struct buffer_head *bh = NULL; 805 long lastblock; 806 uint16_t ident; 807 struct udf_sb_info *sbi; 808 809 if (fileset->logicalBlockNum != 0xFFFFFFFF || 810 fileset->partitionReferenceNum != 0xFFFF) { 811 bh = udf_read_ptagged(sb, fileset, 0, &ident); 812 813 if (!bh) { 814 return 1; 815 } else if (ident != TAG_IDENT_FSD) { 816 brelse(bh); 817 return 1; 818 } 819 820 } 821 822 sbi = UDF_SB(sb); 823 if (!bh) { 824 /* Search backwards through the partitions */ 825 struct kernel_lb_addr newfileset; 826 827 /* --> cvg: FIXME - is it reasonable? */ 828 return 1; 829 830 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 831 (newfileset.partitionReferenceNum != 0xFFFF && 832 fileset->logicalBlockNum == 0xFFFFFFFF && 833 fileset->partitionReferenceNum == 0xFFFF); 834 newfileset.partitionReferenceNum--) { 835 lastblock = sbi->s_partmaps 836 [newfileset.partitionReferenceNum] 837 .s_partition_len; 838 newfileset.logicalBlockNum = 0; 839 840 do { 841 bh = udf_read_ptagged(sb, &newfileset, 0, 842 &ident); 843 if (!bh) { 844 newfileset.logicalBlockNum++; 845 continue; 846 } 847 848 switch (ident) { 849 case TAG_IDENT_SBD: 850 { 851 struct spaceBitmapDesc *sp; 852 sp = (struct spaceBitmapDesc *) 853 bh->b_data; 854 newfileset.logicalBlockNum += 1 + 855 ((le32_to_cpu(sp->numOfBytes) + 856 sizeof(struct spaceBitmapDesc) 857 - 1) >> sb->s_blocksize_bits); 858 brelse(bh); 859 break; 860 } 861 case TAG_IDENT_FSD: 862 *fileset = newfileset; 863 break; 864 default: 865 newfileset.logicalBlockNum++; 866 brelse(bh); 867 bh = NULL; 868 break; 869 } 870 } while (newfileset.logicalBlockNum < lastblock && 871 fileset->logicalBlockNum == 0xFFFFFFFF && 872 fileset->partitionReferenceNum == 0xFFFF); 873 } 874 } 875 876 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 877 fileset->partitionReferenceNum != 0xFFFF) && bh) { 878 udf_debug("Fileset at block=%d, partition=%d\n", 879 fileset->logicalBlockNum, 880 fileset->partitionReferenceNum); 881 882 sbi->s_partition = fileset->partitionReferenceNum; 883 udf_load_fileset(sb, bh, root); 884 brelse(bh); 885 return 0; 886 } 887 return 1; 888 } 889 890 /* 891 * Load primary Volume Descriptor Sequence 892 * 893 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 894 * should be tried. 895 */ 896 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 897 { 898 struct primaryVolDesc *pvoldesc; 899 uint8_t *outstr; 900 struct buffer_head *bh; 901 uint16_t ident; 902 int ret = -ENOMEM; 903 904 outstr = kmalloc(128, GFP_NOFS); 905 if (!outstr) 906 return -ENOMEM; 907 908 bh = udf_read_tagged(sb, block, block, &ident); 909 if (!bh) { 910 ret = -EAGAIN; 911 goto out2; 912 } 913 914 if (ident != TAG_IDENT_PVD) { 915 ret = -EIO; 916 goto out_bh; 917 } 918 919 pvoldesc = (struct primaryVolDesc *)bh->b_data; 920 921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 922 pvoldesc->recordingDateAndTime)) { 923 #ifdef UDFFS_DEBUG 924 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 927 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 928 #endif 929 } 930 931 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32); 932 if (ret < 0) 933 goto out_bh; 934 935 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 936 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 937 938 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128); 939 if (ret < 0) 940 goto out_bh; 941 942 outstr[ret] = 0; 943 udf_debug("volSetIdent[] = '%s'\n", outstr); 944 945 ret = 0; 946 out_bh: 947 brelse(bh); 948 out2: 949 kfree(outstr); 950 return ret; 951 } 952 953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 954 u32 meta_file_loc, u32 partition_num) 955 { 956 struct kernel_lb_addr addr; 957 struct inode *metadata_fe; 958 959 addr.logicalBlockNum = meta_file_loc; 960 addr.partitionReferenceNum = partition_num; 961 962 metadata_fe = udf_iget_special(sb, &addr); 963 964 if (IS_ERR(metadata_fe)) { 965 udf_warn(sb, "metadata inode efe not found\n"); 966 return metadata_fe; 967 } 968 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 969 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 970 iput(metadata_fe); 971 return ERR_PTR(-EIO); 972 } 973 974 return metadata_fe; 975 } 976 977 static int udf_load_metadata_files(struct super_block *sb, int partition) 978 { 979 struct udf_sb_info *sbi = UDF_SB(sb); 980 struct udf_part_map *map; 981 struct udf_meta_data *mdata; 982 struct kernel_lb_addr addr; 983 struct inode *fe; 984 985 map = &sbi->s_partmaps[partition]; 986 mdata = &map->s_type_specific.s_metadata; 987 988 /* metadata address */ 989 udf_debug("Metadata file location: block = %d part = %d\n", 990 mdata->s_meta_file_loc, map->s_partition_num); 991 992 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 993 map->s_partition_num); 994 if (IS_ERR(fe)) { 995 /* mirror file entry */ 996 udf_debug("Mirror metadata file location: block = %d part = %d\n", 997 mdata->s_mirror_file_loc, map->s_partition_num); 998 999 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 1000 map->s_partition_num); 1001 1002 if (IS_ERR(fe)) { 1003 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 1004 return PTR_ERR(fe); 1005 } 1006 mdata->s_mirror_fe = fe; 1007 } else 1008 mdata->s_metadata_fe = fe; 1009 1010 1011 /* 1012 * bitmap file entry 1013 * Note: 1014 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1015 */ 1016 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1017 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1018 addr.partitionReferenceNum = map->s_partition_num; 1019 1020 udf_debug("Bitmap file location: block = %d part = %d\n", 1021 addr.logicalBlockNum, addr.partitionReferenceNum); 1022 1023 fe = udf_iget_special(sb, &addr); 1024 if (IS_ERR(fe)) { 1025 if (sb->s_flags & MS_RDONLY) 1026 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1027 else { 1028 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1029 return PTR_ERR(fe); 1030 } 1031 } else 1032 mdata->s_bitmap_fe = fe; 1033 } 1034 1035 udf_debug("udf_load_metadata_files Ok\n"); 1036 return 0; 1037 } 1038 1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1040 struct kernel_lb_addr *root) 1041 { 1042 struct fileSetDesc *fset; 1043 1044 fset = (struct fileSetDesc *)bh->b_data; 1045 1046 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1047 1048 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1049 1050 udf_debug("Rootdir at block=%d, partition=%d\n", 1051 root->logicalBlockNum, root->partitionReferenceNum); 1052 } 1053 1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1055 { 1056 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1057 return DIV_ROUND_UP(map->s_partition_len + 1058 (sizeof(struct spaceBitmapDesc) << 3), 1059 sb->s_blocksize * 8); 1060 } 1061 1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1063 { 1064 struct udf_bitmap *bitmap; 1065 int nr_groups; 1066 int size; 1067 1068 nr_groups = udf_compute_nr_groups(sb, index); 1069 size = sizeof(struct udf_bitmap) + 1070 (sizeof(struct buffer_head *) * nr_groups); 1071 1072 if (size <= PAGE_SIZE) 1073 bitmap = kzalloc(size, GFP_KERNEL); 1074 else 1075 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1076 1077 if (bitmap == NULL) 1078 return NULL; 1079 1080 bitmap->s_nr_groups = nr_groups; 1081 return bitmap; 1082 } 1083 1084 static int udf_fill_partdesc_info(struct super_block *sb, 1085 struct partitionDesc *p, int p_index) 1086 { 1087 struct udf_part_map *map; 1088 struct udf_sb_info *sbi = UDF_SB(sb); 1089 struct partitionHeaderDesc *phd; 1090 1091 map = &sbi->s_partmaps[p_index]; 1092 1093 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1094 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1095 1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1097 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1099 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1100 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1101 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1103 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1104 1105 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1106 p_index, map->s_partition_type, 1107 map->s_partition_root, map->s_partition_len); 1108 1109 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1110 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1111 return 0; 1112 1113 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1114 if (phd->unallocSpaceTable.extLength) { 1115 struct kernel_lb_addr loc = { 1116 .logicalBlockNum = le32_to_cpu( 1117 phd->unallocSpaceTable.extPosition), 1118 .partitionReferenceNum = p_index, 1119 }; 1120 struct inode *inode; 1121 1122 inode = udf_iget_special(sb, &loc); 1123 if (IS_ERR(inode)) { 1124 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1125 p_index); 1126 return PTR_ERR(inode); 1127 } 1128 map->s_uspace.s_table = inode; 1129 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1130 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1131 p_index, map->s_uspace.s_table->i_ino); 1132 } 1133 1134 if (phd->unallocSpaceBitmap.extLength) { 1135 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1136 if (!bitmap) 1137 return -ENOMEM; 1138 map->s_uspace.s_bitmap = bitmap; 1139 bitmap->s_extPosition = le32_to_cpu( 1140 phd->unallocSpaceBitmap.extPosition); 1141 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1142 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1143 p_index, bitmap->s_extPosition); 1144 } 1145 1146 if (phd->partitionIntegrityTable.extLength) 1147 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1148 1149 if (phd->freedSpaceTable.extLength) { 1150 struct kernel_lb_addr loc = { 1151 .logicalBlockNum = le32_to_cpu( 1152 phd->freedSpaceTable.extPosition), 1153 .partitionReferenceNum = p_index, 1154 }; 1155 struct inode *inode; 1156 1157 inode = udf_iget_special(sb, &loc); 1158 if (IS_ERR(inode)) { 1159 udf_debug("cannot load freedSpaceTable (part %d)\n", 1160 p_index); 1161 return PTR_ERR(inode); 1162 } 1163 map->s_fspace.s_table = inode; 1164 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1165 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1166 p_index, map->s_fspace.s_table->i_ino); 1167 } 1168 1169 if (phd->freedSpaceBitmap.extLength) { 1170 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1171 if (!bitmap) 1172 return -ENOMEM; 1173 map->s_fspace.s_bitmap = bitmap; 1174 bitmap->s_extPosition = le32_to_cpu( 1175 phd->freedSpaceBitmap.extPosition); 1176 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1177 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1178 p_index, bitmap->s_extPosition); 1179 } 1180 return 0; 1181 } 1182 1183 static void udf_find_vat_block(struct super_block *sb, int p_index, 1184 int type1_index, sector_t start_block) 1185 { 1186 struct udf_sb_info *sbi = UDF_SB(sb); 1187 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1188 sector_t vat_block; 1189 struct kernel_lb_addr ino; 1190 struct inode *inode; 1191 1192 /* 1193 * VAT file entry is in the last recorded block. Some broken disks have 1194 * it a few blocks before so try a bit harder... 1195 */ 1196 ino.partitionReferenceNum = type1_index; 1197 for (vat_block = start_block; 1198 vat_block >= map->s_partition_root && 1199 vat_block >= start_block - 3; vat_block--) { 1200 ino.logicalBlockNum = vat_block - map->s_partition_root; 1201 inode = udf_iget_special(sb, &ino); 1202 if (!IS_ERR(inode)) { 1203 sbi->s_vat_inode = inode; 1204 break; 1205 } 1206 } 1207 } 1208 1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1210 { 1211 struct udf_sb_info *sbi = UDF_SB(sb); 1212 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1213 struct buffer_head *bh = NULL; 1214 struct udf_inode_info *vati; 1215 uint32_t pos; 1216 struct virtualAllocationTable20 *vat20; 1217 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1218 1219 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1220 if (!sbi->s_vat_inode && 1221 sbi->s_last_block != blocks - 1) { 1222 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1223 (unsigned long)sbi->s_last_block, 1224 (unsigned long)blocks - 1); 1225 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1226 } 1227 if (!sbi->s_vat_inode) 1228 return -EIO; 1229 1230 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1231 map->s_type_specific.s_virtual.s_start_offset = 0; 1232 map->s_type_specific.s_virtual.s_num_entries = 1233 (sbi->s_vat_inode->i_size - 36) >> 2; 1234 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1235 vati = UDF_I(sbi->s_vat_inode); 1236 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1237 pos = udf_block_map(sbi->s_vat_inode, 0); 1238 bh = sb_bread(sb, pos); 1239 if (!bh) 1240 return -EIO; 1241 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1242 } else { 1243 vat20 = (struct virtualAllocationTable20 *) 1244 vati->i_ext.i_data; 1245 } 1246 1247 map->s_type_specific.s_virtual.s_start_offset = 1248 le16_to_cpu(vat20->lengthHeader); 1249 map->s_type_specific.s_virtual.s_num_entries = 1250 (sbi->s_vat_inode->i_size - 1251 map->s_type_specific.s_virtual. 1252 s_start_offset) >> 2; 1253 brelse(bh); 1254 } 1255 return 0; 1256 } 1257 1258 /* 1259 * Load partition descriptor block 1260 * 1261 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1262 * sequence. 1263 */ 1264 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1265 { 1266 struct buffer_head *bh; 1267 struct partitionDesc *p; 1268 struct udf_part_map *map; 1269 struct udf_sb_info *sbi = UDF_SB(sb); 1270 int i, type1_idx; 1271 uint16_t partitionNumber; 1272 uint16_t ident; 1273 int ret; 1274 1275 bh = udf_read_tagged(sb, block, block, &ident); 1276 if (!bh) 1277 return -EAGAIN; 1278 if (ident != TAG_IDENT_PD) { 1279 ret = 0; 1280 goto out_bh; 1281 } 1282 1283 p = (struct partitionDesc *)bh->b_data; 1284 partitionNumber = le16_to_cpu(p->partitionNumber); 1285 1286 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1287 for (i = 0; i < sbi->s_partitions; i++) { 1288 map = &sbi->s_partmaps[i]; 1289 udf_debug("Searching map: (%d == %d)\n", 1290 map->s_partition_num, partitionNumber); 1291 if (map->s_partition_num == partitionNumber && 1292 (map->s_partition_type == UDF_TYPE1_MAP15 || 1293 map->s_partition_type == UDF_SPARABLE_MAP15)) 1294 break; 1295 } 1296 1297 if (i >= sbi->s_partitions) { 1298 udf_debug("Partition (%d) not found in partition map\n", 1299 partitionNumber); 1300 ret = 0; 1301 goto out_bh; 1302 } 1303 1304 ret = udf_fill_partdesc_info(sb, p, i); 1305 if (ret < 0) 1306 goto out_bh; 1307 1308 /* 1309 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1310 * PHYSICAL partitions are already set up 1311 */ 1312 type1_idx = i; 1313 #ifdef UDFFS_DEBUG 1314 map = NULL; /* supress 'maybe used uninitialized' warning */ 1315 #endif 1316 for (i = 0; i < sbi->s_partitions; i++) { 1317 map = &sbi->s_partmaps[i]; 1318 1319 if (map->s_partition_num == partitionNumber && 1320 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1321 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1322 map->s_partition_type == UDF_METADATA_MAP25)) 1323 break; 1324 } 1325 1326 if (i >= sbi->s_partitions) { 1327 ret = 0; 1328 goto out_bh; 1329 } 1330 1331 ret = udf_fill_partdesc_info(sb, p, i); 1332 if (ret < 0) 1333 goto out_bh; 1334 1335 if (map->s_partition_type == UDF_METADATA_MAP25) { 1336 ret = udf_load_metadata_files(sb, i); 1337 if (ret < 0) { 1338 udf_err(sb, "error loading MetaData partition map %d\n", 1339 i); 1340 goto out_bh; 1341 } 1342 } else { 1343 /* 1344 * If we have a partition with virtual map, we don't handle 1345 * writing to it (we overwrite blocks instead of relocating 1346 * them). 1347 */ 1348 if (!(sb->s_flags & MS_RDONLY)) { 1349 ret = -EACCES; 1350 goto out_bh; 1351 } 1352 ret = udf_load_vat(sb, i, type1_idx); 1353 if (ret < 0) 1354 goto out_bh; 1355 } 1356 ret = 0; 1357 out_bh: 1358 /* In case loading failed, we handle cleanup in udf_fill_super */ 1359 brelse(bh); 1360 return ret; 1361 } 1362 1363 static int udf_load_sparable_map(struct super_block *sb, 1364 struct udf_part_map *map, 1365 struct sparablePartitionMap *spm) 1366 { 1367 uint32_t loc; 1368 uint16_t ident; 1369 struct sparingTable *st; 1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1371 int i; 1372 struct buffer_head *bh; 1373 1374 map->s_partition_type = UDF_SPARABLE_MAP15; 1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1376 if (!is_power_of_2(sdata->s_packet_len)) { 1377 udf_err(sb, "error loading logical volume descriptor: " 1378 "Invalid packet length %u\n", 1379 (unsigned)sdata->s_packet_len); 1380 return -EIO; 1381 } 1382 if (spm->numSparingTables > 4) { 1383 udf_err(sb, "error loading logical volume descriptor: " 1384 "Too many sparing tables (%d)\n", 1385 (int)spm->numSparingTables); 1386 return -EIO; 1387 } 1388 1389 for (i = 0; i < spm->numSparingTables; i++) { 1390 loc = le32_to_cpu(spm->locSparingTable[i]); 1391 bh = udf_read_tagged(sb, loc, loc, &ident); 1392 if (!bh) 1393 continue; 1394 1395 st = (struct sparingTable *)bh->b_data; 1396 if (ident != 0 || 1397 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1398 strlen(UDF_ID_SPARING)) || 1399 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1400 sb->s_blocksize) { 1401 brelse(bh); 1402 continue; 1403 } 1404 1405 sdata->s_spar_map[i] = bh; 1406 } 1407 map->s_partition_func = udf_get_pblock_spar15; 1408 return 0; 1409 } 1410 1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1412 struct kernel_lb_addr *fileset) 1413 { 1414 struct logicalVolDesc *lvd; 1415 int i, offset; 1416 uint8_t type; 1417 struct udf_sb_info *sbi = UDF_SB(sb); 1418 struct genericPartitionMap *gpm; 1419 uint16_t ident; 1420 struct buffer_head *bh; 1421 unsigned int table_len; 1422 int ret; 1423 1424 bh = udf_read_tagged(sb, block, block, &ident); 1425 if (!bh) 1426 return -EAGAIN; 1427 BUG_ON(ident != TAG_IDENT_LVD); 1428 lvd = (struct logicalVolDesc *)bh->b_data; 1429 table_len = le32_to_cpu(lvd->mapTableLength); 1430 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1431 udf_err(sb, "error loading logical volume descriptor: " 1432 "Partition table too long (%u > %lu)\n", table_len, 1433 sb->s_blocksize - sizeof(*lvd)); 1434 ret = -EIO; 1435 goto out_bh; 1436 } 1437 1438 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1439 if (ret) 1440 goto out_bh; 1441 1442 for (i = 0, offset = 0; 1443 i < sbi->s_partitions && offset < table_len; 1444 i++, offset += gpm->partitionMapLength) { 1445 struct udf_part_map *map = &sbi->s_partmaps[i]; 1446 gpm = (struct genericPartitionMap *) 1447 &(lvd->partitionMaps[offset]); 1448 type = gpm->partitionMapType; 1449 if (type == 1) { 1450 struct genericPartitionMap1 *gpm1 = 1451 (struct genericPartitionMap1 *)gpm; 1452 map->s_partition_type = UDF_TYPE1_MAP15; 1453 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1454 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1455 map->s_partition_func = NULL; 1456 } else if (type == 2) { 1457 struct udfPartitionMap2 *upm2 = 1458 (struct udfPartitionMap2 *)gpm; 1459 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1460 strlen(UDF_ID_VIRTUAL))) { 1461 u16 suf = 1462 le16_to_cpu(((__le16 *)upm2->partIdent. 1463 identSuffix)[0]); 1464 if (suf < 0x0200) { 1465 map->s_partition_type = 1466 UDF_VIRTUAL_MAP15; 1467 map->s_partition_func = 1468 udf_get_pblock_virt15; 1469 } else { 1470 map->s_partition_type = 1471 UDF_VIRTUAL_MAP20; 1472 map->s_partition_func = 1473 udf_get_pblock_virt20; 1474 } 1475 } else if (!strncmp(upm2->partIdent.ident, 1476 UDF_ID_SPARABLE, 1477 strlen(UDF_ID_SPARABLE))) { 1478 ret = udf_load_sparable_map(sb, map, 1479 (struct sparablePartitionMap *)gpm); 1480 if (ret < 0) 1481 goto out_bh; 1482 } else if (!strncmp(upm2->partIdent.ident, 1483 UDF_ID_METADATA, 1484 strlen(UDF_ID_METADATA))) { 1485 struct udf_meta_data *mdata = 1486 &map->s_type_specific.s_metadata; 1487 struct metadataPartitionMap *mdm = 1488 (struct metadataPartitionMap *) 1489 &(lvd->partitionMaps[offset]); 1490 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1491 i, type, UDF_ID_METADATA); 1492 1493 map->s_partition_type = UDF_METADATA_MAP25; 1494 map->s_partition_func = udf_get_pblock_meta25; 1495 1496 mdata->s_meta_file_loc = 1497 le32_to_cpu(mdm->metadataFileLoc); 1498 mdata->s_mirror_file_loc = 1499 le32_to_cpu(mdm->metadataMirrorFileLoc); 1500 mdata->s_bitmap_file_loc = 1501 le32_to_cpu(mdm->metadataBitmapFileLoc); 1502 mdata->s_alloc_unit_size = 1503 le32_to_cpu(mdm->allocUnitSize); 1504 mdata->s_align_unit_size = 1505 le16_to_cpu(mdm->alignUnitSize); 1506 if (mdm->flags & 0x01) 1507 mdata->s_flags |= MF_DUPLICATE_MD; 1508 1509 udf_debug("Metadata Ident suffix=0x%x\n", 1510 le16_to_cpu(*(__le16 *) 1511 mdm->partIdent.identSuffix)); 1512 udf_debug("Metadata part num=%d\n", 1513 le16_to_cpu(mdm->partitionNum)); 1514 udf_debug("Metadata part alloc unit size=%d\n", 1515 le32_to_cpu(mdm->allocUnitSize)); 1516 udf_debug("Metadata file loc=%d\n", 1517 le32_to_cpu(mdm->metadataFileLoc)); 1518 udf_debug("Mirror file loc=%d\n", 1519 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1520 udf_debug("Bitmap file loc=%d\n", 1521 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1522 udf_debug("Flags: %d %d\n", 1523 mdata->s_flags, mdm->flags); 1524 } else { 1525 udf_debug("Unknown ident: %s\n", 1526 upm2->partIdent.ident); 1527 continue; 1528 } 1529 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1530 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1531 } 1532 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1533 i, map->s_partition_num, type, map->s_volumeseqnum); 1534 } 1535 1536 if (fileset) { 1537 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1538 1539 *fileset = lelb_to_cpu(la->extLocation); 1540 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1541 fileset->logicalBlockNum, 1542 fileset->partitionReferenceNum); 1543 } 1544 if (lvd->integritySeqExt.extLength) 1545 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1546 ret = 0; 1547 out_bh: 1548 brelse(bh); 1549 return ret; 1550 } 1551 1552 /* 1553 * Find the prevailing Logical Volume Integrity Descriptor. 1554 */ 1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1556 { 1557 struct buffer_head *bh, *final_bh; 1558 uint16_t ident; 1559 struct udf_sb_info *sbi = UDF_SB(sb); 1560 struct logicalVolIntegrityDesc *lvid; 1561 int indirections = 0; 1562 1563 while (++indirections <= UDF_MAX_LVID_NESTING) { 1564 final_bh = NULL; 1565 while (loc.extLength > 0 && 1566 (bh = udf_read_tagged(sb, loc.extLocation, 1567 loc.extLocation, &ident))) { 1568 if (ident != TAG_IDENT_LVID) { 1569 brelse(bh); 1570 break; 1571 } 1572 1573 brelse(final_bh); 1574 final_bh = bh; 1575 1576 loc.extLength -= sb->s_blocksize; 1577 loc.extLocation++; 1578 } 1579 1580 if (!final_bh) 1581 return; 1582 1583 brelse(sbi->s_lvid_bh); 1584 sbi->s_lvid_bh = final_bh; 1585 1586 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1587 if (lvid->nextIntegrityExt.extLength == 0) 1588 return; 1589 1590 loc = leea_to_cpu(lvid->nextIntegrityExt); 1591 } 1592 1593 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1594 UDF_MAX_LVID_NESTING); 1595 brelse(sbi->s_lvid_bh); 1596 sbi->s_lvid_bh = NULL; 1597 } 1598 1599 1600 /* 1601 * Process a main/reserve volume descriptor sequence. 1602 * @block First block of first extent of the sequence. 1603 * @lastblock Lastblock of first extent of the sequence. 1604 * @fileset There we store extent containing root fileset 1605 * 1606 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1607 * sequence 1608 */ 1609 static noinline int udf_process_sequence( 1610 struct super_block *sb, 1611 sector_t block, sector_t lastblock, 1612 struct kernel_lb_addr *fileset) 1613 { 1614 struct buffer_head *bh = NULL; 1615 struct udf_vds_record vds[VDS_POS_LENGTH]; 1616 struct udf_vds_record *curr; 1617 struct generic_desc *gd; 1618 struct volDescPtr *vdp; 1619 bool done = false; 1620 uint32_t vdsn; 1621 uint16_t ident; 1622 long next_s = 0, next_e = 0; 1623 int ret; 1624 unsigned int indirections = 0; 1625 1626 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1627 1628 /* 1629 * Read the main descriptor sequence and find which descriptors 1630 * are in it. 1631 */ 1632 for (; (!done && block <= lastblock); block++) { 1633 1634 bh = udf_read_tagged(sb, block, block, &ident); 1635 if (!bh) { 1636 udf_err(sb, 1637 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1638 (unsigned long long)block); 1639 return -EAGAIN; 1640 } 1641 1642 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1643 gd = (struct generic_desc *)bh->b_data; 1644 vdsn = le32_to_cpu(gd->volDescSeqNum); 1645 switch (ident) { 1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1647 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1648 if (vdsn >= curr->volDescSeqNum) { 1649 curr->volDescSeqNum = vdsn; 1650 curr->block = block; 1651 } 1652 break; 1653 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1654 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1655 if (vdsn >= curr->volDescSeqNum) { 1656 curr->volDescSeqNum = vdsn; 1657 curr->block = block; 1658 1659 vdp = (struct volDescPtr *)bh->b_data; 1660 next_s = le32_to_cpu( 1661 vdp->nextVolDescSeqExt.extLocation); 1662 next_e = le32_to_cpu( 1663 vdp->nextVolDescSeqExt.extLength); 1664 next_e = next_e >> sb->s_blocksize_bits; 1665 next_e += next_s; 1666 } 1667 break; 1668 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1669 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1670 if (vdsn >= curr->volDescSeqNum) { 1671 curr->volDescSeqNum = vdsn; 1672 curr->block = block; 1673 } 1674 break; 1675 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1676 curr = &vds[VDS_POS_PARTITION_DESC]; 1677 if (!curr->block) 1678 curr->block = block; 1679 break; 1680 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1681 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1682 if (vdsn >= curr->volDescSeqNum) { 1683 curr->volDescSeqNum = vdsn; 1684 curr->block = block; 1685 } 1686 break; 1687 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1688 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1689 if (vdsn >= curr->volDescSeqNum) { 1690 curr->volDescSeqNum = vdsn; 1691 curr->block = block; 1692 } 1693 break; 1694 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1695 if (++indirections > UDF_MAX_TD_NESTING) { 1696 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING); 1697 brelse(bh); 1698 return -EIO; 1699 } 1700 1701 vds[VDS_POS_TERMINATING_DESC].block = block; 1702 if (next_e) { 1703 block = next_s; 1704 lastblock = next_e; 1705 next_s = next_e = 0; 1706 } else 1707 done = true; 1708 break; 1709 } 1710 brelse(bh); 1711 } 1712 /* 1713 * Now read interesting descriptors again and process them 1714 * in a suitable order 1715 */ 1716 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1717 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1718 return -EAGAIN; 1719 } 1720 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1721 if (ret < 0) 1722 return ret; 1723 1724 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1725 ret = udf_load_logicalvol(sb, 1726 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1727 fileset); 1728 if (ret < 0) 1729 return ret; 1730 } 1731 1732 if (vds[VDS_POS_PARTITION_DESC].block) { 1733 /* 1734 * We rescan the whole descriptor sequence to find 1735 * partition descriptor blocks and process them. 1736 */ 1737 for (block = vds[VDS_POS_PARTITION_DESC].block; 1738 block < vds[VDS_POS_TERMINATING_DESC].block; 1739 block++) { 1740 ret = udf_load_partdesc(sb, block); 1741 if (ret < 0) 1742 return ret; 1743 } 1744 } 1745 1746 return 0; 1747 } 1748 1749 /* 1750 * Load Volume Descriptor Sequence described by anchor in bh 1751 * 1752 * Returns <0 on error, 0 on success 1753 */ 1754 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1755 struct kernel_lb_addr *fileset) 1756 { 1757 struct anchorVolDescPtr *anchor; 1758 sector_t main_s, main_e, reserve_s, reserve_e; 1759 int ret; 1760 1761 anchor = (struct anchorVolDescPtr *)bh->b_data; 1762 1763 /* Locate the main sequence */ 1764 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1765 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1766 main_e = main_e >> sb->s_blocksize_bits; 1767 main_e += main_s; 1768 1769 /* Locate the reserve sequence */ 1770 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1771 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1772 reserve_e = reserve_e >> sb->s_blocksize_bits; 1773 reserve_e += reserve_s; 1774 1775 /* Process the main & reserve sequences */ 1776 /* responsible for finding the PartitionDesc(s) */ 1777 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1778 if (ret != -EAGAIN) 1779 return ret; 1780 udf_sb_free_partitions(sb); 1781 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1782 if (ret < 0) { 1783 udf_sb_free_partitions(sb); 1784 /* No sequence was OK, return -EIO */ 1785 if (ret == -EAGAIN) 1786 ret = -EIO; 1787 } 1788 return ret; 1789 } 1790 1791 /* 1792 * Check whether there is an anchor block in the given block and 1793 * load Volume Descriptor Sequence if so. 1794 * 1795 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1796 * block 1797 */ 1798 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1799 struct kernel_lb_addr *fileset) 1800 { 1801 struct buffer_head *bh; 1802 uint16_t ident; 1803 int ret; 1804 1805 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1806 udf_fixed_to_variable(block) >= 1807 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1808 return -EAGAIN; 1809 1810 bh = udf_read_tagged(sb, block, block, &ident); 1811 if (!bh) 1812 return -EAGAIN; 1813 if (ident != TAG_IDENT_AVDP) { 1814 brelse(bh); 1815 return -EAGAIN; 1816 } 1817 ret = udf_load_sequence(sb, bh, fileset); 1818 brelse(bh); 1819 return ret; 1820 } 1821 1822 /* 1823 * Search for an anchor volume descriptor pointer. 1824 * 1825 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1826 * of anchors. 1827 */ 1828 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1829 struct kernel_lb_addr *fileset) 1830 { 1831 sector_t last[6]; 1832 int i; 1833 struct udf_sb_info *sbi = UDF_SB(sb); 1834 int last_count = 0; 1835 int ret; 1836 1837 /* First try user provided anchor */ 1838 if (sbi->s_anchor) { 1839 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1840 if (ret != -EAGAIN) 1841 return ret; 1842 } 1843 /* 1844 * according to spec, anchor is in either: 1845 * block 256 1846 * lastblock-256 1847 * lastblock 1848 * however, if the disc isn't closed, it could be 512. 1849 */ 1850 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1851 if (ret != -EAGAIN) 1852 return ret; 1853 /* 1854 * The trouble is which block is the last one. Drives often misreport 1855 * this so we try various possibilities. 1856 */ 1857 last[last_count++] = *lastblock; 1858 if (*lastblock >= 1) 1859 last[last_count++] = *lastblock - 1; 1860 last[last_count++] = *lastblock + 1; 1861 if (*lastblock >= 2) 1862 last[last_count++] = *lastblock - 2; 1863 if (*lastblock >= 150) 1864 last[last_count++] = *lastblock - 150; 1865 if (*lastblock >= 152) 1866 last[last_count++] = *lastblock - 152; 1867 1868 for (i = 0; i < last_count; i++) { 1869 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1870 sb->s_blocksize_bits) 1871 continue; 1872 ret = udf_check_anchor_block(sb, last[i], fileset); 1873 if (ret != -EAGAIN) { 1874 if (!ret) 1875 *lastblock = last[i]; 1876 return ret; 1877 } 1878 if (last[i] < 256) 1879 continue; 1880 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1881 if (ret != -EAGAIN) { 1882 if (!ret) 1883 *lastblock = last[i]; 1884 return ret; 1885 } 1886 } 1887 1888 /* Finally try block 512 in case media is open */ 1889 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1890 } 1891 1892 /* 1893 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1894 * area specified by it. The function expects sbi->s_lastblock to be the last 1895 * block on the media. 1896 * 1897 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1898 * was not found. 1899 */ 1900 static int udf_find_anchor(struct super_block *sb, 1901 struct kernel_lb_addr *fileset) 1902 { 1903 struct udf_sb_info *sbi = UDF_SB(sb); 1904 sector_t lastblock = sbi->s_last_block; 1905 int ret; 1906 1907 ret = udf_scan_anchors(sb, &lastblock, fileset); 1908 if (ret != -EAGAIN) 1909 goto out; 1910 1911 /* No anchor found? Try VARCONV conversion of block numbers */ 1912 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1913 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1914 /* Firstly, we try to not convert number of the last block */ 1915 ret = udf_scan_anchors(sb, &lastblock, fileset); 1916 if (ret != -EAGAIN) 1917 goto out; 1918 1919 lastblock = sbi->s_last_block; 1920 /* Secondly, we try with converted number of the last block */ 1921 ret = udf_scan_anchors(sb, &lastblock, fileset); 1922 if (ret < 0) { 1923 /* VARCONV didn't help. Clear it. */ 1924 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1925 } 1926 out: 1927 if (ret == 0) 1928 sbi->s_last_block = lastblock; 1929 return ret; 1930 } 1931 1932 /* 1933 * Check Volume Structure Descriptor, find Anchor block and load Volume 1934 * Descriptor Sequence. 1935 * 1936 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1937 * block was not found. 1938 */ 1939 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1940 int silent, struct kernel_lb_addr *fileset) 1941 { 1942 struct udf_sb_info *sbi = UDF_SB(sb); 1943 loff_t nsr_off; 1944 int ret; 1945 1946 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1947 if (!silent) 1948 udf_warn(sb, "Bad block size\n"); 1949 return -EINVAL; 1950 } 1951 sbi->s_last_block = uopt->lastblock; 1952 if (!uopt->novrs) { 1953 /* Check that it is NSR02 compliant */ 1954 nsr_off = udf_check_vsd(sb); 1955 if (!nsr_off) { 1956 if (!silent) 1957 udf_warn(sb, "No VRS found\n"); 1958 return 0; 1959 } 1960 if (nsr_off == -1) 1961 udf_debug("Failed to read sector at offset %d. " 1962 "Assuming open disc. Skipping validity " 1963 "check\n", VSD_FIRST_SECTOR_OFFSET); 1964 if (!sbi->s_last_block) 1965 sbi->s_last_block = udf_get_last_block(sb); 1966 } else { 1967 udf_debug("Validity check skipped because of novrs option\n"); 1968 } 1969 1970 /* Look for anchor block and load Volume Descriptor Sequence */ 1971 sbi->s_anchor = uopt->anchor; 1972 ret = udf_find_anchor(sb, fileset); 1973 if (ret < 0) { 1974 if (!silent && ret == -EAGAIN) 1975 udf_warn(sb, "No anchor found\n"); 1976 return ret; 1977 } 1978 return 0; 1979 } 1980 1981 static void udf_open_lvid(struct super_block *sb) 1982 { 1983 struct udf_sb_info *sbi = UDF_SB(sb); 1984 struct buffer_head *bh = sbi->s_lvid_bh; 1985 struct logicalVolIntegrityDesc *lvid; 1986 struct logicalVolIntegrityDescImpUse *lvidiu; 1987 1988 if (!bh) 1989 return; 1990 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1991 lvidiu = udf_sb_lvidiu(sb); 1992 if (!lvidiu) 1993 return; 1994 1995 mutex_lock(&sbi->s_alloc_mutex); 1996 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1997 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1998 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1999 CURRENT_TIME); 2000 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2001 2002 lvid->descTag.descCRC = cpu_to_le16( 2003 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2004 le16_to_cpu(lvid->descTag.descCRCLength))); 2005 2006 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2007 mark_buffer_dirty(bh); 2008 sbi->s_lvid_dirty = 0; 2009 mutex_unlock(&sbi->s_alloc_mutex); 2010 /* Make opening of filesystem visible on the media immediately */ 2011 sync_dirty_buffer(bh); 2012 } 2013 2014 static void udf_close_lvid(struct super_block *sb) 2015 { 2016 struct udf_sb_info *sbi = UDF_SB(sb); 2017 struct buffer_head *bh = sbi->s_lvid_bh; 2018 struct logicalVolIntegrityDesc *lvid; 2019 struct logicalVolIntegrityDescImpUse *lvidiu; 2020 2021 if (!bh) 2022 return; 2023 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2024 lvidiu = udf_sb_lvidiu(sb); 2025 if (!lvidiu) 2026 return; 2027 2028 mutex_lock(&sbi->s_alloc_mutex); 2029 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2030 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2031 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 2032 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2033 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2034 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2035 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2037 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2038 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2039 2040 lvid->descTag.descCRC = cpu_to_le16( 2041 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2042 le16_to_cpu(lvid->descTag.descCRCLength))); 2043 2044 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2045 /* 2046 * We set buffer uptodate unconditionally here to avoid spurious 2047 * warnings from mark_buffer_dirty() when previous EIO has marked 2048 * the buffer as !uptodate 2049 */ 2050 set_buffer_uptodate(bh); 2051 mark_buffer_dirty(bh); 2052 sbi->s_lvid_dirty = 0; 2053 mutex_unlock(&sbi->s_alloc_mutex); 2054 /* Make closing of filesystem visible on the media immediately */ 2055 sync_dirty_buffer(bh); 2056 } 2057 2058 u64 lvid_get_unique_id(struct super_block *sb) 2059 { 2060 struct buffer_head *bh; 2061 struct udf_sb_info *sbi = UDF_SB(sb); 2062 struct logicalVolIntegrityDesc *lvid; 2063 struct logicalVolHeaderDesc *lvhd; 2064 u64 uniqueID; 2065 u64 ret; 2066 2067 bh = sbi->s_lvid_bh; 2068 if (!bh) 2069 return 0; 2070 2071 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2072 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2073 2074 mutex_lock(&sbi->s_alloc_mutex); 2075 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2076 if (!(++uniqueID & 0xFFFFFFFF)) 2077 uniqueID += 16; 2078 lvhd->uniqueID = cpu_to_le64(uniqueID); 2079 mutex_unlock(&sbi->s_alloc_mutex); 2080 mark_buffer_dirty(bh); 2081 2082 return ret; 2083 } 2084 2085 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2086 { 2087 int ret = -EINVAL; 2088 struct inode *inode = NULL; 2089 struct udf_options uopt; 2090 struct kernel_lb_addr rootdir, fileset; 2091 struct udf_sb_info *sbi; 2092 bool lvid_open = false; 2093 2094 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2095 uopt.uid = INVALID_UID; 2096 uopt.gid = INVALID_GID; 2097 uopt.umask = 0; 2098 uopt.fmode = UDF_INVALID_MODE; 2099 uopt.dmode = UDF_INVALID_MODE; 2100 2101 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2102 if (!sbi) 2103 return -ENOMEM; 2104 2105 sb->s_fs_info = sbi; 2106 2107 mutex_init(&sbi->s_alloc_mutex); 2108 2109 if (!udf_parse_options((char *)options, &uopt, false)) 2110 goto parse_options_failure; 2111 2112 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2113 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2114 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2115 goto parse_options_failure; 2116 } 2117 #ifdef CONFIG_UDF_NLS 2118 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2119 uopt.nls_map = load_nls_default(); 2120 if (!uopt.nls_map) 2121 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2122 else 2123 udf_debug("Using default NLS map\n"); 2124 } 2125 #endif 2126 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2127 uopt.flags |= (1 << UDF_FLAG_UTF8); 2128 2129 fileset.logicalBlockNum = 0xFFFFFFFF; 2130 fileset.partitionReferenceNum = 0xFFFF; 2131 2132 sbi->s_flags = uopt.flags; 2133 sbi->s_uid = uopt.uid; 2134 sbi->s_gid = uopt.gid; 2135 sbi->s_umask = uopt.umask; 2136 sbi->s_fmode = uopt.fmode; 2137 sbi->s_dmode = uopt.dmode; 2138 sbi->s_nls_map = uopt.nls_map; 2139 rwlock_init(&sbi->s_cred_lock); 2140 2141 if (uopt.session == 0xFFFFFFFF) 2142 sbi->s_session = udf_get_last_session(sb); 2143 else 2144 sbi->s_session = uopt.session; 2145 2146 udf_debug("Multi-session=%d\n", sbi->s_session); 2147 2148 /* Fill in the rest of the superblock */ 2149 sb->s_op = &udf_sb_ops; 2150 sb->s_export_op = &udf_export_ops; 2151 2152 sb->s_magic = UDF_SUPER_MAGIC; 2153 sb->s_time_gran = 1000; 2154 2155 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2156 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2157 } else { 2158 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2160 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2161 if (!silent) 2162 pr_notice("Rescanning with blocksize %d\n", 2163 UDF_DEFAULT_BLOCKSIZE); 2164 brelse(sbi->s_lvid_bh); 2165 sbi->s_lvid_bh = NULL; 2166 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2167 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2168 } 2169 } 2170 if (ret < 0) { 2171 if (ret == -EAGAIN) { 2172 udf_warn(sb, "No partition found (1)\n"); 2173 ret = -EINVAL; 2174 } 2175 goto error_out; 2176 } 2177 2178 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2179 2180 if (sbi->s_lvid_bh) { 2181 struct logicalVolIntegrityDescImpUse *lvidiu = 2182 udf_sb_lvidiu(sb); 2183 uint16_t minUDFReadRev; 2184 uint16_t minUDFWriteRev; 2185 2186 if (!lvidiu) { 2187 ret = -EINVAL; 2188 goto error_out; 2189 } 2190 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2191 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2192 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2193 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2194 minUDFReadRev, 2195 UDF_MAX_READ_VERSION); 2196 ret = -EINVAL; 2197 goto error_out; 2198 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2199 !(sb->s_flags & MS_RDONLY)) { 2200 ret = -EACCES; 2201 goto error_out; 2202 } 2203 2204 sbi->s_udfrev = minUDFWriteRev; 2205 2206 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2207 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2208 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2209 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2210 } 2211 2212 if (!sbi->s_partitions) { 2213 udf_warn(sb, "No partition found (2)\n"); 2214 ret = -EINVAL; 2215 goto error_out; 2216 } 2217 2218 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2219 UDF_PART_FLAG_READ_ONLY && 2220 !(sb->s_flags & MS_RDONLY)) { 2221 ret = -EACCES; 2222 goto error_out; 2223 } 2224 2225 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2226 udf_warn(sb, "No fileset found\n"); 2227 ret = -EINVAL; 2228 goto error_out; 2229 } 2230 2231 if (!silent) { 2232 struct timestamp ts; 2233 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2234 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2235 sbi->s_volume_ident, 2236 le16_to_cpu(ts.year), ts.month, ts.day, 2237 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2238 } 2239 if (!(sb->s_flags & MS_RDONLY)) { 2240 udf_open_lvid(sb); 2241 lvid_open = true; 2242 } 2243 2244 /* Assign the root inode */ 2245 /* assign inodes by physical block number */ 2246 /* perhaps it's not extensible enough, but for now ... */ 2247 inode = udf_iget(sb, &rootdir); 2248 if (IS_ERR(inode)) { 2249 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2250 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2251 ret = PTR_ERR(inode); 2252 goto error_out; 2253 } 2254 2255 /* Allocate a dentry for the root inode */ 2256 sb->s_root = d_make_root(inode); 2257 if (!sb->s_root) { 2258 udf_err(sb, "Couldn't allocate root dentry\n"); 2259 ret = -ENOMEM; 2260 goto error_out; 2261 } 2262 sb->s_maxbytes = MAX_LFS_FILESIZE; 2263 sb->s_max_links = UDF_MAX_LINKS; 2264 return 0; 2265 2266 error_out: 2267 iput(sbi->s_vat_inode); 2268 parse_options_failure: 2269 #ifdef CONFIG_UDF_NLS 2270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2271 unload_nls(sbi->s_nls_map); 2272 #endif 2273 if (lvid_open) 2274 udf_close_lvid(sb); 2275 brelse(sbi->s_lvid_bh); 2276 udf_sb_free_partitions(sb); 2277 kfree(sbi); 2278 sb->s_fs_info = NULL; 2279 2280 return ret; 2281 } 2282 2283 void _udf_err(struct super_block *sb, const char *function, 2284 const char *fmt, ...) 2285 { 2286 struct va_format vaf; 2287 va_list args; 2288 2289 va_start(args, fmt); 2290 2291 vaf.fmt = fmt; 2292 vaf.va = &args; 2293 2294 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2295 2296 va_end(args); 2297 } 2298 2299 void _udf_warn(struct super_block *sb, const char *function, 2300 const char *fmt, ...) 2301 { 2302 struct va_format vaf; 2303 va_list args; 2304 2305 va_start(args, fmt); 2306 2307 vaf.fmt = fmt; 2308 vaf.va = &args; 2309 2310 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2311 2312 va_end(args); 2313 } 2314 2315 static void udf_put_super(struct super_block *sb) 2316 { 2317 struct udf_sb_info *sbi; 2318 2319 sbi = UDF_SB(sb); 2320 2321 iput(sbi->s_vat_inode); 2322 #ifdef CONFIG_UDF_NLS 2323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2324 unload_nls(sbi->s_nls_map); 2325 #endif 2326 if (!(sb->s_flags & MS_RDONLY)) 2327 udf_close_lvid(sb); 2328 brelse(sbi->s_lvid_bh); 2329 udf_sb_free_partitions(sb); 2330 mutex_destroy(&sbi->s_alloc_mutex); 2331 kfree(sb->s_fs_info); 2332 sb->s_fs_info = NULL; 2333 } 2334 2335 static int udf_sync_fs(struct super_block *sb, int wait) 2336 { 2337 struct udf_sb_info *sbi = UDF_SB(sb); 2338 2339 mutex_lock(&sbi->s_alloc_mutex); 2340 if (sbi->s_lvid_dirty) { 2341 /* 2342 * Blockdevice will be synced later so we don't have to submit 2343 * the buffer for IO 2344 */ 2345 mark_buffer_dirty(sbi->s_lvid_bh); 2346 sbi->s_lvid_dirty = 0; 2347 } 2348 mutex_unlock(&sbi->s_alloc_mutex); 2349 2350 return 0; 2351 } 2352 2353 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2354 { 2355 struct super_block *sb = dentry->d_sb; 2356 struct udf_sb_info *sbi = UDF_SB(sb); 2357 struct logicalVolIntegrityDescImpUse *lvidiu; 2358 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2359 2360 lvidiu = udf_sb_lvidiu(sb); 2361 buf->f_type = UDF_SUPER_MAGIC; 2362 buf->f_bsize = sb->s_blocksize; 2363 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2364 buf->f_bfree = udf_count_free(sb); 2365 buf->f_bavail = buf->f_bfree; 2366 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2367 le32_to_cpu(lvidiu->numDirs)) : 0) 2368 + buf->f_bfree; 2369 buf->f_ffree = buf->f_bfree; 2370 buf->f_namelen = UDF_NAME_LEN; 2371 buf->f_fsid.val[0] = (u32)id; 2372 buf->f_fsid.val[1] = (u32)(id >> 32); 2373 2374 return 0; 2375 } 2376 2377 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2378 struct udf_bitmap *bitmap) 2379 { 2380 struct buffer_head *bh = NULL; 2381 unsigned int accum = 0; 2382 int index; 2383 int block = 0, newblock; 2384 struct kernel_lb_addr loc; 2385 uint32_t bytes; 2386 uint8_t *ptr; 2387 uint16_t ident; 2388 struct spaceBitmapDesc *bm; 2389 2390 loc.logicalBlockNum = bitmap->s_extPosition; 2391 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2392 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2393 2394 if (!bh) { 2395 udf_err(sb, "udf_count_free failed\n"); 2396 goto out; 2397 } else if (ident != TAG_IDENT_SBD) { 2398 brelse(bh); 2399 udf_err(sb, "udf_count_free failed\n"); 2400 goto out; 2401 } 2402 2403 bm = (struct spaceBitmapDesc *)bh->b_data; 2404 bytes = le32_to_cpu(bm->numOfBytes); 2405 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2406 ptr = (uint8_t *)bh->b_data; 2407 2408 while (bytes > 0) { 2409 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2410 accum += bitmap_weight((const unsigned long *)(ptr + index), 2411 cur_bytes * 8); 2412 bytes -= cur_bytes; 2413 if (bytes) { 2414 brelse(bh); 2415 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2416 bh = udf_tread(sb, newblock); 2417 if (!bh) { 2418 udf_debug("read failed\n"); 2419 goto out; 2420 } 2421 index = 0; 2422 ptr = (uint8_t *)bh->b_data; 2423 } 2424 } 2425 brelse(bh); 2426 out: 2427 return accum; 2428 } 2429 2430 static unsigned int udf_count_free_table(struct super_block *sb, 2431 struct inode *table) 2432 { 2433 unsigned int accum = 0; 2434 uint32_t elen; 2435 struct kernel_lb_addr eloc; 2436 int8_t etype; 2437 struct extent_position epos; 2438 2439 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2440 epos.block = UDF_I(table)->i_location; 2441 epos.offset = sizeof(struct unallocSpaceEntry); 2442 epos.bh = NULL; 2443 2444 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2445 accum += (elen >> table->i_sb->s_blocksize_bits); 2446 2447 brelse(epos.bh); 2448 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2449 2450 return accum; 2451 } 2452 2453 static unsigned int udf_count_free(struct super_block *sb) 2454 { 2455 unsigned int accum = 0; 2456 struct udf_sb_info *sbi; 2457 struct udf_part_map *map; 2458 2459 sbi = UDF_SB(sb); 2460 if (sbi->s_lvid_bh) { 2461 struct logicalVolIntegrityDesc *lvid = 2462 (struct logicalVolIntegrityDesc *) 2463 sbi->s_lvid_bh->b_data; 2464 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2465 accum = le32_to_cpu( 2466 lvid->freeSpaceTable[sbi->s_partition]); 2467 if (accum == 0xFFFFFFFF) 2468 accum = 0; 2469 } 2470 } 2471 2472 if (accum) 2473 return accum; 2474 2475 map = &sbi->s_partmaps[sbi->s_partition]; 2476 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2477 accum += udf_count_free_bitmap(sb, 2478 map->s_uspace.s_bitmap); 2479 } 2480 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2481 accum += udf_count_free_bitmap(sb, 2482 map->s_fspace.s_bitmap); 2483 } 2484 if (accum) 2485 return accum; 2486 2487 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2488 accum += udf_count_free_table(sb, 2489 map->s_uspace.s_table); 2490 } 2491 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2492 accum += udf_count_free_table(sb, 2493 map->s_fspace.s_table); 2494 } 2495 2496 return accum; 2497 } 2498