1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 96 struct kernel_lb_addr *); 97 static void udf_load_fileset(struct super_block *, struct buffer_head *, 98 struct kernel_lb_addr *); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 116 offsetof(struct logicalVolIntegrityDesc, impUse)) / 117 (2 * sizeof(uint32_t)) < partnum) { 118 udf_err(sb, "Logical volume integrity descriptor corrupted " 119 "(numOfPartitions = %u)!\n", partnum); 120 return NULL; 121 } 122 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 123 offset = partnum * 2 * sizeof(uint32_t); 124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 125 } 126 127 /* UDF filesystem type */ 128 static struct dentry *udf_mount(struct file_system_type *fs_type, 129 int flags, const char *dev_name, void *data) 130 { 131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 132 } 133 134 static struct file_system_type udf_fstype = { 135 .owner = THIS_MODULE, 136 .name = "udf", 137 .mount = udf_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("udf"); 142 143 static struct kmem_cache *udf_inode_cachep; 144 145 static struct inode *udf_alloc_inode(struct super_block *sb) 146 { 147 struct udf_inode_info *ei; 148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 149 if (!ei) 150 return NULL; 151 152 ei->i_unique = 0; 153 ei->i_lenExtents = 0; 154 ei->i_next_alloc_block = 0; 155 ei->i_next_alloc_goal = 0; 156 ei->i_strat4096 = 0; 157 init_rwsem(&ei->i_data_sem); 158 ei->cached_extent.lstart = -1; 159 spin_lock_init(&ei->i_extent_cache_lock); 160 161 return &ei->vfs_inode; 162 } 163 164 static void udf_i_callback(struct rcu_head *head) 165 { 166 struct inode *inode = container_of(head, struct inode, i_rcu); 167 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 168 } 169 170 static void udf_destroy_inode(struct inode *inode) 171 { 172 call_rcu(&inode->i_rcu, udf_i_callback); 173 } 174 175 static void init_once(void *foo) 176 { 177 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 178 179 ei->i_ext.i_data = NULL; 180 inode_init_once(&ei->vfs_inode); 181 } 182 183 static int __init init_inodecache(void) 184 { 185 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 186 sizeof(struct udf_inode_info), 187 0, (SLAB_RECLAIM_ACCOUNT | 188 SLAB_MEM_SPREAD | 189 SLAB_ACCOUNT), 190 init_once); 191 if (!udf_inode_cachep) 192 return -ENOMEM; 193 return 0; 194 } 195 196 static void destroy_inodecache(void) 197 { 198 /* 199 * Make sure all delayed rcu free inodes are flushed before we 200 * destroy cache. 201 */ 202 rcu_barrier(); 203 kmem_cache_destroy(udf_inode_cachep); 204 } 205 206 /* Superblock operations */ 207 static const struct super_operations udf_sb_ops = { 208 .alloc_inode = udf_alloc_inode, 209 .destroy_inode = udf_destroy_inode, 210 .write_inode = udf_write_inode, 211 .evict_inode = udf_evict_inode, 212 .put_super = udf_put_super, 213 .sync_fs = udf_sync_fs, 214 .statfs = udf_statfs, 215 .remount_fs = udf_remount_fs, 216 .show_options = udf_show_options, 217 }; 218 219 struct udf_options { 220 unsigned char novrs; 221 unsigned int blocksize; 222 unsigned int session; 223 unsigned int lastblock; 224 unsigned int anchor; 225 unsigned int flags; 226 umode_t umask; 227 kgid_t gid; 228 kuid_t uid; 229 umode_t fmode; 230 umode_t dmode; 231 struct nls_table *nls_map; 232 }; 233 234 static int __init init_udf_fs(void) 235 { 236 int err; 237 238 err = init_inodecache(); 239 if (err) 240 goto out1; 241 err = register_filesystem(&udf_fstype); 242 if (err) 243 goto out; 244 245 return 0; 246 247 out: 248 destroy_inodecache(); 249 250 out1: 251 return err; 252 } 253 254 static void __exit exit_udf_fs(void) 255 { 256 unregister_filesystem(&udf_fstype); 257 destroy_inodecache(); 258 } 259 260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 261 { 262 struct udf_sb_info *sbi = UDF_SB(sb); 263 264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 265 if (!sbi->s_partmaps) { 266 sbi->s_partitions = 0; 267 return -ENOMEM; 268 } 269 270 sbi->s_partitions = count; 271 return 0; 272 } 273 274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 275 { 276 int i; 277 int nr_groups = bitmap->s_nr_groups; 278 279 for (i = 0; i < nr_groups; i++) 280 if (bitmap->s_block_bitmap[i]) 281 brelse(bitmap->s_block_bitmap[i]); 282 283 kvfree(bitmap); 284 } 285 286 static void udf_free_partition(struct udf_part_map *map) 287 { 288 int i; 289 struct udf_meta_data *mdata; 290 291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 292 iput(map->s_uspace.s_table); 293 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 294 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 295 if (map->s_partition_type == UDF_SPARABLE_MAP15) 296 for (i = 0; i < 4; i++) 297 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 298 else if (map->s_partition_type == UDF_METADATA_MAP25) { 299 mdata = &map->s_type_specific.s_metadata; 300 iput(mdata->s_metadata_fe); 301 mdata->s_metadata_fe = NULL; 302 303 iput(mdata->s_mirror_fe); 304 mdata->s_mirror_fe = NULL; 305 306 iput(mdata->s_bitmap_fe); 307 mdata->s_bitmap_fe = NULL; 308 } 309 } 310 311 static void udf_sb_free_partitions(struct super_block *sb) 312 { 313 struct udf_sb_info *sbi = UDF_SB(sb); 314 int i; 315 316 if (!sbi->s_partmaps) 317 return; 318 for (i = 0; i < sbi->s_partitions; i++) 319 udf_free_partition(&sbi->s_partmaps[i]); 320 kfree(sbi->s_partmaps); 321 sbi->s_partmaps = NULL; 322 } 323 324 static int udf_show_options(struct seq_file *seq, struct dentry *root) 325 { 326 struct super_block *sb = root->d_sb; 327 struct udf_sb_info *sbi = UDF_SB(sb); 328 329 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 330 seq_puts(seq, ",nostrict"); 331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 332 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 334 seq_puts(seq, ",unhide"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 336 seq_puts(seq, ",undelete"); 337 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 338 seq_puts(seq, ",noadinicb"); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 340 seq_puts(seq, ",shortad"); 341 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 342 seq_puts(seq, ",uid=forget"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 344 seq_puts(seq, ",gid=forget"); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 346 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 348 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 349 if (sbi->s_umask != 0) 350 seq_printf(seq, ",umask=%ho", sbi->s_umask); 351 if (sbi->s_fmode != UDF_INVALID_MODE) 352 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 353 if (sbi->s_dmode != UDF_INVALID_MODE) 354 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 356 seq_printf(seq, ",session=%d", sbi->s_session); 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 358 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 359 if (sbi->s_anchor != 0) 360 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 362 seq_puts(seq, ",utf8"); 363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 364 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 365 366 return 0; 367 } 368 369 /* 370 * udf_parse_options 371 * 372 * PURPOSE 373 * Parse mount options. 374 * 375 * DESCRIPTION 376 * The following mount options are supported: 377 * 378 * gid= Set the default group. 379 * umask= Set the default umask. 380 * mode= Set the default file permissions. 381 * dmode= Set the default directory permissions. 382 * uid= Set the default user. 383 * bs= Set the block size. 384 * unhide Show otherwise hidden files. 385 * undelete Show deleted files in lists. 386 * adinicb Embed data in the inode (default) 387 * noadinicb Don't embed data in the inode 388 * shortad Use short ad's 389 * longad Use long ad's (default) 390 * nostrict Unset strict conformance 391 * iocharset= Set the NLS character set 392 * 393 * The remaining are for debugging and disaster recovery: 394 * 395 * novrs Skip volume sequence recognition 396 * 397 * The following expect a offset from 0. 398 * 399 * session= Set the CDROM session (default= last session) 400 * anchor= Override standard anchor location. (default= 256) 401 * volume= Override the VolumeDesc location. (unused) 402 * partition= Override the PartitionDesc location. (unused) 403 * lastblock= Set the last block of the filesystem/ 404 * 405 * The following expect a offset from the partition root. 406 * 407 * fileset= Override the fileset block location. (unused) 408 * rootdir= Override the root directory location. (unused) 409 * WARNING: overriding the rootdir to a non-directory may 410 * yield highly unpredictable results. 411 * 412 * PRE-CONDITIONS 413 * options Pointer to mount options string. 414 * uopts Pointer to mount options variable. 415 * 416 * POST-CONDITIONS 417 * <return> 1 Mount options parsed okay. 418 * <return> 0 Error parsing mount options. 419 * 420 * HISTORY 421 * July 1, 1997 - Andrew E. Mileski 422 * Written, tested, and released. 423 */ 424 425 enum { 426 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 427 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 428 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 429 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 430 Opt_rootdir, Opt_utf8, Opt_iocharset, 431 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 432 Opt_fmode, Opt_dmode 433 }; 434 435 static const match_table_t tokens = { 436 {Opt_novrs, "novrs"}, 437 {Opt_nostrict, "nostrict"}, 438 {Opt_bs, "bs=%u"}, 439 {Opt_unhide, "unhide"}, 440 {Opt_undelete, "undelete"}, 441 {Opt_noadinicb, "noadinicb"}, 442 {Opt_adinicb, "adinicb"}, 443 {Opt_shortad, "shortad"}, 444 {Opt_longad, "longad"}, 445 {Opt_uforget, "uid=forget"}, 446 {Opt_uignore, "uid=ignore"}, 447 {Opt_gforget, "gid=forget"}, 448 {Opt_gignore, "gid=ignore"}, 449 {Opt_gid, "gid=%u"}, 450 {Opt_uid, "uid=%u"}, 451 {Opt_umask, "umask=%o"}, 452 {Opt_session, "session=%u"}, 453 {Opt_lastblock, "lastblock=%u"}, 454 {Opt_anchor, "anchor=%u"}, 455 {Opt_volume, "volume=%u"}, 456 {Opt_partition, "partition=%u"}, 457 {Opt_fileset, "fileset=%u"}, 458 {Opt_rootdir, "rootdir=%u"}, 459 {Opt_utf8, "utf8"}, 460 {Opt_iocharset, "iocharset=%s"}, 461 {Opt_fmode, "mode=%o"}, 462 {Opt_dmode, "dmode=%o"}, 463 {Opt_err, NULL} 464 }; 465 466 static int udf_parse_options(char *options, struct udf_options *uopt, 467 bool remount) 468 { 469 char *p; 470 int option; 471 472 uopt->novrs = 0; 473 uopt->session = 0xFFFFFFFF; 474 uopt->lastblock = 0; 475 uopt->anchor = 0; 476 477 if (!options) 478 return 1; 479 480 while ((p = strsep(&options, ",")) != NULL) { 481 substring_t args[MAX_OPT_ARGS]; 482 int token; 483 unsigned n; 484 if (!*p) 485 continue; 486 487 token = match_token(p, tokens, args); 488 switch (token) { 489 case Opt_novrs: 490 uopt->novrs = 1; 491 break; 492 case Opt_bs: 493 if (match_int(&args[0], &option)) 494 return 0; 495 n = option; 496 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 497 return 0; 498 uopt->blocksize = n; 499 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 500 break; 501 case Opt_unhide: 502 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 503 break; 504 case Opt_undelete: 505 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 506 break; 507 case Opt_noadinicb: 508 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 509 break; 510 case Opt_adinicb: 511 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 512 break; 513 case Opt_shortad: 514 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 515 break; 516 case Opt_longad: 517 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 518 break; 519 case Opt_gid: 520 if (match_int(args, &option)) 521 return 0; 522 uopt->gid = make_kgid(current_user_ns(), option); 523 if (!gid_valid(uopt->gid)) 524 return 0; 525 uopt->flags |= (1 << UDF_FLAG_GID_SET); 526 break; 527 case Opt_uid: 528 if (match_int(args, &option)) 529 return 0; 530 uopt->uid = make_kuid(current_user_ns(), option); 531 if (!uid_valid(uopt->uid)) 532 return 0; 533 uopt->flags |= (1 << UDF_FLAG_UID_SET); 534 break; 535 case Opt_umask: 536 if (match_octal(args, &option)) 537 return 0; 538 uopt->umask = option; 539 break; 540 case Opt_nostrict: 541 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 542 break; 543 case Opt_session: 544 if (match_int(args, &option)) 545 return 0; 546 uopt->session = option; 547 if (!remount) 548 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 549 break; 550 case Opt_lastblock: 551 if (match_int(args, &option)) 552 return 0; 553 uopt->lastblock = option; 554 if (!remount) 555 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 556 break; 557 case Opt_anchor: 558 if (match_int(args, &option)) 559 return 0; 560 uopt->anchor = option; 561 break; 562 case Opt_volume: 563 case Opt_partition: 564 case Opt_fileset: 565 case Opt_rootdir: 566 /* Ignored (never implemented properly) */ 567 break; 568 case Opt_utf8: 569 uopt->flags |= (1 << UDF_FLAG_UTF8); 570 break; 571 case Opt_iocharset: 572 if (!remount) { 573 if (uopt->nls_map) 574 unload_nls(uopt->nls_map); 575 uopt->nls_map = load_nls(args[0].from); 576 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 577 } 578 break; 579 case Opt_uforget: 580 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 581 break; 582 case Opt_uignore: 583 case Opt_gignore: 584 /* These options are superseeded by uid=<number> */ 585 break; 586 case Opt_gforget: 587 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 588 break; 589 case Opt_fmode: 590 if (match_octal(args, &option)) 591 return 0; 592 uopt->fmode = option & 0777; 593 break; 594 case Opt_dmode: 595 if (match_octal(args, &option)) 596 return 0; 597 uopt->dmode = option & 0777; 598 break; 599 default: 600 pr_err("bad mount option \"%s\" or missing value\n", p); 601 return 0; 602 } 603 } 604 return 1; 605 } 606 607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 608 { 609 struct udf_options uopt; 610 struct udf_sb_info *sbi = UDF_SB(sb); 611 int error = 0; 612 613 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 614 return -EACCES; 615 616 sync_filesystem(sb); 617 618 uopt.flags = sbi->s_flags; 619 uopt.uid = sbi->s_uid; 620 uopt.gid = sbi->s_gid; 621 uopt.umask = sbi->s_umask; 622 uopt.fmode = sbi->s_fmode; 623 uopt.dmode = sbi->s_dmode; 624 uopt.nls_map = NULL; 625 626 if (!udf_parse_options(options, &uopt, true)) 627 return -EINVAL; 628 629 write_lock(&sbi->s_cred_lock); 630 sbi->s_flags = uopt.flags; 631 sbi->s_uid = uopt.uid; 632 sbi->s_gid = uopt.gid; 633 sbi->s_umask = uopt.umask; 634 sbi->s_fmode = uopt.fmode; 635 sbi->s_dmode = uopt.dmode; 636 write_unlock(&sbi->s_cred_lock); 637 638 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 639 goto out_unlock; 640 641 if (*flags & SB_RDONLY) 642 udf_close_lvid(sb); 643 else 644 udf_open_lvid(sb); 645 646 out_unlock: 647 return error; 648 } 649 650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 652 static loff_t udf_check_vsd(struct super_block *sb) 653 { 654 struct volStructDesc *vsd = NULL; 655 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 656 int sectorsize; 657 struct buffer_head *bh = NULL; 658 int nsr02 = 0; 659 int nsr03 = 0; 660 struct udf_sb_info *sbi; 661 662 sbi = UDF_SB(sb); 663 if (sb->s_blocksize < sizeof(struct volStructDesc)) 664 sectorsize = sizeof(struct volStructDesc); 665 else 666 sectorsize = sb->s_blocksize; 667 668 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits); 669 670 udf_debug("Starting at sector %u (%lu byte sectors)\n", 671 (unsigned int)(sector >> sb->s_blocksize_bits), 672 sb->s_blocksize); 673 /* Process the sequence (if applicable). The hard limit on the sector 674 * offset is arbitrary, hopefully large enough so that all valid UDF 675 * filesystems will be recognised. There is no mention of an upper 676 * bound to the size of the volume recognition area in the standard. 677 * The limit will prevent the code to read all the sectors of a 678 * specially crafted image (like a bluray disc full of CD001 sectors), 679 * potentially causing minutes or even hours of uninterruptible I/O 680 * activity. This actually happened with uninitialised SSD partitions 681 * (all 0xFF) before the check for the limit and all valid IDs were 682 * added */ 683 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 684 sector += sectorsize) { 685 /* Read a block */ 686 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 687 if (!bh) 688 break; 689 690 /* Look for ISO descriptors */ 691 vsd = (struct volStructDesc *)(bh->b_data + 692 (sector & (sb->s_blocksize - 1))); 693 694 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 695 VSD_STD_ID_LEN)) { 696 switch (vsd->structType) { 697 case 0: 698 udf_debug("ISO9660 Boot Record found\n"); 699 break; 700 case 1: 701 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 702 break; 703 case 2: 704 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 705 break; 706 case 3: 707 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 708 break; 709 case 255: 710 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 711 break; 712 default: 713 udf_debug("ISO9660 VRS (%u) found\n", 714 vsd->structType); 715 break; 716 } 717 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 718 VSD_STD_ID_LEN)) 719 ; /* nothing */ 720 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 721 VSD_STD_ID_LEN)) { 722 brelse(bh); 723 break; 724 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 725 VSD_STD_ID_LEN)) 726 nsr02 = sector; 727 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 728 VSD_STD_ID_LEN)) 729 nsr03 = sector; 730 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 731 VSD_STD_ID_LEN)) 732 ; /* nothing */ 733 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 734 VSD_STD_ID_LEN)) 735 ; /* nothing */ 736 else { 737 /* invalid id : end of volume recognition area */ 738 brelse(bh); 739 break; 740 } 741 brelse(bh); 742 } 743 744 if (nsr03) 745 return nsr03; 746 else if (nsr02) 747 return nsr02; 748 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 749 VSD_FIRST_SECTOR_OFFSET) 750 return -1; 751 else 752 return 0; 753 } 754 755 static int udf_find_fileset(struct super_block *sb, 756 struct kernel_lb_addr *fileset, 757 struct kernel_lb_addr *root) 758 { 759 struct buffer_head *bh = NULL; 760 uint16_t ident; 761 762 if (fileset->logicalBlockNum != 0xFFFFFFFF || 763 fileset->partitionReferenceNum != 0xFFFF) { 764 bh = udf_read_ptagged(sb, fileset, 0, &ident); 765 766 if (!bh) { 767 return 1; 768 } else if (ident != TAG_IDENT_FSD) { 769 brelse(bh); 770 return 1; 771 } 772 773 udf_debug("Fileset at block=%u, partition=%u\n", 774 fileset->logicalBlockNum, 775 fileset->partitionReferenceNum); 776 777 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 778 udf_load_fileset(sb, bh, root); 779 brelse(bh); 780 return 0; 781 } 782 return 1; 783 } 784 785 /* 786 * Load primary Volume Descriptor Sequence 787 * 788 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 789 * should be tried. 790 */ 791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 792 { 793 struct primaryVolDesc *pvoldesc; 794 uint8_t *outstr; 795 struct buffer_head *bh; 796 uint16_t ident; 797 int ret = -ENOMEM; 798 #ifdef UDFFS_DEBUG 799 struct timestamp *ts; 800 #endif 801 802 outstr = kmalloc(128, GFP_NOFS); 803 if (!outstr) 804 return -ENOMEM; 805 806 bh = udf_read_tagged(sb, block, block, &ident); 807 if (!bh) { 808 ret = -EAGAIN; 809 goto out2; 810 } 811 812 if (ident != TAG_IDENT_PVD) { 813 ret = -EIO; 814 goto out_bh; 815 } 816 817 pvoldesc = (struct primaryVolDesc *)bh->b_data; 818 819 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 820 pvoldesc->recordingDateAndTime); 821 #ifdef UDFFS_DEBUG 822 ts = &pvoldesc->recordingDateAndTime; 823 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 824 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 825 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 826 #endif 827 828 829 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 830 if (ret < 0) 831 goto out_bh; 832 833 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 834 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 835 836 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 837 if (ret < 0) 838 goto out_bh; 839 840 outstr[ret] = 0; 841 udf_debug("volSetIdent[] = '%s'\n", outstr); 842 843 ret = 0; 844 out_bh: 845 brelse(bh); 846 out2: 847 kfree(outstr); 848 return ret; 849 } 850 851 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 852 u32 meta_file_loc, u32 partition_ref) 853 { 854 struct kernel_lb_addr addr; 855 struct inode *metadata_fe; 856 857 addr.logicalBlockNum = meta_file_loc; 858 addr.partitionReferenceNum = partition_ref; 859 860 metadata_fe = udf_iget_special(sb, &addr); 861 862 if (IS_ERR(metadata_fe)) { 863 udf_warn(sb, "metadata inode efe not found\n"); 864 return metadata_fe; 865 } 866 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 867 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 868 iput(metadata_fe); 869 return ERR_PTR(-EIO); 870 } 871 872 return metadata_fe; 873 } 874 875 static int udf_load_metadata_files(struct super_block *sb, int partition, 876 int type1_index) 877 { 878 struct udf_sb_info *sbi = UDF_SB(sb); 879 struct udf_part_map *map; 880 struct udf_meta_data *mdata; 881 struct kernel_lb_addr addr; 882 struct inode *fe; 883 884 map = &sbi->s_partmaps[partition]; 885 mdata = &map->s_type_specific.s_metadata; 886 mdata->s_phys_partition_ref = type1_index; 887 888 /* metadata address */ 889 udf_debug("Metadata file location: block = %u part = %u\n", 890 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 891 892 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 893 mdata->s_phys_partition_ref); 894 if (IS_ERR(fe)) { 895 /* mirror file entry */ 896 udf_debug("Mirror metadata file location: block = %u part = %u\n", 897 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 898 899 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 900 mdata->s_phys_partition_ref); 901 902 if (IS_ERR(fe)) { 903 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 904 return PTR_ERR(fe); 905 } 906 mdata->s_mirror_fe = fe; 907 } else 908 mdata->s_metadata_fe = fe; 909 910 911 /* 912 * bitmap file entry 913 * Note: 914 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 915 */ 916 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 917 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 918 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 919 920 udf_debug("Bitmap file location: block = %u part = %u\n", 921 addr.logicalBlockNum, addr.partitionReferenceNum); 922 923 fe = udf_iget_special(sb, &addr); 924 if (IS_ERR(fe)) { 925 if (sb_rdonly(sb)) 926 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 927 else { 928 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 929 return PTR_ERR(fe); 930 } 931 } else 932 mdata->s_bitmap_fe = fe; 933 } 934 935 udf_debug("udf_load_metadata_files Ok\n"); 936 return 0; 937 } 938 939 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 940 struct kernel_lb_addr *root) 941 { 942 struct fileSetDesc *fset; 943 944 fset = (struct fileSetDesc *)bh->b_data; 945 946 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 947 948 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 949 950 udf_debug("Rootdir at block=%u, partition=%u\n", 951 root->logicalBlockNum, root->partitionReferenceNum); 952 } 953 954 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 955 { 956 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 957 return DIV_ROUND_UP(map->s_partition_len + 958 (sizeof(struct spaceBitmapDesc) << 3), 959 sb->s_blocksize * 8); 960 } 961 962 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 963 { 964 struct udf_bitmap *bitmap; 965 int nr_groups; 966 int size; 967 968 nr_groups = udf_compute_nr_groups(sb, index); 969 size = sizeof(struct udf_bitmap) + 970 (sizeof(struct buffer_head *) * nr_groups); 971 972 if (size <= PAGE_SIZE) 973 bitmap = kzalloc(size, GFP_KERNEL); 974 else 975 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 976 977 if (!bitmap) 978 return NULL; 979 980 bitmap->s_nr_groups = nr_groups; 981 return bitmap; 982 } 983 984 static int check_partition_desc(struct super_block *sb, 985 struct partitionDesc *p, 986 struct udf_part_map *map) 987 { 988 bool umap, utable, fmap, ftable; 989 struct partitionHeaderDesc *phd; 990 991 switch (le32_to_cpu(p->accessType)) { 992 case PD_ACCESS_TYPE_READ_ONLY: 993 case PD_ACCESS_TYPE_WRITE_ONCE: 994 case PD_ACCESS_TYPE_REWRITABLE: 995 case PD_ACCESS_TYPE_NONE: 996 goto force_ro; 997 } 998 999 /* No Partition Header Descriptor? */ 1000 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1001 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1002 goto force_ro; 1003 1004 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1005 utable = phd->unallocSpaceTable.extLength; 1006 umap = phd->unallocSpaceBitmap.extLength; 1007 ftable = phd->freedSpaceTable.extLength; 1008 fmap = phd->freedSpaceBitmap.extLength; 1009 1010 /* No allocation info? */ 1011 if (!utable && !umap && !ftable && !fmap) 1012 goto force_ro; 1013 1014 /* We don't support blocks that require erasing before overwrite */ 1015 if (ftable || fmap) 1016 goto force_ro; 1017 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1018 if (utable && umap) 1019 goto force_ro; 1020 1021 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1022 map->s_partition_type == UDF_VIRTUAL_MAP20) 1023 goto force_ro; 1024 1025 return 0; 1026 force_ro: 1027 if (!sb_rdonly(sb)) 1028 return -EACCES; 1029 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1030 return 0; 1031 } 1032 1033 static int udf_fill_partdesc_info(struct super_block *sb, 1034 struct partitionDesc *p, int p_index) 1035 { 1036 struct udf_part_map *map; 1037 struct udf_sb_info *sbi = UDF_SB(sb); 1038 struct partitionHeaderDesc *phd; 1039 int err; 1040 1041 map = &sbi->s_partmaps[p_index]; 1042 1043 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1044 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1045 1046 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1047 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1048 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1049 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1050 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1051 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1052 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1053 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1054 1055 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1056 p_index, map->s_partition_type, 1057 map->s_partition_root, map->s_partition_len); 1058 1059 err = check_partition_desc(sb, p, map); 1060 if (err) 1061 return err; 1062 1063 /* 1064 * Skip loading allocation info it we cannot ever write to the fs. 1065 * This is a correctness thing as we may have decided to force ro mount 1066 * to avoid allocation info we don't support. 1067 */ 1068 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1069 return 0; 1070 1071 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1072 if (phd->unallocSpaceTable.extLength) { 1073 struct kernel_lb_addr loc = { 1074 .logicalBlockNum = le32_to_cpu( 1075 phd->unallocSpaceTable.extPosition), 1076 .partitionReferenceNum = p_index, 1077 }; 1078 struct inode *inode; 1079 1080 inode = udf_iget_special(sb, &loc); 1081 if (IS_ERR(inode)) { 1082 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1083 p_index); 1084 return PTR_ERR(inode); 1085 } 1086 map->s_uspace.s_table = inode; 1087 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1088 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1089 p_index, map->s_uspace.s_table->i_ino); 1090 } 1091 1092 if (phd->unallocSpaceBitmap.extLength) { 1093 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1094 if (!bitmap) 1095 return -ENOMEM; 1096 map->s_uspace.s_bitmap = bitmap; 1097 bitmap->s_extPosition = le32_to_cpu( 1098 phd->unallocSpaceBitmap.extPosition); 1099 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1100 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1101 p_index, bitmap->s_extPosition); 1102 } 1103 1104 return 0; 1105 } 1106 1107 static void udf_find_vat_block(struct super_block *sb, int p_index, 1108 int type1_index, sector_t start_block) 1109 { 1110 struct udf_sb_info *sbi = UDF_SB(sb); 1111 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1112 sector_t vat_block; 1113 struct kernel_lb_addr ino; 1114 struct inode *inode; 1115 1116 /* 1117 * VAT file entry is in the last recorded block. Some broken disks have 1118 * it a few blocks before so try a bit harder... 1119 */ 1120 ino.partitionReferenceNum = type1_index; 1121 for (vat_block = start_block; 1122 vat_block >= map->s_partition_root && 1123 vat_block >= start_block - 3; vat_block--) { 1124 ino.logicalBlockNum = vat_block - map->s_partition_root; 1125 inode = udf_iget_special(sb, &ino); 1126 if (!IS_ERR(inode)) { 1127 sbi->s_vat_inode = inode; 1128 break; 1129 } 1130 } 1131 } 1132 1133 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1134 { 1135 struct udf_sb_info *sbi = UDF_SB(sb); 1136 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1137 struct buffer_head *bh = NULL; 1138 struct udf_inode_info *vati; 1139 uint32_t pos; 1140 struct virtualAllocationTable20 *vat20; 1141 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1142 sb->s_blocksize_bits; 1143 1144 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1145 if (!sbi->s_vat_inode && 1146 sbi->s_last_block != blocks - 1) { 1147 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1148 (unsigned long)sbi->s_last_block, 1149 (unsigned long)blocks - 1); 1150 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1151 } 1152 if (!sbi->s_vat_inode) 1153 return -EIO; 1154 1155 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1156 map->s_type_specific.s_virtual.s_start_offset = 0; 1157 map->s_type_specific.s_virtual.s_num_entries = 1158 (sbi->s_vat_inode->i_size - 36) >> 2; 1159 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1160 vati = UDF_I(sbi->s_vat_inode); 1161 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1162 pos = udf_block_map(sbi->s_vat_inode, 0); 1163 bh = sb_bread(sb, pos); 1164 if (!bh) 1165 return -EIO; 1166 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1167 } else { 1168 vat20 = (struct virtualAllocationTable20 *) 1169 vati->i_ext.i_data; 1170 } 1171 1172 map->s_type_specific.s_virtual.s_start_offset = 1173 le16_to_cpu(vat20->lengthHeader); 1174 map->s_type_specific.s_virtual.s_num_entries = 1175 (sbi->s_vat_inode->i_size - 1176 map->s_type_specific.s_virtual. 1177 s_start_offset) >> 2; 1178 brelse(bh); 1179 } 1180 return 0; 1181 } 1182 1183 /* 1184 * Load partition descriptor block 1185 * 1186 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1187 * sequence. 1188 */ 1189 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1190 { 1191 struct buffer_head *bh; 1192 struct partitionDesc *p; 1193 struct udf_part_map *map; 1194 struct udf_sb_info *sbi = UDF_SB(sb); 1195 int i, type1_idx; 1196 uint16_t partitionNumber; 1197 uint16_t ident; 1198 int ret; 1199 1200 bh = udf_read_tagged(sb, block, block, &ident); 1201 if (!bh) 1202 return -EAGAIN; 1203 if (ident != TAG_IDENT_PD) { 1204 ret = 0; 1205 goto out_bh; 1206 } 1207 1208 p = (struct partitionDesc *)bh->b_data; 1209 partitionNumber = le16_to_cpu(p->partitionNumber); 1210 1211 /* First scan for TYPE1 and SPARABLE partitions */ 1212 for (i = 0; i < sbi->s_partitions; i++) { 1213 map = &sbi->s_partmaps[i]; 1214 udf_debug("Searching map: (%u == %u)\n", 1215 map->s_partition_num, partitionNumber); 1216 if (map->s_partition_num == partitionNumber && 1217 (map->s_partition_type == UDF_TYPE1_MAP15 || 1218 map->s_partition_type == UDF_SPARABLE_MAP15)) 1219 break; 1220 } 1221 1222 if (i >= sbi->s_partitions) { 1223 udf_debug("Partition (%u) not found in partition map\n", 1224 partitionNumber); 1225 ret = 0; 1226 goto out_bh; 1227 } 1228 1229 ret = udf_fill_partdesc_info(sb, p, i); 1230 if (ret < 0) 1231 goto out_bh; 1232 1233 /* 1234 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1235 * PHYSICAL partitions are already set up 1236 */ 1237 type1_idx = i; 1238 #ifdef UDFFS_DEBUG 1239 map = NULL; /* supress 'maybe used uninitialized' warning */ 1240 #endif 1241 for (i = 0; i < sbi->s_partitions; i++) { 1242 map = &sbi->s_partmaps[i]; 1243 1244 if (map->s_partition_num == partitionNumber && 1245 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1246 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1247 map->s_partition_type == UDF_METADATA_MAP25)) 1248 break; 1249 } 1250 1251 if (i >= sbi->s_partitions) { 1252 ret = 0; 1253 goto out_bh; 1254 } 1255 1256 ret = udf_fill_partdesc_info(sb, p, i); 1257 if (ret < 0) 1258 goto out_bh; 1259 1260 if (map->s_partition_type == UDF_METADATA_MAP25) { 1261 ret = udf_load_metadata_files(sb, i, type1_idx); 1262 if (ret < 0) { 1263 udf_err(sb, "error loading MetaData partition map %d\n", 1264 i); 1265 goto out_bh; 1266 } 1267 } else { 1268 /* 1269 * If we have a partition with virtual map, we don't handle 1270 * writing to it (we overwrite blocks instead of relocating 1271 * them). 1272 */ 1273 if (!sb_rdonly(sb)) { 1274 ret = -EACCES; 1275 goto out_bh; 1276 } 1277 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1278 ret = udf_load_vat(sb, i, type1_idx); 1279 if (ret < 0) 1280 goto out_bh; 1281 } 1282 ret = 0; 1283 out_bh: 1284 /* In case loading failed, we handle cleanup in udf_fill_super */ 1285 brelse(bh); 1286 return ret; 1287 } 1288 1289 static int udf_load_sparable_map(struct super_block *sb, 1290 struct udf_part_map *map, 1291 struct sparablePartitionMap *spm) 1292 { 1293 uint32_t loc; 1294 uint16_t ident; 1295 struct sparingTable *st; 1296 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1297 int i; 1298 struct buffer_head *bh; 1299 1300 map->s_partition_type = UDF_SPARABLE_MAP15; 1301 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1302 if (!is_power_of_2(sdata->s_packet_len)) { 1303 udf_err(sb, "error loading logical volume descriptor: " 1304 "Invalid packet length %u\n", 1305 (unsigned)sdata->s_packet_len); 1306 return -EIO; 1307 } 1308 if (spm->numSparingTables > 4) { 1309 udf_err(sb, "error loading logical volume descriptor: " 1310 "Too many sparing tables (%d)\n", 1311 (int)spm->numSparingTables); 1312 return -EIO; 1313 } 1314 1315 for (i = 0; i < spm->numSparingTables; i++) { 1316 loc = le32_to_cpu(spm->locSparingTable[i]); 1317 bh = udf_read_tagged(sb, loc, loc, &ident); 1318 if (!bh) 1319 continue; 1320 1321 st = (struct sparingTable *)bh->b_data; 1322 if (ident != 0 || 1323 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1324 strlen(UDF_ID_SPARING)) || 1325 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1326 sb->s_blocksize) { 1327 brelse(bh); 1328 continue; 1329 } 1330 1331 sdata->s_spar_map[i] = bh; 1332 } 1333 map->s_partition_func = udf_get_pblock_spar15; 1334 return 0; 1335 } 1336 1337 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1338 struct kernel_lb_addr *fileset) 1339 { 1340 struct logicalVolDesc *lvd; 1341 int i, offset; 1342 uint8_t type; 1343 struct udf_sb_info *sbi = UDF_SB(sb); 1344 struct genericPartitionMap *gpm; 1345 uint16_t ident; 1346 struct buffer_head *bh; 1347 unsigned int table_len; 1348 int ret; 1349 1350 bh = udf_read_tagged(sb, block, block, &ident); 1351 if (!bh) 1352 return -EAGAIN; 1353 BUG_ON(ident != TAG_IDENT_LVD); 1354 lvd = (struct logicalVolDesc *)bh->b_data; 1355 table_len = le32_to_cpu(lvd->mapTableLength); 1356 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1357 udf_err(sb, "error loading logical volume descriptor: " 1358 "Partition table too long (%u > %lu)\n", table_len, 1359 sb->s_blocksize - sizeof(*lvd)); 1360 ret = -EIO; 1361 goto out_bh; 1362 } 1363 1364 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1365 if (ret) 1366 goto out_bh; 1367 1368 for (i = 0, offset = 0; 1369 i < sbi->s_partitions && offset < table_len; 1370 i++, offset += gpm->partitionMapLength) { 1371 struct udf_part_map *map = &sbi->s_partmaps[i]; 1372 gpm = (struct genericPartitionMap *) 1373 &(lvd->partitionMaps[offset]); 1374 type = gpm->partitionMapType; 1375 if (type == 1) { 1376 struct genericPartitionMap1 *gpm1 = 1377 (struct genericPartitionMap1 *)gpm; 1378 map->s_partition_type = UDF_TYPE1_MAP15; 1379 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1380 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1381 map->s_partition_func = NULL; 1382 } else if (type == 2) { 1383 struct udfPartitionMap2 *upm2 = 1384 (struct udfPartitionMap2 *)gpm; 1385 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1386 strlen(UDF_ID_VIRTUAL))) { 1387 u16 suf = 1388 le16_to_cpu(((__le16 *)upm2->partIdent. 1389 identSuffix)[0]); 1390 if (suf < 0x0200) { 1391 map->s_partition_type = 1392 UDF_VIRTUAL_MAP15; 1393 map->s_partition_func = 1394 udf_get_pblock_virt15; 1395 } else { 1396 map->s_partition_type = 1397 UDF_VIRTUAL_MAP20; 1398 map->s_partition_func = 1399 udf_get_pblock_virt20; 1400 } 1401 } else if (!strncmp(upm2->partIdent.ident, 1402 UDF_ID_SPARABLE, 1403 strlen(UDF_ID_SPARABLE))) { 1404 ret = udf_load_sparable_map(sb, map, 1405 (struct sparablePartitionMap *)gpm); 1406 if (ret < 0) 1407 goto out_bh; 1408 } else if (!strncmp(upm2->partIdent.ident, 1409 UDF_ID_METADATA, 1410 strlen(UDF_ID_METADATA))) { 1411 struct udf_meta_data *mdata = 1412 &map->s_type_specific.s_metadata; 1413 struct metadataPartitionMap *mdm = 1414 (struct metadataPartitionMap *) 1415 &(lvd->partitionMaps[offset]); 1416 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1417 i, type, UDF_ID_METADATA); 1418 1419 map->s_partition_type = UDF_METADATA_MAP25; 1420 map->s_partition_func = udf_get_pblock_meta25; 1421 1422 mdata->s_meta_file_loc = 1423 le32_to_cpu(mdm->metadataFileLoc); 1424 mdata->s_mirror_file_loc = 1425 le32_to_cpu(mdm->metadataMirrorFileLoc); 1426 mdata->s_bitmap_file_loc = 1427 le32_to_cpu(mdm->metadataBitmapFileLoc); 1428 mdata->s_alloc_unit_size = 1429 le32_to_cpu(mdm->allocUnitSize); 1430 mdata->s_align_unit_size = 1431 le16_to_cpu(mdm->alignUnitSize); 1432 if (mdm->flags & 0x01) 1433 mdata->s_flags |= MF_DUPLICATE_MD; 1434 1435 udf_debug("Metadata Ident suffix=0x%x\n", 1436 le16_to_cpu(*(__le16 *) 1437 mdm->partIdent.identSuffix)); 1438 udf_debug("Metadata part num=%u\n", 1439 le16_to_cpu(mdm->partitionNum)); 1440 udf_debug("Metadata part alloc unit size=%u\n", 1441 le32_to_cpu(mdm->allocUnitSize)); 1442 udf_debug("Metadata file loc=%u\n", 1443 le32_to_cpu(mdm->metadataFileLoc)); 1444 udf_debug("Mirror file loc=%u\n", 1445 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1446 udf_debug("Bitmap file loc=%u\n", 1447 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1448 udf_debug("Flags: %d %u\n", 1449 mdata->s_flags, mdm->flags); 1450 } else { 1451 udf_debug("Unknown ident: %s\n", 1452 upm2->partIdent.ident); 1453 continue; 1454 } 1455 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1456 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1457 } 1458 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1459 i, map->s_partition_num, type, map->s_volumeseqnum); 1460 } 1461 1462 if (fileset) { 1463 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1464 1465 *fileset = lelb_to_cpu(la->extLocation); 1466 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1467 fileset->logicalBlockNum, 1468 fileset->partitionReferenceNum); 1469 } 1470 if (lvd->integritySeqExt.extLength) 1471 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1472 ret = 0; 1473 out_bh: 1474 brelse(bh); 1475 return ret; 1476 } 1477 1478 /* 1479 * Find the prevailing Logical Volume Integrity Descriptor. 1480 */ 1481 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1482 { 1483 struct buffer_head *bh, *final_bh; 1484 uint16_t ident; 1485 struct udf_sb_info *sbi = UDF_SB(sb); 1486 struct logicalVolIntegrityDesc *lvid; 1487 int indirections = 0; 1488 1489 while (++indirections <= UDF_MAX_LVID_NESTING) { 1490 final_bh = NULL; 1491 while (loc.extLength > 0 && 1492 (bh = udf_read_tagged(sb, loc.extLocation, 1493 loc.extLocation, &ident))) { 1494 if (ident != TAG_IDENT_LVID) { 1495 brelse(bh); 1496 break; 1497 } 1498 1499 brelse(final_bh); 1500 final_bh = bh; 1501 1502 loc.extLength -= sb->s_blocksize; 1503 loc.extLocation++; 1504 } 1505 1506 if (!final_bh) 1507 return; 1508 1509 brelse(sbi->s_lvid_bh); 1510 sbi->s_lvid_bh = final_bh; 1511 1512 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1513 if (lvid->nextIntegrityExt.extLength == 0) 1514 return; 1515 1516 loc = leea_to_cpu(lvid->nextIntegrityExt); 1517 } 1518 1519 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1520 UDF_MAX_LVID_NESTING); 1521 brelse(sbi->s_lvid_bh); 1522 sbi->s_lvid_bh = NULL; 1523 } 1524 1525 /* 1526 * Step for reallocation of table of partition descriptor sequence numbers. 1527 * Must be power of 2. 1528 */ 1529 #define PART_DESC_ALLOC_STEP 32 1530 1531 struct part_desc_seq_scan_data { 1532 struct udf_vds_record rec; 1533 u32 partnum; 1534 }; 1535 1536 struct desc_seq_scan_data { 1537 struct udf_vds_record vds[VDS_POS_LENGTH]; 1538 unsigned int size_part_descs; 1539 unsigned int num_part_descs; 1540 struct part_desc_seq_scan_data *part_descs_loc; 1541 }; 1542 1543 static struct udf_vds_record *handle_partition_descriptor( 1544 struct buffer_head *bh, 1545 struct desc_seq_scan_data *data) 1546 { 1547 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1548 int partnum; 1549 int i; 1550 1551 partnum = le16_to_cpu(desc->partitionNumber); 1552 for (i = 0; i < data->num_part_descs; i++) 1553 if (partnum == data->part_descs_loc[i].partnum) 1554 return &(data->part_descs_loc[i].rec); 1555 if (data->num_part_descs >= data->size_part_descs) { 1556 struct part_desc_seq_scan_data *new_loc; 1557 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1558 1559 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1560 if (!new_loc) 1561 return ERR_PTR(-ENOMEM); 1562 memcpy(new_loc, data->part_descs_loc, 1563 data->size_part_descs * sizeof(*new_loc)); 1564 kfree(data->part_descs_loc); 1565 data->part_descs_loc = new_loc; 1566 data->size_part_descs = new_size; 1567 } 1568 return &(data->part_descs_loc[data->num_part_descs++].rec); 1569 } 1570 1571 1572 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1573 struct buffer_head *bh, struct desc_seq_scan_data *data) 1574 { 1575 switch (ident) { 1576 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1577 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1578 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1579 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1580 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1581 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1582 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1583 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1584 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1585 return handle_partition_descriptor(bh, data); 1586 } 1587 return NULL; 1588 } 1589 1590 /* 1591 * Process a main/reserve volume descriptor sequence. 1592 * @block First block of first extent of the sequence. 1593 * @lastblock Lastblock of first extent of the sequence. 1594 * @fileset There we store extent containing root fileset 1595 * 1596 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1597 * sequence 1598 */ 1599 static noinline int udf_process_sequence( 1600 struct super_block *sb, 1601 sector_t block, sector_t lastblock, 1602 struct kernel_lb_addr *fileset) 1603 { 1604 struct buffer_head *bh = NULL; 1605 struct udf_vds_record *curr; 1606 struct generic_desc *gd; 1607 struct volDescPtr *vdp; 1608 bool done = false; 1609 uint32_t vdsn; 1610 uint16_t ident; 1611 int ret; 1612 unsigned int indirections = 0; 1613 struct desc_seq_scan_data data; 1614 unsigned int i; 1615 1616 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1617 data.size_part_descs = PART_DESC_ALLOC_STEP; 1618 data.num_part_descs = 0; 1619 data.part_descs_loc = kcalloc(data.size_part_descs, 1620 sizeof(*data.part_descs_loc), 1621 GFP_KERNEL); 1622 if (!data.part_descs_loc) 1623 return -ENOMEM; 1624 1625 /* 1626 * Read the main descriptor sequence and find which descriptors 1627 * are in it. 1628 */ 1629 for (; (!done && block <= lastblock); block++) { 1630 bh = udf_read_tagged(sb, block, block, &ident); 1631 if (!bh) 1632 break; 1633 1634 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1635 gd = (struct generic_desc *)bh->b_data; 1636 vdsn = le32_to_cpu(gd->volDescSeqNum); 1637 switch (ident) { 1638 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1639 if (++indirections > UDF_MAX_TD_NESTING) { 1640 udf_err(sb, "too many Volume Descriptor " 1641 "Pointers (max %u supported)\n", 1642 UDF_MAX_TD_NESTING); 1643 brelse(bh); 1644 return -EIO; 1645 } 1646 1647 vdp = (struct volDescPtr *)bh->b_data; 1648 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1649 lastblock = le32_to_cpu( 1650 vdp->nextVolDescSeqExt.extLength) >> 1651 sb->s_blocksize_bits; 1652 lastblock += block - 1; 1653 /* For loop is going to increment 'block' again */ 1654 block--; 1655 break; 1656 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1657 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1658 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1659 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1660 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1661 curr = get_volume_descriptor_record(ident, bh, &data); 1662 if (IS_ERR(curr)) { 1663 brelse(bh); 1664 return PTR_ERR(curr); 1665 } 1666 /* Descriptor we don't care about? */ 1667 if (!curr) 1668 break; 1669 if (vdsn >= curr->volDescSeqNum) { 1670 curr->volDescSeqNum = vdsn; 1671 curr->block = block; 1672 } 1673 break; 1674 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1675 done = true; 1676 break; 1677 } 1678 brelse(bh); 1679 } 1680 /* 1681 * Now read interesting descriptors again and process them 1682 * in a suitable order 1683 */ 1684 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1685 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1686 return -EAGAIN; 1687 } 1688 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1689 if (ret < 0) 1690 return ret; 1691 1692 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1693 ret = udf_load_logicalvol(sb, 1694 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1695 fileset); 1696 if (ret < 0) 1697 return ret; 1698 } 1699 1700 /* Now handle prevailing Partition Descriptors */ 1701 for (i = 0; i < data.num_part_descs; i++) { 1702 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1703 if (ret < 0) 1704 return ret; 1705 } 1706 1707 return 0; 1708 } 1709 1710 /* 1711 * Load Volume Descriptor Sequence described by anchor in bh 1712 * 1713 * Returns <0 on error, 0 on success 1714 */ 1715 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1716 struct kernel_lb_addr *fileset) 1717 { 1718 struct anchorVolDescPtr *anchor; 1719 sector_t main_s, main_e, reserve_s, reserve_e; 1720 int ret; 1721 1722 anchor = (struct anchorVolDescPtr *)bh->b_data; 1723 1724 /* Locate the main sequence */ 1725 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1726 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1727 main_e = main_e >> sb->s_blocksize_bits; 1728 main_e += main_s - 1; 1729 1730 /* Locate the reserve sequence */ 1731 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1732 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1733 reserve_e = reserve_e >> sb->s_blocksize_bits; 1734 reserve_e += reserve_s - 1; 1735 1736 /* Process the main & reserve sequences */ 1737 /* responsible for finding the PartitionDesc(s) */ 1738 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1739 if (ret != -EAGAIN) 1740 return ret; 1741 udf_sb_free_partitions(sb); 1742 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1743 if (ret < 0) { 1744 udf_sb_free_partitions(sb); 1745 /* No sequence was OK, return -EIO */ 1746 if (ret == -EAGAIN) 1747 ret = -EIO; 1748 } 1749 return ret; 1750 } 1751 1752 /* 1753 * Check whether there is an anchor block in the given block and 1754 * load Volume Descriptor Sequence if so. 1755 * 1756 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1757 * block 1758 */ 1759 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1760 struct kernel_lb_addr *fileset) 1761 { 1762 struct buffer_head *bh; 1763 uint16_t ident; 1764 int ret; 1765 1766 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1767 udf_fixed_to_variable(block) >= 1768 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1769 return -EAGAIN; 1770 1771 bh = udf_read_tagged(sb, block, block, &ident); 1772 if (!bh) 1773 return -EAGAIN; 1774 if (ident != TAG_IDENT_AVDP) { 1775 brelse(bh); 1776 return -EAGAIN; 1777 } 1778 ret = udf_load_sequence(sb, bh, fileset); 1779 brelse(bh); 1780 return ret; 1781 } 1782 1783 /* 1784 * Search for an anchor volume descriptor pointer. 1785 * 1786 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1787 * of anchors. 1788 */ 1789 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1790 struct kernel_lb_addr *fileset) 1791 { 1792 sector_t last[6]; 1793 int i; 1794 struct udf_sb_info *sbi = UDF_SB(sb); 1795 int last_count = 0; 1796 int ret; 1797 1798 /* First try user provided anchor */ 1799 if (sbi->s_anchor) { 1800 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1801 if (ret != -EAGAIN) 1802 return ret; 1803 } 1804 /* 1805 * according to spec, anchor is in either: 1806 * block 256 1807 * lastblock-256 1808 * lastblock 1809 * however, if the disc isn't closed, it could be 512. 1810 */ 1811 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1812 if (ret != -EAGAIN) 1813 return ret; 1814 /* 1815 * The trouble is which block is the last one. Drives often misreport 1816 * this so we try various possibilities. 1817 */ 1818 last[last_count++] = *lastblock; 1819 if (*lastblock >= 1) 1820 last[last_count++] = *lastblock - 1; 1821 last[last_count++] = *lastblock + 1; 1822 if (*lastblock >= 2) 1823 last[last_count++] = *lastblock - 2; 1824 if (*lastblock >= 150) 1825 last[last_count++] = *lastblock - 150; 1826 if (*lastblock >= 152) 1827 last[last_count++] = *lastblock - 152; 1828 1829 for (i = 0; i < last_count; i++) { 1830 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1831 sb->s_blocksize_bits) 1832 continue; 1833 ret = udf_check_anchor_block(sb, last[i], fileset); 1834 if (ret != -EAGAIN) { 1835 if (!ret) 1836 *lastblock = last[i]; 1837 return ret; 1838 } 1839 if (last[i] < 256) 1840 continue; 1841 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1842 if (ret != -EAGAIN) { 1843 if (!ret) 1844 *lastblock = last[i]; 1845 return ret; 1846 } 1847 } 1848 1849 /* Finally try block 512 in case media is open */ 1850 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1851 } 1852 1853 /* 1854 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1855 * area specified by it. The function expects sbi->s_lastblock to be the last 1856 * block on the media. 1857 * 1858 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1859 * was not found. 1860 */ 1861 static int udf_find_anchor(struct super_block *sb, 1862 struct kernel_lb_addr *fileset) 1863 { 1864 struct udf_sb_info *sbi = UDF_SB(sb); 1865 sector_t lastblock = sbi->s_last_block; 1866 int ret; 1867 1868 ret = udf_scan_anchors(sb, &lastblock, fileset); 1869 if (ret != -EAGAIN) 1870 goto out; 1871 1872 /* No anchor found? Try VARCONV conversion of block numbers */ 1873 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1874 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1875 /* Firstly, we try to not convert number of the last block */ 1876 ret = udf_scan_anchors(sb, &lastblock, fileset); 1877 if (ret != -EAGAIN) 1878 goto out; 1879 1880 lastblock = sbi->s_last_block; 1881 /* Secondly, we try with converted number of the last block */ 1882 ret = udf_scan_anchors(sb, &lastblock, fileset); 1883 if (ret < 0) { 1884 /* VARCONV didn't help. Clear it. */ 1885 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1886 } 1887 out: 1888 if (ret == 0) 1889 sbi->s_last_block = lastblock; 1890 return ret; 1891 } 1892 1893 /* 1894 * Check Volume Structure Descriptor, find Anchor block and load Volume 1895 * Descriptor Sequence. 1896 * 1897 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1898 * block was not found. 1899 */ 1900 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1901 int silent, struct kernel_lb_addr *fileset) 1902 { 1903 struct udf_sb_info *sbi = UDF_SB(sb); 1904 loff_t nsr_off; 1905 int ret; 1906 1907 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1908 if (!silent) 1909 udf_warn(sb, "Bad block size\n"); 1910 return -EINVAL; 1911 } 1912 sbi->s_last_block = uopt->lastblock; 1913 if (!uopt->novrs) { 1914 /* Check that it is NSR02 compliant */ 1915 nsr_off = udf_check_vsd(sb); 1916 if (!nsr_off) { 1917 if (!silent) 1918 udf_warn(sb, "No VRS found\n"); 1919 return -EINVAL; 1920 } 1921 if (nsr_off == -1) 1922 udf_debug("Failed to read sector at offset %d. " 1923 "Assuming open disc. Skipping validity " 1924 "check\n", VSD_FIRST_SECTOR_OFFSET); 1925 if (!sbi->s_last_block) 1926 sbi->s_last_block = udf_get_last_block(sb); 1927 } else { 1928 udf_debug("Validity check skipped because of novrs option\n"); 1929 } 1930 1931 /* Look for anchor block and load Volume Descriptor Sequence */ 1932 sbi->s_anchor = uopt->anchor; 1933 ret = udf_find_anchor(sb, fileset); 1934 if (ret < 0) { 1935 if (!silent && ret == -EAGAIN) 1936 udf_warn(sb, "No anchor found\n"); 1937 return ret; 1938 } 1939 return 0; 1940 } 1941 1942 static void udf_open_lvid(struct super_block *sb) 1943 { 1944 struct udf_sb_info *sbi = UDF_SB(sb); 1945 struct buffer_head *bh = sbi->s_lvid_bh; 1946 struct logicalVolIntegrityDesc *lvid; 1947 struct logicalVolIntegrityDescImpUse *lvidiu; 1948 struct timespec64 ts; 1949 1950 if (!bh) 1951 return; 1952 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1953 lvidiu = udf_sb_lvidiu(sb); 1954 if (!lvidiu) 1955 return; 1956 1957 mutex_lock(&sbi->s_alloc_mutex); 1958 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1959 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1960 ktime_get_real_ts64(&ts); 1961 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1962 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 1963 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1964 else 1965 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 1966 1967 lvid->descTag.descCRC = cpu_to_le16( 1968 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1969 le16_to_cpu(lvid->descTag.descCRCLength))); 1970 1971 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1972 mark_buffer_dirty(bh); 1973 sbi->s_lvid_dirty = 0; 1974 mutex_unlock(&sbi->s_alloc_mutex); 1975 /* Make opening of filesystem visible on the media immediately */ 1976 sync_dirty_buffer(bh); 1977 } 1978 1979 static void udf_close_lvid(struct super_block *sb) 1980 { 1981 struct udf_sb_info *sbi = UDF_SB(sb); 1982 struct buffer_head *bh = sbi->s_lvid_bh; 1983 struct logicalVolIntegrityDesc *lvid; 1984 struct logicalVolIntegrityDescImpUse *lvidiu; 1985 struct timespec64 ts; 1986 1987 if (!bh) 1988 return; 1989 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1990 lvidiu = udf_sb_lvidiu(sb); 1991 if (!lvidiu) 1992 return; 1993 1994 mutex_lock(&sbi->s_alloc_mutex); 1995 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1996 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1997 ktime_get_real_ts64(&ts); 1998 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1999 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2000 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2001 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2002 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2003 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2004 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2005 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2006 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2007 2008 lvid->descTag.descCRC = cpu_to_le16( 2009 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2010 le16_to_cpu(lvid->descTag.descCRCLength))); 2011 2012 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2013 /* 2014 * We set buffer uptodate unconditionally here to avoid spurious 2015 * warnings from mark_buffer_dirty() when previous EIO has marked 2016 * the buffer as !uptodate 2017 */ 2018 set_buffer_uptodate(bh); 2019 mark_buffer_dirty(bh); 2020 sbi->s_lvid_dirty = 0; 2021 mutex_unlock(&sbi->s_alloc_mutex); 2022 /* Make closing of filesystem visible on the media immediately */ 2023 sync_dirty_buffer(bh); 2024 } 2025 2026 u64 lvid_get_unique_id(struct super_block *sb) 2027 { 2028 struct buffer_head *bh; 2029 struct udf_sb_info *sbi = UDF_SB(sb); 2030 struct logicalVolIntegrityDesc *lvid; 2031 struct logicalVolHeaderDesc *lvhd; 2032 u64 uniqueID; 2033 u64 ret; 2034 2035 bh = sbi->s_lvid_bh; 2036 if (!bh) 2037 return 0; 2038 2039 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2040 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2041 2042 mutex_lock(&sbi->s_alloc_mutex); 2043 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2044 if (!(++uniqueID & 0xFFFFFFFF)) 2045 uniqueID += 16; 2046 lvhd->uniqueID = cpu_to_le64(uniqueID); 2047 mutex_unlock(&sbi->s_alloc_mutex); 2048 mark_buffer_dirty(bh); 2049 2050 return ret; 2051 } 2052 2053 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2054 { 2055 int ret = -EINVAL; 2056 struct inode *inode = NULL; 2057 struct udf_options uopt; 2058 struct kernel_lb_addr rootdir, fileset; 2059 struct udf_sb_info *sbi; 2060 bool lvid_open = false; 2061 2062 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2063 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2064 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2065 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2066 uopt.umask = 0; 2067 uopt.fmode = UDF_INVALID_MODE; 2068 uopt.dmode = UDF_INVALID_MODE; 2069 uopt.nls_map = NULL; 2070 2071 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2072 if (!sbi) 2073 return -ENOMEM; 2074 2075 sb->s_fs_info = sbi; 2076 2077 mutex_init(&sbi->s_alloc_mutex); 2078 2079 if (!udf_parse_options((char *)options, &uopt, false)) 2080 goto parse_options_failure; 2081 2082 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2083 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2084 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2085 goto parse_options_failure; 2086 } 2087 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2088 uopt.nls_map = load_nls_default(); 2089 if (!uopt.nls_map) 2090 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2091 else 2092 udf_debug("Using default NLS map\n"); 2093 } 2094 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2095 uopt.flags |= (1 << UDF_FLAG_UTF8); 2096 2097 fileset.logicalBlockNum = 0xFFFFFFFF; 2098 fileset.partitionReferenceNum = 0xFFFF; 2099 2100 sbi->s_flags = uopt.flags; 2101 sbi->s_uid = uopt.uid; 2102 sbi->s_gid = uopt.gid; 2103 sbi->s_umask = uopt.umask; 2104 sbi->s_fmode = uopt.fmode; 2105 sbi->s_dmode = uopt.dmode; 2106 sbi->s_nls_map = uopt.nls_map; 2107 rwlock_init(&sbi->s_cred_lock); 2108 2109 if (uopt.session == 0xFFFFFFFF) 2110 sbi->s_session = udf_get_last_session(sb); 2111 else 2112 sbi->s_session = uopt.session; 2113 2114 udf_debug("Multi-session=%d\n", sbi->s_session); 2115 2116 /* Fill in the rest of the superblock */ 2117 sb->s_op = &udf_sb_ops; 2118 sb->s_export_op = &udf_export_ops; 2119 2120 sb->s_magic = UDF_SUPER_MAGIC; 2121 sb->s_time_gran = 1000; 2122 2123 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2124 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2125 } else { 2126 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2127 while (uopt.blocksize <= 4096) { 2128 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2129 if (ret < 0) { 2130 if (!silent && ret != -EACCES) { 2131 pr_notice("Scanning with blocksize %u failed\n", 2132 uopt.blocksize); 2133 } 2134 brelse(sbi->s_lvid_bh); 2135 sbi->s_lvid_bh = NULL; 2136 /* 2137 * EACCES is special - we want to propagate to 2138 * upper layers that we cannot handle RW mount. 2139 */ 2140 if (ret == -EACCES) 2141 break; 2142 } else 2143 break; 2144 2145 uopt.blocksize <<= 1; 2146 } 2147 } 2148 if (ret < 0) { 2149 if (ret == -EAGAIN) { 2150 udf_warn(sb, "No partition found (1)\n"); 2151 ret = -EINVAL; 2152 } 2153 goto error_out; 2154 } 2155 2156 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2157 2158 if (sbi->s_lvid_bh) { 2159 struct logicalVolIntegrityDescImpUse *lvidiu = 2160 udf_sb_lvidiu(sb); 2161 uint16_t minUDFReadRev; 2162 uint16_t minUDFWriteRev; 2163 2164 if (!lvidiu) { 2165 ret = -EINVAL; 2166 goto error_out; 2167 } 2168 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2169 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2170 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2171 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2172 minUDFReadRev, 2173 UDF_MAX_READ_VERSION); 2174 ret = -EINVAL; 2175 goto error_out; 2176 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2177 if (!sb_rdonly(sb)) { 2178 ret = -EACCES; 2179 goto error_out; 2180 } 2181 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2182 } 2183 2184 sbi->s_udfrev = minUDFWriteRev; 2185 2186 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2187 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2188 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2189 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2190 } 2191 2192 if (!sbi->s_partitions) { 2193 udf_warn(sb, "No partition found (2)\n"); 2194 ret = -EINVAL; 2195 goto error_out; 2196 } 2197 2198 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2199 UDF_PART_FLAG_READ_ONLY) { 2200 if (!sb_rdonly(sb)) { 2201 ret = -EACCES; 2202 goto error_out; 2203 } 2204 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2205 } 2206 2207 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2208 udf_warn(sb, "No fileset found\n"); 2209 ret = -EINVAL; 2210 goto error_out; 2211 } 2212 2213 if (!silent) { 2214 struct timestamp ts; 2215 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2216 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2217 sbi->s_volume_ident, 2218 le16_to_cpu(ts.year), ts.month, ts.day, 2219 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2220 } 2221 if (!sb_rdonly(sb)) { 2222 udf_open_lvid(sb); 2223 lvid_open = true; 2224 } 2225 2226 /* Assign the root inode */ 2227 /* assign inodes by physical block number */ 2228 /* perhaps it's not extensible enough, but for now ... */ 2229 inode = udf_iget(sb, &rootdir); 2230 if (IS_ERR(inode)) { 2231 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2232 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2233 ret = PTR_ERR(inode); 2234 goto error_out; 2235 } 2236 2237 /* Allocate a dentry for the root inode */ 2238 sb->s_root = d_make_root(inode); 2239 if (!sb->s_root) { 2240 udf_err(sb, "Couldn't allocate root dentry\n"); 2241 ret = -ENOMEM; 2242 goto error_out; 2243 } 2244 sb->s_maxbytes = MAX_LFS_FILESIZE; 2245 sb->s_max_links = UDF_MAX_LINKS; 2246 return 0; 2247 2248 error_out: 2249 iput(sbi->s_vat_inode); 2250 parse_options_failure: 2251 if (uopt.nls_map) 2252 unload_nls(uopt.nls_map); 2253 if (lvid_open) 2254 udf_close_lvid(sb); 2255 brelse(sbi->s_lvid_bh); 2256 udf_sb_free_partitions(sb); 2257 kfree(sbi); 2258 sb->s_fs_info = NULL; 2259 2260 return ret; 2261 } 2262 2263 void _udf_err(struct super_block *sb, const char *function, 2264 const char *fmt, ...) 2265 { 2266 struct va_format vaf; 2267 va_list args; 2268 2269 va_start(args, fmt); 2270 2271 vaf.fmt = fmt; 2272 vaf.va = &args; 2273 2274 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2275 2276 va_end(args); 2277 } 2278 2279 void _udf_warn(struct super_block *sb, const char *function, 2280 const char *fmt, ...) 2281 { 2282 struct va_format vaf; 2283 va_list args; 2284 2285 va_start(args, fmt); 2286 2287 vaf.fmt = fmt; 2288 vaf.va = &args; 2289 2290 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2291 2292 va_end(args); 2293 } 2294 2295 static void udf_put_super(struct super_block *sb) 2296 { 2297 struct udf_sb_info *sbi; 2298 2299 sbi = UDF_SB(sb); 2300 2301 iput(sbi->s_vat_inode); 2302 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2303 unload_nls(sbi->s_nls_map); 2304 if (!sb_rdonly(sb)) 2305 udf_close_lvid(sb); 2306 brelse(sbi->s_lvid_bh); 2307 udf_sb_free_partitions(sb); 2308 mutex_destroy(&sbi->s_alloc_mutex); 2309 kfree(sb->s_fs_info); 2310 sb->s_fs_info = NULL; 2311 } 2312 2313 static int udf_sync_fs(struct super_block *sb, int wait) 2314 { 2315 struct udf_sb_info *sbi = UDF_SB(sb); 2316 2317 mutex_lock(&sbi->s_alloc_mutex); 2318 if (sbi->s_lvid_dirty) { 2319 /* 2320 * Blockdevice will be synced later so we don't have to submit 2321 * the buffer for IO 2322 */ 2323 mark_buffer_dirty(sbi->s_lvid_bh); 2324 sbi->s_lvid_dirty = 0; 2325 } 2326 mutex_unlock(&sbi->s_alloc_mutex); 2327 2328 return 0; 2329 } 2330 2331 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2332 { 2333 struct super_block *sb = dentry->d_sb; 2334 struct udf_sb_info *sbi = UDF_SB(sb); 2335 struct logicalVolIntegrityDescImpUse *lvidiu; 2336 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2337 2338 lvidiu = udf_sb_lvidiu(sb); 2339 buf->f_type = UDF_SUPER_MAGIC; 2340 buf->f_bsize = sb->s_blocksize; 2341 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2342 buf->f_bfree = udf_count_free(sb); 2343 buf->f_bavail = buf->f_bfree; 2344 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2345 le32_to_cpu(lvidiu->numDirs)) : 0) 2346 + buf->f_bfree; 2347 buf->f_ffree = buf->f_bfree; 2348 buf->f_namelen = UDF_NAME_LEN; 2349 buf->f_fsid.val[0] = (u32)id; 2350 buf->f_fsid.val[1] = (u32)(id >> 32); 2351 2352 return 0; 2353 } 2354 2355 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2356 struct udf_bitmap *bitmap) 2357 { 2358 struct buffer_head *bh = NULL; 2359 unsigned int accum = 0; 2360 int index; 2361 udf_pblk_t block = 0, newblock; 2362 struct kernel_lb_addr loc; 2363 uint32_t bytes; 2364 uint8_t *ptr; 2365 uint16_t ident; 2366 struct spaceBitmapDesc *bm; 2367 2368 loc.logicalBlockNum = bitmap->s_extPosition; 2369 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2370 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2371 2372 if (!bh) { 2373 udf_err(sb, "udf_count_free failed\n"); 2374 goto out; 2375 } else if (ident != TAG_IDENT_SBD) { 2376 brelse(bh); 2377 udf_err(sb, "udf_count_free failed\n"); 2378 goto out; 2379 } 2380 2381 bm = (struct spaceBitmapDesc *)bh->b_data; 2382 bytes = le32_to_cpu(bm->numOfBytes); 2383 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2384 ptr = (uint8_t *)bh->b_data; 2385 2386 while (bytes > 0) { 2387 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2388 accum += bitmap_weight((const unsigned long *)(ptr + index), 2389 cur_bytes * 8); 2390 bytes -= cur_bytes; 2391 if (bytes) { 2392 brelse(bh); 2393 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2394 bh = udf_tread(sb, newblock); 2395 if (!bh) { 2396 udf_debug("read failed\n"); 2397 goto out; 2398 } 2399 index = 0; 2400 ptr = (uint8_t *)bh->b_data; 2401 } 2402 } 2403 brelse(bh); 2404 out: 2405 return accum; 2406 } 2407 2408 static unsigned int udf_count_free_table(struct super_block *sb, 2409 struct inode *table) 2410 { 2411 unsigned int accum = 0; 2412 uint32_t elen; 2413 struct kernel_lb_addr eloc; 2414 int8_t etype; 2415 struct extent_position epos; 2416 2417 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2418 epos.block = UDF_I(table)->i_location; 2419 epos.offset = sizeof(struct unallocSpaceEntry); 2420 epos.bh = NULL; 2421 2422 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2423 accum += (elen >> table->i_sb->s_blocksize_bits); 2424 2425 brelse(epos.bh); 2426 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2427 2428 return accum; 2429 } 2430 2431 static unsigned int udf_count_free(struct super_block *sb) 2432 { 2433 unsigned int accum = 0; 2434 struct udf_sb_info *sbi; 2435 struct udf_part_map *map; 2436 2437 sbi = UDF_SB(sb); 2438 if (sbi->s_lvid_bh) { 2439 struct logicalVolIntegrityDesc *lvid = 2440 (struct logicalVolIntegrityDesc *) 2441 sbi->s_lvid_bh->b_data; 2442 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2443 accum = le32_to_cpu( 2444 lvid->freeSpaceTable[sbi->s_partition]); 2445 if (accum == 0xFFFFFFFF) 2446 accum = 0; 2447 } 2448 } 2449 2450 if (accum) 2451 return accum; 2452 2453 map = &sbi->s_partmaps[sbi->s_partition]; 2454 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2455 accum += udf_count_free_bitmap(sb, 2456 map->s_uspace.s_bitmap); 2457 } 2458 if (accum) 2459 return accum; 2460 2461 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2462 accum += udf_count_free_table(sb, 2463 map->s_uspace.s_table); 2464 } 2465 return accum; 2466 } 2467 2468 MODULE_AUTHOR("Ben Fennema"); 2469 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2470 MODULE_LICENSE("GPL"); 2471 module_init(init_udf_fs) 2472 module_exit(exit_udf_fs) 2473