xref: /openbmc/linux/fs/udf/super.c (revision 0b5f9c00)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <asm/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77 
78 enum { UDF_MAX_LINKS = 0xffff };
79 
80 /* These are the "meat" - everything else is stuffing */
81 static int udf_fill_super(struct super_block *, void *, int);
82 static void udf_put_super(struct super_block *);
83 static int udf_sync_fs(struct super_block *, int);
84 static int udf_remount_fs(struct super_block *, int *, char *);
85 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
86 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
87 			    struct kernel_lb_addr *);
88 static void udf_load_fileset(struct super_block *, struct buffer_head *,
89 			     struct kernel_lb_addr *);
90 static void udf_open_lvid(struct super_block *);
91 static void udf_close_lvid(struct super_block *);
92 static unsigned int udf_count_free(struct super_block *);
93 static int udf_statfs(struct dentry *, struct kstatfs *);
94 static int udf_show_options(struct seq_file *, struct dentry *);
95 
96 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
97 {
98 	struct logicalVolIntegrityDesc *lvid =
99 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
100 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
101 	__u32 offset = number_of_partitions * 2 *
102 				sizeof(uint32_t)/sizeof(uint8_t);
103 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
104 }
105 
106 /* UDF filesystem type */
107 static struct dentry *udf_mount(struct file_system_type *fs_type,
108 		      int flags, const char *dev_name, void *data)
109 {
110 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
111 }
112 
113 static struct file_system_type udf_fstype = {
114 	.owner		= THIS_MODULE,
115 	.name		= "udf",
116 	.mount		= udf_mount,
117 	.kill_sb	= kill_block_super,
118 	.fs_flags	= FS_REQUIRES_DEV,
119 };
120 
121 static struct kmem_cache *udf_inode_cachep;
122 
123 static struct inode *udf_alloc_inode(struct super_block *sb)
124 {
125 	struct udf_inode_info *ei;
126 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
127 	if (!ei)
128 		return NULL;
129 
130 	ei->i_unique = 0;
131 	ei->i_lenExtents = 0;
132 	ei->i_next_alloc_block = 0;
133 	ei->i_next_alloc_goal = 0;
134 	ei->i_strat4096 = 0;
135 	init_rwsem(&ei->i_data_sem);
136 
137 	return &ei->vfs_inode;
138 }
139 
140 static void udf_i_callback(struct rcu_head *head)
141 {
142 	struct inode *inode = container_of(head, struct inode, i_rcu);
143 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
144 }
145 
146 static void udf_destroy_inode(struct inode *inode)
147 {
148 	call_rcu(&inode->i_rcu, udf_i_callback);
149 }
150 
151 static void init_once(void *foo)
152 {
153 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
154 
155 	ei->i_ext.i_data = NULL;
156 	inode_init_once(&ei->vfs_inode);
157 }
158 
159 static int init_inodecache(void)
160 {
161 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
162 					     sizeof(struct udf_inode_info),
163 					     0, (SLAB_RECLAIM_ACCOUNT |
164 						 SLAB_MEM_SPREAD),
165 					     init_once);
166 	if (!udf_inode_cachep)
167 		return -ENOMEM;
168 	return 0;
169 }
170 
171 static void destroy_inodecache(void)
172 {
173 	kmem_cache_destroy(udf_inode_cachep);
174 }
175 
176 /* Superblock operations */
177 static const struct super_operations udf_sb_ops = {
178 	.alloc_inode	= udf_alloc_inode,
179 	.destroy_inode	= udf_destroy_inode,
180 	.write_inode	= udf_write_inode,
181 	.evict_inode	= udf_evict_inode,
182 	.put_super	= udf_put_super,
183 	.sync_fs	= udf_sync_fs,
184 	.statfs		= udf_statfs,
185 	.remount_fs	= udf_remount_fs,
186 	.show_options	= udf_show_options,
187 };
188 
189 struct udf_options {
190 	unsigned char novrs;
191 	unsigned int blocksize;
192 	unsigned int session;
193 	unsigned int lastblock;
194 	unsigned int anchor;
195 	unsigned int volume;
196 	unsigned short partition;
197 	unsigned int fileset;
198 	unsigned int rootdir;
199 	unsigned int flags;
200 	umode_t umask;
201 	gid_t gid;
202 	uid_t uid;
203 	umode_t fmode;
204 	umode_t dmode;
205 	struct nls_table *nls_map;
206 };
207 
208 static int __init init_udf_fs(void)
209 {
210 	int err;
211 
212 	err = init_inodecache();
213 	if (err)
214 		goto out1;
215 	err = register_filesystem(&udf_fstype);
216 	if (err)
217 		goto out;
218 
219 	return 0;
220 
221 out:
222 	destroy_inodecache();
223 
224 out1:
225 	return err;
226 }
227 
228 static void __exit exit_udf_fs(void)
229 {
230 	unregister_filesystem(&udf_fstype);
231 	destroy_inodecache();
232 }
233 
234 module_init(init_udf_fs)
235 module_exit(exit_udf_fs)
236 
237 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
238 {
239 	struct udf_sb_info *sbi = UDF_SB(sb);
240 
241 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
242 				  GFP_KERNEL);
243 	if (!sbi->s_partmaps) {
244 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
245 			count);
246 		sbi->s_partitions = 0;
247 		return -ENOMEM;
248 	}
249 
250 	sbi->s_partitions = count;
251 	return 0;
252 }
253 
254 static int udf_show_options(struct seq_file *seq, struct dentry *root)
255 {
256 	struct super_block *sb = root->d_sb;
257 	struct udf_sb_info *sbi = UDF_SB(sb);
258 
259 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
260 		seq_puts(seq, ",nostrict");
261 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
262 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
263 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
264 		seq_puts(seq, ",unhide");
265 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
266 		seq_puts(seq, ",undelete");
267 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
268 		seq_puts(seq, ",noadinicb");
269 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
270 		seq_puts(seq, ",shortad");
271 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
272 		seq_puts(seq, ",uid=forget");
273 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
274 		seq_puts(seq, ",uid=ignore");
275 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
276 		seq_puts(seq, ",gid=forget");
277 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
278 		seq_puts(seq, ",gid=ignore");
279 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
280 		seq_printf(seq, ",uid=%u", sbi->s_uid);
281 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
282 		seq_printf(seq, ",gid=%u", sbi->s_gid);
283 	if (sbi->s_umask != 0)
284 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
285 	if (sbi->s_fmode != UDF_INVALID_MODE)
286 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
287 	if (sbi->s_dmode != UDF_INVALID_MODE)
288 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
289 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
290 		seq_printf(seq, ",session=%u", sbi->s_session);
291 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
292 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
293 	if (sbi->s_anchor != 0)
294 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
295 	/*
296 	 * volume, partition, fileset and rootdir seem to be ignored
297 	 * currently
298 	 */
299 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
300 		seq_puts(seq, ",utf8");
301 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
302 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
303 
304 	return 0;
305 }
306 
307 /*
308  * udf_parse_options
309  *
310  * PURPOSE
311  *	Parse mount options.
312  *
313  * DESCRIPTION
314  *	The following mount options are supported:
315  *
316  *	gid=		Set the default group.
317  *	umask=		Set the default umask.
318  *	mode=		Set the default file permissions.
319  *	dmode=		Set the default directory permissions.
320  *	uid=		Set the default user.
321  *	bs=		Set the block size.
322  *	unhide		Show otherwise hidden files.
323  *	undelete	Show deleted files in lists.
324  *	adinicb		Embed data in the inode (default)
325  *	noadinicb	Don't embed data in the inode
326  *	shortad		Use short ad's
327  *	longad		Use long ad's (default)
328  *	nostrict	Unset strict conformance
329  *	iocharset=	Set the NLS character set
330  *
331  *	The remaining are for debugging and disaster recovery:
332  *
333  *	novrs		Skip volume sequence recognition
334  *
335  *	The following expect a offset from 0.
336  *
337  *	session=	Set the CDROM session (default= last session)
338  *	anchor=		Override standard anchor location. (default= 256)
339  *	volume=		Override the VolumeDesc location. (unused)
340  *	partition=	Override the PartitionDesc location. (unused)
341  *	lastblock=	Set the last block of the filesystem/
342  *
343  *	The following expect a offset from the partition root.
344  *
345  *	fileset=	Override the fileset block location. (unused)
346  *	rootdir=	Override the root directory location. (unused)
347  *		WARNING: overriding the rootdir to a non-directory may
348  *		yield highly unpredictable results.
349  *
350  * PRE-CONDITIONS
351  *	options		Pointer to mount options string.
352  *	uopts		Pointer to mount options variable.
353  *
354  * POST-CONDITIONS
355  *	<return>	1	Mount options parsed okay.
356  *	<return>	0	Error parsing mount options.
357  *
358  * HISTORY
359  *	July 1, 1997 - Andrew E. Mileski
360  *	Written, tested, and released.
361  */
362 
363 enum {
364 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
365 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
366 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
367 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
368 	Opt_rootdir, Opt_utf8, Opt_iocharset,
369 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
370 	Opt_fmode, Opt_dmode
371 };
372 
373 static const match_table_t tokens = {
374 	{Opt_novrs,	"novrs"},
375 	{Opt_nostrict,	"nostrict"},
376 	{Opt_bs,	"bs=%u"},
377 	{Opt_unhide,	"unhide"},
378 	{Opt_undelete,	"undelete"},
379 	{Opt_noadinicb,	"noadinicb"},
380 	{Opt_adinicb,	"adinicb"},
381 	{Opt_shortad,	"shortad"},
382 	{Opt_longad,	"longad"},
383 	{Opt_uforget,	"uid=forget"},
384 	{Opt_uignore,	"uid=ignore"},
385 	{Opt_gforget,	"gid=forget"},
386 	{Opt_gignore,	"gid=ignore"},
387 	{Opt_gid,	"gid=%u"},
388 	{Opt_uid,	"uid=%u"},
389 	{Opt_umask,	"umask=%o"},
390 	{Opt_session,	"session=%u"},
391 	{Opt_lastblock,	"lastblock=%u"},
392 	{Opt_anchor,	"anchor=%u"},
393 	{Opt_volume,	"volume=%u"},
394 	{Opt_partition,	"partition=%u"},
395 	{Opt_fileset,	"fileset=%u"},
396 	{Opt_rootdir,	"rootdir=%u"},
397 	{Opt_utf8,	"utf8"},
398 	{Opt_iocharset,	"iocharset=%s"},
399 	{Opt_fmode,     "mode=%o"},
400 	{Opt_dmode,     "dmode=%o"},
401 	{Opt_err,	NULL}
402 };
403 
404 static int udf_parse_options(char *options, struct udf_options *uopt,
405 			     bool remount)
406 {
407 	char *p;
408 	int option;
409 
410 	uopt->novrs = 0;
411 	uopt->partition = 0xFFFF;
412 	uopt->session = 0xFFFFFFFF;
413 	uopt->lastblock = 0;
414 	uopt->anchor = 0;
415 	uopt->volume = 0xFFFFFFFF;
416 	uopt->rootdir = 0xFFFFFFFF;
417 	uopt->fileset = 0xFFFFFFFF;
418 	uopt->nls_map = NULL;
419 
420 	if (!options)
421 		return 1;
422 
423 	while ((p = strsep(&options, ",")) != NULL) {
424 		substring_t args[MAX_OPT_ARGS];
425 		int token;
426 		if (!*p)
427 			continue;
428 
429 		token = match_token(p, tokens, args);
430 		switch (token) {
431 		case Opt_novrs:
432 			uopt->novrs = 1;
433 			break;
434 		case Opt_bs:
435 			if (match_int(&args[0], &option))
436 				return 0;
437 			uopt->blocksize = option;
438 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
439 			break;
440 		case Opt_unhide:
441 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
442 			break;
443 		case Opt_undelete:
444 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
445 			break;
446 		case Opt_noadinicb:
447 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
448 			break;
449 		case Opt_adinicb:
450 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
451 			break;
452 		case Opt_shortad:
453 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
454 			break;
455 		case Opt_longad:
456 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
457 			break;
458 		case Opt_gid:
459 			if (match_int(args, &option))
460 				return 0;
461 			uopt->gid = option;
462 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
463 			break;
464 		case Opt_uid:
465 			if (match_int(args, &option))
466 				return 0;
467 			uopt->uid = option;
468 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
469 			break;
470 		case Opt_umask:
471 			if (match_octal(args, &option))
472 				return 0;
473 			uopt->umask = option;
474 			break;
475 		case Opt_nostrict:
476 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
477 			break;
478 		case Opt_session:
479 			if (match_int(args, &option))
480 				return 0;
481 			uopt->session = option;
482 			if (!remount)
483 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
484 			break;
485 		case Opt_lastblock:
486 			if (match_int(args, &option))
487 				return 0;
488 			uopt->lastblock = option;
489 			if (!remount)
490 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
491 			break;
492 		case Opt_anchor:
493 			if (match_int(args, &option))
494 				return 0;
495 			uopt->anchor = option;
496 			break;
497 		case Opt_volume:
498 			if (match_int(args, &option))
499 				return 0;
500 			uopt->volume = option;
501 			break;
502 		case Opt_partition:
503 			if (match_int(args, &option))
504 				return 0;
505 			uopt->partition = option;
506 			break;
507 		case Opt_fileset:
508 			if (match_int(args, &option))
509 				return 0;
510 			uopt->fileset = option;
511 			break;
512 		case Opt_rootdir:
513 			if (match_int(args, &option))
514 				return 0;
515 			uopt->rootdir = option;
516 			break;
517 		case Opt_utf8:
518 			uopt->flags |= (1 << UDF_FLAG_UTF8);
519 			break;
520 #ifdef CONFIG_UDF_NLS
521 		case Opt_iocharset:
522 			uopt->nls_map = load_nls(args[0].from);
523 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
524 			break;
525 #endif
526 		case Opt_uignore:
527 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
528 			break;
529 		case Opt_uforget:
530 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
531 			break;
532 		case Opt_gignore:
533 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
534 			break;
535 		case Opt_gforget:
536 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
537 			break;
538 		case Opt_fmode:
539 			if (match_octal(args, &option))
540 				return 0;
541 			uopt->fmode = option & 0777;
542 			break;
543 		case Opt_dmode:
544 			if (match_octal(args, &option))
545 				return 0;
546 			uopt->dmode = option & 0777;
547 			break;
548 		default:
549 			pr_err("bad mount option \"%s\" or missing value\n", p);
550 			return 0;
551 		}
552 	}
553 	return 1;
554 }
555 
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558 	struct udf_options uopt;
559 	struct udf_sb_info *sbi = UDF_SB(sb);
560 	int error = 0;
561 
562 	uopt.flags = sbi->s_flags;
563 	uopt.uid   = sbi->s_uid;
564 	uopt.gid   = sbi->s_gid;
565 	uopt.umask = sbi->s_umask;
566 	uopt.fmode = sbi->s_fmode;
567 	uopt.dmode = sbi->s_dmode;
568 
569 	if (!udf_parse_options(options, &uopt, true))
570 		return -EINVAL;
571 
572 	write_lock(&sbi->s_cred_lock);
573 	sbi->s_flags = uopt.flags;
574 	sbi->s_uid   = uopt.uid;
575 	sbi->s_gid   = uopt.gid;
576 	sbi->s_umask = uopt.umask;
577 	sbi->s_fmode = uopt.fmode;
578 	sbi->s_dmode = uopt.dmode;
579 	write_unlock(&sbi->s_cred_lock);
580 
581 	if (sbi->s_lvid_bh) {
582 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
583 		if (write_rev > UDF_MAX_WRITE_VERSION)
584 			*flags |= MS_RDONLY;
585 	}
586 
587 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
588 		goto out_unlock;
589 
590 	if (*flags & MS_RDONLY)
591 		udf_close_lvid(sb);
592 	else
593 		udf_open_lvid(sb);
594 
595 out_unlock:
596 	return error;
597 }
598 
599 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
600 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
601 static loff_t udf_check_vsd(struct super_block *sb)
602 {
603 	struct volStructDesc *vsd = NULL;
604 	loff_t sector = 32768;
605 	int sectorsize;
606 	struct buffer_head *bh = NULL;
607 	int nsr02 = 0;
608 	int nsr03 = 0;
609 	struct udf_sb_info *sbi;
610 
611 	sbi = UDF_SB(sb);
612 	if (sb->s_blocksize < sizeof(struct volStructDesc))
613 		sectorsize = sizeof(struct volStructDesc);
614 	else
615 		sectorsize = sb->s_blocksize;
616 
617 	sector += (sbi->s_session << sb->s_blocksize_bits);
618 
619 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
620 		  (unsigned int)(sector >> sb->s_blocksize_bits),
621 		  sb->s_blocksize);
622 	/* Process the sequence (if applicable) */
623 	for (; !nsr02 && !nsr03; sector += sectorsize) {
624 		/* Read a block */
625 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
626 		if (!bh)
627 			break;
628 
629 		/* Look for ISO  descriptors */
630 		vsd = (struct volStructDesc *)(bh->b_data +
631 					      (sector & (sb->s_blocksize - 1)));
632 
633 		if (vsd->stdIdent[0] == 0) {
634 			brelse(bh);
635 			break;
636 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
637 				    VSD_STD_ID_LEN)) {
638 			switch (vsd->structType) {
639 			case 0:
640 				udf_debug("ISO9660 Boot Record found\n");
641 				break;
642 			case 1:
643 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
644 				break;
645 			case 2:
646 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
647 				break;
648 			case 3:
649 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
650 				break;
651 			case 255:
652 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
653 				break;
654 			default:
655 				udf_debug("ISO9660 VRS (%u) found\n",
656 					  vsd->structType);
657 				break;
658 			}
659 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
660 				    VSD_STD_ID_LEN))
661 			; /* nothing */
662 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
663 				    VSD_STD_ID_LEN)) {
664 			brelse(bh);
665 			break;
666 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
667 				    VSD_STD_ID_LEN))
668 			nsr02 = sector;
669 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
670 				    VSD_STD_ID_LEN))
671 			nsr03 = sector;
672 		brelse(bh);
673 	}
674 
675 	if (nsr03)
676 		return nsr03;
677 	else if (nsr02)
678 		return nsr02;
679 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
680 		return -1;
681 	else
682 		return 0;
683 }
684 
685 static int udf_find_fileset(struct super_block *sb,
686 			    struct kernel_lb_addr *fileset,
687 			    struct kernel_lb_addr *root)
688 {
689 	struct buffer_head *bh = NULL;
690 	long lastblock;
691 	uint16_t ident;
692 	struct udf_sb_info *sbi;
693 
694 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
695 	    fileset->partitionReferenceNum != 0xFFFF) {
696 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
697 
698 		if (!bh) {
699 			return 1;
700 		} else if (ident != TAG_IDENT_FSD) {
701 			brelse(bh);
702 			return 1;
703 		}
704 
705 	}
706 
707 	sbi = UDF_SB(sb);
708 	if (!bh) {
709 		/* Search backwards through the partitions */
710 		struct kernel_lb_addr newfileset;
711 
712 /* --> cvg: FIXME - is it reasonable? */
713 		return 1;
714 
715 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
716 		     (newfileset.partitionReferenceNum != 0xFFFF &&
717 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
718 		      fileset->partitionReferenceNum == 0xFFFF);
719 		     newfileset.partitionReferenceNum--) {
720 			lastblock = sbi->s_partmaps
721 					[newfileset.partitionReferenceNum]
722 						.s_partition_len;
723 			newfileset.logicalBlockNum = 0;
724 
725 			do {
726 				bh = udf_read_ptagged(sb, &newfileset, 0,
727 						      &ident);
728 				if (!bh) {
729 					newfileset.logicalBlockNum++;
730 					continue;
731 				}
732 
733 				switch (ident) {
734 				case TAG_IDENT_SBD:
735 				{
736 					struct spaceBitmapDesc *sp;
737 					sp = (struct spaceBitmapDesc *)
738 								bh->b_data;
739 					newfileset.logicalBlockNum += 1 +
740 						((le32_to_cpu(sp->numOfBytes) +
741 						  sizeof(struct spaceBitmapDesc)
742 						  - 1) >> sb->s_blocksize_bits);
743 					brelse(bh);
744 					break;
745 				}
746 				case TAG_IDENT_FSD:
747 					*fileset = newfileset;
748 					break;
749 				default:
750 					newfileset.logicalBlockNum++;
751 					brelse(bh);
752 					bh = NULL;
753 					break;
754 				}
755 			} while (newfileset.logicalBlockNum < lastblock &&
756 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
757 				 fileset->partitionReferenceNum == 0xFFFF);
758 		}
759 	}
760 
761 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
762 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
763 		udf_debug("Fileset at block=%d, partition=%d\n",
764 			  fileset->logicalBlockNum,
765 			  fileset->partitionReferenceNum);
766 
767 		sbi->s_partition = fileset->partitionReferenceNum;
768 		udf_load_fileset(sb, bh, root);
769 		brelse(bh);
770 		return 0;
771 	}
772 	return 1;
773 }
774 
775 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
776 {
777 	struct primaryVolDesc *pvoldesc;
778 	struct ustr *instr, *outstr;
779 	struct buffer_head *bh;
780 	uint16_t ident;
781 	int ret = 1;
782 
783 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
784 	if (!instr)
785 		return 1;
786 
787 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
788 	if (!outstr)
789 		goto out1;
790 
791 	bh = udf_read_tagged(sb, block, block, &ident);
792 	if (!bh)
793 		goto out2;
794 
795 	BUG_ON(ident != TAG_IDENT_PVD);
796 
797 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
798 
799 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
800 			      pvoldesc->recordingDateAndTime)) {
801 #ifdef UDFFS_DEBUG
802 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
803 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
804 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
805 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
806 #endif
807 	}
808 
809 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
810 		if (udf_CS0toUTF8(outstr, instr)) {
811 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
812 				outstr->u_len > 31 ? 31 : outstr->u_len);
813 			udf_debug("volIdent[] = '%s'\n",
814 				  UDF_SB(sb)->s_volume_ident);
815 		}
816 
817 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
818 		if (udf_CS0toUTF8(outstr, instr))
819 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
820 
821 	brelse(bh);
822 	ret = 0;
823 out2:
824 	kfree(outstr);
825 out1:
826 	kfree(instr);
827 	return ret;
828 }
829 
830 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
831 					u32 meta_file_loc, u32 partition_num)
832 {
833 	struct kernel_lb_addr addr;
834 	struct inode *metadata_fe;
835 
836 	addr.logicalBlockNum = meta_file_loc;
837 	addr.partitionReferenceNum = partition_num;
838 
839 	metadata_fe = udf_iget(sb, &addr);
840 
841 	if (metadata_fe == NULL)
842 		udf_warn(sb, "metadata inode efe not found\n");
843 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
844 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
845 		iput(metadata_fe);
846 		metadata_fe = NULL;
847 	}
848 
849 	return metadata_fe;
850 }
851 
852 static int udf_load_metadata_files(struct super_block *sb, int partition)
853 {
854 	struct udf_sb_info *sbi = UDF_SB(sb);
855 	struct udf_part_map *map;
856 	struct udf_meta_data *mdata;
857 	struct kernel_lb_addr addr;
858 
859 	map = &sbi->s_partmaps[partition];
860 	mdata = &map->s_type_specific.s_metadata;
861 
862 	/* metadata address */
863 	udf_debug("Metadata file location: block = %d part = %d\n",
864 		  mdata->s_meta_file_loc, map->s_partition_num);
865 
866 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
867 		mdata->s_meta_file_loc, map->s_partition_num);
868 
869 	if (mdata->s_metadata_fe == NULL) {
870 		/* mirror file entry */
871 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
872 			  mdata->s_mirror_file_loc, map->s_partition_num);
873 
874 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
875 			mdata->s_mirror_file_loc, map->s_partition_num);
876 
877 		if (mdata->s_mirror_fe == NULL) {
878 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
879 			goto error_exit;
880 		}
881 	}
882 
883 	/*
884 	 * bitmap file entry
885 	 * Note:
886 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
887 	*/
888 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
889 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
890 		addr.partitionReferenceNum = map->s_partition_num;
891 
892 		udf_debug("Bitmap file location: block = %d part = %d\n",
893 			  addr.logicalBlockNum, addr.partitionReferenceNum);
894 
895 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
896 
897 		if (mdata->s_bitmap_fe == NULL) {
898 			if (sb->s_flags & MS_RDONLY)
899 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
900 			else {
901 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
902 				goto error_exit;
903 			}
904 		}
905 	}
906 
907 	udf_debug("udf_load_metadata_files Ok\n");
908 
909 	return 0;
910 
911 error_exit:
912 	return 1;
913 }
914 
915 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
916 			     struct kernel_lb_addr *root)
917 {
918 	struct fileSetDesc *fset;
919 
920 	fset = (struct fileSetDesc *)bh->b_data;
921 
922 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
923 
924 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
925 
926 	udf_debug("Rootdir at block=%d, partition=%d\n",
927 		  root->logicalBlockNum, root->partitionReferenceNum);
928 }
929 
930 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
931 {
932 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
933 	return DIV_ROUND_UP(map->s_partition_len +
934 			    (sizeof(struct spaceBitmapDesc) << 3),
935 			    sb->s_blocksize * 8);
936 }
937 
938 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
939 {
940 	struct udf_bitmap *bitmap;
941 	int nr_groups;
942 	int size;
943 
944 	nr_groups = udf_compute_nr_groups(sb, index);
945 	size = sizeof(struct udf_bitmap) +
946 		(sizeof(struct buffer_head *) * nr_groups);
947 
948 	if (size <= PAGE_SIZE)
949 		bitmap = kzalloc(size, GFP_KERNEL);
950 	else
951 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
952 
953 	if (bitmap == NULL)
954 		return NULL;
955 
956 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
957 	bitmap->s_nr_groups = nr_groups;
958 	return bitmap;
959 }
960 
961 static int udf_fill_partdesc_info(struct super_block *sb,
962 		struct partitionDesc *p, int p_index)
963 {
964 	struct udf_part_map *map;
965 	struct udf_sb_info *sbi = UDF_SB(sb);
966 	struct partitionHeaderDesc *phd;
967 
968 	map = &sbi->s_partmaps[p_index];
969 
970 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
971 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
972 
973 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
974 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
975 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
976 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
977 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
978 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
979 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
980 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
981 
982 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
983 		  p_index, map->s_partition_type,
984 		  map->s_partition_root, map->s_partition_len);
985 
986 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
987 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
988 		return 0;
989 
990 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
991 	if (phd->unallocSpaceTable.extLength) {
992 		struct kernel_lb_addr loc = {
993 			.logicalBlockNum = le32_to_cpu(
994 				phd->unallocSpaceTable.extPosition),
995 			.partitionReferenceNum = p_index,
996 		};
997 
998 		map->s_uspace.s_table = udf_iget(sb, &loc);
999 		if (!map->s_uspace.s_table) {
1000 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1001 				  p_index);
1002 			return 1;
1003 		}
1004 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1005 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1006 			  p_index, map->s_uspace.s_table->i_ino);
1007 	}
1008 
1009 	if (phd->unallocSpaceBitmap.extLength) {
1010 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1011 		if (!bitmap)
1012 			return 1;
1013 		map->s_uspace.s_bitmap = bitmap;
1014 		bitmap->s_extLength = le32_to_cpu(
1015 				phd->unallocSpaceBitmap.extLength);
1016 		bitmap->s_extPosition = le32_to_cpu(
1017 				phd->unallocSpaceBitmap.extPosition);
1018 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1019 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1020 			  p_index, bitmap->s_extPosition);
1021 	}
1022 
1023 	if (phd->partitionIntegrityTable.extLength)
1024 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1025 
1026 	if (phd->freedSpaceTable.extLength) {
1027 		struct kernel_lb_addr loc = {
1028 			.logicalBlockNum = le32_to_cpu(
1029 				phd->freedSpaceTable.extPosition),
1030 			.partitionReferenceNum = p_index,
1031 		};
1032 
1033 		map->s_fspace.s_table = udf_iget(sb, &loc);
1034 		if (!map->s_fspace.s_table) {
1035 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1036 				  p_index);
1037 			return 1;
1038 		}
1039 
1040 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1041 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1042 			  p_index, map->s_fspace.s_table->i_ino);
1043 	}
1044 
1045 	if (phd->freedSpaceBitmap.extLength) {
1046 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1047 		if (!bitmap)
1048 			return 1;
1049 		map->s_fspace.s_bitmap = bitmap;
1050 		bitmap->s_extLength = le32_to_cpu(
1051 				phd->freedSpaceBitmap.extLength);
1052 		bitmap->s_extPosition = le32_to_cpu(
1053 				phd->freedSpaceBitmap.extPosition);
1054 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1055 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1056 			  p_index, bitmap->s_extPosition);
1057 	}
1058 	return 0;
1059 }
1060 
1061 static void udf_find_vat_block(struct super_block *sb, int p_index,
1062 			       int type1_index, sector_t start_block)
1063 {
1064 	struct udf_sb_info *sbi = UDF_SB(sb);
1065 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1066 	sector_t vat_block;
1067 	struct kernel_lb_addr ino;
1068 
1069 	/*
1070 	 * VAT file entry is in the last recorded block. Some broken disks have
1071 	 * it a few blocks before so try a bit harder...
1072 	 */
1073 	ino.partitionReferenceNum = type1_index;
1074 	for (vat_block = start_block;
1075 	     vat_block >= map->s_partition_root &&
1076 	     vat_block >= start_block - 3 &&
1077 	     !sbi->s_vat_inode; vat_block--) {
1078 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1079 		sbi->s_vat_inode = udf_iget(sb, &ino);
1080 	}
1081 }
1082 
1083 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1084 {
1085 	struct udf_sb_info *sbi = UDF_SB(sb);
1086 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1087 	struct buffer_head *bh = NULL;
1088 	struct udf_inode_info *vati;
1089 	uint32_t pos;
1090 	struct virtualAllocationTable20 *vat20;
1091 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1092 
1093 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1094 	if (!sbi->s_vat_inode &&
1095 	    sbi->s_last_block != blocks - 1) {
1096 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1097 			  (unsigned long)sbi->s_last_block,
1098 			  (unsigned long)blocks - 1);
1099 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1100 	}
1101 	if (!sbi->s_vat_inode)
1102 		return 1;
1103 
1104 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1105 		map->s_type_specific.s_virtual.s_start_offset = 0;
1106 		map->s_type_specific.s_virtual.s_num_entries =
1107 			(sbi->s_vat_inode->i_size - 36) >> 2;
1108 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1109 		vati = UDF_I(sbi->s_vat_inode);
1110 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1111 			pos = udf_block_map(sbi->s_vat_inode, 0);
1112 			bh = sb_bread(sb, pos);
1113 			if (!bh)
1114 				return 1;
1115 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1116 		} else {
1117 			vat20 = (struct virtualAllocationTable20 *)
1118 							vati->i_ext.i_data;
1119 		}
1120 
1121 		map->s_type_specific.s_virtual.s_start_offset =
1122 			le16_to_cpu(vat20->lengthHeader);
1123 		map->s_type_specific.s_virtual.s_num_entries =
1124 			(sbi->s_vat_inode->i_size -
1125 				map->s_type_specific.s_virtual.
1126 					s_start_offset) >> 2;
1127 		brelse(bh);
1128 	}
1129 	return 0;
1130 }
1131 
1132 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1133 {
1134 	struct buffer_head *bh;
1135 	struct partitionDesc *p;
1136 	struct udf_part_map *map;
1137 	struct udf_sb_info *sbi = UDF_SB(sb);
1138 	int i, type1_idx;
1139 	uint16_t partitionNumber;
1140 	uint16_t ident;
1141 	int ret = 0;
1142 
1143 	bh = udf_read_tagged(sb, block, block, &ident);
1144 	if (!bh)
1145 		return 1;
1146 	if (ident != TAG_IDENT_PD)
1147 		goto out_bh;
1148 
1149 	p = (struct partitionDesc *)bh->b_data;
1150 	partitionNumber = le16_to_cpu(p->partitionNumber);
1151 
1152 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1153 	for (i = 0; i < sbi->s_partitions; i++) {
1154 		map = &sbi->s_partmaps[i];
1155 		udf_debug("Searching map: (%d == %d)\n",
1156 			  map->s_partition_num, partitionNumber);
1157 		if (map->s_partition_num == partitionNumber &&
1158 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1159 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1160 			break;
1161 	}
1162 
1163 	if (i >= sbi->s_partitions) {
1164 		udf_debug("Partition (%d) not found in partition map\n",
1165 			  partitionNumber);
1166 		goto out_bh;
1167 	}
1168 
1169 	ret = udf_fill_partdesc_info(sb, p, i);
1170 
1171 	/*
1172 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1173 	 * PHYSICAL partitions are already set up
1174 	 */
1175 	type1_idx = i;
1176 	for (i = 0; i < sbi->s_partitions; i++) {
1177 		map = &sbi->s_partmaps[i];
1178 
1179 		if (map->s_partition_num == partitionNumber &&
1180 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1181 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1182 		     map->s_partition_type == UDF_METADATA_MAP25))
1183 			break;
1184 	}
1185 
1186 	if (i >= sbi->s_partitions)
1187 		goto out_bh;
1188 
1189 	ret = udf_fill_partdesc_info(sb, p, i);
1190 	if (ret)
1191 		goto out_bh;
1192 
1193 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1194 		ret = udf_load_metadata_files(sb, i);
1195 		if (ret) {
1196 			udf_err(sb, "error loading MetaData partition map %d\n",
1197 				i);
1198 			goto out_bh;
1199 		}
1200 	} else {
1201 		ret = udf_load_vat(sb, i, type1_idx);
1202 		if (ret)
1203 			goto out_bh;
1204 		/*
1205 		 * Mark filesystem read-only if we have a partition with
1206 		 * virtual map since we don't handle writing to it (we
1207 		 * overwrite blocks instead of relocating them).
1208 		 */
1209 		sb->s_flags |= MS_RDONLY;
1210 		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1211 	}
1212 out_bh:
1213 	/* In case loading failed, we handle cleanup in udf_fill_super */
1214 	brelse(bh);
1215 	return ret;
1216 }
1217 
1218 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1219 			       struct kernel_lb_addr *fileset)
1220 {
1221 	struct logicalVolDesc *lvd;
1222 	int i, j, offset;
1223 	uint8_t type;
1224 	struct udf_sb_info *sbi = UDF_SB(sb);
1225 	struct genericPartitionMap *gpm;
1226 	uint16_t ident;
1227 	struct buffer_head *bh;
1228 	int ret = 0;
1229 
1230 	bh = udf_read_tagged(sb, block, block, &ident);
1231 	if (!bh)
1232 		return 1;
1233 	BUG_ON(ident != TAG_IDENT_LVD);
1234 	lvd = (struct logicalVolDesc *)bh->b_data;
1235 
1236 	i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1237 	if (i != 0) {
1238 		ret = i;
1239 		goto out_bh;
1240 	}
1241 
1242 	for (i = 0, offset = 0;
1243 	     i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1244 	     i++, offset += gpm->partitionMapLength) {
1245 		struct udf_part_map *map = &sbi->s_partmaps[i];
1246 		gpm = (struct genericPartitionMap *)
1247 				&(lvd->partitionMaps[offset]);
1248 		type = gpm->partitionMapType;
1249 		if (type == 1) {
1250 			struct genericPartitionMap1 *gpm1 =
1251 				(struct genericPartitionMap1 *)gpm;
1252 			map->s_partition_type = UDF_TYPE1_MAP15;
1253 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1254 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1255 			map->s_partition_func = NULL;
1256 		} else if (type == 2) {
1257 			struct udfPartitionMap2 *upm2 =
1258 						(struct udfPartitionMap2 *)gpm;
1259 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1260 						strlen(UDF_ID_VIRTUAL))) {
1261 				u16 suf =
1262 					le16_to_cpu(((__le16 *)upm2->partIdent.
1263 							identSuffix)[0]);
1264 				if (suf < 0x0200) {
1265 					map->s_partition_type =
1266 							UDF_VIRTUAL_MAP15;
1267 					map->s_partition_func =
1268 							udf_get_pblock_virt15;
1269 				} else {
1270 					map->s_partition_type =
1271 							UDF_VIRTUAL_MAP20;
1272 					map->s_partition_func =
1273 							udf_get_pblock_virt20;
1274 				}
1275 			} else if (!strncmp(upm2->partIdent.ident,
1276 						UDF_ID_SPARABLE,
1277 						strlen(UDF_ID_SPARABLE))) {
1278 				uint32_t loc;
1279 				struct sparingTable *st;
1280 				struct sparablePartitionMap *spm =
1281 					(struct sparablePartitionMap *)gpm;
1282 
1283 				map->s_partition_type = UDF_SPARABLE_MAP15;
1284 				map->s_type_specific.s_sparing.s_packet_len =
1285 						le16_to_cpu(spm->packetLength);
1286 				for (j = 0; j < spm->numSparingTables; j++) {
1287 					struct buffer_head *bh2;
1288 
1289 					loc = le32_to_cpu(
1290 						spm->locSparingTable[j]);
1291 					bh2 = udf_read_tagged(sb, loc, loc,
1292 							     &ident);
1293 					map->s_type_specific.s_sparing.
1294 							s_spar_map[j] = bh2;
1295 
1296 					if (bh2 == NULL)
1297 						continue;
1298 
1299 					st = (struct sparingTable *)bh2->b_data;
1300 					if (ident != 0 || strncmp(
1301 						st->sparingIdent.ident,
1302 						UDF_ID_SPARING,
1303 						strlen(UDF_ID_SPARING))) {
1304 						brelse(bh2);
1305 						map->s_type_specific.s_sparing.
1306 							s_spar_map[j] = NULL;
1307 					}
1308 				}
1309 				map->s_partition_func = udf_get_pblock_spar15;
1310 			} else if (!strncmp(upm2->partIdent.ident,
1311 						UDF_ID_METADATA,
1312 						strlen(UDF_ID_METADATA))) {
1313 				struct udf_meta_data *mdata =
1314 					&map->s_type_specific.s_metadata;
1315 				struct metadataPartitionMap *mdm =
1316 						(struct metadataPartitionMap *)
1317 						&(lvd->partitionMaps[offset]);
1318 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1319 					  i, type, UDF_ID_METADATA);
1320 
1321 				map->s_partition_type = UDF_METADATA_MAP25;
1322 				map->s_partition_func = udf_get_pblock_meta25;
1323 
1324 				mdata->s_meta_file_loc   =
1325 					le32_to_cpu(mdm->metadataFileLoc);
1326 				mdata->s_mirror_file_loc =
1327 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1328 				mdata->s_bitmap_file_loc =
1329 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1330 				mdata->s_alloc_unit_size =
1331 					le32_to_cpu(mdm->allocUnitSize);
1332 				mdata->s_align_unit_size =
1333 					le16_to_cpu(mdm->alignUnitSize);
1334 				if (mdm->flags & 0x01)
1335 					mdata->s_flags |= MF_DUPLICATE_MD;
1336 
1337 				udf_debug("Metadata Ident suffix=0x%x\n",
1338 					  le16_to_cpu(*(__le16 *)
1339 						      mdm->partIdent.identSuffix));
1340 				udf_debug("Metadata part num=%d\n",
1341 					  le16_to_cpu(mdm->partitionNum));
1342 				udf_debug("Metadata part alloc unit size=%d\n",
1343 					  le32_to_cpu(mdm->allocUnitSize));
1344 				udf_debug("Metadata file loc=%d\n",
1345 					  le32_to_cpu(mdm->metadataFileLoc));
1346 				udf_debug("Mirror file loc=%d\n",
1347 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1348 				udf_debug("Bitmap file loc=%d\n",
1349 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1350 				udf_debug("Flags: %d %d\n",
1351 					  mdata->s_flags, mdm->flags);
1352 			} else {
1353 				udf_debug("Unknown ident: %s\n",
1354 					  upm2->partIdent.ident);
1355 				continue;
1356 			}
1357 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1358 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1359 		}
1360 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1361 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1362 	}
1363 
1364 	if (fileset) {
1365 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1366 
1367 		*fileset = lelb_to_cpu(la->extLocation);
1368 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1369 			  fileset->logicalBlockNum,
1370 			  fileset->partitionReferenceNum);
1371 	}
1372 	if (lvd->integritySeqExt.extLength)
1373 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1374 
1375 out_bh:
1376 	brelse(bh);
1377 	return ret;
1378 }
1379 
1380 /*
1381  * udf_load_logicalvolint
1382  *
1383  */
1384 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1385 {
1386 	struct buffer_head *bh = NULL;
1387 	uint16_t ident;
1388 	struct udf_sb_info *sbi = UDF_SB(sb);
1389 	struct logicalVolIntegrityDesc *lvid;
1390 
1391 	while (loc.extLength > 0 &&
1392 	       (bh = udf_read_tagged(sb, loc.extLocation,
1393 				     loc.extLocation, &ident)) &&
1394 	       ident == TAG_IDENT_LVID) {
1395 		sbi->s_lvid_bh = bh;
1396 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1397 
1398 		if (lvid->nextIntegrityExt.extLength)
1399 			udf_load_logicalvolint(sb,
1400 				leea_to_cpu(lvid->nextIntegrityExt));
1401 
1402 		if (sbi->s_lvid_bh != bh)
1403 			brelse(bh);
1404 		loc.extLength -= sb->s_blocksize;
1405 		loc.extLocation++;
1406 	}
1407 	if (sbi->s_lvid_bh != bh)
1408 		brelse(bh);
1409 }
1410 
1411 /*
1412  * udf_process_sequence
1413  *
1414  * PURPOSE
1415  *	Process a main/reserve volume descriptor sequence.
1416  *
1417  * PRE-CONDITIONS
1418  *	sb			Pointer to _locked_ superblock.
1419  *	block			First block of first extent of the sequence.
1420  *	lastblock		Lastblock of first extent of the sequence.
1421  *
1422  * HISTORY
1423  *	July 1, 1997 - Andrew E. Mileski
1424  *	Written, tested, and released.
1425  */
1426 static noinline int udf_process_sequence(struct super_block *sb, long block,
1427 				long lastblock, struct kernel_lb_addr *fileset)
1428 {
1429 	struct buffer_head *bh = NULL;
1430 	struct udf_vds_record vds[VDS_POS_LENGTH];
1431 	struct udf_vds_record *curr;
1432 	struct generic_desc *gd;
1433 	struct volDescPtr *vdp;
1434 	int done = 0;
1435 	uint32_t vdsn;
1436 	uint16_t ident;
1437 	long next_s = 0, next_e = 0;
1438 
1439 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1440 
1441 	/*
1442 	 * Read the main descriptor sequence and find which descriptors
1443 	 * are in it.
1444 	 */
1445 	for (; (!done && block <= lastblock); block++) {
1446 
1447 		bh = udf_read_tagged(sb, block, block, &ident);
1448 		if (!bh) {
1449 			udf_err(sb,
1450 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1451 				(unsigned long long)block);
1452 			return 1;
1453 		}
1454 
1455 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1456 		gd = (struct generic_desc *)bh->b_data;
1457 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1458 		switch (ident) {
1459 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1460 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1461 			if (vdsn >= curr->volDescSeqNum) {
1462 				curr->volDescSeqNum = vdsn;
1463 				curr->block = block;
1464 			}
1465 			break;
1466 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1467 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1468 			if (vdsn >= curr->volDescSeqNum) {
1469 				curr->volDescSeqNum = vdsn;
1470 				curr->block = block;
1471 
1472 				vdp = (struct volDescPtr *)bh->b_data;
1473 				next_s = le32_to_cpu(
1474 					vdp->nextVolDescSeqExt.extLocation);
1475 				next_e = le32_to_cpu(
1476 					vdp->nextVolDescSeqExt.extLength);
1477 				next_e = next_e >> sb->s_blocksize_bits;
1478 				next_e += next_s;
1479 			}
1480 			break;
1481 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1482 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1483 			if (vdsn >= curr->volDescSeqNum) {
1484 				curr->volDescSeqNum = vdsn;
1485 				curr->block = block;
1486 			}
1487 			break;
1488 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1489 			curr = &vds[VDS_POS_PARTITION_DESC];
1490 			if (!curr->block)
1491 				curr->block = block;
1492 			break;
1493 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1494 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1495 			if (vdsn >= curr->volDescSeqNum) {
1496 				curr->volDescSeqNum = vdsn;
1497 				curr->block = block;
1498 			}
1499 			break;
1500 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1501 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1502 			if (vdsn >= curr->volDescSeqNum) {
1503 				curr->volDescSeqNum = vdsn;
1504 				curr->block = block;
1505 			}
1506 			break;
1507 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1508 			vds[VDS_POS_TERMINATING_DESC].block = block;
1509 			if (next_e) {
1510 				block = next_s;
1511 				lastblock = next_e;
1512 				next_s = next_e = 0;
1513 			} else
1514 				done = 1;
1515 			break;
1516 		}
1517 		brelse(bh);
1518 	}
1519 	/*
1520 	 * Now read interesting descriptors again and process them
1521 	 * in a suitable order
1522 	 */
1523 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1524 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1525 		return 1;
1526 	}
1527 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1528 		return 1;
1529 
1530 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1531 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1532 		return 1;
1533 
1534 	if (vds[VDS_POS_PARTITION_DESC].block) {
1535 		/*
1536 		 * We rescan the whole descriptor sequence to find
1537 		 * partition descriptor blocks and process them.
1538 		 */
1539 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1540 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1541 		     block++)
1542 			if (udf_load_partdesc(sb, block))
1543 				return 1;
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1550 			     struct kernel_lb_addr *fileset)
1551 {
1552 	struct anchorVolDescPtr *anchor;
1553 	long main_s, main_e, reserve_s, reserve_e;
1554 
1555 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1556 
1557 	/* Locate the main sequence */
1558 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1559 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1560 	main_e = main_e >> sb->s_blocksize_bits;
1561 	main_e += main_s;
1562 
1563 	/* Locate the reserve sequence */
1564 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1565 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1566 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1567 	reserve_e += reserve_s;
1568 
1569 	/* Process the main & reserve sequences */
1570 	/* responsible for finding the PartitionDesc(s) */
1571 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1572 		return 1;
1573 	return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1574 }
1575 
1576 /*
1577  * Check whether there is an anchor block in the given block and
1578  * load Volume Descriptor Sequence if so.
1579  */
1580 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1581 				  struct kernel_lb_addr *fileset)
1582 {
1583 	struct buffer_head *bh;
1584 	uint16_t ident;
1585 	int ret;
1586 
1587 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1588 	    udf_fixed_to_variable(block) >=
1589 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1590 		return 0;
1591 
1592 	bh = udf_read_tagged(sb, block, block, &ident);
1593 	if (!bh)
1594 		return 0;
1595 	if (ident != TAG_IDENT_AVDP) {
1596 		brelse(bh);
1597 		return 0;
1598 	}
1599 	ret = udf_load_sequence(sb, bh, fileset);
1600 	brelse(bh);
1601 	return ret;
1602 }
1603 
1604 /* Search for an anchor volume descriptor pointer */
1605 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1606 				 struct kernel_lb_addr *fileset)
1607 {
1608 	sector_t last[6];
1609 	int i;
1610 	struct udf_sb_info *sbi = UDF_SB(sb);
1611 	int last_count = 0;
1612 
1613 	/* First try user provided anchor */
1614 	if (sbi->s_anchor) {
1615 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1616 			return lastblock;
1617 	}
1618 	/*
1619 	 * according to spec, anchor is in either:
1620 	 *     block 256
1621 	 *     lastblock-256
1622 	 *     lastblock
1623 	 *  however, if the disc isn't closed, it could be 512.
1624 	 */
1625 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1626 		return lastblock;
1627 	/*
1628 	 * The trouble is which block is the last one. Drives often misreport
1629 	 * this so we try various possibilities.
1630 	 */
1631 	last[last_count++] = lastblock;
1632 	if (lastblock >= 1)
1633 		last[last_count++] = lastblock - 1;
1634 	last[last_count++] = lastblock + 1;
1635 	if (lastblock >= 2)
1636 		last[last_count++] = lastblock - 2;
1637 	if (lastblock >= 150)
1638 		last[last_count++] = lastblock - 150;
1639 	if (lastblock >= 152)
1640 		last[last_count++] = lastblock - 152;
1641 
1642 	for (i = 0; i < last_count; i++) {
1643 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1644 				sb->s_blocksize_bits)
1645 			continue;
1646 		if (udf_check_anchor_block(sb, last[i], fileset))
1647 			return last[i];
1648 		if (last[i] < 256)
1649 			continue;
1650 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1651 			return last[i];
1652 	}
1653 
1654 	/* Finally try block 512 in case media is open */
1655 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1656 		return last[0];
1657 	return 0;
1658 }
1659 
1660 /*
1661  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1662  * area specified by it. The function expects sbi->s_lastblock to be the last
1663  * block on the media.
1664  *
1665  * Return 1 if ok, 0 if not found.
1666  *
1667  */
1668 static int udf_find_anchor(struct super_block *sb,
1669 			   struct kernel_lb_addr *fileset)
1670 {
1671 	sector_t lastblock;
1672 	struct udf_sb_info *sbi = UDF_SB(sb);
1673 
1674 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1675 	if (lastblock)
1676 		goto out;
1677 
1678 	/* No anchor found? Try VARCONV conversion of block numbers */
1679 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1680 	/* Firstly, we try to not convert number of the last block */
1681 	lastblock = udf_scan_anchors(sb,
1682 				udf_variable_to_fixed(sbi->s_last_block),
1683 				fileset);
1684 	if (lastblock)
1685 		goto out;
1686 
1687 	/* Secondly, we try with converted number of the last block */
1688 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1689 	if (!lastblock) {
1690 		/* VARCONV didn't help. Clear it. */
1691 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1692 		return 0;
1693 	}
1694 out:
1695 	sbi->s_last_block = lastblock;
1696 	return 1;
1697 }
1698 
1699 /*
1700  * Check Volume Structure Descriptor, find Anchor block and load Volume
1701  * Descriptor Sequence
1702  */
1703 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1704 			int silent, struct kernel_lb_addr *fileset)
1705 {
1706 	struct udf_sb_info *sbi = UDF_SB(sb);
1707 	loff_t nsr_off;
1708 
1709 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1710 		if (!silent)
1711 			udf_warn(sb, "Bad block size\n");
1712 		return 0;
1713 	}
1714 	sbi->s_last_block = uopt->lastblock;
1715 	if (!uopt->novrs) {
1716 		/* Check that it is NSR02 compliant */
1717 		nsr_off = udf_check_vsd(sb);
1718 		if (!nsr_off) {
1719 			if (!silent)
1720 				udf_warn(sb, "No VRS found\n");
1721 			return 0;
1722 		}
1723 		if (nsr_off == -1)
1724 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1725 		if (!sbi->s_last_block)
1726 			sbi->s_last_block = udf_get_last_block(sb);
1727 	} else {
1728 		udf_debug("Validity check skipped because of novrs option\n");
1729 	}
1730 
1731 	/* Look for anchor block and load Volume Descriptor Sequence */
1732 	sbi->s_anchor = uopt->anchor;
1733 	if (!udf_find_anchor(sb, fileset)) {
1734 		if (!silent)
1735 			udf_warn(sb, "No anchor found\n");
1736 		return 0;
1737 	}
1738 	return 1;
1739 }
1740 
1741 static void udf_open_lvid(struct super_block *sb)
1742 {
1743 	struct udf_sb_info *sbi = UDF_SB(sb);
1744 	struct buffer_head *bh = sbi->s_lvid_bh;
1745 	struct logicalVolIntegrityDesc *lvid;
1746 	struct logicalVolIntegrityDescImpUse *lvidiu;
1747 
1748 	if (!bh)
1749 		return;
1750 
1751 	mutex_lock(&sbi->s_alloc_mutex);
1752 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1753 	lvidiu = udf_sb_lvidiu(sbi);
1754 
1755 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1756 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1757 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1758 				CURRENT_TIME);
1759 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1760 
1761 	lvid->descTag.descCRC = cpu_to_le16(
1762 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1763 			le16_to_cpu(lvid->descTag.descCRCLength)));
1764 
1765 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1766 	mark_buffer_dirty(bh);
1767 	sbi->s_lvid_dirty = 0;
1768 	mutex_unlock(&sbi->s_alloc_mutex);
1769 }
1770 
1771 static void udf_close_lvid(struct super_block *sb)
1772 {
1773 	struct udf_sb_info *sbi = UDF_SB(sb);
1774 	struct buffer_head *bh = sbi->s_lvid_bh;
1775 	struct logicalVolIntegrityDesc *lvid;
1776 	struct logicalVolIntegrityDescImpUse *lvidiu;
1777 
1778 	if (!bh)
1779 		return;
1780 
1781 	mutex_lock(&sbi->s_alloc_mutex);
1782 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1783 	lvidiu = udf_sb_lvidiu(sbi);
1784 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1787 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1788 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1789 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1790 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1791 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1792 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1793 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1794 
1795 	lvid->descTag.descCRC = cpu_to_le16(
1796 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1797 				le16_to_cpu(lvid->descTag.descCRCLength)));
1798 
1799 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1800 	/*
1801 	 * We set buffer uptodate unconditionally here to avoid spurious
1802 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1803 	 * the buffer as !uptodate
1804 	 */
1805 	set_buffer_uptodate(bh);
1806 	mark_buffer_dirty(bh);
1807 	sbi->s_lvid_dirty = 0;
1808 	mutex_unlock(&sbi->s_alloc_mutex);
1809 }
1810 
1811 u64 lvid_get_unique_id(struct super_block *sb)
1812 {
1813 	struct buffer_head *bh;
1814 	struct udf_sb_info *sbi = UDF_SB(sb);
1815 	struct logicalVolIntegrityDesc *lvid;
1816 	struct logicalVolHeaderDesc *lvhd;
1817 	u64 uniqueID;
1818 	u64 ret;
1819 
1820 	bh = sbi->s_lvid_bh;
1821 	if (!bh)
1822 		return 0;
1823 
1824 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1825 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1826 
1827 	mutex_lock(&sbi->s_alloc_mutex);
1828 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1829 	if (!(++uniqueID & 0xFFFFFFFF))
1830 		uniqueID += 16;
1831 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1832 	mutex_unlock(&sbi->s_alloc_mutex);
1833 	mark_buffer_dirty(bh);
1834 
1835 	return ret;
1836 }
1837 
1838 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1839 {
1840 	int i;
1841 	int nr_groups = bitmap->s_nr_groups;
1842 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1843 						nr_groups);
1844 
1845 	for (i = 0; i < nr_groups; i++)
1846 		if (bitmap->s_block_bitmap[i])
1847 			brelse(bitmap->s_block_bitmap[i]);
1848 
1849 	if (size <= PAGE_SIZE)
1850 		kfree(bitmap);
1851 	else
1852 		vfree(bitmap);
1853 }
1854 
1855 static void udf_free_partition(struct udf_part_map *map)
1856 {
1857 	int i;
1858 	struct udf_meta_data *mdata;
1859 
1860 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1861 		iput(map->s_uspace.s_table);
1862 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1863 		iput(map->s_fspace.s_table);
1864 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1865 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1866 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1867 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1868 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
1869 		for (i = 0; i < 4; i++)
1870 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1871 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
1872 		mdata = &map->s_type_specific.s_metadata;
1873 		iput(mdata->s_metadata_fe);
1874 		mdata->s_metadata_fe = NULL;
1875 
1876 		iput(mdata->s_mirror_fe);
1877 		mdata->s_mirror_fe = NULL;
1878 
1879 		iput(mdata->s_bitmap_fe);
1880 		mdata->s_bitmap_fe = NULL;
1881 	}
1882 }
1883 
1884 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1885 {
1886 	int i;
1887 	int ret;
1888 	struct inode *inode = NULL;
1889 	struct udf_options uopt;
1890 	struct kernel_lb_addr rootdir, fileset;
1891 	struct udf_sb_info *sbi;
1892 
1893 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1894 	uopt.uid = -1;
1895 	uopt.gid = -1;
1896 	uopt.umask = 0;
1897 	uopt.fmode = UDF_INVALID_MODE;
1898 	uopt.dmode = UDF_INVALID_MODE;
1899 
1900 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1901 	if (!sbi)
1902 		return -ENOMEM;
1903 
1904 	sb->s_fs_info = sbi;
1905 
1906 	mutex_init(&sbi->s_alloc_mutex);
1907 
1908 	if (!udf_parse_options((char *)options, &uopt, false))
1909 		goto error_out;
1910 
1911 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1912 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1913 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1914 		goto error_out;
1915 	}
1916 #ifdef CONFIG_UDF_NLS
1917 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1918 		uopt.nls_map = load_nls_default();
1919 		if (!uopt.nls_map)
1920 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1921 		else
1922 			udf_debug("Using default NLS map\n");
1923 	}
1924 #endif
1925 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1926 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1927 
1928 	fileset.logicalBlockNum = 0xFFFFFFFF;
1929 	fileset.partitionReferenceNum = 0xFFFF;
1930 
1931 	sbi->s_flags = uopt.flags;
1932 	sbi->s_uid = uopt.uid;
1933 	sbi->s_gid = uopt.gid;
1934 	sbi->s_umask = uopt.umask;
1935 	sbi->s_fmode = uopt.fmode;
1936 	sbi->s_dmode = uopt.dmode;
1937 	sbi->s_nls_map = uopt.nls_map;
1938 	rwlock_init(&sbi->s_cred_lock);
1939 
1940 	if (uopt.session == 0xFFFFFFFF)
1941 		sbi->s_session = udf_get_last_session(sb);
1942 	else
1943 		sbi->s_session = uopt.session;
1944 
1945 	udf_debug("Multi-session=%d\n", sbi->s_session);
1946 
1947 	/* Fill in the rest of the superblock */
1948 	sb->s_op = &udf_sb_ops;
1949 	sb->s_export_op = &udf_export_ops;
1950 
1951 	sb->s_dirt = 0;
1952 	sb->s_magic = UDF_SUPER_MAGIC;
1953 	sb->s_time_gran = 1000;
1954 
1955 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1956 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1957 	} else {
1958 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1959 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1960 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1961 			if (!silent)
1962 				pr_notice("Rescanning with blocksize %d\n",
1963 					  UDF_DEFAULT_BLOCKSIZE);
1964 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1965 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1966 		}
1967 	}
1968 	if (!ret) {
1969 		udf_warn(sb, "No partition found (1)\n");
1970 		goto error_out;
1971 	}
1972 
1973 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
1974 
1975 	if (sbi->s_lvid_bh) {
1976 		struct logicalVolIntegrityDescImpUse *lvidiu =
1977 							udf_sb_lvidiu(sbi);
1978 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1979 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1980 		/* uint16_t maxUDFWriteRev =
1981 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
1982 
1983 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1984 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
1985 				le16_to_cpu(lvidiu->minUDFReadRev),
1986 				UDF_MAX_READ_VERSION);
1987 			goto error_out;
1988 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1989 			sb->s_flags |= MS_RDONLY;
1990 
1991 		sbi->s_udfrev = minUDFWriteRev;
1992 
1993 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1994 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1995 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1996 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1997 	}
1998 
1999 	if (!sbi->s_partitions) {
2000 		udf_warn(sb, "No partition found (2)\n");
2001 		goto error_out;
2002 	}
2003 
2004 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2005 			UDF_PART_FLAG_READ_ONLY) {
2006 		pr_notice("Partition marked readonly; forcing readonly mount\n");
2007 		sb->s_flags |= MS_RDONLY;
2008 	}
2009 
2010 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2011 		udf_warn(sb, "No fileset found\n");
2012 		goto error_out;
2013 	}
2014 
2015 	if (!silent) {
2016 		struct timestamp ts;
2017 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2018 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2019 			 sbi->s_volume_ident,
2020 			 le16_to_cpu(ts.year), ts.month, ts.day,
2021 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2022 	}
2023 	if (!(sb->s_flags & MS_RDONLY))
2024 		udf_open_lvid(sb);
2025 
2026 	/* Assign the root inode */
2027 	/* assign inodes by physical block number */
2028 	/* perhaps it's not extensible enough, but for now ... */
2029 	inode = udf_iget(sb, &rootdir);
2030 	if (!inode) {
2031 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2032 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2033 		goto error_out;
2034 	}
2035 
2036 	/* Allocate a dentry for the root inode */
2037 	sb->s_root = d_make_root(inode);
2038 	if (!sb->s_root) {
2039 		udf_err(sb, "Couldn't allocate root dentry\n");
2040 		goto error_out;
2041 	}
2042 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2043 	sb->s_max_links = UDF_MAX_LINKS;
2044 	return 0;
2045 
2046 error_out:
2047 	if (sbi->s_vat_inode)
2048 		iput(sbi->s_vat_inode);
2049 	if (sbi->s_partitions)
2050 		for (i = 0; i < sbi->s_partitions; i++)
2051 			udf_free_partition(&sbi->s_partmaps[i]);
2052 #ifdef CONFIG_UDF_NLS
2053 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2054 		unload_nls(sbi->s_nls_map);
2055 #endif
2056 	if (!(sb->s_flags & MS_RDONLY))
2057 		udf_close_lvid(sb);
2058 	brelse(sbi->s_lvid_bh);
2059 
2060 	kfree(sbi->s_partmaps);
2061 	kfree(sbi);
2062 	sb->s_fs_info = NULL;
2063 
2064 	return -EINVAL;
2065 }
2066 
2067 void _udf_err(struct super_block *sb, const char *function,
2068 	      const char *fmt, ...)
2069 {
2070 	struct va_format vaf;
2071 	va_list args;
2072 
2073 	/* mark sb error */
2074 	if (!(sb->s_flags & MS_RDONLY))
2075 		sb->s_dirt = 1;
2076 
2077 	va_start(args, fmt);
2078 
2079 	vaf.fmt = fmt;
2080 	vaf.va = &args;
2081 
2082 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2083 
2084 	va_end(args);
2085 }
2086 
2087 void _udf_warn(struct super_block *sb, const char *function,
2088 	       const char *fmt, ...)
2089 {
2090 	struct va_format vaf;
2091 	va_list args;
2092 
2093 	va_start(args, fmt);
2094 
2095 	vaf.fmt = fmt;
2096 	vaf.va = &args;
2097 
2098 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2099 
2100 	va_end(args);
2101 }
2102 
2103 static void udf_put_super(struct super_block *sb)
2104 {
2105 	int i;
2106 	struct udf_sb_info *sbi;
2107 
2108 	sbi = UDF_SB(sb);
2109 
2110 	if (sbi->s_vat_inode)
2111 		iput(sbi->s_vat_inode);
2112 	if (sbi->s_partitions)
2113 		for (i = 0; i < sbi->s_partitions; i++)
2114 			udf_free_partition(&sbi->s_partmaps[i]);
2115 #ifdef CONFIG_UDF_NLS
2116 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2117 		unload_nls(sbi->s_nls_map);
2118 #endif
2119 	if (!(sb->s_flags & MS_RDONLY))
2120 		udf_close_lvid(sb);
2121 	brelse(sbi->s_lvid_bh);
2122 	kfree(sbi->s_partmaps);
2123 	kfree(sb->s_fs_info);
2124 	sb->s_fs_info = NULL;
2125 }
2126 
2127 static int udf_sync_fs(struct super_block *sb, int wait)
2128 {
2129 	struct udf_sb_info *sbi = UDF_SB(sb);
2130 
2131 	mutex_lock(&sbi->s_alloc_mutex);
2132 	if (sbi->s_lvid_dirty) {
2133 		/*
2134 		 * Blockdevice will be synced later so we don't have to submit
2135 		 * the buffer for IO
2136 		 */
2137 		mark_buffer_dirty(sbi->s_lvid_bh);
2138 		sb->s_dirt = 0;
2139 		sbi->s_lvid_dirty = 0;
2140 	}
2141 	mutex_unlock(&sbi->s_alloc_mutex);
2142 
2143 	return 0;
2144 }
2145 
2146 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2147 {
2148 	struct super_block *sb = dentry->d_sb;
2149 	struct udf_sb_info *sbi = UDF_SB(sb);
2150 	struct logicalVolIntegrityDescImpUse *lvidiu;
2151 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2152 
2153 	if (sbi->s_lvid_bh != NULL)
2154 		lvidiu = udf_sb_lvidiu(sbi);
2155 	else
2156 		lvidiu = NULL;
2157 
2158 	buf->f_type = UDF_SUPER_MAGIC;
2159 	buf->f_bsize = sb->s_blocksize;
2160 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2161 	buf->f_bfree = udf_count_free(sb);
2162 	buf->f_bavail = buf->f_bfree;
2163 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2164 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2165 			+ buf->f_bfree;
2166 	buf->f_ffree = buf->f_bfree;
2167 	buf->f_namelen = UDF_NAME_LEN - 2;
2168 	buf->f_fsid.val[0] = (u32)id;
2169 	buf->f_fsid.val[1] = (u32)(id >> 32);
2170 
2171 	return 0;
2172 }
2173 
2174 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2175 					  struct udf_bitmap *bitmap)
2176 {
2177 	struct buffer_head *bh = NULL;
2178 	unsigned int accum = 0;
2179 	int index;
2180 	int block = 0, newblock;
2181 	struct kernel_lb_addr loc;
2182 	uint32_t bytes;
2183 	uint8_t *ptr;
2184 	uint16_t ident;
2185 	struct spaceBitmapDesc *bm;
2186 
2187 	loc.logicalBlockNum = bitmap->s_extPosition;
2188 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2189 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2190 
2191 	if (!bh) {
2192 		udf_err(sb, "udf_count_free failed\n");
2193 		goto out;
2194 	} else if (ident != TAG_IDENT_SBD) {
2195 		brelse(bh);
2196 		udf_err(sb, "udf_count_free failed\n");
2197 		goto out;
2198 	}
2199 
2200 	bm = (struct spaceBitmapDesc *)bh->b_data;
2201 	bytes = le32_to_cpu(bm->numOfBytes);
2202 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2203 	ptr = (uint8_t *)bh->b_data;
2204 
2205 	while (bytes > 0) {
2206 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2207 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2208 					cur_bytes * 8);
2209 		bytes -= cur_bytes;
2210 		if (bytes) {
2211 			brelse(bh);
2212 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2213 			bh = udf_tread(sb, newblock);
2214 			if (!bh) {
2215 				udf_debug("read failed\n");
2216 				goto out;
2217 			}
2218 			index = 0;
2219 			ptr = (uint8_t *)bh->b_data;
2220 		}
2221 	}
2222 	brelse(bh);
2223 out:
2224 	return accum;
2225 }
2226 
2227 static unsigned int udf_count_free_table(struct super_block *sb,
2228 					 struct inode *table)
2229 {
2230 	unsigned int accum = 0;
2231 	uint32_t elen;
2232 	struct kernel_lb_addr eloc;
2233 	int8_t etype;
2234 	struct extent_position epos;
2235 
2236 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2237 	epos.block = UDF_I(table)->i_location;
2238 	epos.offset = sizeof(struct unallocSpaceEntry);
2239 	epos.bh = NULL;
2240 
2241 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2242 		accum += (elen >> table->i_sb->s_blocksize_bits);
2243 
2244 	brelse(epos.bh);
2245 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2246 
2247 	return accum;
2248 }
2249 
2250 static unsigned int udf_count_free(struct super_block *sb)
2251 {
2252 	unsigned int accum = 0;
2253 	struct udf_sb_info *sbi;
2254 	struct udf_part_map *map;
2255 
2256 	sbi = UDF_SB(sb);
2257 	if (sbi->s_lvid_bh) {
2258 		struct logicalVolIntegrityDesc *lvid =
2259 			(struct logicalVolIntegrityDesc *)
2260 			sbi->s_lvid_bh->b_data;
2261 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2262 			accum = le32_to_cpu(
2263 					lvid->freeSpaceTable[sbi->s_partition]);
2264 			if (accum == 0xFFFFFFFF)
2265 				accum = 0;
2266 		}
2267 	}
2268 
2269 	if (accum)
2270 		return accum;
2271 
2272 	map = &sbi->s_partmaps[sbi->s_partition];
2273 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2274 		accum += udf_count_free_bitmap(sb,
2275 					       map->s_uspace.s_bitmap);
2276 	}
2277 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2278 		accum += udf_count_free_bitmap(sb,
2279 					       map->s_fspace.s_bitmap);
2280 	}
2281 	if (accum)
2282 		return accum;
2283 
2284 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2285 		accum += udf_count_free_table(sb,
2286 					      map->s_uspace.s_table);
2287 	}
2288 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2289 		accum += udf_count_free_table(sb,
2290 					      map->s_fspace.s_table);
2291 	}
2292 
2293 	return accum;
2294 }
2295