1 /* 2 * partition.c 3 * 4 * PURPOSE 5 * Partition handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998-2001 Ben Fennema 14 * 15 * HISTORY 16 * 17 * 12/06/98 blf Created file. 18 * 19 */ 20 21 #include "udfdecl.h" 22 #include "udf_sb.h" 23 #include "udf_i.h" 24 25 #include <linux/fs.h> 26 #include <linux/string.h> 27 #include <linux/mutex.h> 28 29 uint32_t udf_get_pblock(struct super_block *sb, uint32_t block, 30 uint16_t partition, uint32_t offset) 31 { 32 struct udf_sb_info *sbi = UDF_SB(sb); 33 struct udf_part_map *map; 34 if (partition >= sbi->s_partitions) { 35 udf_debug("block=%u, partition=%u, offset=%u: invalid partition\n", 36 block, partition, offset); 37 return 0xFFFFFFFF; 38 } 39 map = &sbi->s_partmaps[partition]; 40 if (map->s_partition_func) 41 return map->s_partition_func(sb, block, partition, offset); 42 else 43 return map->s_partition_root + block + offset; 44 } 45 46 uint32_t udf_get_pblock_virt15(struct super_block *sb, uint32_t block, 47 uint16_t partition, uint32_t offset) 48 { 49 struct buffer_head *bh = NULL; 50 uint32_t newblock; 51 uint32_t index; 52 uint32_t loc; 53 struct udf_sb_info *sbi = UDF_SB(sb); 54 struct udf_part_map *map; 55 struct udf_virtual_data *vdata; 56 struct udf_inode_info *iinfo = UDF_I(sbi->s_vat_inode); 57 int err; 58 59 map = &sbi->s_partmaps[partition]; 60 vdata = &map->s_type_specific.s_virtual; 61 62 if (block > vdata->s_num_entries) { 63 udf_debug("Trying to access block beyond end of VAT (%u max %u)\n", 64 block, vdata->s_num_entries); 65 return 0xFFFFFFFF; 66 } 67 68 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 69 loc = le32_to_cpu(((__le32 *)(iinfo->i_data + 70 vdata->s_start_offset))[block]); 71 goto translate; 72 } 73 index = (sb->s_blocksize - vdata->s_start_offset) / sizeof(uint32_t); 74 if (block >= index) { 75 block -= index; 76 newblock = 1 + (block / (sb->s_blocksize / sizeof(uint32_t))); 77 index = block % (sb->s_blocksize / sizeof(uint32_t)); 78 } else { 79 newblock = 0; 80 index = vdata->s_start_offset / sizeof(uint32_t) + block; 81 } 82 83 bh = udf_bread(sbi->s_vat_inode, newblock, 0, &err); 84 if (!bh) { 85 udf_debug("get_pblock(UDF_VIRTUAL_MAP:%p,%u,%u)\n", 86 sb, block, partition); 87 return 0xFFFFFFFF; 88 } 89 90 loc = le32_to_cpu(((__le32 *)bh->b_data)[index]); 91 92 brelse(bh); 93 94 translate: 95 if (iinfo->i_location.partitionReferenceNum == partition) { 96 udf_debug("recursive call to udf_get_pblock!\n"); 97 return 0xFFFFFFFF; 98 } 99 100 return udf_get_pblock(sb, loc, 101 iinfo->i_location.partitionReferenceNum, 102 offset); 103 } 104 105 inline uint32_t udf_get_pblock_virt20(struct super_block *sb, uint32_t block, 106 uint16_t partition, uint32_t offset) 107 { 108 return udf_get_pblock_virt15(sb, block, partition, offset); 109 } 110 111 uint32_t udf_get_pblock_spar15(struct super_block *sb, uint32_t block, 112 uint16_t partition, uint32_t offset) 113 { 114 int i; 115 struct sparingTable *st = NULL; 116 struct udf_sb_info *sbi = UDF_SB(sb); 117 struct udf_part_map *map; 118 uint32_t packet; 119 struct udf_sparing_data *sdata; 120 121 map = &sbi->s_partmaps[partition]; 122 sdata = &map->s_type_specific.s_sparing; 123 packet = (block + offset) & ~(sdata->s_packet_len - 1); 124 125 for (i = 0; i < 4; i++) { 126 if (sdata->s_spar_map[i] != NULL) { 127 st = (struct sparingTable *) 128 sdata->s_spar_map[i]->b_data; 129 break; 130 } 131 } 132 133 if (st) { 134 for (i = 0; i < le16_to_cpu(st->reallocationTableLen); i++) { 135 struct sparingEntry *entry = &st->mapEntry[i]; 136 u32 origLoc = le32_to_cpu(entry->origLocation); 137 if (origLoc >= 0xFFFFFFF0) 138 break; 139 else if (origLoc == packet) 140 return le32_to_cpu(entry->mappedLocation) + 141 ((block + offset) & 142 (sdata->s_packet_len - 1)); 143 else if (origLoc > packet) 144 break; 145 } 146 } 147 148 return map->s_partition_root + block + offset; 149 } 150 151 int udf_relocate_blocks(struct super_block *sb, long old_block, long *new_block) 152 { 153 struct udf_sparing_data *sdata; 154 struct sparingTable *st = NULL; 155 struct sparingEntry mapEntry; 156 uint32_t packet; 157 int i, j, k, l; 158 struct udf_sb_info *sbi = UDF_SB(sb); 159 u16 reallocationTableLen; 160 struct buffer_head *bh; 161 int ret = 0; 162 163 mutex_lock(&sbi->s_alloc_mutex); 164 for (i = 0; i < sbi->s_partitions; i++) { 165 struct udf_part_map *map = &sbi->s_partmaps[i]; 166 if (old_block > map->s_partition_root && 167 old_block < map->s_partition_root + map->s_partition_len) { 168 sdata = &map->s_type_specific.s_sparing; 169 packet = (old_block - map->s_partition_root) & 170 ~(sdata->s_packet_len - 1); 171 172 for (j = 0; j < 4; j++) 173 if (sdata->s_spar_map[j] != NULL) { 174 st = (struct sparingTable *) 175 sdata->s_spar_map[j]->b_data; 176 break; 177 } 178 179 if (!st) { 180 ret = 1; 181 goto out; 182 } 183 184 reallocationTableLen = 185 le16_to_cpu(st->reallocationTableLen); 186 for (k = 0; k < reallocationTableLen; k++) { 187 struct sparingEntry *entry = &st->mapEntry[k]; 188 u32 origLoc = le32_to_cpu(entry->origLocation); 189 190 if (origLoc == 0xFFFFFFFF) { 191 for (; j < 4; j++) { 192 int len; 193 bh = sdata->s_spar_map[j]; 194 if (!bh) 195 continue; 196 197 st = (struct sparingTable *) 198 bh->b_data; 199 entry->origLocation = 200 cpu_to_le32(packet); 201 len = 202 sizeof(struct sparingTable) + 203 reallocationTableLen * 204 sizeof(struct sparingEntry); 205 udf_update_tag((char *)st, len); 206 mark_buffer_dirty(bh); 207 } 208 *new_block = le32_to_cpu( 209 entry->mappedLocation) + 210 ((old_block - 211 map->s_partition_root) & 212 (sdata->s_packet_len - 1)); 213 ret = 0; 214 goto out; 215 } else if (origLoc == packet) { 216 *new_block = le32_to_cpu( 217 entry->mappedLocation) + 218 ((old_block - 219 map->s_partition_root) & 220 (sdata->s_packet_len - 1)); 221 ret = 0; 222 goto out; 223 } else if (origLoc > packet) 224 break; 225 } 226 227 for (l = k; l < reallocationTableLen; l++) { 228 struct sparingEntry *entry = &st->mapEntry[l]; 229 u32 origLoc = le32_to_cpu(entry->origLocation); 230 231 if (origLoc != 0xFFFFFFFF) 232 continue; 233 234 for (; j < 4; j++) { 235 bh = sdata->s_spar_map[j]; 236 if (!bh) 237 continue; 238 239 st = (struct sparingTable *)bh->b_data; 240 mapEntry = st->mapEntry[l]; 241 mapEntry.origLocation = 242 cpu_to_le32(packet); 243 memmove(&st->mapEntry[k + 1], 244 &st->mapEntry[k], 245 (l - k) * 246 sizeof(struct sparingEntry)); 247 st->mapEntry[k] = mapEntry; 248 udf_update_tag((char *)st, 249 sizeof(struct sparingTable) + 250 reallocationTableLen * 251 sizeof(struct sparingEntry)); 252 mark_buffer_dirty(bh); 253 } 254 *new_block = 255 le32_to_cpu( 256 st->mapEntry[k].mappedLocation) + 257 ((old_block - map->s_partition_root) & 258 (sdata->s_packet_len - 1)); 259 ret = 0; 260 goto out; 261 } 262 263 ret = 1; 264 goto out; 265 } /* if old_block */ 266 } 267 268 if (i == sbi->s_partitions) { 269 /* outside of partitions */ 270 /* for now, fail =) */ 271 ret = 1; 272 } 273 274 out: 275 mutex_unlock(&sbi->s_alloc_mutex); 276 return ret; 277 } 278 279 static uint32_t udf_try_read_meta(struct inode *inode, uint32_t block, 280 uint16_t partition, uint32_t offset) 281 { 282 struct super_block *sb = inode->i_sb; 283 struct udf_part_map *map; 284 struct kernel_lb_addr eloc; 285 uint32_t elen; 286 sector_t ext_offset; 287 struct extent_position epos = {}; 288 uint32_t phyblock; 289 290 if (inode_bmap(inode, block, &epos, &eloc, &elen, &ext_offset) != 291 (EXT_RECORDED_ALLOCATED >> 30)) 292 phyblock = 0xFFFFFFFF; 293 else { 294 map = &UDF_SB(sb)->s_partmaps[partition]; 295 /* map to sparable/physical partition desc */ 296 phyblock = udf_get_pblock(sb, eloc.logicalBlockNum, 297 map->s_type_specific.s_metadata.s_phys_partition_ref, 298 ext_offset + offset); 299 } 300 301 brelse(epos.bh); 302 return phyblock; 303 } 304 305 uint32_t udf_get_pblock_meta25(struct super_block *sb, uint32_t block, 306 uint16_t partition, uint32_t offset) 307 { 308 struct udf_sb_info *sbi = UDF_SB(sb); 309 struct udf_part_map *map; 310 struct udf_meta_data *mdata; 311 uint32_t retblk; 312 struct inode *inode; 313 314 udf_debug("READING from METADATA\n"); 315 316 map = &sbi->s_partmaps[partition]; 317 mdata = &map->s_type_specific.s_metadata; 318 inode = mdata->s_metadata_fe ? : mdata->s_mirror_fe; 319 320 if (!inode) 321 return 0xFFFFFFFF; 322 323 retblk = udf_try_read_meta(inode, block, partition, offset); 324 if (retblk == 0xFFFFFFFF && mdata->s_metadata_fe) { 325 udf_warn(sb, "error reading from METADATA, trying to read from MIRROR\n"); 326 if (!(mdata->s_flags & MF_MIRROR_FE_LOADED)) { 327 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 328 mdata->s_mirror_file_loc, 329 mdata->s_phys_partition_ref); 330 if (IS_ERR(mdata->s_mirror_fe)) 331 mdata->s_mirror_fe = NULL; 332 mdata->s_flags |= MF_MIRROR_FE_LOADED; 333 } 334 335 inode = mdata->s_mirror_fe; 336 if (!inode) 337 return 0xFFFFFFFF; 338 retblk = udf_try_read_meta(inode, block, partition, offset); 339 } 340 341 return retblk; 342 } 343