1 /* 2 * partition.c 3 * 4 * PURPOSE 5 * Partition handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998-2001 Ben Fennema 14 * 15 * HISTORY 16 * 17 * 12/06/98 blf Created file. 18 * 19 */ 20 21 #include "udfdecl.h" 22 #include "udf_sb.h" 23 #include "udf_i.h" 24 25 #include <linux/fs.h> 26 #include <linux/string.h> 27 #include <linux/mutex.h> 28 29 uint32_t udf_get_pblock(struct super_block *sb, uint32_t block, 30 uint16_t partition, uint32_t offset) 31 { 32 struct udf_sb_info *sbi = UDF_SB(sb); 33 struct udf_part_map *map; 34 if (partition >= sbi->s_partitions) { 35 udf_debug("block=%u, partition=%u, offset=%u: invalid partition\n", 36 block, partition, offset); 37 return 0xFFFFFFFF; 38 } 39 map = &sbi->s_partmaps[partition]; 40 if (map->s_partition_func) 41 return map->s_partition_func(sb, block, partition, offset); 42 else 43 return map->s_partition_root + block + offset; 44 } 45 46 uint32_t udf_get_pblock_virt15(struct super_block *sb, uint32_t block, 47 uint16_t partition, uint32_t offset) 48 { 49 struct buffer_head *bh = NULL; 50 uint32_t newblock; 51 uint32_t index; 52 uint32_t loc; 53 struct udf_sb_info *sbi = UDF_SB(sb); 54 struct udf_part_map *map; 55 struct udf_virtual_data *vdata; 56 struct udf_inode_info *iinfo = UDF_I(sbi->s_vat_inode); 57 58 map = &sbi->s_partmaps[partition]; 59 vdata = &map->s_type_specific.s_virtual; 60 61 if (block > vdata->s_num_entries) { 62 udf_debug("Trying to access block beyond end of VAT (%u max %u)\n", 63 block, vdata->s_num_entries); 64 return 0xFFFFFFFF; 65 } 66 67 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 68 loc = le32_to_cpu(((__le32 *)(iinfo->i_ext.i_data + 69 vdata->s_start_offset))[block]); 70 goto translate; 71 } 72 index = (sb->s_blocksize - vdata->s_start_offset) / sizeof(uint32_t); 73 if (block >= index) { 74 block -= index; 75 newblock = 1 + (block / (sb->s_blocksize / sizeof(uint32_t))); 76 index = block % (sb->s_blocksize / sizeof(uint32_t)); 77 } else { 78 newblock = 0; 79 index = vdata->s_start_offset / sizeof(uint32_t) + block; 80 } 81 82 loc = udf_block_map(sbi->s_vat_inode, newblock); 83 84 bh = sb_bread(sb, loc); 85 if (!bh) { 86 udf_debug("get_pblock(UDF_VIRTUAL_MAP:%p,%u,%u) VAT: %u[%u]\n", 87 sb, block, partition, loc, index); 88 return 0xFFFFFFFF; 89 } 90 91 loc = le32_to_cpu(((__le32 *)bh->b_data)[index]); 92 93 brelse(bh); 94 95 translate: 96 if (iinfo->i_location.partitionReferenceNum == partition) { 97 udf_debug("recursive call to udf_get_pblock!\n"); 98 return 0xFFFFFFFF; 99 } 100 101 return udf_get_pblock(sb, loc, 102 iinfo->i_location.partitionReferenceNum, 103 offset); 104 } 105 106 inline uint32_t udf_get_pblock_virt20(struct super_block *sb, uint32_t block, 107 uint16_t partition, uint32_t offset) 108 { 109 return udf_get_pblock_virt15(sb, block, partition, offset); 110 } 111 112 uint32_t udf_get_pblock_spar15(struct super_block *sb, uint32_t block, 113 uint16_t partition, uint32_t offset) 114 { 115 int i; 116 struct sparingTable *st = NULL; 117 struct udf_sb_info *sbi = UDF_SB(sb); 118 struct udf_part_map *map; 119 uint32_t packet; 120 struct udf_sparing_data *sdata; 121 122 map = &sbi->s_partmaps[partition]; 123 sdata = &map->s_type_specific.s_sparing; 124 packet = (block + offset) & ~(sdata->s_packet_len - 1); 125 126 for (i = 0; i < 4; i++) { 127 if (sdata->s_spar_map[i] != NULL) { 128 st = (struct sparingTable *) 129 sdata->s_spar_map[i]->b_data; 130 break; 131 } 132 } 133 134 if (st) { 135 for (i = 0; i < le16_to_cpu(st->reallocationTableLen); i++) { 136 struct sparingEntry *entry = &st->mapEntry[i]; 137 u32 origLoc = le32_to_cpu(entry->origLocation); 138 if (origLoc >= 0xFFFFFFF0) 139 break; 140 else if (origLoc == packet) 141 return le32_to_cpu(entry->mappedLocation) + 142 ((block + offset) & 143 (sdata->s_packet_len - 1)); 144 else if (origLoc > packet) 145 break; 146 } 147 } 148 149 return map->s_partition_root + block + offset; 150 } 151 152 int udf_relocate_blocks(struct super_block *sb, long old_block, long *new_block) 153 { 154 struct udf_sparing_data *sdata; 155 struct sparingTable *st = NULL; 156 struct sparingEntry mapEntry; 157 uint32_t packet; 158 int i, j, k, l; 159 struct udf_sb_info *sbi = UDF_SB(sb); 160 u16 reallocationTableLen; 161 struct buffer_head *bh; 162 int ret = 0; 163 164 mutex_lock(&sbi->s_alloc_mutex); 165 for (i = 0; i < sbi->s_partitions; i++) { 166 struct udf_part_map *map = &sbi->s_partmaps[i]; 167 if (old_block > map->s_partition_root && 168 old_block < map->s_partition_root + map->s_partition_len) { 169 sdata = &map->s_type_specific.s_sparing; 170 packet = (old_block - map->s_partition_root) & 171 ~(sdata->s_packet_len - 1); 172 173 for (j = 0; j < 4; j++) 174 if (sdata->s_spar_map[j] != NULL) { 175 st = (struct sparingTable *) 176 sdata->s_spar_map[j]->b_data; 177 break; 178 } 179 180 if (!st) { 181 ret = 1; 182 goto out; 183 } 184 185 reallocationTableLen = 186 le16_to_cpu(st->reallocationTableLen); 187 for (k = 0; k < reallocationTableLen; k++) { 188 struct sparingEntry *entry = &st->mapEntry[k]; 189 u32 origLoc = le32_to_cpu(entry->origLocation); 190 191 if (origLoc == 0xFFFFFFFF) { 192 for (; j < 4; j++) { 193 int len; 194 bh = sdata->s_spar_map[j]; 195 if (!bh) 196 continue; 197 198 st = (struct sparingTable *) 199 bh->b_data; 200 entry->origLocation = 201 cpu_to_le32(packet); 202 len = 203 sizeof(struct sparingTable) + 204 reallocationTableLen * 205 sizeof(struct sparingEntry); 206 udf_update_tag((char *)st, len); 207 mark_buffer_dirty(bh); 208 } 209 *new_block = le32_to_cpu( 210 entry->mappedLocation) + 211 ((old_block - 212 map->s_partition_root) & 213 (sdata->s_packet_len - 1)); 214 ret = 0; 215 goto out; 216 } else if (origLoc == packet) { 217 *new_block = le32_to_cpu( 218 entry->mappedLocation) + 219 ((old_block - 220 map->s_partition_root) & 221 (sdata->s_packet_len - 1)); 222 ret = 0; 223 goto out; 224 } else if (origLoc > packet) 225 break; 226 } 227 228 for (l = k; l < reallocationTableLen; l++) { 229 struct sparingEntry *entry = &st->mapEntry[l]; 230 u32 origLoc = le32_to_cpu(entry->origLocation); 231 232 if (origLoc != 0xFFFFFFFF) 233 continue; 234 235 for (; j < 4; j++) { 236 bh = sdata->s_spar_map[j]; 237 if (!bh) 238 continue; 239 240 st = (struct sparingTable *)bh->b_data; 241 mapEntry = st->mapEntry[l]; 242 mapEntry.origLocation = 243 cpu_to_le32(packet); 244 memmove(&st->mapEntry[k + 1], 245 &st->mapEntry[k], 246 (l - k) * 247 sizeof(struct sparingEntry)); 248 st->mapEntry[k] = mapEntry; 249 udf_update_tag((char *)st, 250 sizeof(struct sparingTable) + 251 reallocationTableLen * 252 sizeof(struct sparingEntry)); 253 mark_buffer_dirty(bh); 254 } 255 *new_block = 256 le32_to_cpu( 257 st->mapEntry[k].mappedLocation) + 258 ((old_block - map->s_partition_root) & 259 (sdata->s_packet_len - 1)); 260 ret = 0; 261 goto out; 262 } 263 264 ret = 1; 265 goto out; 266 } /* if old_block */ 267 } 268 269 if (i == sbi->s_partitions) { 270 /* outside of partitions */ 271 /* for now, fail =) */ 272 ret = 1; 273 } 274 275 out: 276 mutex_unlock(&sbi->s_alloc_mutex); 277 return ret; 278 } 279 280 static uint32_t udf_try_read_meta(struct inode *inode, uint32_t block, 281 uint16_t partition, uint32_t offset) 282 { 283 struct super_block *sb = inode->i_sb; 284 struct udf_part_map *map; 285 struct kernel_lb_addr eloc; 286 uint32_t elen; 287 sector_t ext_offset; 288 struct extent_position epos = {}; 289 uint32_t phyblock; 290 291 if (inode_bmap(inode, block, &epos, &eloc, &elen, &ext_offset) != 292 (EXT_RECORDED_ALLOCATED >> 30)) 293 phyblock = 0xFFFFFFFF; 294 else { 295 map = &UDF_SB(sb)->s_partmaps[partition]; 296 /* map to sparable/physical partition desc */ 297 phyblock = udf_get_pblock(sb, eloc.logicalBlockNum, 298 map->s_type_specific.s_metadata.s_phys_partition_ref, 299 ext_offset + offset); 300 } 301 302 brelse(epos.bh); 303 return phyblock; 304 } 305 306 uint32_t udf_get_pblock_meta25(struct super_block *sb, uint32_t block, 307 uint16_t partition, uint32_t offset) 308 { 309 struct udf_sb_info *sbi = UDF_SB(sb); 310 struct udf_part_map *map; 311 struct udf_meta_data *mdata; 312 uint32_t retblk; 313 struct inode *inode; 314 315 udf_debug("READING from METADATA\n"); 316 317 map = &sbi->s_partmaps[partition]; 318 mdata = &map->s_type_specific.s_metadata; 319 inode = mdata->s_metadata_fe ? : mdata->s_mirror_fe; 320 321 if (!inode) 322 return 0xFFFFFFFF; 323 324 retblk = udf_try_read_meta(inode, block, partition, offset); 325 if (retblk == 0xFFFFFFFF && mdata->s_metadata_fe) { 326 udf_warn(sb, "error reading from METADATA, trying to read from MIRROR\n"); 327 if (!(mdata->s_flags & MF_MIRROR_FE_LOADED)) { 328 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 329 mdata->s_mirror_file_loc, 330 mdata->s_phys_partition_ref); 331 if (IS_ERR(mdata->s_mirror_fe)) 332 mdata->s_mirror_fe = NULL; 333 mdata->s_flags |= MF_MIRROR_FE_LOADED; 334 } 335 336 inode = mdata->s_mirror_fe; 337 if (!inode) 338 return 0xFFFFFFFF; 339 retblk = udf_try_read_meta(inode, block, partition, offset); 340 } 341 342 return retblk; 343 } 344