xref: /openbmc/linux/fs/udf/inode.c (revision cb051977)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * inode.c
4  *
5  * PURPOSE
6  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
7  *
8  * COPYRIGHT
9  *  (C) 1998 Dave Boynton
10  *  (C) 1998-2004 Ben Fennema
11  *  (C) 1999-2000 Stelias Computing Inc
12  *
13  * HISTORY
14  *
15  *  10/04/98 dgb  Added rudimentary directory functions
16  *  10/07/98      Fully working udf_block_map! It works!
17  *  11/25/98      bmap altered to better support extents
18  *  12/06/98 blf  partition support in udf_iget, udf_block_map
19  *                and udf_read_inode
20  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
21  *                block boundaries (which is not actually allowed)
22  *  12/20/98      added support for strategy 4096
23  *  03/07/99      rewrote udf_block_map (again)
24  *                New funcs, inode_bmap, udf_next_aext
25  *  04/19/99      Support for writing device EA's for major/minor #
26  */
27 
28 #include "udfdecl.h"
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/pagemap.h>
32 #include <linux/writeback.h>
33 #include <linux/slab.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 
39 #include "udf_i.h"
40 #include "udf_sb.h"
41 
42 #define EXTENT_MERGE_SIZE 5
43 
44 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47 
48 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 			 FE_PERM_O_DELETE)
50 
51 struct udf_map_rq;
52 
53 static umode_t udf_convert_permissions(struct fileEntry *);
54 static int udf_update_inode(struct inode *, int);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58 static int udf_insert_aext(struct inode *, struct extent_position,
59 			   struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 			      struct kernel_long_ad *, int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad *, int *);
64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 			      int, struct extent_position *);
67 static int udf_get_block_wb(struct inode *inode, sector_t block,
68 			    struct buffer_head *bh_result, int create);
69 
70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 	struct udf_inode_info *iinfo = UDF_I(inode);
73 
74 	if (iinfo->cached_extent.lstart != -1) {
75 		brelse(iinfo->cached_extent.epos.bh);
76 		iinfo->cached_extent.lstart = -1;
77 	}
78 }
79 
80 /* Invalidate extent cache */
81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 	struct udf_inode_info *iinfo = UDF_I(inode);
84 
85 	spin_lock(&iinfo->i_extent_cache_lock);
86 	__udf_clear_extent_cache(inode);
87 	spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89 
90 /* Return contents of extent cache */
91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 				 loff_t *lbcount, struct extent_position *pos)
93 {
94 	struct udf_inode_info *iinfo = UDF_I(inode);
95 	int ret = 0;
96 
97 	spin_lock(&iinfo->i_extent_cache_lock);
98 	if ((iinfo->cached_extent.lstart <= bcount) &&
99 	    (iinfo->cached_extent.lstart != -1)) {
100 		/* Cache hit */
101 		*lbcount = iinfo->cached_extent.lstart;
102 		memcpy(pos, &iinfo->cached_extent.epos,
103 		       sizeof(struct extent_position));
104 		if (pos->bh)
105 			get_bh(pos->bh);
106 		ret = 1;
107 	}
108 	spin_unlock(&iinfo->i_extent_cache_lock);
109 	return ret;
110 }
111 
112 /* Add extent to extent cache */
113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 				    struct extent_position *pos)
115 {
116 	struct udf_inode_info *iinfo = UDF_I(inode);
117 
118 	spin_lock(&iinfo->i_extent_cache_lock);
119 	/* Invalidate previously cached extent */
120 	__udf_clear_extent_cache(inode);
121 	if (pos->bh)
122 		get_bh(pos->bh);
123 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 	iinfo->cached_extent.lstart = estart;
125 	switch (iinfo->i_alloc_type) {
126 	case ICBTAG_FLAG_AD_SHORT:
127 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 		break;
129 	case ICBTAG_FLAG_AD_LONG:
130 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 		break;
132 	}
133 	spin_unlock(&iinfo->i_extent_cache_lock);
134 }
135 
136 void udf_evict_inode(struct inode *inode)
137 {
138 	struct udf_inode_info *iinfo = UDF_I(inode);
139 	int want_delete = 0;
140 
141 	if (!is_bad_inode(inode)) {
142 		if (!inode->i_nlink) {
143 			want_delete = 1;
144 			udf_setsize(inode, 0);
145 			udf_update_inode(inode, IS_SYNC(inode));
146 		}
147 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 		    inode->i_size != iinfo->i_lenExtents) {
149 			udf_warn(inode->i_sb,
150 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 				 inode->i_ino, inode->i_mode,
152 				 (unsigned long long)inode->i_size,
153 				 (unsigned long long)iinfo->i_lenExtents);
154 		}
155 	}
156 	truncate_inode_pages_final(&inode->i_data);
157 	invalidate_inode_buffers(inode);
158 	clear_inode(inode);
159 	kfree(iinfo->i_data);
160 	iinfo->i_data = NULL;
161 	udf_clear_extent_cache(inode);
162 	if (want_delete) {
163 		udf_free_inode(inode);
164 	}
165 }
166 
167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 	struct inode *inode = mapping->host;
170 	struct udf_inode_info *iinfo = UDF_I(inode);
171 	loff_t isize = inode->i_size;
172 
173 	if (to > isize) {
174 		truncate_pagecache(inode, isize);
175 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 			down_write(&iinfo->i_data_sem);
177 			udf_clear_extent_cache(inode);
178 			udf_truncate_extents(inode);
179 			up_write(&iinfo->i_data_sem);
180 		}
181 	}
182 }
183 
184 static int udf_adinicb_writepage(struct folio *folio,
185 				 struct writeback_control *wbc, void *data)
186 {
187 	struct inode *inode = folio->mapping->host;
188 	struct udf_inode_info *iinfo = UDF_I(inode);
189 
190 	BUG_ON(!folio_test_locked(folio));
191 	BUG_ON(folio->index != 0);
192 	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 		       i_size_read(inode));
194 	folio_unlock(folio);
195 	mark_inode_dirty(inode);
196 
197 	return 0;
198 }
199 
200 static int udf_writepages(struct address_space *mapping,
201 			  struct writeback_control *wbc)
202 {
203 	struct inode *inode = mapping->host;
204 	struct udf_inode_info *iinfo = UDF_I(inode);
205 
206 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 		return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209 }
210 
211 static void udf_adinicb_readpage(struct page *page)
212 {
213 	struct inode *inode = page->mapping->host;
214 	char *kaddr;
215 	struct udf_inode_info *iinfo = UDF_I(inode);
216 	loff_t isize = i_size_read(inode);
217 
218 	kaddr = kmap_local_page(page);
219 	memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
220 	memset(kaddr + isize, 0, PAGE_SIZE - isize);
221 	flush_dcache_page(page);
222 	SetPageUptodate(page);
223 	kunmap_local(kaddr);
224 }
225 
226 static int udf_read_folio(struct file *file, struct folio *folio)
227 {
228 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
229 
230 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
231 		udf_adinicb_readpage(&folio->page);
232 		folio_unlock(folio);
233 		return 0;
234 	}
235 	return mpage_read_folio(folio, udf_get_block);
236 }
237 
238 static void udf_readahead(struct readahead_control *rac)
239 {
240 	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
241 
242 	/*
243 	 * No readahead needed for in-ICB files and udf_get_block() would get
244 	 * confused for such file anyway.
245 	 */
246 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
247 		return;
248 
249 	mpage_readahead(rac, udf_get_block);
250 }
251 
252 static int udf_write_begin(struct file *file, struct address_space *mapping,
253 			   loff_t pos, unsigned len,
254 			   struct page **pagep, void **fsdata)
255 {
256 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
257 	struct page *page;
258 	int ret;
259 
260 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
261 		ret = block_write_begin(mapping, pos, len, pagep,
262 					udf_get_block);
263 		if (unlikely(ret))
264 			udf_write_failed(mapping, pos + len);
265 		return ret;
266 	}
267 	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
268 		return -EIO;
269 	page = grab_cache_page_write_begin(mapping, 0);
270 	if (!page)
271 		return -ENOMEM;
272 	*pagep = page;
273 	if (!PageUptodate(page))
274 		udf_adinicb_readpage(page);
275 	return 0;
276 }
277 
278 static int udf_write_end(struct file *file, struct address_space *mapping,
279 			 loff_t pos, unsigned len, unsigned copied,
280 			 struct page *page, void *fsdata)
281 {
282 	struct inode *inode = file_inode(file);
283 	loff_t last_pos;
284 
285 	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
286 		return generic_write_end(file, mapping, pos, len, copied, page,
287 					 fsdata);
288 	last_pos = pos + copied;
289 	if (last_pos > inode->i_size)
290 		i_size_write(inode, last_pos);
291 	set_page_dirty(page);
292 	unlock_page(page);
293 	put_page(page);
294 
295 	return copied;
296 }
297 
298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
299 {
300 	struct file *file = iocb->ki_filp;
301 	struct address_space *mapping = file->f_mapping;
302 	struct inode *inode = mapping->host;
303 	size_t count = iov_iter_count(iter);
304 	ssize_t ret;
305 
306 	/* Fallback to buffered IO for in-ICB files */
307 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
308 		return 0;
309 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
310 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
311 		udf_write_failed(mapping, iocb->ki_pos + count);
312 	return ret;
313 }
314 
315 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
316 {
317 	struct udf_inode_info *iinfo = UDF_I(mapping->host);
318 
319 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
320 		return -EINVAL;
321 	return generic_block_bmap(mapping, block, udf_get_block);
322 }
323 
324 const struct address_space_operations udf_aops = {
325 	.dirty_folio	= block_dirty_folio,
326 	.invalidate_folio = block_invalidate_folio,
327 	.read_folio	= udf_read_folio,
328 	.readahead	= udf_readahead,
329 	.writepages	= udf_writepages,
330 	.write_begin	= udf_write_begin,
331 	.write_end	= udf_write_end,
332 	.direct_IO	= udf_direct_IO,
333 	.bmap		= udf_bmap,
334 	.migrate_folio	= buffer_migrate_folio,
335 };
336 
337 /*
338  * Expand file stored in ICB to a normal one-block-file
339  *
340  * This function requires i_mutex held
341  */
342 int udf_expand_file_adinicb(struct inode *inode)
343 {
344 	struct page *page;
345 	struct udf_inode_info *iinfo = UDF_I(inode);
346 	int err;
347 
348 	WARN_ON_ONCE(!inode_is_locked(inode));
349 	if (!iinfo->i_lenAlloc) {
350 		down_write(&iinfo->i_data_sem);
351 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
352 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
353 		else
354 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
355 		up_write(&iinfo->i_data_sem);
356 		mark_inode_dirty(inode);
357 		return 0;
358 	}
359 
360 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
361 	if (!page)
362 		return -ENOMEM;
363 
364 	if (!PageUptodate(page))
365 		udf_adinicb_readpage(page);
366 	down_write(&iinfo->i_data_sem);
367 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
368 	       iinfo->i_lenAlloc);
369 	iinfo->i_lenAlloc = 0;
370 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
371 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
372 	else
373 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
374 	set_page_dirty(page);
375 	unlock_page(page);
376 	up_write(&iinfo->i_data_sem);
377 	err = filemap_fdatawrite(inode->i_mapping);
378 	if (err) {
379 		/* Restore everything back so that we don't lose data... */
380 		lock_page(page);
381 		down_write(&iinfo->i_data_sem);
382 		memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr,
383 			       inode->i_size);
384 		unlock_page(page);
385 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
386 		iinfo->i_lenAlloc = inode->i_size;
387 		up_write(&iinfo->i_data_sem);
388 	}
389 	put_page(page);
390 	mark_inode_dirty(inode);
391 
392 	return err;
393 }
394 
395 #define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
396 #define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
397 
398 #define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
399 #define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
400 
401 struct udf_map_rq {
402 	sector_t lblk;
403 	udf_pblk_t pblk;
404 	int iflags;		/* UDF_MAP_ flags determining behavior */
405 	int oflags;		/* UDF_BLK_ flags reporting results */
406 };
407 
408 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
409 {
410 	int err;
411 	struct udf_inode_info *iinfo = UDF_I(inode);
412 
413 	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
414 		return -EFSCORRUPTED;
415 
416 	map->oflags = 0;
417 	if (!(map->iflags & UDF_MAP_CREATE)) {
418 		struct kernel_lb_addr eloc;
419 		uint32_t elen;
420 		sector_t offset;
421 		struct extent_position epos = {};
422 
423 		down_read(&iinfo->i_data_sem);
424 		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
425 				== (EXT_RECORDED_ALLOCATED >> 30)) {
426 			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
427 							offset);
428 			map->oflags |= UDF_BLK_MAPPED;
429 		}
430 		up_read(&iinfo->i_data_sem);
431 		brelse(epos.bh);
432 
433 		return 0;
434 	}
435 
436 	down_write(&iinfo->i_data_sem);
437 	/*
438 	 * Block beyond EOF and prealloc extents? Just discard preallocation
439 	 * as it is not useful and complicates things.
440 	 */
441 	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
442 		udf_discard_prealloc(inode);
443 	udf_clear_extent_cache(inode);
444 	err = inode_getblk(inode, map);
445 	up_write(&iinfo->i_data_sem);
446 	return err;
447 }
448 
449 static int __udf_get_block(struct inode *inode, sector_t block,
450 			   struct buffer_head *bh_result, int flags)
451 {
452 	int err;
453 	struct udf_map_rq map = {
454 		.lblk = block,
455 		.iflags = flags,
456 	};
457 
458 	err = udf_map_block(inode, &map);
459 	if (err < 0)
460 		return err;
461 	if (map.oflags & UDF_BLK_MAPPED) {
462 		map_bh(bh_result, inode->i_sb, map.pblk);
463 		if (map.oflags & UDF_BLK_NEW)
464 			set_buffer_new(bh_result);
465 	}
466 	return 0;
467 }
468 
469 int udf_get_block(struct inode *inode, sector_t block,
470 		  struct buffer_head *bh_result, int create)
471 {
472 	int flags = create ? UDF_MAP_CREATE : 0;
473 
474 	/*
475 	 * We preallocate blocks only for regular files. It also makes sense
476 	 * for directories but there's a problem when to drop the
477 	 * preallocation. We might use some delayed work for that but I feel
478 	 * it's overengineering for a filesystem like UDF.
479 	 */
480 	if (!S_ISREG(inode->i_mode))
481 		flags |= UDF_MAP_NOPREALLOC;
482 	return __udf_get_block(inode, block, bh_result, flags);
483 }
484 
485 /*
486  * We shouldn't be allocating blocks on page writeback since we allocate them
487  * on page fault. We can spot dirty buffers without allocated blocks though
488  * when truncate expands file. These however don't have valid data so we can
489  * safely ignore them. So never allocate blocks from page writeback.
490  */
491 static int udf_get_block_wb(struct inode *inode, sector_t block,
492 			    struct buffer_head *bh_result, int create)
493 {
494 	return __udf_get_block(inode, block, bh_result, 0);
495 }
496 
497 /* Extend the file with new blocks totaling 'new_block_bytes',
498  * return the number of extents added
499  */
500 static int udf_do_extend_file(struct inode *inode,
501 			      struct extent_position *last_pos,
502 			      struct kernel_long_ad *last_ext,
503 			      loff_t new_block_bytes)
504 {
505 	uint32_t add;
506 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
507 	struct super_block *sb = inode->i_sb;
508 	struct udf_inode_info *iinfo;
509 	int err;
510 
511 	/* The previous extent is fake and we should not extend by anything
512 	 * - there's nothing to do... */
513 	if (!new_block_bytes && fake)
514 		return 0;
515 
516 	iinfo = UDF_I(inode);
517 	/* Round the last extent up to a multiple of block size */
518 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
519 		last_ext->extLength =
520 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
521 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
522 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
523 		iinfo->i_lenExtents =
524 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
525 			~(sb->s_blocksize - 1);
526 	}
527 
528 	add = 0;
529 	/* Can we merge with the previous extent? */
530 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
531 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
532 		add = (1 << 30) - sb->s_blocksize -
533 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
534 		if (add > new_block_bytes)
535 			add = new_block_bytes;
536 		new_block_bytes -= add;
537 		last_ext->extLength += add;
538 	}
539 
540 	if (fake) {
541 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
542 				   last_ext->extLength, 1);
543 		if (err < 0)
544 			goto out_err;
545 		count++;
546 	} else {
547 		struct kernel_lb_addr tmploc;
548 		uint32_t tmplen;
549 
550 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
551 				last_ext->extLength, 1);
552 
553 		/*
554 		 * We've rewritten the last extent. If we are going to add
555 		 * more extents, we may need to enter possible following
556 		 * empty indirect extent.
557 		 */
558 		if (new_block_bytes)
559 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
560 	}
561 	iinfo->i_lenExtents += add;
562 
563 	/* Managed to do everything necessary? */
564 	if (!new_block_bytes)
565 		goto out;
566 
567 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
568 	last_ext->extLocation.logicalBlockNum = 0;
569 	last_ext->extLocation.partitionReferenceNum = 0;
570 	add = (1 << 30) - sb->s_blocksize;
571 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
572 
573 	/* Create enough extents to cover the whole hole */
574 	while (new_block_bytes > add) {
575 		new_block_bytes -= add;
576 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
577 				   last_ext->extLength, 1);
578 		if (err)
579 			goto out_err;
580 		iinfo->i_lenExtents += add;
581 		count++;
582 	}
583 	if (new_block_bytes) {
584 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
585 			new_block_bytes;
586 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
587 				   last_ext->extLength, 1);
588 		if (err)
589 			goto out_err;
590 		iinfo->i_lenExtents += new_block_bytes;
591 		count++;
592 	}
593 
594 out:
595 	/* last_pos should point to the last written extent... */
596 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
597 		last_pos->offset -= sizeof(struct short_ad);
598 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
599 		last_pos->offset -= sizeof(struct long_ad);
600 	else
601 		return -EIO;
602 
603 	return count;
604 out_err:
605 	/* Remove extents we've created so far */
606 	udf_clear_extent_cache(inode);
607 	udf_truncate_extents(inode);
608 	return err;
609 }
610 
611 /* Extend the final block of the file to final_block_len bytes */
612 static void udf_do_extend_final_block(struct inode *inode,
613 				      struct extent_position *last_pos,
614 				      struct kernel_long_ad *last_ext,
615 				      uint32_t new_elen)
616 {
617 	uint32_t added_bytes;
618 
619 	/*
620 	 * Extent already large enough? It may be already rounded up to block
621 	 * size...
622 	 */
623 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
624 		return;
625 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
626 	last_ext->extLength += added_bytes;
627 	UDF_I(inode)->i_lenExtents += added_bytes;
628 
629 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
630 			last_ext->extLength, 1);
631 }
632 
633 static int udf_extend_file(struct inode *inode, loff_t newsize)
634 {
635 
636 	struct extent_position epos;
637 	struct kernel_lb_addr eloc;
638 	uint32_t elen;
639 	int8_t etype;
640 	struct super_block *sb = inode->i_sb;
641 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
642 	loff_t new_elen;
643 	int adsize;
644 	struct udf_inode_info *iinfo = UDF_I(inode);
645 	struct kernel_long_ad extent;
646 	int err = 0;
647 	bool within_last_ext;
648 
649 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
650 		adsize = sizeof(struct short_ad);
651 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
652 		adsize = sizeof(struct long_ad);
653 	else
654 		BUG();
655 
656 	down_write(&iinfo->i_data_sem);
657 	/*
658 	 * When creating hole in file, just don't bother with preserving
659 	 * preallocation. It likely won't be very useful anyway.
660 	 */
661 	udf_discard_prealloc(inode);
662 
663 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
664 	within_last_ext = (etype != -1);
665 	/* We don't expect extents past EOF... */
666 	WARN_ON_ONCE(within_last_ext &&
667 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
668 
669 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
670 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
671 		/* File has no extents at all or has empty last
672 		 * indirect extent! Create a fake extent... */
673 		extent.extLocation.logicalBlockNum = 0;
674 		extent.extLocation.partitionReferenceNum = 0;
675 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
676 	} else {
677 		epos.offset -= adsize;
678 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
679 				      &extent.extLength, 0);
680 		extent.extLength |= etype << 30;
681 	}
682 
683 	new_elen = ((loff_t)offset << inode->i_blkbits) |
684 					(newsize & (sb->s_blocksize - 1));
685 
686 	/* File has extent covering the new size (could happen when extending
687 	 * inside a block)?
688 	 */
689 	if (within_last_ext) {
690 		/* Extending file within the last file block */
691 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
692 	} else {
693 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
694 	}
695 
696 	if (err < 0)
697 		goto out;
698 	err = 0;
699 out:
700 	brelse(epos.bh);
701 	up_write(&iinfo->i_data_sem);
702 	return err;
703 }
704 
705 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
706 {
707 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
708 	struct extent_position prev_epos, cur_epos, next_epos;
709 	int count = 0, startnum = 0, endnum = 0;
710 	uint32_t elen = 0, tmpelen;
711 	struct kernel_lb_addr eloc, tmpeloc;
712 	int c = 1;
713 	loff_t lbcount = 0, b_off = 0;
714 	udf_pblk_t newblocknum;
715 	sector_t offset = 0;
716 	int8_t etype;
717 	struct udf_inode_info *iinfo = UDF_I(inode);
718 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
719 	int lastblock = 0;
720 	bool isBeyondEOF;
721 	int ret = 0;
722 
723 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
724 	prev_epos.block = iinfo->i_location;
725 	prev_epos.bh = NULL;
726 	cur_epos = next_epos = prev_epos;
727 	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
728 
729 	/* find the extent which contains the block we are looking for.
730 	   alternate between laarr[0] and laarr[1] for locations of the
731 	   current extent, and the previous extent */
732 	do {
733 		if (prev_epos.bh != cur_epos.bh) {
734 			brelse(prev_epos.bh);
735 			get_bh(cur_epos.bh);
736 			prev_epos.bh = cur_epos.bh;
737 		}
738 		if (cur_epos.bh != next_epos.bh) {
739 			brelse(cur_epos.bh);
740 			get_bh(next_epos.bh);
741 			cur_epos.bh = next_epos.bh;
742 		}
743 
744 		lbcount += elen;
745 
746 		prev_epos.block = cur_epos.block;
747 		cur_epos.block = next_epos.block;
748 
749 		prev_epos.offset = cur_epos.offset;
750 		cur_epos.offset = next_epos.offset;
751 
752 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
753 		if (etype == -1)
754 			break;
755 
756 		c = !c;
757 
758 		laarr[c].extLength = (etype << 30) | elen;
759 		laarr[c].extLocation = eloc;
760 
761 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
762 			pgoal = eloc.logicalBlockNum +
763 				((elen + inode->i_sb->s_blocksize - 1) >>
764 				 inode->i_sb->s_blocksize_bits);
765 
766 		count++;
767 	} while (lbcount + elen <= b_off);
768 
769 	b_off -= lbcount;
770 	offset = b_off >> inode->i_sb->s_blocksize_bits;
771 	/*
772 	 * Move prev_epos and cur_epos into indirect extent if we are at
773 	 * the pointer to it
774 	 */
775 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
776 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
777 
778 	/* if the extent is allocated and recorded, return the block
779 	   if the extent is not a multiple of the blocksize, round up */
780 
781 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
782 		if (elen & (inode->i_sb->s_blocksize - 1)) {
783 			elen = EXT_RECORDED_ALLOCATED |
784 				((elen + inode->i_sb->s_blocksize - 1) &
785 				 ~(inode->i_sb->s_blocksize - 1));
786 			iinfo->i_lenExtents =
787 				ALIGN(iinfo->i_lenExtents,
788 				      inode->i_sb->s_blocksize);
789 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
790 		}
791 		map->oflags = UDF_BLK_MAPPED;
792 		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
793 		goto out_free;
794 	}
795 
796 	/* Are we beyond EOF and preallocated extent? */
797 	if (etype == -1) {
798 		loff_t hole_len;
799 
800 		isBeyondEOF = true;
801 		if (count) {
802 			if (c)
803 				laarr[0] = laarr[1];
804 			startnum = 1;
805 		} else {
806 			/* Create a fake extent when there's not one */
807 			memset(&laarr[0].extLocation, 0x00,
808 				sizeof(struct kernel_lb_addr));
809 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
810 			/* Will udf_do_extend_file() create real extent from
811 			   a fake one? */
812 			startnum = (offset > 0);
813 		}
814 		/* Create extents for the hole between EOF and offset */
815 		hole_len = (loff_t)offset << inode->i_blkbits;
816 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
817 		if (ret < 0)
818 			goto out_free;
819 		c = 0;
820 		offset = 0;
821 		count += ret;
822 		/*
823 		 * Is there any real extent? - otherwise we overwrite the fake
824 		 * one...
825 		 */
826 		if (count)
827 			c = !c;
828 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
829 			inode->i_sb->s_blocksize;
830 		memset(&laarr[c].extLocation, 0x00,
831 			sizeof(struct kernel_lb_addr));
832 		count++;
833 		endnum = c + 1;
834 		lastblock = 1;
835 	} else {
836 		isBeyondEOF = false;
837 		endnum = startnum = ((count > 2) ? 2 : count);
838 
839 		/* if the current extent is in position 0,
840 		   swap it with the previous */
841 		if (!c && count != 1) {
842 			laarr[2] = laarr[0];
843 			laarr[0] = laarr[1];
844 			laarr[1] = laarr[2];
845 			c = 1;
846 		}
847 
848 		/* if the current block is located in an extent,
849 		   read the next extent */
850 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
851 		if (etype != -1) {
852 			laarr[c + 1].extLength = (etype << 30) | elen;
853 			laarr[c + 1].extLocation = eloc;
854 			count++;
855 			startnum++;
856 			endnum++;
857 		} else
858 			lastblock = 1;
859 	}
860 
861 	/* if the current extent is not recorded but allocated, get the
862 	 * block in the extent corresponding to the requested block */
863 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
864 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
865 	else { /* otherwise, allocate a new block */
866 		if (iinfo->i_next_alloc_block == map->lblk)
867 			goal = iinfo->i_next_alloc_goal;
868 
869 		if (!goal) {
870 			if (!(goal = pgoal)) /* XXX: what was intended here? */
871 				goal = iinfo->i_location.logicalBlockNum + 1;
872 		}
873 
874 		newblocknum = udf_new_block(inode->i_sb, inode,
875 				iinfo->i_location.partitionReferenceNum,
876 				goal, &ret);
877 		if (!newblocknum)
878 			goto out_free;
879 		if (isBeyondEOF)
880 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
881 	}
882 
883 	/* if the extent the requsted block is located in contains multiple
884 	 * blocks, split the extent into at most three extents. blocks prior
885 	 * to requested block, requested block, and blocks after requested
886 	 * block */
887 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
888 
889 	if (!(map->iflags & UDF_MAP_NOPREALLOC))
890 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
891 
892 	/* merge any continuous blocks in laarr */
893 	udf_merge_extents(inode, laarr, &endnum);
894 
895 	/* write back the new extents, inserting new extents if the new number
896 	 * of extents is greater than the old number, and deleting extents if
897 	 * the new number of extents is less than the old number */
898 	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
899 	if (ret < 0)
900 		goto out_free;
901 
902 	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
903 				iinfo->i_location.partitionReferenceNum, 0);
904 	if (!map->pblk) {
905 		ret = -EFSCORRUPTED;
906 		goto out_free;
907 	}
908 	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
909 	iinfo->i_next_alloc_block = map->lblk + 1;
910 	iinfo->i_next_alloc_goal = newblocknum + 1;
911 	inode_set_ctime_current(inode);
912 
913 	if (IS_SYNC(inode))
914 		udf_sync_inode(inode);
915 	else
916 		mark_inode_dirty(inode);
917 	ret = 0;
918 out_free:
919 	brelse(prev_epos.bh);
920 	brelse(cur_epos.bh);
921 	brelse(next_epos.bh);
922 	return ret;
923 }
924 
925 static void udf_split_extents(struct inode *inode, int *c, int offset,
926 			       udf_pblk_t newblocknum,
927 			       struct kernel_long_ad *laarr, int *endnum)
928 {
929 	unsigned long blocksize = inode->i_sb->s_blocksize;
930 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
931 
932 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
933 	    (laarr[*c].extLength >> 30) ==
934 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
935 		int curr = *c;
936 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
937 			    blocksize - 1) >> blocksize_bits;
938 		int8_t etype = (laarr[curr].extLength >> 30);
939 
940 		if (blen == 1)
941 			;
942 		else if (!offset || blen == offset + 1) {
943 			laarr[curr + 2] = laarr[curr + 1];
944 			laarr[curr + 1] = laarr[curr];
945 		} else {
946 			laarr[curr + 3] = laarr[curr + 1];
947 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
948 		}
949 
950 		if (offset) {
951 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
952 				udf_free_blocks(inode->i_sb, inode,
953 						&laarr[curr].extLocation,
954 						0, offset);
955 				laarr[curr].extLength =
956 					EXT_NOT_RECORDED_NOT_ALLOCATED |
957 					(offset << blocksize_bits);
958 				laarr[curr].extLocation.logicalBlockNum = 0;
959 				laarr[curr].extLocation.
960 						partitionReferenceNum = 0;
961 			} else
962 				laarr[curr].extLength = (etype << 30) |
963 					(offset << blocksize_bits);
964 			curr++;
965 			(*c)++;
966 			(*endnum)++;
967 		}
968 
969 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
970 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
971 			laarr[curr].extLocation.partitionReferenceNum =
972 				UDF_I(inode)->i_location.partitionReferenceNum;
973 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
974 			blocksize;
975 		curr++;
976 
977 		if (blen != offset + 1) {
978 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
979 				laarr[curr].extLocation.logicalBlockNum +=
980 								offset + 1;
981 			laarr[curr].extLength = (etype << 30) |
982 				((blen - (offset + 1)) << blocksize_bits);
983 			curr++;
984 			(*endnum)++;
985 		}
986 	}
987 }
988 
989 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
990 				 struct kernel_long_ad *laarr,
991 				 int *endnum)
992 {
993 	int start, length = 0, currlength = 0, i;
994 
995 	if (*endnum >= (c + 1)) {
996 		if (!lastblock)
997 			return;
998 		else
999 			start = c;
1000 	} else {
1001 		if ((laarr[c + 1].extLength >> 30) ==
1002 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1003 			start = c + 1;
1004 			length = currlength =
1005 				(((laarr[c + 1].extLength &
1006 					UDF_EXTENT_LENGTH_MASK) +
1007 				inode->i_sb->s_blocksize - 1) >>
1008 				inode->i_sb->s_blocksize_bits);
1009 		} else
1010 			start = c;
1011 	}
1012 
1013 	for (i = start + 1; i <= *endnum; i++) {
1014 		if (i == *endnum) {
1015 			if (lastblock)
1016 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1017 		} else if ((laarr[i].extLength >> 30) ==
1018 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1019 			length += (((laarr[i].extLength &
1020 						UDF_EXTENT_LENGTH_MASK) +
1021 				    inode->i_sb->s_blocksize - 1) >>
1022 				    inode->i_sb->s_blocksize_bits);
1023 		} else
1024 			break;
1025 	}
1026 
1027 	if (length) {
1028 		int next = laarr[start].extLocation.logicalBlockNum +
1029 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1030 			  inode->i_sb->s_blocksize - 1) >>
1031 			  inode->i_sb->s_blocksize_bits);
1032 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1033 				laarr[start].extLocation.partitionReferenceNum,
1034 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1035 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1036 				currlength);
1037 		if (numalloc) 	{
1038 			if (start == (c + 1))
1039 				laarr[start].extLength +=
1040 					(numalloc <<
1041 					 inode->i_sb->s_blocksize_bits);
1042 			else {
1043 				memmove(&laarr[c + 2], &laarr[c + 1],
1044 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1045 				(*endnum)++;
1046 				laarr[c + 1].extLocation.logicalBlockNum = next;
1047 				laarr[c + 1].extLocation.partitionReferenceNum =
1048 					laarr[c].extLocation.
1049 							partitionReferenceNum;
1050 				laarr[c + 1].extLength =
1051 					EXT_NOT_RECORDED_ALLOCATED |
1052 					(numalloc <<
1053 					 inode->i_sb->s_blocksize_bits);
1054 				start = c + 1;
1055 			}
1056 
1057 			for (i = start + 1; numalloc && i < *endnum; i++) {
1058 				int elen = ((laarr[i].extLength &
1059 						UDF_EXTENT_LENGTH_MASK) +
1060 					    inode->i_sb->s_blocksize - 1) >>
1061 					    inode->i_sb->s_blocksize_bits;
1062 
1063 				if (elen > numalloc) {
1064 					laarr[i].extLength -=
1065 						(numalloc <<
1066 						 inode->i_sb->s_blocksize_bits);
1067 					numalloc = 0;
1068 				} else {
1069 					numalloc -= elen;
1070 					if (*endnum > (i + 1))
1071 						memmove(&laarr[i],
1072 							&laarr[i + 1],
1073 							sizeof(struct long_ad) *
1074 							(*endnum - (i + 1)));
1075 					i--;
1076 					(*endnum)--;
1077 				}
1078 			}
1079 			UDF_I(inode)->i_lenExtents +=
1080 				numalloc << inode->i_sb->s_blocksize_bits;
1081 		}
1082 	}
1083 }
1084 
1085 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1086 			      int *endnum)
1087 {
1088 	int i;
1089 	unsigned long blocksize = inode->i_sb->s_blocksize;
1090 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1091 
1092 	for (i = 0; i < (*endnum - 1); i++) {
1093 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1094 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1095 
1096 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1097 			(((li->extLength >> 30) ==
1098 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1099 			((lip1->extLocation.logicalBlockNum -
1100 			  li->extLocation.logicalBlockNum) ==
1101 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 			blocksize - 1) >> blocksize_bits)))) {
1103 
1104 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1105 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1106 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1107 				li->extLength = lip1->extLength +
1108 					(((li->extLength &
1109 						UDF_EXTENT_LENGTH_MASK) +
1110 					 blocksize - 1) & ~(blocksize - 1));
1111 				if (*endnum > (i + 2))
1112 					memmove(&laarr[i + 1], &laarr[i + 2],
1113 						sizeof(struct long_ad) *
1114 						(*endnum - (i + 2)));
1115 				i--;
1116 				(*endnum)--;
1117 			}
1118 		} else if (((li->extLength >> 30) ==
1119 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1120 			   ((lip1->extLength >> 30) ==
1121 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1122 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1123 					((li->extLength &
1124 					  UDF_EXTENT_LENGTH_MASK) +
1125 					 blocksize - 1) >> blocksize_bits);
1126 			li->extLocation.logicalBlockNum = 0;
1127 			li->extLocation.partitionReferenceNum = 0;
1128 
1129 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1130 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1131 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1132 				lip1->extLength = (lip1->extLength -
1133 						   (li->extLength &
1134 						   UDF_EXTENT_LENGTH_MASK) +
1135 						   UDF_EXTENT_LENGTH_MASK) &
1136 						   ~(blocksize - 1);
1137 				li->extLength = (li->extLength &
1138 						 UDF_EXTENT_FLAG_MASK) +
1139 						(UDF_EXTENT_LENGTH_MASK + 1) -
1140 						blocksize;
1141 			} else {
1142 				li->extLength = lip1->extLength +
1143 					(((li->extLength &
1144 						UDF_EXTENT_LENGTH_MASK) +
1145 					  blocksize - 1) & ~(blocksize - 1));
1146 				if (*endnum > (i + 2))
1147 					memmove(&laarr[i + 1], &laarr[i + 2],
1148 						sizeof(struct long_ad) *
1149 						(*endnum - (i + 2)));
1150 				i--;
1151 				(*endnum)--;
1152 			}
1153 		} else if ((li->extLength >> 30) ==
1154 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1155 			udf_free_blocks(inode->i_sb, inode,
1156 					&li->extLocation, 0,
1157 					((li->extLength &
1158 						UDF_EXTENT_LENGTH_MASK) +
1159 					 blocksize - 1) >> blocksize_bits);
1160 			li->extLocation.logicalBlockNum = 0;
1161 			li->extLocation.partitionReferenceNum = 0;
1162 			li->extLength = (li->extLength &
1163 						UDF_EXTENT_LENGTH_MASK) |
1164 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1165 		}
1166 	}
1167 }
1168 
1169 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1170 			      int startnum, int endnum,
1171 			      struct extent_position *epos)
1172 {
1173 	int start = 0, i;
1174 	struct kernel_lb_addr tmploc;
1175 	uint32_t tmplen;
1176 	int err;
1177 
1178 	if (startnum > endnum) {
1179 		for (i = 0; i < (startnum - endnum); i++)
1180 			udf_delete_aext(inode, *epos);
1181 	} else if (startnum < endnum) {
1182 		for (i = 0; i < (endnum - startnum); i++) {
1183 			err = udf_insert_aext(inode, *epos,
1184 					      laarr[i].extLocation,
1185 					      laarr[i].extLength);
1186 			/*
1187 			 * If we fail here, we are likely corrupting the extent
1188 			 * list and leaking blocks. At least stop early to
1189 			 * limit the damage.
1190 			 */
1191 			if (err < 0)
1192 				return err;
1193 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1194 				      &laarr[i].extLength, 1);
1195 			start++;
1196 		}
1197 	}
1198 
1199 	for (i = start; i < endnum; i++) {
1200 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1202 			       laarr[i].extLength, 1);
1203 	}
1204 	return 0;
1205 }
1206 
1207 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1208 			      int create, int *err)
1209 {
1210 	struct buffer_head *bh = NULL;
1211 	struct udf_map_rq map = {
1212 		.lblk = block,
1213 		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1214 	};
1215 
1216 	*err = udf_map_block(inode, &map);
1217 	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1218 		return NULL;
1219 
1220 	bh = sb_getblk(inode->i_sb, map.pblk);
1221 	if (!bh) {
1222 		*err = -ENOMEM;
1223 		return NULL;
1224 	}
1225 	if (map.oflags & UDF_BLK_NEW) {
1226 		lock_buffer(bh);
1227 		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1228 		set_buffer_uptodate(bh);
1229 		unlock_buffer(bh);
1230 		mark_buffer_dirty_inode(bh, inode);
1231 		return bh;
1232 	}
1233 
1234 	if (bh_read(bh, 0) >= 0)
1235 		return bh;
1236 
1237 	brelse(bh);
1238 	*err = -EIO;
1239 	return NULL;
1240 }
1241 
1242 int udf_setsize(struct inode *inode, loff_t newsize)
1243 {
1244 	int err = 0;
1245 	struct udf_inode_info *iinfo;
1246 	unsigned int bsize = i_blocksize(inode);
1247 
1248 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1249 	      S_ISLNK(inode->i_mode)))
1250 		return -EINVAL;
1251 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1252 		return -EPERM;
1253 
1254 	filemap_invalidate_lock(inode->i_mapping);
1255 	iinfo = UDF_I(inode);
1256 	if (newsize > inode->i_size) {
1257 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1258 			if (bsize >=
1259 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1260 				down_write(&iinfo->i_data_sem);
1261 				iinfo->i_lenAlloc = newsize;
1262 				up_write(&iinfo->i_data_sem);
1263 				goto set_size;
1264 			}
1265 			err = udf_expand_file_adinicb(inode);
1266 			if (err)
1267 				goto out_unlock;
1268 		}
1269 		err = udf_extend_file(inode, newsize);
1270 		if (err)
1271 			goto out_unlock;
1272 set_size:
1273 		truncate_setsize(inode, newsize);
1274 	} else {
1275 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1276 			down_write(&iinfo->i_data_sem);
1277 			udf_clear_extent_cache(inode);
1278 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1279 			       0x00, bsize - newsize -
1280 			       udf_file_entry_alloc_offset(inode));
1281 			iinfo->i_lenAlloc = newsize;
1282 			truncate_setsize(inode, newsize);
1283 			up_write(&iinfo->i_data_sem);
1284 			goto update_time;
1285 		}
1286 		err = block_truncate_page(inode->i_mapping, newsize,
1287 					  udf_get_block);
1288 		if (err)
1289 			goto out_unlock;
1290 		truncate_setsize(inode, newsize);
1291 		down_write(&iinfo->i_data_sem);
1292 		udf_clear_extent_cache(inode);
1293 		err = udf_truncate_extents(inode);
1294 		up_write(&iinfo->i_data_sem);
1295 		if (err)
1296 			goto out_unlock;
1297 	}
1298 update_time:
1299 	inode->i_mtime = inode_set_ctime_current(inode);
1300 	if (IS_SYNC(inode))
1301 		udf_sync_inode(inode);
1302 	else
1303 		mark_inode_dirty(inode);
1304 out_unlock:
1305 	filemap_invalidate_unlock(inode->i_mapping);
1306 	return err;
1307 }
1308 
1309 /*
1310  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1311  * arbitrary - just that we hopefully don't limit any real use of rewritten
1312  * inode on write-once media but avoid looping for too long on corrupted media.
1313  */
1314 #define UDF_MAX_ICB_NESTING 1024
1315 
1316 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1317 {
1318 	struct buffer_head *bh = NULL;
1319 	struct fileEntry *fe;
1320 	struct extendedFileEntry *efe;
1321 	uint16_t ident;
1322 	struct udf_inode_info *iinfo = UDF_I(inode);
1323 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1324 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1325 	unsigned int link_count;
1326 	unsigned int indirections = 0;
1327 	int bs = inode->i_sb->s_blocksize;
1328 	int ret = -EIO;
1329 	uint32_t uid, gid;
1330 	struct timespec64 ctime;
1331 
1332 reread:
1333 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1334 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1335 			  iloc->partitionReferenceNum, sbi->s_partitions);
1336 		return -EIO;
1337 	}
1338 
1339 	if (iloc->logicalBlockNum >=
1340 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1341 		udf_debug("block=%u, partition=%u out of range\n",
1342 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1343 		return -EIO;
1344 	}
1345 
1346 	/*
1347 	 * Set defaults, but the inode is still incomplete!
1348 	 * Note: get_new_inode() sets the following on a new inode:
1349 	 *      i_sb = sb
1350 	 *      i_no = ino
1351 	 *      i_flags = sb->s_flags
1352 	 *      i_state = 0
1353 	 * clean_inode(): zero fills and sets
1354 	 *      i_count = 1
1355 	 *      i_nlink = 1
1356 	 *      i_op = NULL;
1357 	 */
1358 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1359 	if (!bh) {
1360 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1361 		return -EIO;
1362 	}
1363 
1364 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1365 	    ident != TAG_IDENT_USE) {
1366 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1367 			inode->i_ino, ident);
1368 		goto out;
1369 	}
1370 
1371 	fe = (struct fileEntry *)bh->b_data;
1372 	efe = (struct extendedFileEntry *)bh->b_data;
1373 
1374 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1375 		struct buffer_head *ibh;
1376 
1377 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1378 		if (ident == TAG_IDENT_IE && ibh) {
1379 			struct kernel_lb_addr loc;
1380 			struct indirectEntry *ie;
1381 
1382 			ie = (struct indirectEntry *)ibh->b_data;
1383 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1384 
1385 			if (ie->indirectICB.extLength) {
1386 				brelse(ibh);
1387 				memcpy(&iinfo->i_location, &loc,
1388 				       sizeof(struct kernel_lb_addr));
1389 				if (++indirections > UDF_MAX_ICB_NESTING) {
1390 					udf_err(inode->i_sb,
1391 						"too many ICBs in ICB hierarchy"
1392 						" (max %d supported)\n",
1393 						UDF_MAX_ICB_NESTING);
1394 					goto out;
1395 				}
1396 				brelse(bh);
1397 				goto reread;
1398 			}
1399 		}
1400 		brelse(ibh);
1401 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1402 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1403 			le16_to_cpu(fe->icbTag.strategyType));
1404 		goto out;
1405 	}
1406 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1407 		iinfo->i_strat4096 = 0;
1408 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1409 		iinfo->i_strat4096 = 1;
1410 
1411 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1412 							ICBTAG_FLAG_AD_MASK;
1413 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1414 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1415 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1416 		ret = -EIO;
1417 		goto out;
1418 	}
1419 	iinfo->i_hidden = hidden_inode;
1420 	iinfo->i_unique = 0;
1421 	iinfo->i_lenEAttr = 0;
1422 	iinfo->i_lenExtents = 0;
1423 	iinfo->i_lenAlloc = 0;
1424 	iinfo->i_next_alloc_block = 0;
1425 	iinfo->i_next_alloc_goal = 0;
1426 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1427 		iinfo->i_efe = 1;
1428 		iinfo->i_use = 0;
1429 		ret = udf_alloc_i_data(inode, bs -
1430 					sizeof(struct extendedFileEntry));
1431 		if (ret)
1432 			goto out;
1433 		memcpy(iinfo->i_data,
1434 		       bh->b_data + sizeof(struct extendedFileEntry),
1435 		       bs - sizeof(struct extendedFileEntry));
1436 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1437 		iinfo->i_efe = 0;
1438 		iinfo->i_use = 0;
1439 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1440 		if (ret)
1441 			goto out;
1442 		memcpy(iinfo->i_data,
1443 		       bh->b_data + sizeof(struct fileEntry),
1444 		       bs - sizeof(struct fileEntry));
1445 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1446 		iinfo->i_efe = 0;
1447 		iinfo->i_use = 1;
1448 		iinfo->i_lenAlloc = le32_to_cpu(
1449 				((struct unallocSpaceEntry *)bh->b_data)->
1450 				 lengthAllocDescs);
1451 		ret = udf_alloc_i_data(inode, bs -
1452 					sizeof(struct unallocSpaceEntry));
1453 		if (ret)
1454 			goto out;
1455 		memcpy(iinfo->i_data,
1456 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1457 		       bs - sizeof(struct unallocSpaceEntry));
1458 		return 0;
1459 	}
1460 
1461 	ret = -EIO;
1462 	read_lock(&sbi->s_cred_lock);
1463 	uid = le32_to_cpu(fe->uid);
1464 	if (uid == UDF_INVALID_ID ||
1465 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1466 		inode->i_uid = sbi->s_uid;
1467 	else
1468 		i_uid_write(inode, uid);
1469 
1470 	gid = le32_to_cpu(fe->gid);
1471 	if (gid == UDF_INVALID_ID ||
1472 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1473 		inode->i_gid = sbi->s_gid;
1474 	else
1475 		i_gid_write(inode, gid);
1476 
1477 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1478 			sbi->s_fmode != UDF_INVALID_MODE)
1479 		inode->i_mode = sbi->s_fmode;
1480 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1481 			sbi->s_dmode != UDF_INVALID_MODE)
1482 		inode->i_mode = sbi->s_dmode;
1483 	else
1484 		inode->i_mode = udf_convert_permissions(fe);
1485 	inode->i_mode &= ~sbi->s_umask;
1486 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1487 
1488 	read_unlock(&sbi->s_cred_lock);
1489 
1490 	link_count = le16_to_cpu(fe->fileLinkCount);
1491 	if (!link_count) {
1492 		if (!hidden_inode) {
1493 			ret = -ESTALE;
1494 			goto out;
1495 		}
1496 		link_count = 1;
1497 	}
1498 	set_nlink(inode, link_count);
1499 
1500 	inode->i_size = le64_to_cpu(fe->informationLength);
1501 	iinfo->i_lenExtents = inode->i_size;
1502 
1503 	if (iinfo->i_efe == 0) {
1504 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1505 			(inode->i_sb->s_blocksize_bits - 9);
1506 
1507 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1508 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1509 		udf_disk_stamp_to_time(&ctime, fe->attrTime);
1510 		inode_set_ctime_to_ts(inode, ctime);
1511 
1512 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1513 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1514 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1515 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1516 		iinfo->i_streamdir = 0;
1517 		iinfo->i_lenStreams = 0;
1518 	} else {
1519 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1520 		    (inode->i_sb->s_blocksize_bits - 9);
1521 
1522 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1523 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1524 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1525 		udf_disk_stamp_to_time(&ctime, efe->attrTime);
1526 		inode_set_ctime_to_ts(inode, ctime);
1527 
1528 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1529 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1530 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1531 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1532 
1533 		/* Named streams */
1534 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1535 		iinfo->i_locStreamdir =
1536 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1537 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1538 		if (iinfo->i_lenStreams >= inode->i_size)
1539 			iinfo->i_lenStreams -= inode->i_size;
1540 		else
1541 			iinfo->i_lenStreams = 0;
1542 	}
1543 	inode->i_generation = iinfo->i_unique;
1544 
1545 	/*
1546 	 * Sanity check length of allocation descriptors and extended attrs to
1547 	 * avoid integer overflows
1548 	 */
1549 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1550 		goto out;
1551 	/* Now do exact checks */
1552 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1553 		goto out;
1554 	/* Sanity checks for files in ICB so that we don't get confused later */
1555 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1556 		/*
1557 		 * For file in ICB data is stored in allocation descriptor
1558 		 * so sizes should match
1559 		 */
1560 		if (iinfo->i_lenAlloc != inode->i_size)
1561 			goto out;
1562 		/* File in ICB has to fit in there... */
1563 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1564 			goto out;
1565 	}
1566 
1567 	switch (fe->icbTag.fileType) {
1568 	case ICBTAG_FILE_TYPE_DIRECTORY:
1569 		inode->i_op = &udf_dir_inode_operations;
1570 		inode->i_fop = &udf_dir_operations;
1571 		inode->i_mode |= S_IFDIR;
1572 		inc_nlink(inode);
1573 		break;
1574 	case ICBTAG_FILE_TYPE_REALTIME:
1575 	case ICBTAG_FILE_TYPE_REGULAR:
1576 	case ICBTAG_FILE_TYPE_UNDEF:
1577 	case ICBTAG_FILE_TYPE_VAT20:
1578 		inode->i_data.a_ops = &udf_aops;
1579 		inode->i_op = &udf_file_inode_operations;
1580 		inode->i_fop = &udf_file_operations;
1581 		inode->i_mode |= S_IFREG;
1582 		break;
1583 	case ICBTAG_FILE_TYPE_BLOCK:
1584 		inode->i_mode |= S_IFBLK;
1585 		break;
1586 	case ICBTAG_FILE_TYPE_CHAR:
1587 		inode->i_mode |= S_IFCHR;
1588 		break;
1589 	case ICBTAG_FILE_TYPE_FIFO:
1590 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1591 		break;
1592 	case ICBTAG_FILE_TYPE_SOCKET:
1593 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1594 		break;
1595 	case ICBTAG_FILE_TYPE_SYMLINK:
1596 		inode->i_data.a_ops = &udf_symlink_aops;
1597 		inode->i_op = &udf_symlink_inode_operations;
1598 		inode_nohighmem(inode);
1599 		inode->i_mode = S_IFLNK | 0777;
1600 		break;
1601 	case ICBTAG_FILE_TYPE_MAIN:
1602 		udf_debug("METADATA FILE-----\n");
1603 		break;
1604 	case ICBTAG_FILE_TYPE_MIRROR:
1605 		udf_debug("METADATA MIRROR FILE-----\n");
1606 		break;
1607 	case ICBTAG_FILE_TYPE_BITMAP:
1608 		udf_debug("METADATA BITMAP FILE-----\n");
1609 		break;
1610 	default:
1611 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1612 			inode->i_ino, fe->icbTag.fileType);
1613 		goto out;
1614 	}
1615 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1616 		struct deviceSpec *dsea =
1617 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1618 		if (dsea) {
1619 			init_special_inode(inode, inode->i_mode,
1620 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1621 				      le32_to_cpu(dsea->minorDeviceIdent)));
1622 			/* Developer ID ??? */
1623 		} else
1624 			goto out;
1625 	}
1626 	ret = 0;
1627 out:
1628 	brelse(bh);
1629 	return ret;
1630 }
1631 
1632 static int udf_alloc_i_data(struct inode *inode, size_t size)
1633 {
1634 	struct udf_inode_info *iinfo = UDF_I(inode);
1635 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1636 	if (!iinfo->i_data)
1637 		return -ENOMEM;
1638 	return 0;
1639 }
1640 
1641 static umode_t udf_convert_permissions(struct fileEntry *fe)
1642 {
1643 	umode_t mode;
1644 	uint32_t permissions;
1645 	uint32_t flags;
1646 
1647 	permissions = le32_to_cpu(fe->permissions);
1648 	flags = le16_to_cpu(fe->icbTag.flags);
1649 
1650 	mode =	((permissions) & 0007) |
1651 		((permissions >> 2) & 0070) |
1652 		((permissions >> 4) & 0700) |
1653 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1654 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1655 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1656 
1657 	return mode;
1658 }
1659 
1660 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1661 {
1662 	struct udf_inode_info *iinfo = UDF_I(inode);
1663 
1664 	/*
1665 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1666 	 * In Unix, delete permission tracks write
1667 	 */
1668 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1669 	if (mode & 0200)
1670 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1671 	if (mode & 0020)
1672 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1673 	if (mode & 0002)
1674 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1675 }
1676 
1677 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1678 {
1679 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1680 }
1681 
1682 static int udf_sync_inode(struct inode *inode)
1683 {
1684 	return udf_update_inode(inode, 1);
1685 }
1686 
1687 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1688 {
1689 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1690 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1691 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1692 		iinfo->i_crtime = time;
1693 }
1694 
1695 static int udf_update_inode(struct inode *inode, int do_sync)
1696 {
1697 	struct buffer_head *bh = NULL;
1698 	struct fileEntry *fe;
1699 	struct extendedFileEntry *efe;
1700 	uint64_t lb_recorded;
1701 	uint32_t udfperms;
1702 	uint16_t icbflags;
1703 	uint16_t crclen;
1704 	int err = 0;
1705 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1706 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1707 	struct udf_inode_info *iinfo = UDF_I(inode);
1708 
1709 	bh = sb_getblk(inode->i_sb,
1710 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1711 	if (!bh) {
1712 		udf_debug("getblk failure\n");
1713 		return -EIO;
1714 	}
1715 
1716 	lock_buffer(bh);
1717 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1718 	fe = (struct fileEntry *)bh->b_data;
1719 	efe = (struct extendedFileEntry *)bh->b_data;
1720 
1721 	if (iinfo->i_use) {
1722 		struct unallocSpaceEntry *use =
1723 			(struct unallocSpaceEntry *)bh->b_data;
1724 
1725 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1726 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1727 		       iinfo->i_data, inode->i_sb->s_blocksize -
1728 					sizeof(struct unallocSpaceEntry));
1729 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1730 		crclen = sizeof(struct unallocSpaceEntry);
1731 
1732 		goto finish;
1733 	}
1734 
1735 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1736 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1737 	else
1738 		fe->uid = cpu_to_le32(i_uid_read(inode));
1739 
1740 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1741 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1742 	else
1743 		fe->gid = cpu_to_le32(i_gid_read(inode));
1744 
1745 	udfperms = ((inode->i_mode & 0007)) |
1746 		   ((inode->i_mode & 0070) << 2) |
1747 		   ((inode->i_mode & 0700) << 4);
1748 
1749 	udfperms |= iinfo->i_extraPerms;
1750 	fe->permissions = cpu_to_le32(udfperms);
1751 
1752 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1753 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1754 	else {
1755 		if (iinfo->i_hidden)
1756 			fe->fileLinkCount = cpu_to_le16(0);
1757 		else
1758 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1759 	}
1760 
1761 	fe->informationLength = cpu_to_le64(inode->i_size);
1762 
1763 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1764 		struct regid *eid;
1765 		struct deviceSpec *dsea =
1766 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1767 		if (!dsea) {
1768 			dsea = (struct deviceSpec *)
1769 				udf_add_extendedattr(inode,
1770 						     sizeof(struct deviceSpec) +
1771 						     sizeof(struct regid), 12, 0x3);
1772 			dsea->attrType = cpu_to_le32(12);
1773 			dsea->attrSubtype = 1;
1774 			dsea->attrLength = cpu_to_le32(
1775 						sizeof(struct deviceSpec) +
1776 						sizeof(struct regid));
1777 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1778 		}
1779 		eid = (struct regid *)dsea->impUse;
1780 		memset(eid, 0, sizeof(*eid));
1781 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1782 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1783 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1784 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1785 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1786 	}
1787 
1788 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1789 		lb_recorded = 0; /* No extents => no blocks! */
1790 	else
1791 		lb_recorded =
1792 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1793 			(blocksize_bits - 9);
1794 
1795 	if (iinfo->i_efe == 0) {
1796 		memcpy(bh->b_data + sizeof(struct fileEntry),
1797 		       iinfo->i_data,
1798 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1799 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800 
1801 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1802 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1803 		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1804 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1805 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1806 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1807 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1808 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1809 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1810 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1811 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1812 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1813 		crclen = sizeof(struct fileEntry);
1814 	} else {
1815 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1816 		       iinfo->i_data,
1817 		       inode->i_sb->s_blocksize -
1818 					sizeof(struct extendedFileEntry));
1819 		efe->objectSize =
1820 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1821 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1822 
1823 		if (iinfo->i_streamdir) {
1824 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1825 
1826 			icb_lad->extLocation =
1827 				cpu_to_lelb(iinfo->i_locStreamdir);
1828 			icb_lad->extLength =
1829 				cpu_to_le32(inode->i_sb->s_blocksize);
1830 		}
1831 
1832 		udf_adjust_time(iinfo, inode->i_atime);
1833 		udf_adjust_time(iinfo, inode->i_mtime);
1834 		udf_adjust_time(iinfo, inode_get_ctime(inode));
1835 
1836 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1837 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1838 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1839 		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1840 
1841 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1842 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1843 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1844 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1845 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1846 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1847 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1848 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1849 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1850 		crclen = sizeof(struct extendedFileEntry);
1851 	}
1852 
1853 finish:
1854 	if (iinfo->i_strat4096) {
1855 		fe->icbTag.strategyType = cpu_to_le16(4096);
1856 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1857 		fe->icbTag.numEntries = cpu_to_le16(2);
1858 	} else {
1859 		fe->icbTag.strategyType = cpu_to_le16(4);
1860 		fe->icbTag.numEntries = cpu_to_le16(1);
1861 	}
1862 
1863 	if (iinfo->i_use)
1864 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1865 	else if (S_ISDIR(inode->i_mode))
1866 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1867 	else if (S_ISREG(inode->i_mode))
1868 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1869 	else if (S_ISLNK(inode->i_mode))
1870 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1871 	else if (S_ISBLK(inode->i_mode))
1872 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1873 	else if (S_ISCHR(inode->i_mode))
1874 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1875 	else if (S_ISFIFO(inode->i_mode))
1876 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1877 	else if (S_ISSOCK(inode->i_mode))
1878 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1879 
1880 	icbflags =	iinfo->i_alloc_type |
1881 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1882 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1883 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1884 			(le16_to_cpu(fe->icbTag.flags) &
1885 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1886 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1887 
1888 	fe->icbTag.flags = cpu_to_le16(icbflags);
1889 	if (sbi->s_udfrev >= 0x0200)
1890 		fe->descTag.descVersion = cpu_to_le16(3);
1891 	else
1892 		fe->descTag.descVersion = cpu_to_le16(2);
1893 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1894 	fe->descTag.tagLocation = cpu_to_le32(
1895 					iinfo->i_location.logicalBlockNum);
1896 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1897 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1898 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1899 						  crclen));
1900 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1901 
1902 	set_buffer_uptodate(bh);
1903 	unlock_buffer(bh);
1904 
1905 	/* write the data blocks */
1906 	mark_buffer_dirty(bh);
1907 	if (do_sync) {
1908 		sync_dirty_buffer(bh);
1909 		if (buffer_write_io_error(bh)) {
1910 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1911 				 inode->i_ino);
1912 			err = -EIO;
1913 		}
1914 	}
1915 	brelse(bh);
1916 
1917 	return err;
1918 }
1919 
1920 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1921 			 bool hidden_inode)
1922 {
1923 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1924 	struct inode *inode = iget_locked(sb, block);
1925 	int err;
1926 
1927 	if (!inode)
1928 		return ERR_PTR(-ENOMEM);
1929 
1930 	if (!(inode->i_state & I_NEW)) {
1931 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1932 			iput(inode);
1933 			return ERR_PTR(-EFSCORRUPTED);
1934 		}
1935 		return inode;
1936 	}
1937 
1938 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1939 	err = udf_read_inode(inode, hidden_inode);
1940 	if (err < 0) {
1941 		iget_failed(inode);
1942 		return ERR_PTR(err);
1943 	}
1944 	unlock_new_inode(inode);
1945 
1946 	return inode;
1947 }
1948 
1949 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1950 			    struct extent_position *epos)
1951 {
1952 	struct super_block *sb = inode->i_sb;
1953 	struct buffer_head *bh;
1954 	struct allocExtDesc *aed;
1955 	struct extent_position nepos;
1956 	struct kernel_lb_addr neloc;
1957 	int ver, adsize;
1958 
1959 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1960 		adsize = sizeof(struct short_ad);
1961 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1962 		adsize = sizeof(struct long_ad);
1963 	else
1964 		return -EIO;
1965 
1966 	neloc.logicalBlockNum = block;
1967 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1968 
1969 	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1970 	if (!bh)
1971 		return -EIO;
1972 	lock_buffer(bh);
1973 	memset(bh->b_data, 0x00, sb->s_blocksize);
1974 	set_buffer_uptodate(bh);
1975 	unlock_buffer(bh);
1976 	mark_buffer_dirty_inode(bh, inode);
1977 
1978 	aed = (struct allocExtDesc *)(bh->b_data);
1979 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1980 		aed->previousAllocExtLocation =
1981 				cpu_to_le32(epos->block.logicalBlockNum);
1982 	}
1983 	aed->lengthAllocDescs = cpu_to_le32(0);
1984 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1985 		ver = 3;
1986 	else
1987 		ver = 2;
1988 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1989 		    sizeof(struct tag));
1990 
1991 	nepos.block = neloc;
1992 	nepos.offset = sizeof(struct allocExtDesc);
1993 	nepos.bh = bh;
1994 
1995 	/*
1996 	 * Do we have to copy current last extent to make space for indirect
1997 	 * one?
1998 	 */
1999 	if (epos->offset + adsize > sb->s_blocksize) {
2000 		struct kernel_lb_addr cp_loc;
2001 		uint32_t cp_len;
2002 		int cp_type;
2003 
2004 		epos->offset -= adsize;
2005 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2006 		cp_len |= ((uint32_t)cp_type) << 30;
2007 
2008 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2009 		udf_write_aext(inode, epos, &nepos.block,
2010 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2011 	} else {
2012 		__udf_add_aext(inode, epos, &nepos.block,
2013 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2014 	}
2015 
2016 	brelse(epos->bh);
2017 	*epos = nepos;
2018 
2019 	return 0;
2020 }
2021 
2022 /*
2023  * Append extent at the given position - should be the first free one in inode
2024  * / indirect extent. This function assumes there is enough space in the inode
2025  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2026  */
2027 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2028 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2029 {
2030 	struct udf_inode_info *iinfo = UDF_I(inode);
2031 	struct allocExtDesc *aed;
2032 	int adsize;
2033 
2034 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2035 		adsize = sizeof(struct short_ad);
2036 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2037 		adsize = sizeof(struct long_ad);
2038 	else
2039 		return -EIO;
2040 
2041 	if (!epos->bh) {
2042 		WARN_ON(iinfo->i_lenAlloc !=
2043 			epos->offset - udf_file_entry_alloc_offset(inode));
2044 	} else {
2045 		aed = (struct allocExtDesc *)epos->bh->b_data;
2046 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2047 			epos->offset - sizeof(struct allocExtDesc));
2048 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2049 	}
2050 
2051 	udf_write_aext(inode, epos, eloc, elen, inc);
2052 
2053 	if (!epos->bh) {
2054 		iinfo->i_lenAlloc += adsize;
2055 		mark_inode_dirty(inode);
2056 	} else {
2057 		aed = (struct allocExtDesc *)epos->bh->b_data;
2058 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2059 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2060 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2061 			udf_update_tag(epos->bh->b_data,
2062 					epos->offset + (inc ? 0 : adsize));
2063 		else
2064 			udf_update_tag(epos->bh->b_data,
2065 					sizeof(struct allocExtDesc));
2066 		mark_buffer_dirty_inode(epos->bh, inode);
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 /*
2073  * Append extent at given position - should be the first free one in inode
2074  * / indirect extent. Takes care of allocating and linking indirect blocks.
2075  */
2076 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2077 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2078 {
2079 	int adsize;
2080 	struct super_block *sb = inode->i_sb;
2081 
2082 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2083 		adsize = sizeof(struct short_ad);
2084 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2085 		adsize = sizeof(struct long_ad);
2086 	else
2087 		return -EIO;
2088 
2089 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2090 		int err;
2091 		udf_pblk_t new_block;
2092 
2093 		new_block = udf_new_block(sb, NULL,
2094 					  epos->block.partitionReferenceNum,
2095 					  epos->block.logicalBlockNum, &err);
2096 		if (!new_block)
2097 			return -ENOSPC;
2098 
2099 		err = udf_setup_indirect_aext(inode, new_block, epos);
2100 		if (err)
2101 			return err;
2102 	}
2103 
2104 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2105 }
2106 
2107 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2108 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2109 {
2110 	int adsize;
2111 	uint8_t *ptr;
2112 	struct short_ad *sad;
2113 	struct long_ad *lad;
2114 	struct udf_inode_info *iinfo = UDF_I(inode);
2115 
2116 	if (!epos->bh)
2117 		ptr = iinfo->i_data + epos->offset -
2118 			udf_file_entry_alloc_offset(inode) +
2119 			iinfo->i_lenEAttr;
2120 	else
2121 		ptr = epos->bh->b_data + epos->offset;
2122 
2123 	switch (iinfo->i_alloc_type) {
2124 	case ICBTAG_FLAG_AD_SHORT:
2125 		sad = (struct short_ad *)ptr;
2126 		sad->extLength = cpu_to_le32(elen);
2127 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2128 		adsize = sizeof(struct short_ad);
2129 		break;
2130 	case ICBTAG_FLAG_AD_LONG:
2131 		lad = (struct long_ad *)ptr;
2132 		lad->extLength = cpu_to_le32(elen);
2133 		lad->extLocation = cpu_to_lelb(*eloc);
2134 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2135 		adsize = sizeof(struct long_ad);
2136 		break;
2137 	default:
2138 		return;
2139 	}
2140 
2141 	if (epos->bh) {
2142 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2143 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2144 			struct allocExtDesc *aed =
2145 				(struct allocExtDesc *)epos->bh->b_data;
2146 			udf_update_tag(epos->bh->b_data,
2147 				       le32_to_cpu(aed->lengthAllocDescs) +
2148 				       sizeof(struct allocExtDesc));
2149 		}
2150 		mark_buffer_dirty_inode(epos->bh, inode);
2151 	} else {
2152 		mark_inode_dirty(inode);
2153 	}
2154 
2155 	if (inc)
2156 		epos->offset += adsize;
2157 }
2158 
2159 /*
2160  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2161  * someone does some weird stuff.
2162  */
2163 #define UDF_MAX_INDIR_EXTS 16
2164 
2165 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2166 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2167 {
2168 	int8_t etype;
2169 	unsigned int indirections = 0;
2170 
2171 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2172 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2173 		udf_pblk_t block;
2174 
2175 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2176 			udf_err(inode->i_sb,
2177 				"too many indirect extents in inode %lu\n",
2178 				inode->i_ino);
2179 			return -1;
2180 		}
2181 
2182 		epos->block = *eloc;
2183 		epos->offset = sizeof(struct allocExtDesc);
2184 		brelse(epos->bh);
2185 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2186 		epos->bh = sb_bread(inode->i_sb, block);
2187 		if (!epos->bh) {
2188 			udf_debug("reading block %u failed!\n", block);
2189 			return -1;
2190 		}
2191 	}
2192 
2193 	return etype;
2194 }
2195 
2196 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2197 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2198 {
2199 	int alen;
2200 	int8_t etype;
2201 	uint8_t *ptr;
2202 	struct short_ad *sad;
2203 	struct long_ad *lad;
2204 	struct udf_inode_info *iinfo = UDF_I(inode);
2205 
2206 	if (!epos->bh) {
2207 		if (!epos->offset)
2208 			epos->offset = udf_file_entry_alloc_offset(inode);
2209 		ptr = iinfo->i_data + epos->offset -
2210 			udf_file_entry_alloc_offset(inode) +
2211 			iinfo->i_lenEAttr;
2212 		alen = udf_file_entry_alloc_offset(inode) +
2213 							iinfo->i_lenAlloc;
2214 	} else {
2215 		if (!epos->offset)
2216 			epos->offset = sizeof(struct allocExtDesc);
2217 		ptr = epos->bh->b_data + epos->offset;
2218 		alen = sizeof(struct allocExtDesc) +
2219 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2220 							lengthAllocDescs);
2221 	}
2222 
2223 	switch (iinfo->i_alloc_type) {
2224 	case ICBTAG_FLAG_AD_SHORT:
2225 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2226 		if (!sad)
2227 			return -1;
2228 		etype = le32_to_cpu(sad->extLength) >> 30;
2229 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2230 		eloc->partitionReferenceNum =
2231 				iinfo->i_location.partitionReferenceNum;
2232 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2233 		break;
2234 	case ICBTAG_FLAG_AD_LONG:
2235 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2236 		if (!lad)
2237 			return -1;
2238 		etype = le32_to_cpu(lad->extLength) >> 30;
2239 		*eloc = lelb_to_cpu(lad->extLocation);
2240 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2241 		break;
2242 	default:
2243 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2244 		return -1;
2245 	}
2246 
2247 	return etype;
2248 }
2249 
2250 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2251 			   struct kernel_lb_addr neloc, uint32_t nelen)
2252 {
2253 	struct kernel_lb_addr oeloc;
2254 	uint32_t oelen;
2255 	int8_t etype;
2256 	int err;
2257 
2258 	if (epos.bh)
2259 		get_bh(epos.bh);
2260 
2261 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2262 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2263 		neloc = oeloc;
2264 		nelen = (etype << 30) | oelen;
2265 	}
2266 	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2267 	brelse(epos.bh);
2268 
2269 	return err;
2270 }
2271 
2272 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2273 {
2274 	struct extent_position oepos;
2275 	int adsize;
2276 	int8_t etype;
2277 	struct allocExtDesc *aed;
2278 	struct udf_inode_info *iinfo;
2279 	struct kernel_lb_addr eloc;
2280 	uint32_t elen;
2281 
2282 	if (epos.bh) {
2283 		get_bh(epos.bh);
2284 		get_bh(epos.bh);
2285 	}
2286 
2287 	iinfo = UDF_I(inode);
2288 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2289 		adsize = sizeof(struct short_ad);
2290 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2291 		adsize = sizeof(struct long_ad);
2292 	else
2293 		adsize = 0;
2294 
2295 	oepos = epos;
2296 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2297 		return -1;
2298 
2299 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2300 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2301 		if (oepos.bh != epos.bh) {
2302 			oepos.block = epos.block;
2303 			brelse(oepos.bh);
2304 			get_bh(epos.bh);
2305 			oepos.bh = epos.bh;
2306 			oepos.offset = epos.offset - adsize;
2307 		}
2308 	}
2309 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2310 	elen = 0;
2311 
2312 	if (epos.bh != oepos.bh) {
2313 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2314 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2315 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2316 		if (!oepos.bh) {
2317 			iinfo->i_lenAlloc -= (adsize * 2);
2318 			mark_inode_dirty(inode);
2319 		} else {
2320 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2321 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2322 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2323 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2324 				udf_update_tag(oepos.bh->b_data,
2325 						oepos.offset - (2 * adsize));
2326 			else
2327 				udf_update_tag(oepos.bh->b_data,
2328 						sizeof(struct allocExtDesc));
2329 			mark_buffer_dirty_inode(oepos.bh, inode);
2330 		}
2331 	} else {
2332 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2333 		if (!oepos.bh) {
2334 			iinfo->i_lenAlloc -= adsize;
2335 			mark_inode_dirty(inode);
2336 		} else {
2337 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2338 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2339 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2340 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2341 				udf_update_tag(oepos.bh->b_data,
2342 						epos.offset - adsize);
2343 			else
2344 				udf_update_tag(oepos.bh->b_data,
2345 						sizeof(struct allocExtDesc));
2346 			mark_buffer_dirty_inode(oepos.bh, inode);
2347 		}
2348 	}
2349 
2350 	brelse(epos.bh);
2351 	brelse(oepos.bh);
2352 
2353 	return (elen >> 30);
2354 }
2355 
2356 int8_t inode_bmap(struct inode *inode, sector_t block,
2357 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2358 		  uint32_t *elen, sector_t *offset)
2359 {
2360 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2361 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2362 	int8_t etype;
2363 	struct udf_inode_info *iinfo;
2364 
2365 	iinfo = UDF_I(inode);
2366 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2367 		pos->offset = 0;
2368 		pos->block = iinfo->i_location;
2369 		pos->bh = NULL;
2370 	}
2371 	*elen = 0;
2372 	do {
2373 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2374 		if (etype == -1) {
2375 			*offset = (bcount - lbcount) >> blocksize_bits;
2376 			iinfo->i_lenExtents = lbcount;
2377 			return -1;
2378 		}
2379 		lbcount += *elen;
2380 	} while (lbcount <= bcount);
2381 	/* update extent cache */
2382 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2383 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2384 
2385 	return etype;
2386 }
2387