1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 #include <linux/crc-itu-t.h> 40 #include <linux/mpage.h> 41 #include <linux/aio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 MODULE_AUTHOR("Ben Fennema"); 47 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 48 MODULE_LICENSE("GPL"); 49 50 #define EXTENT_MERGE_SIZE 5 51 52 static umode_t udf_convert_permissions(struct fileEntry *); 53 static int udf_update_inode(struct inode *, int); 54 static int udf_sync_inode(struct inode *inode); 55 static int udf_alloc_i_data(struct inode *inode, size_t size); 56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos, int next_epos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, 124 sizeof(struct extent_position)); 125 iinfo->cached_extent.lstart = estart; 126 if (next_epos) 127 switch (iinfo->i_alloc_type) { 128 case ICBTAG_FLAG_AD_SHORT: 129 iinfo->cached_extent.epos.offset -= 130 sizeof(struct short_ad); 131 break; 132 case ICBTAG_FLAG_AD_LONG: 133 iinfo->cached_extent.epos.offset -= 134 sizeof(struct long_ad); 135 } 136 spin_unlock(&iinfo->i_extent_cache_lock); 137 } 138 139 void udf_evict_inode(struct inode *inode) 140 { 141 struct udf_inode_info *iinfo = UDF_I(inode); 142 int want_delete = 0; 143 144 if (!inode->i_nlink && !is_bad_inode(inode)) { 145 want_delete = 1; 146 udf_setsize(inode, 0); 147 udf_update_inode(inode, IS_SYNC(inode)); 148 } 149 truncate_inode_pages_final(&inode->i_data); 150 invalidate_inode_buffers(inode); 151 clear_inode(inode); 152 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 153 inode->i_size != iinfo->i_lenExtents) { 154 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 155 inode->i_ino, inode->i_mode, 156 (unsigned long long)inode->i_size, 157 (unsigned long long)iinfo->i_lenExtents); 158 } 159 kfree(iinfo->i_ext.i_data); 160 iinfo->i_ext.i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_writepage(struct page *page, struct writeback_control *wbc) 185 { 186 return block_write_full_page(page, udf_get_block, wbc); 187 } 188 189 static int udf_writepages(struct address_space *mapping, 190 struct writeback_control *wbc) 191 { 192 return mpage_writepages(mapping, wbc, udf_get_block); 193 } 194 195 static int udf_readpage(struct file *file, struct page *page) 196 { 197 return mpage_readpage(page, udf_get_block); 198 } 199 200 static int udf_readpages(struct file *file, struct address_space *mapping, 201 struct list_head *pages, unsigned nr_pages) 202 { 203 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 204 } 205 206 static int udf_write_begin(struct file *file, struct address_space *mapping, 207 loff_t pos, unsigned len, unsigned flags, 208 struct page **pagep, void **fsdata) 209 { 210 int ret; 211 212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 213 if (unlikely(ret)) 214 udf_write_failed(mapping, pos + len); 215 return ret; 216 } 217 218 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb, 219 struct iov_iter *iter, 220 loff_t offset) 221 { 222 struct file *file = iocb->ki_filp; 223 struct address_space *mapping = file->f_mapping; 224 struct inode *inode = mapping->host; 225 size_t count = iov_iter_count(iter); 226 ssize_t ret; 227 228 ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, udf_get_block); 229 if (unlikely(ret < 0 && (rw & WRITE))) 230 udf_write_failed(mapping, offset + count); 231 return ret; 232 } 233 234 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 235 { 236 return generic_block_bmap(mapping, block, udf_get_block); 237 } 238 239 const struct address_space_operations udf_aops = { 240 .readpage = udf_readpage, 241 .readpages = udf_readpages, 242 .writepage = udf_writepage, 243 .writepages = udf_writepages, 244 .write_begin = udf_write_begin, 245 .write_end = generic_write_end, 246 .direct_IO = udf_direct_IO, 247 .bmap = udf_bmap, 248 }; 249 250 /* 251 * Expand file stored in ICB to a normal one-block-file 252 * 253 * This function requires i_data_sem for writing and releases it. 254 * This function requires i_mutex held 255 */ 256 int udf_expand_file_adinicb(struct inode *inode) 257 { 258 struct page *page; 259 char *kaddr; 260 struct udf_inode_info *iinfo = UDF_I(inode); 261 int err; 262 struct writeback_control udf_wbc = { 263 .sync_mode = WB_SYNC_NONE, 264 .nr_to_write = 1, 265 }; 266 267 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex)); 268 if (!iinfo->i_lenAlloc) { 269 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 271 else 272 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 273 /* from now on we have normal address_space methods */ 274 inode->i_data.a_ops = &udf_aops; 275 up_write(&iinfo->i_data_sem); 276 mark_inode_dirty(inode); 277 return 0; 278 } 279 /* 280 * Release i_data_sem so that we can lock a page - page lock ranks 281 * above i_data_sem. i_mutex still protects us against file changes. 282 */ 283 up_write(&iinfo->i_data_sem); 284 285 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 286 if (!page) 287 return -ENOMEM; 288 289 if (!PageUptodate(page)) { 290 kaddr = kmap(page); 291 memset(kaddr + iinfo->i_lenAlloc, 0x00, 292 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 293 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 294 iinfo->i_lenAlloc); 295 flush_dcache_page(page); 296 SetPageUptodate(page); 297 kunmap(page); 298 } 299 down_write(&iinfo->i_data_sem); 300 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 301 iinfo->i_lenAlloc); 302 iinfo->i_lenAlloc = 0; 303 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 305 else 306 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 307 /* from now on we have normal address_space methods */ 308 inode->i_data.a_ops = &udf_aops; 309 up_write(&iinfo->i_data_sem); 310 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 311 if (err) { 312 /* Restore everything back so that we don't lose data... */ 313 lock_page(page); 314 kaddr = kmap(page); 315 down_write(&iinfo->i_data_sem); 316 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 317 inode->i_size); 318 kunmap(page); 319 unlock_page(page); 320 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 321 inode->i_data.a_ops = &udf_adinicb_aops; 322 up_write(&iinfo->i_data_sem); 323 } 324 page_cache_release(page); 325 mark_inode_dirty(inode); 326 327 return err; 328 } 329 330 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 331 int *err) 332 { 333 int newblock; 334 struct buffer_head *dbh = NULL; 335 struct kernel_lb_addr eloc; 336 uint8_t alloctype; 337 struct extent_position epos; 338 339 struct udf_fileident_bh sfibh, dfibh; 340 loff_t f_pos = udf_ext0_offset(inode); 341 int size = udf_ext0_offset(inode) + inode->i_size; 342 struct fileIdentDesc cfi, *sfi, *dfi; 343 struct udf_inode_info *iinfo = UDF_I(inode); 344 345 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 346 alloctype = ICBTAG_FLAG_AD_SHORT; 347 else 348 alloctype = ICBTAG_FLAG_AD_LONG; 349 350 if (!inode->i_size) { 351 iinfo->i_alloc_type = alloctype; 352 mark_inode_dirty(inode); 353 return NULL; 354 } 355 356 /* alloc block, and copy data to it */ 357 *block = udf_new_block(inode->i_sb, inode, 358 iinfo->i_location.partitionReferenceNum, 359 iinfo->i_location.logicalBlockNum, err); 360 if (!(*block)) 361 return NULL; 362 newblock = udf_get_pblock(inode->i_sb, *block, 363 iinfo->i_location.partitionReferenceNum, 364 0); 365 if (!newblock) 366 return NULL; 367 dbh = udf_tgetblk(inode->i_sb, newblock); 368 if (!dbh) 369 return NULL; 370 lock_buffer(dbh); 371 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 372 set_buffer_uptodate(dbh); 373 unlock_buffer(dbh); 374 mark_buffer_dirty_inode(dbh, inode); 375 376 sfibh.soffset = sfibh.eoffset = 377 f_pos & (inode->i_sb->s_blocksize - 1); 378 sfibh.sbh = sfibh.ebh = NULL; 379 dfibh.soffset = dfibh.eoffset = 0; 380 dfibh.sbh = dfibh.ebh = dbh; 381 while (f_pos < size) { 382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 383 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 384 NULL, NULL, NULL); 385 if (!sfi) { 386 brelse(dbh); 387 return NULL; 388 } 389 iinfo->i_alloc_type = alloctype; 390 sfi->descTag.tagLocation = cpu_to_le32(*block); 391 dfibh.soffset = dfibh.eoffset; 392 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 393 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 394 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 395 sfi->fileIdent + 396 le16_to_cpu(sfi->lengthOfImpUse))) { 397 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 398 brelse(dbh); 399 return NULL; 400 } 401 } 402 mark_buffer_dirty_inode(dbh, inode); 403 404 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 405 iinfo->i_lenAlloc); 406 iinfo->i_lenAlloc = 0; 407 eloc.logicalBlockNum = *block; 408 eloc.partitionReferenceNum = 409 iinfo->i_location.partitionReferenceNum; 410 iinfo->i_lenExtents = inode->i_size; 411 epos.bh = NULL; 412 epos.block = iinfo->i_location; 413 epos.offset = udf_file_entry_alloc_offset(inode); 414 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 415 /* UniqueID stuff */ 416 417 brelse(epos.bh); 418 mark_inode_dirty(inode); 419 return dbh; 420 } 421 422 static int udf_get_block(struct inode *inode, sector_t block, 423 struct buffer_head *bh_result, int create) 424 { 425 int err, new; 426 sector_t phys = 0; 427 struct udf_inode_info *iinfo; 428 429 if (!create) { 430 phys = udf_block_map(inode, block); 431 if (phys) 432 map_bh(bh_result, inode->i_sb, phys); 433 return 0; 434 } 435 436 err = -EIO; 437 new = 0; 438 iinfo = UDF_I(inode); 439 440 down_write(&iinfo->i_data_sem); 441 if (block == iinfo->i_next_alloc_block + 1) { 442 iinfo->i_next_alloc_block++; 443 iinfo->i_next_alloc_goal++; 444 } 445 446 udf_clear_extent_cache(inode); 447 phys = inode_getblk(inode, block, &err, &new); 448 if (!phys) 449 goto abort; 450 451 if (new) 452 set_buffer_new(bh_result); 453 map_bh(bh_result, inode->i_sb, phys); 454 455 abort: 456 up_write(&iinfo->i_data_sem); 457 return err; 458 } 459 460 static struct buffer_head *udf_getblk(struct inode *inode, long block, 461 int create, int *err) 462 { 463 struct buffer_head *bh; 464 struct buffer_head dummy; 465 466 dummy.b_state = 0; 467 dummy.b_blocknr = -1000; 468 *err = udf_get_block(inode, block, &dummy, create); 469 if (!*err && buffer_mapped(&dummy)) { 470 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 471 if (buffer_new(&dummy)) { 472 lock_buffer(bh); 473 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 474 set_buffer_uptodate(bh); 475 unlock_buffer(bh); 476 mark_buffer_dirty_inode(bh, inode); 477 } 478 return bh; 479 } 480 481 return NULL; 482 } 483 484 /* Extend the file by 'blocks' blocks, return the number of extents added */ 485 static int udf_do_extend_file(struct inode *inode, 486 struct extent_position *last_pos, 487 struct kernel_long_ad *last_ext, 488 sector_t blocks) 489 { 490 sector_t add; 491 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 492 struct super_block *sb = inode->i_sb; 493 struct kernel_lb_addr prealloc_loc = {}; 494 int prealloc_len = 0; 495 struct udf_inode_info *iinfo; 496 int err; 497 498 /* The previous extent is fake and we should not extend by anything 499 * - there's nothing to do... */ 500 if (!blocks && fake) 501 return 0; 502 503 iinfo = UDF_I(inode); 504 /* Round the last extent up to a multiple of block size */ 505 if (last_ext->extLength & (sb->s_blocksize - 1)) { 506 last_ext->extLength = 507 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 508 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 509 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 510 iinfo->i_lenExtents = 511 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 512 ~(sb->s_blocksize - 1); 513 } 514 515 /* Last extent are just preallocated blocks? */ 516 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 517 EXT_NOT_RECORDED_ALLOCATED) { 518 /* Save the extent so that we can reattach it to the end */ 519 prealloc_loc = last_ext->extLocation; 520 prealloc_len = last_ext->extLength; 521 /* Mark the extent as a hole */ 522 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 523 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 524 last_ext->extLocation.logicalBlockNum = 0; 525 last_ext->extLocation.partitionReferenceNum = 0; 526 } 527 528 /* Can we merge with the previous extent? */ 529 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 530 EXT_NOT_RECORDED_NOT_ALLOCATED) { 531 add = ((1 << 30) - sb->s_blocksize - 532 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 533 sb->s_blocksize_bits; 534 if (add > blocks) 535 add = blocks; 536 blocks -= add; 537 last_ext->extLength += add << sb->s_blocksize_bits; 538 } 539 540 if (fake) { 541 udf_add_aext(inode, last_pos, &last_ext->extLocation, 542 last_ext->extLength, 1); 543 count++; 544 } else 545 udf_write_aext(inode, last_pos, &last_ext->extLocation, 546 last_ext->extLength, 1); 547 548 /* Managed to do everything necessary? */ 549 if (!blocks) 550 goto out; 551 552 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 553 last_ext->extLocation.logicalBlockNum = 0; 554 last_ext->extLocation.partitionReferenceNum = 0; 555 add = (1 << (30-sb->s_blocksize_bits)) - 1; 556 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 557 (add << sb->s_blocksize_bits); 558 559 /* Create enough extents to cover the whole hole */ 560 while (blocks > add) { 561 blocks -= add; 562 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 563 last_ext->extLength, 1); 564 if (err) 565 return err; 566 count++; 567 } 568 if (blocks) { 569 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 570 (blocks << sb->s_blocksize_bits); 571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 572 last_ext->extLength, 1); 573 if (err) 574 return err; 575 count++; 576 } 577 578 out: 579 /* Do we have some preallocated blocks saved? */ 580 if (prealloc_len) { 581 err = udf_add_aext(inode, last_pos, &prealloc_loc, 582 prealloc_len, 1); 583 if (err) 584 return err; 585 last_ext->extLocation = prealloc_loc; 586 last_ext->extLength = prealloc_len; 587 count++; 588 } 589 590 /* last_pos should point to the last written extent... */ 591 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 592 last_pos->offset -= sizeof(struct short_ad); 593 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 594 last_pos->offset -= sizeof(struct long_ad); 595 else 596 return -EIO; 597 598 return count; 599 } 600 601 static int udf_extend_file(struct inode *inode, loff_t newsize) 602 { 603 604 struct extent_position epos; 605 struct kernel_lb_addr eloc; 606 uint32_t elen; 607 int8_t etype; 608 struct super_block *sb = inode->i_sb; 609 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 610 int adsize; 611 struct udf_inode_info *iinfo = UDF_I(inode); 612 struct kernel_long_ad extent; 613 int err; 614 615 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 616 adsize = sizeof(struct short_ad); 617 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 618 adsize = sizeof(struct long_ad); 619 else 620 BUG(); 621 622 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 623 624 /* File has extent covering the new size (could happen when extending 625 * inside a block)? */ 626 if (etype != -1) 627 return 0; 628 if (newsize & (sb->s_blocksize - 1)) 629 offset++; 630 /* Extended file just to the boundary of the last file block? */ 631 if (offset == 0) 632 return 0; 633 634 /* Truncate is extending the file by 'offset' blocks */ 635 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 636 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 637 /* File has no extents at all or has empty last 638 * indirect extent! Create a fake extent... */ 639 extent.extLocation.logicalBlockNum = 0; 640 extent.extLocation.partitionReferenceNum = 0; 641 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 642 } else { 643 epos.offset -= adsize; 644 etype = udf_next_aext(inode, &epos, &extent.extLocation, 645 &extent.extLength, 0); 646 extent.extLength |= etype << 30; 647 } 648 err = udf_do_extend_file(inode, &epos, &extent, offset); 649 if (err < 0) 650 goto out; 651 err = 0; 652 iinfo->i_lenExtents = newsize; 653 out: 654 brelse(epos.bh); 655 return err; 656 } 657 658 static sector_t inode_getblk(struct inode *inode, sector_t block, 659 int *err, int *new) 660 { 661 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 662 struct extent_position prev_epos, cur_epos, next_epos; 663 int count = 0, startnum = 0, endnum = 0; 664 uint32_t elen = 0, tmpelen; 665 struct kernel_lb_addr eloc, tmpeloc; 666 int c = 1; 667 loff_t lbcount = 0, b_off = 0; 668 uint32_t newblocknum, newblock; 669 sector_t offset = 0; 670 int8_t etype; 671 struct udf_inode_info *iinfo = UDF_I(inode); 672 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 673 int lastblock = 0; 674 bool isBeyondEOF; 675 676 *err = 0; 677 *new = 0; 678 prev_epos.offset = udf_file_entry_alloc_offset(inode); 679 prev_epos.block = iinfo->i_location; 680 prev_epos.bh = NULL; 681 cur_epos = next_epos = prev_epos; 682 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 683 684 /* find the extent which contains the block we are looking for. 685 alternate between laarr[0] and laarr[1] for locations of the 686 current extent, and the previous extent */ 687 do { 688 if (prev_epos.bh != cur_epos.bh) { 689 brelse(prev_epos.bh); 690 get_bh(cur_epos.bh); 691 prev_epos.bh = cur_epos.bh; 692 } 693 if (cur_epos.bh != next_epos.bh) { 694 brelse(cur_epos.bh); 695 get_bh(next_epos.bh); 696 cur_epos.bh = next_epos.bh; 697 } 698 699 lbcount += elen; 700 701 prev_epos.block = cur_epos.block; 702 cur_epos.block = next_epos.block; 703 704 prev_epos.offset = cur_epos.offset; 705 cur_epos.offset = next_epos.offset; 706 707 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 708 if (etype == -1) 709 break; 710 711 c = !c; 712 713 laarr[c].extLength = (etype << 30) | elen; 714 laarr[c].extLocation = eloc; 715 716 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 717 pgoal = eloc.logicalBlockNum + 718 ((elen + inode->i_sb->s_blocksize - 1) >> 719 inode->i_sb->s_blocksize_bits); 720 721 count++; 722 } while (lbcount + elen <= b_off); 723 724 b_off -= lbcount; 725 offset = b_off >> inode->i_sb->s_blocksize_bits; 726 /* 727 * Move prev_epos and cur_epos into indirect extent if we are at 728 * the pointer to it 729 */ 730 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 731 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 732 733 /* if the extent is allocated and recorded, return the block 734 if the extent is not a multiple of the blocksize, round up */ 735 736 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 737 if (elen & (inode->i_sb->s_blocksize - 1)) { 738 elen = EXT_RECORDED_ALLOCATED | 739 ((elen + inode->i_sb->s_blocksize - 1) & 740 ~(inode->i_sb->s_blocksize - 1)); 741 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 742 } 743 brelse(prev_epos.bh); 744 brelse(cur_epos.bh); 745 brelse(next_epos.bh); 746 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 747 return newblock; 748 } 749 750 /* Are we beyond EOF? */ 751 if (etype == -1) { 752 int ret; 753 isBeyondEOF = 1; 754 if (count) { 755 if (c) 756 laarr[0] = laarr[1]; 757 startnum = 1; 758 } else { 759 /* Create a fake extent when there's not one */ 760 memset(&laarr[0].extLocation, 0x00, 761 sizeof(struct kernel_lb_addr)); 762 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 763 /* Will udf_do_extend_file() create real extent from 764 a fake one? */ 765 startnum = (offset > 0); 766 } 767 /* Create extents for the hole between EOF and offset */ 768 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 769 if (ret < 0) { 770 brelse(prev_epos.bh); 771 brelse(cur_epos.bh); 772 brelse(next_epos.bh); 773 *err = ret; 774 return 0; 775 } 776 c = 0; 777 offset = 0; 778 count += ret; 779 /* We are not covered by a preallocated extent? */ 780 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 781 EXT_NOT_RECORDED_ALLOCATED) { 782 /* Is there any real extent? - otherwise we overwrite 783 * the fake one... */ 784 if (count) 785 c = !c; 786 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 787 inode->i_sb->s_blocksize; 788 memset(&laarr[c].extLocation, 0x00, 789 sizeof(struct kernel_lb_addr)); 790 count++; 791 } 792 endnum = c + 1; 793 lastblock = 1; 794 } else { 795 isBeyondEOF = 0; 796 endnum = startnum = ((count > 2) ? 2 : count); 797 798 /* if the current extent is in position 0, 799 swap it with the previous */ 800 if (!c && count != 1) { 801 laarr[2] = laarr[0]; 802 laarr[0] = laarr[1]; 803 laarr[1] = laarr[2]; 804 c = 1; 805 } 806 807 /* if the current block is located in an extent, 808 read the next extent */ 809 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 810 if (etype != -1) { 811 laarr[c + 1].extLength = (etype << 30) | elen; 812 laarr[c + 1].extLocation = eloc; 813 count++; 814 startnum++; 815 endnum++; 816 } else 817 lastblock = 1; 818 } 819 820 /* if the current extent is not recorded but allocated, get the 821 * block in the extent corresponding to the requested block */ 822 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 823 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 824 else { /* otherwise, allocate a new block */ 825 if (iinfo->i_next_alloc_block == block) 826 goal = iinfo->i_next_alloc_goal; 827 828 if (!goal) { 829 if (!(goal = pgoal)) /* XXX: what was intended here? */ 830 goal = iinfo->i_location.logicalBlockNum + 1; 831 } 832 833 newblocknum = udf_new_block(inode->i_sb, inode, 834 iinfo->i_location.partitionReferenceNum, 835 goal, err); 836 if (!newblocknum) { 837 brelse(prev_epos.bh); 838 brelse(cur_epos.bh); 839 brelse(next_epos.bh); 840 *err = -ENOSPC; 841 return 0; 842 } 843 if (isBeyondEOF) 844 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 845 } 846 847 /* if the extent the requsted block is located in contains multiple 848 * blocks, split the extent into at most three extents. blocks prior 849 * to requested block, requested block, and blocks after requested 850 * block */ 851 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 852 853 #ifdef UDF_PREALLOCATE 854 /* We preallocate blocks only for regular files. It also makes sense 855 * for directories but there's a problem when to drop the 856 * preallocation. We might use some delayed work for that but I feel 857 * it's overengineering for a filesystem like UDF. */ 858 if (S_ISREG(inode->i_mode)) 859 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 860 #endif 861 862 /* merge any continuous blocks in laarr */ 863 udf_merge_extents(inode, laarr, &endnum); 864 865 /* write back the new extents, inserting new extents if the new number 866 * of extents is greater than the old number, and deleting extents if 867 * the new number of extents is less than the old number */ 868 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 869 870 brelse(prev_epos.bh); 871 brelse(cur_epos.bh); 872 brelse(next_epos.bh); 873 874 newblock = udf_get_pblock(inode->i_sb, newblocknum, 875 iinfo->i_location.partitionReferenceNum, 0); 876 if (!newblock) { 877 *err = -EIO; 878 return 0; 879 } 880 *new = 1; 881 iinfo->i_next_alloc_block = block; 882 iinfo->i_next_alloc_goal = newblocknum; 883 inode->i_ctime = current_fs_time(inode->i_sb); 884 885 if (IS_SYNC(inode)) 886 udf_sync_inode(inode); 887 else 888 mark_inode_dirty(inode); 889 890 return newblock; 891 } 892 893 static void udf_split_extents(struct inode *inode, int *c, int offset, 894 int newblocknum, 895 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 896 int *endnum) 897 { 898 unsigned long blocksize = inode->i_sb->s_blocksize; 899 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 900 901 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 902 (laarr[*c].extLength >> 30) == 903 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 904 int curr = *c; 905 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 906 blocksize - 1) >> blocksize_bits; 907 int8_t etype = (laarr[curr].extLength >> 30); 908 909 if (blen == 1) 910 ; 911 else if (!offset || blen == offset + 1) { 912 laarr[curr + 2] = laarr[curr + 1]; 913 laarr[curr + 1] = laarr[curr]; 914 } else { 915 laarr[curr + 3] = laarr[curr + 1]; 916 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 917 } 918 919 if (offset) { 920 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 921 udf_free_blocks(inode->i_sb, inode, 922 &laarr[curr].extLocation, 923 0, offset); 924 laarr[curr].extLength = 925 EXT_NOT_RECORDED_NOT_ALLOCATED | 926 (offset << blocksize_bits); 927 laarr[curr].extLocation.logicalBlockNum = 0; 928 laarr[curr].extLocation. 929 partitionReferenceNum = 0; 930 } else 931 laarr[curr].extLength = (etype << 30) | 932 (offset << blocksize_bits); 933 curr++; 934 (*c)++; 935 (*endnum)++; 936 } 937 938 laarr[curr].extLocation.logicalBlockNum = newblocknum; 939 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 940 laarr[curr].extLocation.partitionReferenceNum = 941 UDF_I(inode)->i_location.partitionReferenceNum; 942 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 943 blocksize; 944 curr++; 945 946 if (blen != offset + 1) { 947 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 948 laarr[curr].extLocation.logicalBlockNum += 949 offset + 1; 950 laarr[curr].extLength = (etype << 30) | 951 ((blen - (offset + 1)) << blocksize_bits); 952 curr++; 953 (*endnum)++; 954 } 955 } 956 } 957 958 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 959 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 960 int *endnum) 961 { 962 int start, length = 0, currlength = 0, i; 963 964 if (*endnum >= (c + 1)) { 965 if (!lastblock) 966 return; 967 else 968 start = c; 969 } else { 970 if ((laarr[c + 1].extLength >> 30) == 971 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 972 start = c + 1; 973 length = currlength = 974 (((laarr[c + 1].extLength & 975 UDF_EXTENT_LENGTH_MASK) + 976 inode->i_sb->s_blocksize - 1) >> 977 inode->i_sb->s_blocksize_bits); 978 } else 979 start = c; 980 } 981 982 for (i = start + 1; i <= *endnum; i++) { 983 if (i == *endnum) { 984 if (lastblock) 985 length += UDF_DEFAULT_PREALLOC_BLOCKS; 986 } else if ((laarr[i].extLength >> 30) == 987 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 988 length += (((laarr[i].extLength & 989 UDF_EXTENT_LENGTH_MASK) + 990 inode->i_sb->s_blocksize - 1) >> 991 inode->i_sb->s_blocksize_bits); 992 } else 993 break; 994 } 995 996 if (length) { 997 int next = laarr[start].extLocation.logicalBlockNum + 998 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 999 inode->i_sb->s_blocksize - 1) >> 1000 inode->i_sb->s_blocksize_bits); 1001 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1002 laarr[start].extLocation.partitionReferenceNum, 1003 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1004 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1005 currlength); 1006 if (numalloc) { 1007 if (start == (c + 1)) 1008 laarr[start].extLength += 1009 (numalloc << 1010 inode->i_sb->s_blocksize_bits); 1011 else { 1012 memmove(&laarr[c + 2], &laarr[c + 1], 1013 sizeof(struct long_ad) * (*endnum - (c + 1))); 1014 (*endnum)++; 1015 laarr[c + 1].extLocation.logicalBlockNum = next; 1016 laarr[c + 1].extLocation.partitionReferenceNum = 1017 laarr[c].extLocation. 1018 partitionReferenceNum; 1019 laarr[c + 1].extLength = 1020 EXT_NOT_RECORDED_ALLOCATED | 1021 (numalloc << 1022 inode->i_sb->s_blocksize_bits); 1023 start = c + 1; 1024 } 1025 1026 for (i = start + 1; numalloc && i < *endnum; i++) { 1027 int elen = ((laarr[i].extLength & 1028 UDF_EXTENT_LENGTH_MASK) + 1029 inode->i_sb->s_blocksize - 1) >> 1030 inode->i_sb->s_blocksize_bits; 1031 1032 if (elen > numalloc) { 1033 laarr[i].extLength -= 1034 (numalloc << 1035 inode->i_sb->s_blocksize_bits); 1036 numalloc = 0; 1037 } else { 1038 numalloc -= elen; 1039 if (*endnum > (i + 1)) 1040 memmove(&laarr[i], 1041 &laarr[i + 1], 1042 sizeof(struct long_ad) * 1043 (*endnum - (i + 1))); 1044 i--; 1045 (*endnum)--; 1046 } 1047 } 1048 UDF_I(inode)->i_lenExtents += 1049 numalloc << inode->i_sb->s_blocksize_bits; 1050 } 1051 } 1052 } 1053 1054 static void udf_merge_extents(struct inode *inode, 1055 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1056 int *endnum) 1057 { 1058 int i; 1059 unsigned long blocksize = inode->i_sb->s_blocksize; 1060 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1061 1062 for (i = 0; i < (*endnum - 1); i++) { 1063 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1064 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1065 1066 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1067 (((li->extLength >> 30) == 1068 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1069 ((lip1->extLocation.logicalBlockNum - 1070 li->extLocation.logicalBlockNum) == 1071 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1072 blocksize - 1) >> blocksize_bits)))) { 1073 1074 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1075 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1076 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1077 lip1->extLength = (lip1->extLength - 1078 (li->extLength & 1079 UDF_EXTENT_LENGTH_MASK) + 1080 UDF_EXTENT_LENGTH_MASK) & 1081 ~(blocksize - 1); 1082 li->extLength = (li->extLength & 1083 UDF_EXTENT_FLAG_MASK) + 1084 (UDF_EXTENT_LENGTH_MASK + 1) - 1085 blocksize; 1086 lip1->extLocation.logicalBlockNum = 1087 li->extLocation.logicalBlockNum + 1088 ((li->extLength & 1089 UDF_EXTENT_LENGTH_MASK) >> 1090 blocksize_bits); 1091 } else { 1092 li->extLength = lip1->extLength + 1093 (((li->extLength & 1094 UDF_EXTENT_LENGTH_MASK) + 1095 blocksize - 1) & ~(blocksize - 1)); 1096 if (*endnum > (i + 2)) 1097 memmove(&laarr[i + 1], &laarr[i + 2], 1098 sizeof(struct long_ad) * 1099 (*endnum - (i + 2))); 1100 i--; 1101 (*endnum)--; 1102 } 1103 } else if (((li->extLength >> 30) == 1104 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1105 ((lip1->extLength >> 30) == 1106 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1107 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1108 ((li->extLength & 1109 UDF_EXTENT_LENGTH_MASK) + 1110 blocksize - 1) >> blocksize_bits); 1111 li->extLocation.logicalBlockNum = 0; 1112 li->extLocation.partitionReferenceNum = 0; 1113 1114 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1115 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1116 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1117 lip1->extLength = (lip1->extLength - 1118 (li->extLength & 1119 UDF_EXTENT_LENGTH_MASK) + 1120 UDF_EXTENT_LENGTH_MASK) & 1121 ~(blocksize - 1); 1122 li->extLength = (li->extLength & 1123 UDF_EXTENT_FLAG_MASK) + 1124 (UDF_EXTENT_LENGTH_MASK + 1) - 1125 blocksize; 1126 } else { 1127 li->extLength = lip1->extLength + 1128 (((li->extLength & 1129 UDF_EXTENT_LENGTH_MASK) + 1130 blocksize - 1) & ~(blocksize - 1)); 1131 if (*endnum > (i + 2)) 1132 memmove(&laarr[i + 1], &laarr[i + 2], 1133 sizeof(struct long_ad) * 1134 (*endnum - (i + 2))); 1135 i--; 1136 (*endnum)--; 1137 } 1138 } else if ((li->extLength >> 30) == 1139 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1140 udf_free_blocks(inode->i_sb, inode, 1141 &li->extLocation, 0, 1142 ((li->extLength & 1143 UDF_EXTENT_LENGTH_MASK) + 1144 blocksize - 1) >> blocksize_bits); 1145 li->extLocation.logicalBlockNum = 0; 1146 li->extLocation.partitionReferenceNum = 0; 1147 li->extLength = (li->extLength & 1148 UDF_EXTENT_LENGTH_MASK) | 1149 EXT_NOT_RECORDED_NOT_ALLOCATED; 1150 } 1151 } 1152 } 1153 1154 static void udf_update_extents(struct inode *inode, 1155 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1156 int startnum, int endnum, 1157 struct extent_position *epos) 1158 { 1159 int start = 0, i; 1160 struct kernel_lb_addr tmploc; 1161 uint32_t tmplen; 1162 1163 if (startnum > endnum) { 1164 for (i = 0; i < (startnum - endnum); i++) 1165 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1166 laarr[i].extLength); 1167 } else if (startnum < endnum) { 1168 for (i = 0; i < (endnum - startnum); i++) { 1169 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1170 laarr[i].extLength); 1171 udf_next_aext(inode, epos, &laarr[i].extLocation, 1172 &laarr[i].extLength, 1); 1173 start++; 1174 } 1175 } 1176 1177 for (i = start; i < endnum; i++) { 1178 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1179 udf_write_aext(inode, epos, &laarr[i].extLocation, 1180 laarr[i].extLength, 1); 1181 } 1182 } 1183 1184 struct buffer_head *udf_bread(struct inode *inode, int block, 1185 int create, int *err) 1186 { 1187 struct buffer_head *bh = NULL; 1188 1189 bh = udf_getblk(inode, block, create, err); 1190 if (!bh) 1191 return NULL; 1192 1193 if (buffer_uptodate(bh)) 1194 return bh; 1195 1196 ll_rw_block(READ, 1, &bh); 1197 1198 wait_on_buffer(bh); 1199 if (buffer_uptodate(bh)) 1200 return bh; 1201 1202 brelse(bh); 1203 *err = -EIO; 1204 return NULL; 1205 } 1206 1207 int udf_setsize(struct inode *inode, loff_t newsize) 1208 { 1209 int err; 1210 struct udf_inode_info *iinfo; 1211 int bsize = 1 << inode->i_blkbits; 1212 1213 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1214 S_ISLNK(inode->i_mode))) 1215 return -EINVAL; 1216 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1217 return -EPERM; 1218 1219 iinfo = UDF_I(inode); 1220 if (newsize > inode->i_size) { 1221 down_write(&iinfo->i_data_sem); 1222 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1223 if (bsize < 1224 (udf_file_entry_alloc_offset(inode) + newsize)) { 1225 err = udf_expand_file_adinicb(inode); 1226 if (err) 1227 return err; 1228 down_write(&iinfo->i_data_sem); 1229 } else { 1230 iinfo->i_lenAlloc = newsize; 1231 goto set_size; 1232 } 1233 } 1234 err = udf_extend_file(inode, newsize); 1235 if (err) { 1236 up_write(&iinfo->i_data_sem); 1237 return err; 1238 } 1239 set_size: 1240 truncate_setsize(inode, newsize); 1241 up_write(&iinfo->i_data_sem); 1242 } else { 1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1244 down_write(&iinfo->i_data_sem); 1245 udf_clear_extent_cache(inode); 1246 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1247 0x00, bsize - newsize - 1248 udf_file_entry_alloc_offset(inode)); 1249 iinfo->i_lenAlloc = newsize; 1250 truncate_setsize(inode, newsize); 1251 up_write(&iinfo->i_data_sem); 1252 goto update_time; 1253 } 1254 err = block_truncate_page(inode->i_mapping, newsize, 1255 udf_get_block); 1256 if (err) 1257 return err; 1258 down_write(&iinfo->i_data_sem); 1259 udf_clear_extent_cache(inode); 1260 truncate_setsize(inode, newsize); 1261 udf_truncate_extents(inode); 1262 up_write(&iinfo->i_data_sem); 1263 } 1264 update_time: 1265 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1266 if (IS_SYNC(inode)) 1267 udf_sync_inode(inode); 1268 else 1269 mark_inode_dirty(inode); 1270 return 0; 1271 } 1272 1273 /* 1274 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1275 * arbitrary - just that we hopefully don't limit any real use of rewritten 1276 * inode on write-once media but avoid looping for too long on corrupted media. 1277 */ 1278 #define UDF_MAX_ICB_NESTING 1024 1279 1280 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1281 { 1282 struct buffer_head *bh = NULL; 1283 struct fileEntry *fe; 1284 struct extendedFileEntry *efe; 1285 uint16_t ident; 1286 struct udf_inode_info *iinfo = UDF_I(inode); 1287 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1288 struct kernel_lb_addr *iloc = &iinfo->i_location; 1289 unsigned int link_count; 1290 unsigned int indirections = 0; 1291 int ret = -EIO; 1292 1293 reread: 1294 if (iloc->logicalBlockNum >= 1295 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1296 udf_debug("block=%d, partition=%d out of range\n", 1297 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1298 return -EIO; 1299 } 1300 1301 /* 1302 * Set defaults, but the inode is still incomplete! 1303 * Note: get_new_inode() sets the following on a new inode: 1304 * i_sb = sb 1305 * i_no = ino 1306 * i_flags = sb->s_flags 1307 * i_state = 0 1308 * clean_inode(): zero fills and sets 1309 * i_count = 1 1310 * i_nlink = 1 1311 * i_op = NULL; 1312 */ 1313 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1314 if (!bh) { 1315 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1316 return -EIO; 1317 } 1318 1319 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1320 ident != TAG_IDENT_USE) { 1321 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1322 inode->i_ino, ident); 1323 goto out; 1324 } 1325 1326 fe = (struct fileEntry *)bh->b_data; 1327 efe = (struct extendedFileEntry *)bh->b_data; 1328 1329 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1330 struct buffer_head *ibh; 1331 1332 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1333 if (ident == TAG_IDENT_IE && ibh) { 1334 struct kernel_lb_addr loc; 1335 struct indirectEntry *ie; 1336 1337 ie = (struct indirectEntry *)ibh->b_data; 1338 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1339 1340 if (ie->indirectICB.extLength) { 1341 brelse(ibh); 1342 memcpy(&iinfo->i_location, &loc, 1343 sizeof(struct kernel_lb_addr)); 1344 if (++indirections > UDF_MAX_ICB_NESTING) { 1345 udf_err(inode->i_sb, 1346 "too many ICBs in ICB hierarchy" 1347 " (max %d supported)\n", 1348 UDF_MAX_ICB_NESTING); 1349 goto out; 1350 } 1351 brelse(bh); 1352 goto reread; 1353 } 1354 } 1355 brelse(ibh); 1356 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1357 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1358 le16_to_cpu(fe->icbTag.strategyType)); 1359 goto out; 1360 } 1361 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1362 iinfo->i_strat4096 = 0; 1363 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1364 iinfo->i_strat4096 = 1; 1365 1366 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1367 ICBTAG_FLAG_AD_MASK; 1368 iinfo->i_unique = 0; 1369 iinfo->i_lenEAttr = 0; 1370 iinfo->i_lenExtents = 0; 1371 iinfo->i_lenAlloc = 0; 1372 iinfo->i_next_alloc_block = 0; 1373 iinfo->i_next_alloc_goal = 0; 1374 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1375 iinfo->i_efe = 1; 1376 iinfo->i_use = 0; 1377 ret = udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1378 sizeof(struct extendedFileEntry)); 1379 if (ret) 1380 goto out; 1381 memcpy(iinfo->i_ext.i_data, 1382 bh->b_data + sizeof(struct extendedFileEntry), 1383 inode->i_sb->s_blocksize - 1384 sizeof(struct extendedFileEntry)); 1385 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1386 iinfo->i_efe = 0; 1387 iinfo->i_use = 0; 1388 ret = udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1389 sizeof(struct fileEntry)); 1390 if (ret) 1391 goto out; 1392 memcpy(iinfo->i_ext.i_data, 1393 bh->b_data + sizeof(struct fileEntry), 1394 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1395 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1396 iinfo->i_efe = 0; 1397 iinfo->i_use = 1; 1398 iinfo->i_lenAlloc = le32_to_cpu( 1399 ((struct unallocSpaceEntry *)bh->b_data)-> 1400 lengthAllocDescs); 1401 ret = udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1402 sizeof(struct unallocSpaceEntry)); 1403 if (ret) 1404 goto out; 1405 memcpy(iinfo->i_ext.i_data, 1406 bh->b_data + sizeof(struct unallocSpaceEntry), 1407 inode->i_sb->s_blocksize - 1408 sizeof(struct unallocSpaceEntry)); 1409 return 0; 1410 } 1411 1412 ret = -EIO; 1413 read_lock(&sbi->s_cred_lock); 1414 i_uid_write(inode, le32_to_cpu(fe->uid)); 1415 if (!uid_valid(inode->i_uid) || 1416 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1417 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1418 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1419 1420 i_gid_write(inode, le32_to_cpu(fe->gid)); 1421 if (!gid_valid(inode->i_gid) || 1422 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1423 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1424 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1425 1426 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1427 sbi->s_fmode != UDF_INVALID_MODE) 1428 inode->i_mode = sbi->s_fmode; 1429 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1430 sbi->s_dmode != UDF_INVALID_MODE) 1431 inode->i_mode = sbi->s_dmode; 1432 else 1433 inode->i_mode = udf_convert_permissions(fe); 1434 inode->i_mode &= ~sbi->s_umask; 1435 read_unlock(&sbi->s_cred_lock); 1436 1437 link_count = le16_to_cpu(fe->fileLinkCount); 1438 if (!link_count) { 1439 if (!hidden_inode) { 1440 ret = -ESTALE; 1441 goto out; 1442 } 1443 link_count = 1; 1444 } 1445 set_nlink(inode, link_count); 1446 1447 inode->i_size = le64_to_cpu(fe->informationLength); 1448 iinfo->i_lenExtents = inode->i_size; 1449 1450 if (iinfo->i_efe == 0) { 1451 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1452 (inode->i_sb->s_blocksize_bits - 9); 1453 1454 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1455 inode->i_atime = sbi->s_record_time; 1456 1457 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1458 fe->modificationTime)) 1459 inode->i_mtime = sbi->s_record_time; 1460 1461 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1462 inode->i_ctime = sbi->s_record_time; 1463 1464 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1465 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1466 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1467 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1468 } else { 1469 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1470 (inode->i_sb->s_blocksize_bits - 9); 1471 1472 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1473 inode->i_atime = sbi->s_record_time; 1474 1475 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1476 efe->modificationTime)) 1477 inode->i_mtime = sbi->s_record_time; 1478 1479 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1480 iinfo->i_crtime = sbi->s_record_time; 1481 1482 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1483 inode->i_ctime = sbi->s_record_time; 1484 1485 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1486 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1487 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1488 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1489 } 1490 inode->i_generation = iinfo->i_unique; 1491 1492 switch (fe->icbTag.fileType) { 1493 case ICBTAG_FILE_TYPE_DIRECTORY: 1494 inode->i_op = &udf_dir_inode_operations; 1495 inode->i_fop = &udf_dir_operations; 1496 inode->i_mode |= S_IFDIR; 1497 inc_nlink(inode); 1498 break; 1499 case ICBTAG_FILE_TYPE_REALTIME: 1500 case ICBTAG_FILE_TYPE_REGULAR: 1501 case ICBTAG_FILE_TYPE_UNDEF: 1502 case ICBTAG_FILE_TYPE_VAT20: 1503 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1504 inode->i_data.a_ops = &udf_adinicb_aops; 1505 else 1506 inode->i_data.a_ops = &udf_aops; 1507 inode->i_op = &udf_file_inode_operations; 1508 inode->i_fop = &udf_file_operations; 1509 inode->i_mode |= S_IFREG; 1510 break; 1511 case ICBTAG_FILE_TYPE_BLOCK: 1512 inode->i_mode |= S_IFBLK; 1513 break; 1514 case ICBTAG_FILE_TYPE_CHAR: 1515 inode->i_mode |= S_IFCHR; 1516 break; 1517 case ICBTAG_FILE_TYPE_FIFO: 1518 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1519 break; 1520 case ICBTAG_FILE_TYPE_SOCKET: 1521 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1522 break; 1523 case ICBTAG_FILE_TYPE_SYMLINK: 1524 inode->i_data.a_ops = &udf_symlink_aops; 1525 inode->i_op = &udf_symlink_inode_operations; 1526 inode->i_mode = S_IFLNK | S_IRWXUGO; 1527 break; 1528 case ICBTAG_FILE_TYPE_MAIN: 1529 udf_debug("METADATA FILE-----\n"); 1530 break; 1531 case ICBTAG_FILE_TYPE_MIRROR: 1532 udf_debug("METADATA MIRROR FILE-----\n"); 1533 break; 1534 case ICBTAG_FILE_TYPE_BITMAP: 1535 udf_debug("METADATA BITMAP FILE-----\n"); 1536 break; 1537 default: 1538 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1539 inode->i_ino, fe->icbTag.fileType); 1540 goto out; 1541 } 1542 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1543 struct deviceSpec *dsea = 1544 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1545 if (dsea) { 1546 init_special_inode(inode, inode->i_mode, 1547 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1548 le32_to_cpu(dsea->minorDeviceIdent))); 1549 /* Developer ID ??? */ 1550 } else 1551 goto out; 1552 } 1553 ret = 0; 1554 out: 1555 brelse(bh); 1556 return ret; 1557 } 1558 1559 static int udf_alloc_i_data(struct inode *inode, size_t size) 1560 { 1561 struct udf_inode_info *iinfo = UDF_I(inode); 1562 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1563 1564 if (!iinfo->i_ext.i_data) { 1565 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1566 inode->i_ino); 1567 return -ENOMEM; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static umode_t udf_convert_permissions(struct fileEntry *fe) 1574 { 1575 umode_t mode; 1576 uint32_t permissions; 1577 uint32_t flags; 1578 1579 permissions = le32_to_cpu(fe->permissions); 1580 flags = le16_to_cpu(fe->icbTag.flags); 1581 1582 mode = ((permissions) & S_IRWXO) | 1583 ((permissions >> 2) & S_IRWXG) | 1584 ((permissions >> 4) & S_IRWXU) | 1585 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1586 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1587 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1588 1589 return mode; 1590 } 1591 1592 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1593 { 1594 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1595 } 1596 1597 static int udf_sync_inode(struct inode *inode) 1598 { 1599 return udf_update_inode(inode, 1); 1600 } 1601 1602 static int udf_update_inode(struct inode *inode, int do_sync) 1603 { 1604 struct buffer_head *bh = NULL; 1605 struct fileEntry *fe; 1606 struct extendedFileEntry *efe; 1607 uint64_t lb_recorded; 1608 uint32_t udfperms; 1609 uint16_t icbflags; 1610 uint16_t crclen; 1611 int err = 0; 1612 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1613 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1614 struct udf_inode_info *iinfo = UDF_I(inode); 1615 1616 bh = udf_tgetblk(inode->i_sb, 1617 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1618 if (!bh) { 1619 udf_debug("getblk failure\n"); 1620 return -ENOMEM; 1621 } 1622 1623 lock_buffer(bh); 1624 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1625 fe = (struct fileEntry *)bh->b_data; 1626 efe = (struct extendedFileEntry *)bh->b_data; 1627 1628 if (iinfo->i_use) { 1629 struct unallocSpaceEntry *use = 1630 (struct unallocSpaceEntry *)bh->b_data; 1631 1632 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1633 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1634 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1635 sizeof(struct unallocSpaceEntry)); 1636 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1637 use->descTag.tagLocation = 1638 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1639 crclen = sizeof(struct unallocSpaceEntry) + 1640 iinfo->i_lenAlloc - sizeof(struct tag); 1641 use->descTag.descCRCLength = cpu_to_le16(crclen); 1642 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1643 sizeof(struct tag), 1644 crclen)); 1645 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1646 1647 goto out; 1648 } 1649 1650 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1651 fe->uid = cpu_to_le32(-1); 1652 else 1653 fe->uid = cpu_to_le32(i_uid_read(inode)); 1654 1655 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1656 fe->gid = cpu_to_le32(-1); 1657 else 1658 fe->gid = cpu_to_le32(i_gid_read(inode)); 1659 1660 udfperms = ((inode->i_mode & S_IRWXO)) | 1661 ((inode->i_mode & S_IRWXG) << 2) | 1662 ((inode->i_mode & S_IRWXU) << 4); 1663 1664 udfperms |= (le32_to_cpu(fe->permissions) & 1665 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1666 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1667 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1668 fe->permissions = cpu_to_le32(udfperms); 1669 1670 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1671 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1672 else 1673 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1674 1675 fe->informationLength = cpu_to_le64(inode->i_size); 1676 1677 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1678 struct regid *eid; 1679 struct deviceSpec *dsea = 1680 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1681 if (!dsea) { 1682 dsea = (struct deviceSpec *) 1683 udf_add_extendedattr(inode, 1684 sizeof(struct deviceSpec) + 1685 sizeof(struct regid), 12, 0x3); 1686 dsea->attrType = cpu_to_le32(12); 1687 dsea->attrSubtype = 1; 1688 dsea->attrLength = cpu_to_le32( 1689 sizeof(struct deviceSpec) + 1690 sizeof(struct regid)); 1691 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1692 } 1693 eid = (struct regid *)dsea->impUse; 1694 memset(eid, 0, sizeof(struct regid)); 1695 strcpy(eid->ident, UDF_ID_DEVELOPER); 1696 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1697 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1698 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1699 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1700 } 1701 1702 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1703 lb_recorded = 0; /* No extents => no blocks! */ 1704 else 1705 lb_recorded = 1706 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1707 (blocksize_bits - 9); 1708 1709 if (iinfo->i_efe == 0) { 1710 memcpy(bh->b_data + sizeof(struct fileEntry), 1711 iinfo->i_ext.i_data, 1712 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1713 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1714 1715 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1716 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1717 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1718 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1719 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1720 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1721 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1722 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1723 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1724 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1725 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1726 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1727 crclen = sizeof(struct fileEntry); 1728 } else { 1729 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1730 iinfo->i_ext.i_data, 1731 inode->i_sb->s_blocksize - 1732 sizeof(struct extendedFileEntry)); 1733 efe->objectSize = cpu_to_le64(inode->i_size); 1734 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1735 1736 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1737 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1738 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1739 iinfo->i_crtime = inode->i_atime; 1740 1741 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1742 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1743 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1744 iinfo->i_crtime = inode->i_mtime; 1745 1746 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1747 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1748 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1749 iinfo->i_crtime = inode->i_ctime; 1750 1751 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1752 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1753 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1754 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1755 1756 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1757 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1758 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1759 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1760 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1761 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1762 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1763 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1764 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1765 crclen = sizeof(struct extendedFileEntry); 1766 } 1767 if (iinfo->i_strat4096) { 1768 fe->icbTag.strategyType = cpu_to_le16(4096); 1769 fe->icbTag.strategyParameter = cpu_to_le16(1); 1770 fe->icbTag.numEntries = cpu_to_le16(2); 1771 } else { 1772 fe->icbTag.strategyType = cpu_to_le16(4); 1773 fe->icbTag.numEntries = cpu_to_le16(1); 1774 } 1775 1776 if (S_ISDIR(inode->i_mode)) 1777 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1778 else if (S_ISREG(inode->i_mode)) 1779 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1780 else if (S_ISLNK(inode->i_mode)) 1781 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1782 else if (S_ISBLK(inode->i_mode)) 1783 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1784 else if (S_ISCHR(inode->i_mode)) 1785 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1786 else if (S_ISFIFO(inode->i_mode)) 1787 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1788 else if (S_ISSOCK(inode->i_mode)) 1789 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1790 1791 icbflags = iinfo->i_alloc_type | 1792 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1793 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1794 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1795 (le16_to_cpu(fe->icbTag.flags) & 1796 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1797 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1798 1799 fe->icbTag.flags = cpu_to_le16(icbflags); 1800 if (sbi->s_udfrev >= 0x0200) 1801 fe->descTag.descVersion = cpu_to_le16(3); 1802 else 1803 fe->descTag.descVersion = cpu_to_le16(2); 1804 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1805 fe->descTag.tagLocation = cpu_to_le32( 1806 iinfo->i_location.logicalBlockNum); 1807 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1808 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1809 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1810 crclen)); 1811 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1812 1813 out: 1814 set_buffer_uptodate(bh); 1815 unlock_buffer(bh); 1816 1817 /* write the data blocks */ 1818 mark_buffer_dirty(bh); 1819 if (do_sync) { 1820 sync_dirty_buffer(bh); 1821 if (buffer_write_io_error(bh)) { 1822 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1823 inode->i_ino); 1824 err = -EIO; 1825 } 1826 } 1827 brelse(bh); 1828 1829 return err; 1830 } 1831 1832 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1833 bool hidden_inode) 1834 { 1835 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1836 struct inode *inode = iget_locked(sb, block); 1837 int err; 1838 1839 if (!inode) 1840 return ERR_PTR(-ENOMEM); 1841 1842 if (!(inode->i_state & I_NEW)) 1843 return inode; 1844 1845 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1846 err = udf_read_inode(inode, hidden_inode); 1847 if (err < 0) { 1848 iget_failed(inode); 1849 return ERR_PTR(err); 1850 } 1851 unlock_new_inode(inode); 1852 1853 return inode; 1854 } 1855 1856 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1857 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1858 { 1859 int adsize; 1860 struct short_ad *sad = NULL; 1861 struct long_ad *lad = NULL; 1862 struct allocExtDesc *aed; 1863 uint8_t *ptr; 1864 struct udf_inode_info *iinfo = UDF_I(inode); 1865 1866 if (!epos->bh) 1867 ptr = iinfo->i_ext.i_data + epos->offset - 1868 udf_file_entry_alloc_offset(inode) + 1869 iinfo->i_lenEAttr; 1870 else 1871 ptr = epos->bh->b_data + epos->offset; 1872 1873 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1874 adsize = sizeof(struct short_ad); 1875 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1876 adsize = sizeof(struct long_ad); 1877 else 1878 return -EIO; 1879 1880 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1881 unsigned char *sptr, *dptr; 1882 struct buffer_head *nbh; 1883 int err, loffset; 1884 struct kernel_lb_addr obloc = epos->block; 1885 1886 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1887 obloc.partitionReferenceNum, 1888 obloc.logicalBlockNum, &err); 1889 if (!epos->block.logicalBlockNum) 1890 return -ENOSPC; 1891 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1892 &epos->block, 1893 0)); 1894 if (!nbh) 1895 return -EIO; 1896 lock_buffer(nbh); 1897 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1898 set_buffer_uptodate(nbh); 1899 unlock_buffer(nbh); 1900 mark_buffer_dirty_inode(nbh, inode); 1901 1902 aed = (struct allocExtDesc *)(nbh->b_data); 1903 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1904 aed->previousAllocExtLocation = 1905 cpu_to_le32(obloc.logicalBlockNum); 1906 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1907 loffset = epos->offset; 1908 aed->lengthAllocDescs = cpu_to_le32(adsize); 1909 sptr = ptr - adsize; 1910 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1911 memcpy(dptr, sptr, adsize); 1912 epos->offset = sizeof(struct allocExtDesc) + adsize; 1913 } else { 1914 loffset = epos->offset + adsize; 1915 aed->lengthAllocDescs = cpu_to_le32(0); 1916 sptr = ptr; 1917 epos->offset = sizeof(struct allocExtDesc); 1918 1919 if (epos->bh) { 1920 aed = (struct allocExtDesc *)epos->bh->b_data; 1921 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1922 } else { 1923 iinfo->i_lenAlloc += adsize; 1924 mark_inode_dirty(inode); 1925 } 1926 } 1927 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1928 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1929 epos->block.logicalBlockNum, sizeof(struct tag)); 1930 else 1931 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1932 epos->block.logicalBlockNum, sizeof(struct tag)); 1933 switch (iinfo->i_alloc_type) { 1934 case ICBTAG_FLAG_AD_SHORT: 1935 sad = (struct short_ad *)sptr; 1936 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1937 inode->i_sb->s_blocksize); 1938 sad->extPosition = 1939 cpu_to_le32(epos->block.logicalBlockNum); 1940 break; 1941 case ICBTAG_FLAG_AD_LONG: 1942 lad = (struct long_ad *)sptr; 1943 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1944 inode->i_sb->s_blocksize); 1945 lad->extLocation = cpu_to_lelb(epos->block); 1946 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1947 break; 1948 } 1949 if (epos->bh) { 1950 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1951 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1952 udf_update_tag(epos->bh->b_data, loffset); 1953 else 1954 udf_update_tag(epos->bh->b_data, 1955 sizeof(struct allocExtDesc)); 1956 mark_buffer_dirty_inode(epos->bh, inode); 1957 brelse(epos->bh); 1958 } else { 1959 mark_inode_dirty(inode); 1960 } 1961 epos->bh = nbh; 1962 } 1963 1964 udf_write_aext(inode, epos, eloc, elen, inc); 1965 1966 if (!epos->bh) { 1967 iinfo->i_lenAlloc += adsize; 1968 mark_inode_dirty(inode); 1969 } else { 1970 aed = (struct allocExtDesc *)epos->bh->b_data; 1971 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1972 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1973 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1974 udf_update_tag(epos->bh->b_data, 1975 epos->offset + (inc ? 0 : adsize)); 1976 else 1977 udf_update_tag(epos->bh->b_data, 1978 sizeof(struct allocExtDesc)); 1979 mark_buffer_dirty_inode(epos->bh, inode); 1980 } 1981 1982 return 0; 1983 } 1984 1985 void udf_write_aext(struct inode *inode, struct extent_position *epos, 1986 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1987 { 1988 int adsize; 1989 uint8_t *ptr; 1990 struct short_ad *sad; 1991 struct long_ad *lad; 1992 struct udf_inode_info *iinfo = UDF_I(inode); 1993 1994 if (!epos->bh) 1995 ptr = iinfo->i_ext.i_data + epos->offset - 1996 udf_file_entry_alloc_offset(inode) + 1997 iinfo->i_lenEAttr; 1998 else 1999 ptr = epos->bh->b_data + epos->offset; 2000 2001 switch (iinfo->i_alloc_type) { 2002 case ICBTAG_FLAG_AD_SHORT: 2003 sad = (struct short_ad *)ptr; 2004 sad->extLength = cpu_to_le32(elen); 2005 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2006 adsize = sizeof(struct short_ad); 2007 break; 2008 case ICBTAG_FLAG_AD_LONG: 2009 lad = (struct long_ad *)ptr; 2010 lad->extLength = cpu_to_le32(elen); 2011 lad->extLocation = cpu_to_lelb(*eloc); 2012 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2013 adsize = sizeof(struct long_ad); 2014 break; 2015 default: 2016 return; 2017 } 2018 2019 if (epos->bh) { 2020 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2021 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2022 struct allocExtDesc *aed = 2023 (struct allocExtDesc *)epos->bh->b_data; 2024 udf_update_tag(epos->bh->b_data, 2025 le32_to_cpu(aed->lengthAllocDescs) + 2026 sizeof(struct allocExtDesc)); 2027 } 2028 mark_buffer_dirty_inode(epos->bh, inode); 2029 } else { 2030 mark_inode_dirty(inode); 2031 } 2032 2033 if (inc) 2034 epos->offset += adsize; 2035 } 2036 2037 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2038 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2039 { 2040 int8_t etype; 2041 2042 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2043 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2044 int block; 2045 epos->block = *eloc; 2046 epos->offset = sizeof(struct allocExtDesc); 2047 brelse(epos->bh); 2048 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2049 epos->bh = udf_tread(inode->i_sb, block); 2050 if (!epos->bh) { 2051 udf_debug("reading block %d failed!\n", block); 2052 return -1; 2053 } 2054 } 2055 2056 return etype; 2057 } 2058 2059 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2060 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2061 { 2062 int alen; 2063 int8_t etype; 2064 uint8_t *ptr; 2065 struct short_ad *sad; 2066 struct long_ad *lad; 2067 struct udf_inode_info *iinfo = UDF_I(inode); 2068 2069 if (!epos->bh) { 2070 if (!epos->offset) 2071 epos->offset = udf_file_entry_alloc_offset(inode); 2072 ptr = iinfo->i_ext.i_data + epos->offset - 2073 udf_file_entry_alloc_offset(inode) + 2074 iinfo->i_lenEAttr; 2075 alen = udf_file_entry_alloc_offset(inode) + 2076 iinfo->i_lenAlloc; 2077 } else { 2078 if (!epos->offset) 2079 epos->offset = sizeof(struct allocExtDesc); 2080 ptr = epos->bh->b_data + epos->offset; 2081 alen = sizeof(struct allocExtDesc) + 2082 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2083 lengthAllocDescs); 2084 } 2085 2086 switch (iinfo->i_alloc_type) { 2087 case ICBTAG_FLAG_AD_SHORT: 2088 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2089 if (!sad) 2090 return -1; 2091 etype = le32_to_cpu(sad->extLength) >> 30; 2092 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2093 eloc->partitionReferenceNum = 2094 iinfo->i_location.partitionReferenceNum; 2095 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2096 break; 2097 case ICBTAG_FLAG_AD_LONG: 2098 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2099 if (!lad) 2100 return -1; 2101 etype = le32_to_cpu(lad->extLength) >> 30; 2102 *eloc = lelb_to_cpu(lad->extLocation); 2103 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2104 break; 2105 default: 2106 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2107 return -1; 2108 } 2109 2110 return etype; 2111 } 2112 2113 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2114 struct kernel_lb_addr neloc, uint32_t nelen) 2115 { 2116 struct kernel_lb_addr oeloc; 2117 uint32_t oelen; 2118 int8_t etype; 2119 2120 if (epos.bh) 2121 get_bh(epos.bh); 2122 2123 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2124 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2125 neloc = oeloc; 2126 nelen = (etype << 30) | oelen; 2127 } 2128 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2129 brelse(epos.bh); 2130 2131 return (nelen >> 30); 2132 } 2133 2134 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2135 struct kernel_lb_addr eloc, uint32_t elen) 2136 { 2137 struct extent_position oepos; 2138 int adsize; 2139 int8_t etype; 2140 struct allocExtDesc *aed; 2141 struct udf_inode_info *iinfo; 2142 2143 if (epos.bh) { 2144 get_bh(epos.bh); 2145 get_bh(epos.bh); 2146 } 2147 2148 iinfo = UDF_I(inode); 2149 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2150 adsize = sizeof(struct short_ad); 2151 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2152 adsize = sizeof(struct long_ad); 2153 else 2154 adsize = 0; 2155 2156 oepos = epos; 2157 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2158 return -1; 2159 2160 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2161 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2162 if (oepos.bh != epos.bh) { 2163 oepos.block = epos.block; 2164 brelse(oepos.bh); 2165 get_bh(epos.bh); 2166 oepos.bh = epos.bh; 2167 oepos.offset = epos.offset - adsize; 2168 } 2169 } 2170 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2171 elen = 0; 2172 2173 if (epos.bh != oepos.bh) { 2174 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2175 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2176 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2177 if (!oepos.bh) { 2178 iinfo->i_lenAlloc -= (adsize * 2); 2179 mark_inode_dirty(inode); 2180 } else { 2181 aed = (struct allocExtDesc *)oepos.bh->b_data; 2182 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2183 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2184 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2185 udf_update_tag(oepos.bh->b_data, 2186 oepos.offset - (2 * adsize)); 2187 else 2188 udf_update_tag(oepos.bh->b_data, 2189 sizeof(struct allocExtDesc)); 2190 mark_buffer_dirty_inode(oepos.bh, inode); 2191 } 2192 } else { 2193 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2194 if (!oepos.bh) { 2195 iinfo->i_lenAlloc -= adsize; 2196 mark_inode_dirty(inode); 2197 } else { 2198 aed = (struct allocExtDesc *)oepos.bh->b_data; 2199 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2200 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2201 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2202 udf_update_tag(oepos.bh->b_data, 2203 epos.offset - adsize); 2204 else 2205 udf_update_tag(oepos.bh->b_data, 2206 sizeof(struct allocExtDesc)); 2207 mark_buffer_dirty_inode(oepos.bh, inode); 2208 } 2209 } 2210 2211 brelse(epos.bh); 2212 brelse(oepos.bh); 2213 2214 return (elen >> 30); 2215 } 2216 2217 int8_t inode_bmap(struct inode *inode, sector_t block, 2218 struct extent_position *pos, struct kernel_lb_addr *eloc, 2219 uint32_t *elen, sector_t *offset) 2220 { 2221 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2222 loff_t lbcount = 0, bcount = 2223 (loff_t) block << blocksize_bits; 2224 int8_t etype; 2225 struct udf_inode_info *iinfo; 2226 2227 iinfo = UDF_I(inode); 2228 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2229 pos->offset = 0; 2230 pos->block = iinfo->i_location; 2231 pos->bh = NULL; 2232 } 2233 *elen = 0; 2234 do { 2235 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2236 if (etype == -1) { 2237 *offset = (bcount - lbcount) >> blocksize_bits; 2238 iinfo->i_lenExtents = lbcount; 2239 return -1; 2240 } 2241 lbcount += *elen; 2242 } while (lbcount <= bcount); 2243 /* update extent cache */ 2244 udf_update_extent_cache(inode, lbcount - *elen, pos, 1); 2245 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2246 2247 return etype; 2248 } 2249 2250 long udf_block_map(struct inode *inode, sector_t block) 2251 { 2252 struct kernel_lb_addr eloc; 2253 uint32_t elen; 2254 sector_t offset; 2255 struct extent_position epos = {}; 2256 int ret; 2257 2258 down_read(&UDF_I(inode)->i_data_sem); 2259 2260 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2261 (EXT_RECORDED_ALLOCATED >> 30)) 2262 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2263 else 2264 ret = 0; 2265 2266 up_read(&UDF_I(inode)->i_data_sem); 2267 brelse(epos.bh); 2268 2269 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2270 return udf_fixed_to_variable(ret); 2271 else 2272 return ret; 2273 } 2274