1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_readpage(struct page *page) 212 { 213 struct inode *inode = page->mapping->host; 214 char *kaddr; 215 struct udf_inode_info *iinfo = UDF_I(inode); 216 loff_t isize = i_size_read(inode); 217 218 kaddr = kmap_local_page(page); 219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize); 220 memset(kaddr + isize, 0, PAGE_SIZE - isize); 221 flush_dcache_page(page); 222 SetPageUptodate(page); 223 kunmap_local(kaddr); 224 } 225 226 static int udf_read_folio(struct file *file, struct folio *folio) 227 { 228 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 229 230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 231 udf_adinicb_readpage(&folio->page); 232 folio_unlock(folio); 233 return 0; 234 } 235 return mpage_read_folio(folio, udf_get_block); 236 } 237 238 static void udf_readahead(struct readahead_control *rac) 239 { 240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 241 242 /* 243 * No readahead needed for in-ICB files and udf_get_block() would get 244 * confused for such file anyway. 245 */ 246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 247 return; 248 249 mpage_readahead(rac, udf_get_block); 250 } 251 252 static int udf_write_begin(struct file *file, struct address_space *mapping, 253 loff_t pos, unsigned len, 254 struct page **pagep, void **fsdata) 255 { 256 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 257 struct page *page; 258 int ret; 259 260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 261 ret = block_write_begin(mapping, pos, len, pagep, 262 udf_get_block); 263 if (unlikely(ret)) 264 udf_write_failed(mapping, pos + len); 265 return ret; 266 } 267 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 268 return -EIO; 269 page = grab_cache_page_write_begin(mapping, 0); 270 if (!page) 271 return -ENOMEM; 272 *pagep = page; 273 if (!PageUptodate(page)) 274 udf_adinicb_readpage(page); 275 return 0; 276 } 277 278 static int udf_write_end(struct file *file, struct address_space *mapping, 279 loff_t pos, unsigned len, unsigned copied, 280 struct page *page, void *fsdata) 281 { 282 struct inode *inode = file_inode(file); 283 loff_t last_pos; 284 285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 286 return generic_write_end(file, mapping, pos, len, copied, page, 287 fsdata); 288 last_pos = pos + copied; 289 if (last_pos > inode->i_size) 290 i_size_write(inode, last_pos); 291 set_page_dirty(page); 292 unlock_page(page); 293 put_page(page); 294 295 return copied; 296 } 297 298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 299 { 300 struct file *file = iocb->ki_filp; 301 struct address_space *mapping = file->f_mapping; 302 struct inode *inode = mapping->host; 303 size_t count = iov_iter_count(iter); 304 ssize_t ret; 305 306 /* Fallback to buffered IO for in-ICB files */ 307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 308 return 0; 309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 311 udf_write_failed(mapping, iocb->ki_pos + count); 312 return ret; 313 } 314 315 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 316 { 317 struct udf_inode_info *iinfo = UDF_I(mapping->host); 318 319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 320 return -EINVAL; 321 return generic_block_bmap(mapping, block, udf_get_block); 322 } 323 324 const struct address_space_operations udf_aops = { 325 .dirty_folio = block_dirty_folio, 326 .invalidate_folio = block_invalidate_folio, 327 .read_folio = udf_read_folio, 328 .readahead = udf_readahead, 329 .writepages = udf_writepages, 330 .write_begin = udf_write_begin, 331 .write_end = udf_write_end, 332 .direct_IO = udf_direct_IO, 333 .bmap = udf_bmap, 334 .migrate_folio = buffer_migrate_folio, 335 }; 336 337 /* 338 * Expand file stored in ICB to a normal one-block-file 339 * 340 * This function requires i_mutex held 341 */ 342 int udf_expand_file_adinicb(struct inode *inode) 343 { 344 struct folio *folio; 345 struct udf_inode_info *iinfo = UDF_I(inode); 346 int err; 347 348 WARN_ON_ONCE(!inode_is_locked(inode)); 349 if (!iinfo->i_lenAlloc) { 350 down_write(&iinfo->i_data_sem); 351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 353 else 354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 355 up_write(&iinfo->i_data_sem); 356 mark_inode_dirty(inode); 357 return 0; 358 } 359 360 folio = __filemap_get_folio(inode->i_mapping, 0, 361 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL); 362 if (IS_ERR(folio)) 363 return PTR_ERR(folio); 364 365 if (!folio_test_uptodate(folio)) 366 udf_adinicb_readpage(&folio->page); 367 down_write(&iinfo->i_data_sem); 368 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 369 iinfo->i_lenAlloc); 370 iinfo->i_lenAlloc = 0; 371 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 373 else 374 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 375 folio_mark_dirty(folio); 376 folio_unlock(folio); 377 up_write(&iinfo->i_data_sem); 378 err = filemap_fdatawrite(inode->i_mapping); 379 if (err) { 380 /* Restore everything back so that we don't lose data... */ 381 folio_lock(folio); 382 down_write(&iinfo->i_data_sem); 383 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr, 384 folio, 0, inode->i_size); 385 folio_unlock(folio); 386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 387 iinfo->i_lenAlloc = inode->i_size; 388 up_write(&iinfo->i_data_sem); 389 } 390 folio_put(folio); 391 mark_inode_dirty(inode); 392 393 return err; 394 } 395 396 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 397 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 398 399 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 400 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 401 402 struct udf_map_rq { 403 sector_t lblk; 404 udf_pblk_t pblk; 405 int iflags; /* UDF_MAP_ flags determining behavior */ 406 int oflags; /* UDF_BLK_ flags reporting results */ 407 }; 408 409 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 410 { 411 int ret; 412 struct udf_inode_info *iinfo = UDF_I(inode); 413 414 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 415 return -EFSCORRUPTED; 416 417 map->oflags = 0; 418 if (!(map->iflags & UDF_MAP_CREATE)) { 419 struct kernel_lb_addr eloc; 420 uint32_t elen; 421 sector_t offset; 422 struct extent_position epos = {}; 423 int8_t etype; 424 425 down_read(&iinfo->i_data_sem); 426 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset, 427 &etype); 428 if (ret < 0) 429 goto out_read; 430 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) { 431 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 432 offset); 433 map->oflags |= UDF_BLK_MAPPED; 434 ret = 0; 435 } 436 out_read: 437 up_read(&iinfo->i_data_sem); 438 brelse(epos.bh); 439 440 return ret; 441 } 442 443 down_write(&iinfo->i_data_sem); 444 /* 445 * Block beyond EOF and prealloc extents? Just discard preallocation 446 * as it is not useful and complicates things. 447 */ 448 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 449 udf_discard_prealloc(inode); 450 udf_clear_extent_cache(inode); 451 ret = inode_getblk(inode, map); 452 up_write(&iinfo->i_data_sem); 453 return ret; 454 } 455 456 static int __udf_get_block(struct inode *inode, sector_t block, 457 struct buffer_head *bh_result, int flags) 458 { 459 int err; 460 struct udf_map_rq map = { 461 .lblk = block, 462 .iflags = flags, 463 }; 464 465 err = udf_map_block(inode, &map); 466 if (err < 0) 467 return err; 468 if (map.oflags & UDF_BLK_MAPPED) { 469 map_bh(bh_result, inode->i_sb, map.pblk); 470 if (map.oflags & UDF_BLK_NEW) 471 set_buffer_new(bh_result); 472 } 473 return 0; 474 } 475 476 int udf_get_block(struct inode *inode, sector_t block, 477 struct buffer_head *bh_result, int create) 478 { 479 int flags = create ? UDF_MAP_CREATE : 0; 480 481 /* 482 * We preallocate blocks only for regular files. It also makes sense 483 * for directories but there's a problem when to drop the 484 * preallocation. We might use some delayed work for that but I feel 485 * it's overengineering for a filesystem like UDF. 486 */ 487 if (!S_ISREG(inode->i_mode)) 488 flags |= UDF_MAP_NOPREALLOC; 489 return __udf_get_block(inode, block, bh_result, flags); 490 } 491 492 /* 493 * We shouldn't be allocating blocks on page writeback since we allocate them 494 * on page fault. We can spot dirty buffers without allocated blocks though 495 * when truncate expands file. These however don't have valid data so we can 496 * safely ignore them. So never allocate blocks from page writeback. 497 */ 498 static int udf_get_block_wb(struct inode *inode, sector_t block, 499 struct buffer_head *bh_result, int create) 500 { 501 return __udf_get_block(inode, block, bh_result, 0); 502 } 503 504 /* Extend the file with new blocks totaling 'new_block_bytes', 505 * return the number of extents added 506 */ 507 static int udf_do_extend_file(struct inode *inode, 508 struct extent_position *last_pos, 509 struct kernel_long_ad *last_ext, 510 loff_t new_block_bytes) 511 { 512 uint32_t add; 513 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 514 struct super_block *sb = inode->i_sb; 515 struct udf_inode_info *iinfo; 516 int err; 517 518 /* The previous extent is fake and we should not extend by anything 519 * - there's nothing to do... */ 520 if (!new_block_bytes && fake) 521 return 0; 522 523 iinfo = UDF_I(inode); 524 /* Round the last extent up to a multiple of block size */ 525 if (last_ext->extLength & (sb->s_blocksize - 1)) { 526 last_ext->extLength = 527 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 528 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 529 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 530 iinfo->i_lenExtents = 531 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 532 ~(sb->s_blocksize - 1); 533 } 534 535 add = 0; 536 /* Can we merge with the previous extent? */ 537 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 538 EXT_NOT_RECORDED_NOT_ALLOCATED) { 539 add = (1 << 30) - sb->s_blocksize - 540 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 541 if (add > new_block_bytes) 542 add = new_block_bytes; 543 new_block_bytes -= add; 544 last_ext->extLength += add; 545 } 546 547 if (fake) { 548 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 549 last_ext->extLength, 1); 550 if (err < 0) 551 goto out_err; 552 count++; 553 } else { 554 struct kernel_lb_addr tmploc; 555 uint32_t tmplen; 556 int8_t tmptype; 557 558 udf_write_aext(inode, last_pos, &last_ext->extLocation, 559 last_ext->extLength, 1); 560 561 /* 562 * We've rewritten the last extent. If we are going to add 563 * more extents, we may need to enter possible following 564 * empty indirect extent. 565 */ 566 if (new_block_bytes) { 567 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen, 568 &tmptype, 0); 569 if (err < 0) 570 goto out_err; 571 } 572 } 573 iinfo->i_lenExtents += add; 574 575 /* Managed to do everything necessary? */ 576 if (!new_block_bytes) 577 goto out; 578 579 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 580 last_ext->extLocation.logicalBlockNum = 0; 581 last_ext->extLocation.partitionReferenceNum = 0; 582 add = (1 << 30) - sb->s_blocksize; 583 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 584 585 /* Create enough extents to cover the whole hole */ 586 while (new_block_bytes > add) { 587 new_block_bytes -= add; 588 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 589 last_ext->extLength, 1); 590 if (err) 591 goto out_err; 592 iinfo->i_lenExtents += add; 593 count++; 594 } 595 if (new_block_bytes) { 596 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 597 new_block_bytes; 598 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 599 last_ext->extLength, 1); 600 if (err) 601 goto out_err; 602 iinfo->i_lenExtents += new_block_bytes; 603 count++; 604 } 605 606 out: 607 /* last_pos should point to the last written extent... */ 608 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 609 last_pos->offset -= sizeof(struct short_ad); 610 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 611 last_pos->offset -= sizeof(struct long_ad); 612 else 613 return -EIO; 614 615 return count; 616 out_err: 617 /* Remove extents we've created so far */ 618 udf_clear_extent_cache(inode); 619 udf_truncate_extents(inode); 620 return err; 621 } 622 623 /* Extend the final block of the file to final_block_len bytes */ 624 static void udf_do_extend_final_block(struct inode *inode, 625 struct extent_position *last_pos, 626 struct kernel_long_ad *last_ext, 627 uint32_t new_elen) 628 { 629 uint32_t added_bytes; 630 631 /* 632 * Extent already large enough? It may be already rounded up to block 633 * size... 634 */ 635 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 636 return; 637 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 638 last_ext->extLength += added_bytes; 639 UDF_I(inode)->i_lenExtents += added_bytes; 640 641 udf_write_aext(inode, last_pos, &last_ext->extLocation, 642 last_ext->extLength, 1); 643 } 644 645 static int udf_extend_file(struct inode *inode, loff_t newsize) 646 { 647 648 struct extent_position epos; 649 struct kernel_lb_addr eloc; 650 uint32_t elen; 651 int8_t etype; 652 struct super_block *sb = inode->i_sb; 653 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 654 loff_t new_elen; 655 int adsize; 656 struct udf_inode_info *iinfo = UDF_I(inode); 657 struct kernel_long_ad extent; 658 int err = 0; 659 bool within_last_ext; 660 661 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 662 adsize = sizeof(struct short_ad); 663 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 664 adsize = sizeof(struct long_ad); 665 else 666 BUG(); 667 668 down_write(&iinfo->i_data_sem); 669 /* 670 * When creating hole in file, just don't bother with preserving 671 * preallocation. It likely won't be very useful anyway. 672 */ 673 udf_discard_prealloc(inode); 674 675 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype); 676 if (err < 0) 677 goto out; 678 within_last_ext = (err == 1); 679 /* We don't expect extents past EOF... */ 680 WARN_ON_ONCE(within_last_ext && 681 elen > ((loff_t)offset + 1) << inode->i_blkbits); 682 683 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 684 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 685 /* File has no extents at all or has empty last 686 * indirect extent! Create a fake extent... */ 687 extent.extLocation.logicalBlockNum = 0; 688 extent.extLocation.partitionReferenceNum = 0; 689 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 690 } else { 691 epos.offset -= adsize; 692 err = udf_next_aext(inode, &epos, &extent.extLocation, 693 &extent.extLength, &etype, 0); 694 if (err <= 0) 695 goto out; 696 extent.extLength |= etype << 30; 697 } 698 699 new_elen = ((loff_t)offset << inode->i_blkbits) | 700 (newsize & (sb->s_blocksize - 1)); 701 702 /* File has extent covering the new size (could happen when extending 703 * inside a block)? 704 */ 705 if (within_last_ext) { 706 /* Extending file within the last file block */ 707 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 708 } else { 709 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 710 } 711 712 if (err < 0) 713 goto out; 714 err = 0; 715 out: 716 brelse(epos.bh); 717 up_write(&iinfo->i_data_sem); 718 return err; 719 } 720 721 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 722 { 723 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 724 struct extent_position prev_epos, cur_epos, next_epos; 725 int count = 0, startnum = 0, endnum = 0; 726 uint32_t elen = 0, tmpelen; 727 struct kernel_lb_addr eloc, tmpeloc; 728 int c = 1; 729 loff_t lbcount = 0, b_off = 0; 730 udf_pblk_t newblocknum; 731 sector_t offset = 0; 732 int8_t etype, tmpetype; 733 struct udf_inode_info *iinfo = UDF_I(inode); 734 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 735 int lastblock = 0; 736 bool isBeyondEOF = false; 737 int ret = 0; 738 739 prev_epos.offset = udf_file_entry_alloc_offset(inode); 740 prev_epos.block = iinfo->i_location; 741 prev_epos.bh = NULL; 742 cur_epos = next_epos = prev_epos; 743 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 744 745 /* find the extent which contains the block we are looking for. 746 alternate between laarr[0] and laarr[1] for locations of the 747 current extent, and the previous extent */ 748 do { 749 if (prev_epos.bh != cur_epos.bh) { 750 brelse(prev_epos.bh); 751 get_bh(cur_epos.bh); 752 prev_epos.bh = cur_epos.bh; 753 } 754 if (cur_epos.bh != next_epos.bh) { 755 brelse(cur_epos.bh); 756 get_bh(next_epos.bh); 757 cur_epos.bh = next_epos.bh; 758 } 759 760 lbcount += elen; 761 762 prev_epos.block = cur_epos.block; 763 cur_epos.block = next_epos.block; 764 765 prev_epos.offset = cur_epos.offset; 766 cur_epos.offset = next_epos.offset; 767 768 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1); 769 if (ret < 0) { 770 goto out_free; 771 } else if (ret == 0) { 772 isBeyondEOF = true; 773 break; 774 } 775 776 c = !c; 777 778 laarr[c].extLength = (etype << 30) | elen; 779 laarr[c].extLocation = eloc; 780 781 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 782 pgoal = eloc.logicalBlockNum + 783 ((elen + inode->i_sb->s_blocksize - 1) >> 784 inode->i_sb->s_blocksize_bits); 785 786 count++; 787 } while (lbcount + elen <= b_off); 788 789 b_off -= lbcount; 790 offset = b_off >> inode->i_sb->s_blocksize_bits; 791 /* 792 * Move prev_epos and cur_epos into indirect extent if we are at 793 * the pointer to it 794 */ 795 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0); 796 if (ret < 0) 797 goto out_free; 798 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0); 799 if (ret < 0) 800 goto out_free; 801 802 /* if the extent is allocated and recorded, return the block 803 if the extent is not a multiple of the blocksize, round up */ 804 805 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) { 806 if (elen & (inode->i_sb->s_blocksize - 1)) { 807 elen = EXT_RECORDED_ALLOCATED | 808 ((elen + inode->i_sb->s_blocksize - 1) & 809 ~(inode->i_sb->s_blocksize - 1)); 810 iinfo->i_lenExtents = 811 ALIGN(iinfo->i_lenExtents, 812 inode->i_sb->s_blocksize); 813 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 814 } 815 map->oflags = UDF_BLK_MAPPED; 816 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 817 goto out_free; 818 } 819 820 /* Are we beyond EOF and preallocated extent? */ 821 if (isBeyondEOF) { 822 loff_t hole_len; 823 824 if (count) { 825 if (c) 826 laarr[0] = laarr[1]; 827 startnum = 1; 828 } else { 829 /* Create a fake extent when there's not one */ 830 memset(&laarr[0].extLocation, 0x00, 831 sizeof(struct kernel_lb_addr)); 832 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 833 /* Will udf_do_extend_file() create real extent from 834 a fake one? */ 835 startnum = (offset > 0); 836 } 837 /* Create extents for the hole between EOF and offset */ 838 hole_len = (loff_t)offset << inode->i_blkbits; 839 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 840 if (ret < 0) 841 goto out_free; 842 c = 0; 843 offset = 0; 844 count += ret; 845 /* 846 * Is there any real extent? - otherwise we overwrite the fake 847 * one... 848 */ 849 if (count) 850 c = !c; 851 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 852 inode->i_sb->s_blocksize; 853 memset(&laarr[c].extLocation, 0x00, 854 sizeof(struct kernel_lb_addr)); 855 count++; 856 endnum = c + 1; 857 lastblock = 1; 858 } else { 859 endnum = startnum = ((count > 2) ? 2 : count); 860 861 /* if the current extent is in position 0, 862 swap it with the previous */ 863 if (!c && count != 1) { 864 laarr[2] = laarr[0]; 865 laarr[0] = laarr[1]; 866 laarr[1] = laarr[2]; 867 c = 1; 868 } 869 870 /* if the current block is located in an extent, 871 read the next extent */ 872 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0); 873 if (ret > 0) { 874 laarr[c + 1].extLength = (etype << 30) | elen; 875 laarr[c + 1].extLocation = eloc; 876 count++; 877 startnum++; 878 endnum++; 879 } else if (ret == 0) 880 lastblock = 1; 881 else 882 goto out_free; 883 } 884 885 /* if the current extent is not recorded but allocated, get the 886 * block in the extent corresponding to the requested block */ 887 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 888 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 889 else { /* otherwise, allocate a new block */ 890 if (iinfo->i_next_alloc_block == map->lblk) 891 goal = iinfo->i_next_alloc_goal; 892 893 if (!goal) { 894 if (!(goal = pgoal)) /* XXX: what was intended here? */ 895 goal = iinfo->i_location.logicalBlockNum + 1; 896 } 897 898 newblocknum = udf_new_block(inode->i_sb, inode, 899 iinfo->i_location.partitionReferenceNum, 900 goal, &ret); 901 if (!newblocknum) 902 goto out_free; 903 if (isBeyondEOF) 904 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 905 } 906 907 /* if the extent the requsted block is located in contains multiple 908 * blocks, split the extent into at most three extents. blocks prior 909 * to requested block, requested block, and blocks after requested 910 * block */ 911 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 912 913 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 914 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 915 916 /* merge any continuous blocks in laarr */ 917 udf_merge_extents(inode, laarr, &endnum); 918 919 /* write back the new extents, inserting new extents if the new number 920 * of extents is greater than the old number, and deleting extents if 921 * the new number of extents is less than the old number */ 922 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 923 if (ret < 0) 924 goto out_free; 925 926 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 927 iinfo->i_location.partitionReferenceNum, 0); 928 if (!map->pblk) { 929 ret = -EFSCORRUPTED; 930 goto out_free; 931 } 932 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 933 iinfo->i_next_alloc_block = map->lblk + 1; 934 iinfo->i_next_alloc_goal = newblocknum + 1; 935 inode_set_ctime_current(inode); 936 937 if (IS_SYNC(inode)) 938 udf_sync_inode(inode); 939 else 940 mark_inode_dirty(inode); 941 ret = 0; 942 out_free: 943 brelse(prev_epos.bh); 944 brelse(cur_epos.bh); 945 brelse(next_epos.bh); 946 return ret; 947 } 948 949 static void udf_split_extents(struct inode *inode, int *c, int offset, 950 udf_pblk_t newblocknum, 951 struct kernel_long_ad *laarr, int *endnum) 952 { 953 unsigned long blocksize = inode->i_sb->s_blocksize; 954 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 955 956 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 957 (laarr[*c].extLength >> 30) == 958 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 959 int curr = *c; 960 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 961 blocksize - 1) >> blocksize_bits; 962 int8_t etype = (laarr[curr].extLength >> 30); 963 964 if (blen == 1) 965 ; 966 else if (!offset || blen == offset + 1) { 967 laarr[curr + 2] = laarr[curr + 1]; 968 laarr[curr + 1] = laarr[curr]; 969 } else { 970 laarr[curr + 3] = laarr[curr + 1]; 971 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 972 } 973 974 if (offset) { 975 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 976 udf_free_blocks(inode->i_sb, inode, 977 &laarr[curr].extLocation, 978 0, offset); 979 laarr[curr].extLength = 980 EXT_NOT_RECORDED_NOT_ALLOCATED | 981 (offset << blocksize_bits); 982 laarr[curr].extLocation.logicalBlockNum = 0; 983 laarr[curr].extLocation. 984 partitionReferenceNum = 0; 985 } else 986 laarr[curr].extLength = (etype << 30) | 987 (offset << blocksize_bits); 988 curr++; 989 (*c)++; 990 (*endnum)++; 991 } 992 993 laarr[curr].extLocation.logicalBlockNum = newblocknum; 994 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 995 laarr[curr].extLocation.partitionReferenceNum = 996 UDF_I(inode)->i_location.partitionReferenceNum; 997 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 998 blocksize; 999 curr++; 1000 1001 if (blen != offset + 1) { 1002 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 1003 laarr[curr].extLocation.logicalBlockNum += 1004 offset + 1; 1005 laarr[curr].extLength = (etype << 30) | 1006 ((blen - (offset + 1)) << blocksize_bits); 1007 curr++; 1008 (*endnum)++; 1009 } 1010 } 1011 } 1012 1013 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 1014 struct kernel_long_ad *laarr, 1015 int *endnum) 1016 { 1017 int start, length = 0, currlength = 0, i; 1018 1019 if (*endnum >= (c + 1)) { 1020 if (!lastblock) 1021 return; 1022 else 1023 start = c; 1024 } else { 1025 if ((laarr[c + 1].extLength >> 30) == 1026 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1027 start = c + 1; 1028 length = currlength = 1029 (((laarr[c + 1].extLength & 1030 UDF_EXTENT_LENGTH_MASK) + 1031 inode->i_sb->s_blocksize - 1) >> 1032 inode->i_sb->s_blocksize_bits); 1033 } else 1034 start = c; 1035 } 1036 1037 for (i = start + 1; i <= *endnum; i++) { 1038 if (i == *endnum) { 1039 if (lastblock) 1040 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1041 } else if ((laarr[i].extLength >> 30) == 1042 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1043 length += (((laarr[i].extLength & 1044 UDF_EXTENT_LENGTH_MASK) + 1045 inode->i_sb->s_blocksize - 1) >> 1046 inode->i_sb->s_blocksize_bits); 1047 } else 1048 break; 1049 } 1050 1051 if (length) { 1052 int next = laarr[start].extLocation.logicalBlockNum + 1053 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1054 inode->i_sb->s_blocksize - 1) >> 1055 inode->i_sb->s_blocksize_bits); 1056 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1057 laarr[start].extLocation.partitionReferenceNum, 1058 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1059 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1060 currlength); 1061 if (numalloc) { 1062 if (start == (c + 1)) 1063 laarr[start].extLength += 1064 (numalloc << 1065 inode->i_sb->s_blocksize_bits); 1066 else { 1067 memmove(&laarr[c + 2], &laarr[c + 1], 1068 sizeof(struct long_ad) * (*endnum - (c + 1))); 1069 (*endnum)++; 1070 laarr[c + 1].extLocation.logicalBlockNum = next; 1071 laarr[c + 1].extLocation.partitionReferenceNum = 1072 laarr[c].extLocation. 1073 partitionReferenceNum; 1074 laarr[c + 1].extLength = 1075 EXT_NOT_RECORDED_ALLOCATED | 1076 (numalloc << 1077 inode->i_sb->s_blocksize_bits); 1078 start = c + 1; 1079 } 1080 1081 for (i = start + 1; numalloc && i < *endnum; i++) { 1082 int elen = ((laarr[i].extLength & 1083 UDF_EXTENT_LENGTH_MASK) + 1084 inode->i_sb->s_blocksize - 1) >> 1085 inode->i_sb->s_blocksize_bits; 1086 1087 if (elen > numalloc) { 1088 laarr[i].extLength -= 1089 (numalloc << 1090 inode->i_sb->s_blocksize_bits); 1091 numalloc = 0; 1092 } else { 1093 numalloc -= elen; 1094 if (*endnum > (i + 1)) 1095 memmove(&laarr[i], 1096 &laarr[i + 1], 1097 sizeof(struct long_ad) * 1098 (*endnum - (i + 1))); 1099 i--; 1100 (*endnum)--; 1101 } 1102 } 1103 UDF_I(inode)->i_lenExtents += 1104 numalloc << inode->i_sb->s_blocksize_bits; 1105 } 1106 } 1107 } 1108 1109 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1110 int *endnum) 1111 { 1112 int i; 1113 unsigned long blocksize = inode->i_sb->s_blocksize; 1114 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1115 1116 for (i = 0; i < (*endnum - 1); i++) { 1117 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1118 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1119 1120 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1121 (((li->extLength >> 30) == 1122 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1123 ((lip1->extLocation.logicalBlockNum - 1124 li->extLocation.logicalBlockNum) == 1125 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1126 blocksize - 1) >> blocksize_bits)))) { 1127 1128 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1129 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1130 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1131 li->extLength = lip1->extLength + 1132 (((li->extLength & 1133 UDF_EXTENT_LENGTH_MASK) + 1134 blocksize - 1) & ~(blocksize - 1)); 1135 if (*endnum > (i + 2)) 1136 memmove(&laarr[i + 1], &laarr[i + 2], 1137 sizeof(struct long_ad) * 1138 (*endnum - (i + 2))); 1139 i--; 1140 (*endnum)--; 1141 } 1142 } else if (((li->extLength >> 30) == 1143 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1144 ((lip1->extLength >> 30) == 1145 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1146 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1147 ((li->extLength & 1148 UDF_EXTENT_LENGTH_MASK) + 1149 blocksize - 1) >> blocksize_bits); 1150 li->extLocation.logicalBlockNum = 0; 1151 li->extLocation.partitionReferenceNum = 0; 1152 1153 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1154 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1155 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1156 lip1->extLength = (lip1->extLength - 1157 (li->extLength & 1158 UDF_EXTENT_LENGTH_MASK) + 1159 UDF_EXTENT_LENGTH_MASK) & 1160 ~(blocksize - 1); 1161 li->extLength = (li->extLength & 1162 UDF_EXTENT_FLAG_MASK) + 1163 (UDF_EXTENT_LENGTH_MASK + 1) - 1164 blocksize; 1165 } else { 1166 li->extLength = lip1->extLength + 1167 (((li->extLength & 1168 UDF_EXTENT_LENGTH_MASK) + 1169 blocksize - 1) & ~(blocksize - 1)); 1170 if (*endnum > (i + 2)) 1171 memmove(&laarr[i + 1], &laarr[i + 2], 1172 sizeof(struct long_ad) * 1173 (*endnum - (i + 2))); 1174 i--; 1175 (*endnum)--; 1176 } 1177 } else if ((li->extLength >> 30) == 1178 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1179 udf_free_blocks(inode->i_sb, inode, 1180 &li->extLocation, 0, 1181 ((li->extLength & 1182 UDF_EXTENT_LENGTH_MASK) + 1183 blocksize - 1) >> blocksize_bits); 1184 li->extLocation.logicalBlockNum = 0; 1185 li->extLocation.partitionReferenceNum = 0; 1186 li->extLength = (li->extLength & 1187 UDF_EXTENT_LENGTH_MASK) | 1188 EXT_NOT_RECORDED_NOT_ALLOCATED; 1189 } 1190 } 1191 } 1192 1193 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1194 int startnum, int endnum, 1195 struct extent_position *epos) 1196 { 1197 int start = 0, i; 1198 struct kernel_lb_addr tmploc; 1199 uint32_t tmplen; 1200 int8_t tmpetype; 1201 int err; 1202 1203 if (startnum > endnum) { 1204 for (i = 0; i < (startnum - endnum); i++) 1205 udf_delete_aext(inode, *epos); 1206 } else if (startnum < endnum) { 1207 for (i = 0; i < (endnum - startnum); i++) { 1208 err = udf_insert_aext(inode, *epos, 1209 laarr[i].extLocation, 1210 laarr[i].extLength); 1211 /* 1212 * If we fail here, we are likely corrupting the extent 1213 * list and leaking blocks. At least stop early to 1214 * limit the damage. 1215 */ 1216 if (err < 0) 1217 return err; 1218 err = udf_next_aext(inode, epos, &laarr[i].extLocation, 1219 &laarr[i].extLength, &tmpetype, 1); 1220 if (err < 0) 1221 return err; 1222 start++; 1223 } 1224 } 1225 1226 for (i = start; i < endnum; i++) { 1227 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0); 1228 if (err < 0) 1229 return err; 1230 1231 udf_write_aext(inode, epos, &laarr[i].extLocation, 1232 laarr[i].extLength, 1); 1233 } 1234 return 0; 1235 } 1236 1237 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1238 int create, int *err) 1239 { 1240 struct buffer_head *bh = NULL; 1241 struct udf_map_rq map = { 1242 .lblk = block, 1243 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1244 }; 1245 1246 *err = udf_map_block(inode, &map); 1247 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1248 return NULL; 1249 1250 bh = sb_getblk(inode->i_sb, map.pblk); 1251 if (!bh) { 1252 *err = -ENOMEM; 1253 return NULL; 1254 } 1255 if (map.oflags & UDF_BLK_NEW) { 1256 lock_buffer(bh); 1257 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1258 set_buffer_uptodate(bh); 1259 unlock_buffer(bh); 1260 mark_buffer_dirty_inode(bh, inode); 1261 return bh; 1262 } 1263 1264 if (bh_read(bh, 0) >= 0) 1265 return bh; 1266 1267 brelse(bh); 1268 *err = -EIO; 1269 return NULL; 1270 } 1271 1272 int udf_setsize(struct inode *inode, loff_t newsize) 1273 { 1274 int err = 0; 1275 struct udf_inode_info *iinfo; 1276 unsigned int bsize = i_blocksize(inode); 1277 1278 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1279 S_ISLNK(inode->i_mode))) 1280 return -EINVAL; 1281 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1282 return -EPERM; 1283 1284 iinfo = UDF_I(inode); 1285 if (newsize > inode->i_size) { 1286 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1287 if (bsize >= 1288 (udf_file_entry_alloc_offset(inode) + newsize)) { 1289 down_write(&iinfo->i_data_sem); 1290 iinfo->i_lenAlloc = newsize; 1291 up_write(&iinfo->i_data_sem); 1292 goto set_size; 1293 } 1294 err = udf_expand_file_adinicb(inode); 1295 if (err) 1296 return err; 1297 } 1298 err = udf_extend_file(inode, newsize); 1299 if (err) 1300 return err; 1301 set_size: 1302 truncate_setsize(inode, newsize); 1303 } else { 1304 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1305 down_write(&iinfo->i_data_sem); 1306 udf_clear_extent_cache(inode); 1307 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1308 0x00, bsize - newsize - 1309 udf_file_entry_alloc_offset(inode)); 1310 iinfo->i_lenAlloc = newsize; 1311 truncate_setsize(inode, newsize); 1312 up_write(&iinfo->i_data_sem); 1313 goto update_time; 1314 } 1315 err = block_truncate_page(inode->i_mapping, newsize, 1316 udf_get_block); 1317 if (err) 1318 return err; 1319 truncate_setsize(inode, newsize); 1320 down_write(&iinfo->i_data_sem); 1321 udf_clear_extent_cache(inode); 1322 err = udf_truncate_extents(inode); 1323 up_write(&iinfo->i_data_sem); 1324 if (err) 1325 return err; 1326 } 1327 update_time: 1328 inode->i_mtime = inode_set_ctime_current(inode); 1329 if (IS_SYNC(inode)) 1330 udf_sync_inode(inode); 1331 else 1332 mark_inode_dirty(inode); 1333 return err; 1334 } 1335 1336 /* 1337 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1338 * arbitrary - just that we hopefully don't limit any real use of rewritten 1339 * inode on write-once media but avoid looping for too long on corrupted media. 1340 */ 1341 #define UDF_MAX_ICB_NESTING 1024 1342 1343 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1344 { 1345 struct buffer_head *bh = NULL; 1346 struct fileEntry *fe; 1347 struct extendedFileEntry *efe; 1348 uint16_t ident; 1349 struct udf_inode_info *iinfo = UDF_I(inode); 1350 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1351 struct kernel_lb_addr *iloc = &iinfo->i_location; 1352 unsigned int link_count; 1353 unsigned int indirections = 0; 1354 int bs = inode->i_sb->s_blocksize; 1355 int ret = -EIO; 1356 uint32_t uid, gid; 1357 struct timespec64 ctime; 1358 1359 reread: 1360 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1361 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1362 iloc->partitionReferenceNum, sbi->s_partitions); 1363 return -EIO; 1364 } 1365 1366 if (iloc->logicalBlockNum >= 1367 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1368 udf_debug("block=%u, partition=%u out of range\n", 1369 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1370 return -EIO; 1371 } 1372 1373 /* 1374 * Set defaults, but the inode is still incomplete! 1375 * Note: get_new_inode() sets the following on a new inode: 1376 * i_sb = sb 1377 * i_no = ino 1378 * i_flags = sb->s_flags 1379 * i_state = 0 1380 * clean_inode(): zero fills and sets 1381 * i_count = 1 1382 * i_nlink = 1 1383 * i_op = NULL; 1384 */ 1385 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1386 if (!bh) { 1387 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1388 return -EIO; 1389 } 1390 1391 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1392 ident != TAG_IDENT_USE) { 1393 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1394 inode->i_ino, ident); 1395 goto out; 1396 } 1397 1398 fe = (struct fileEntry *)bh->b_data; 1399 efe = (struct extendedFileEntry *)bh->b_data; 1400 1401 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1402 struct buffer_head *ibh; 1403 1404 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1405 if (ident == TAG_IDENT_IE && ibh) { 1406 struct kernel_lb_addr loc; 1407 struct indirectEntry *ie; 1408 1409 ie = (struct indirectEntry *)ibh->b_data; 1410 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1411 1412 if (ie->indirectICB.extLength) { 1413 brelse(ibh); 1414 memcpy(&iinfo->i_location, &loc, 1415 sizeof(struct kernel_lb_addr)); 1416 if (++indirections > UDF_MAX_ICB_NESTING) { 1417 udf_err(inode->i_sb, 1418 "too many ICBs in ICB hierarchy" 1419 " (max %d supported)\n", 1420 UDF_MAX_ICB_NESTING); 1421 goto out; 1422 } 1423 brelse(bh); 1424 goto reread; 1425 } 1426 } 1427 brelse(ibh); 1428 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1429 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1430 le16_to_cpu(fe->icbTag.strategyType)); 1431 goto out; 1432 } 1433 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1434 iinfo->i_strat4096 = 0; 1435 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1436 iinfo->i_strat4096 = 1; 1437 1438 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1439 ICBTAG_FLAG_AD_MASK; 1440 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1441 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1442 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1443 ret = -EIO; 1444 goto out; 1445 } 1446 iinfo->i_hidden = hidden_inode; 1447 iinfo->i_unique = 0; 1448 iinfo->i_lenEAttr = 0; 1449 iinfo->i_lenExtents = 0; 1450 iinfo->i_lenAlloc = 0; 1451 iinfo->i_next_alloc_block = 0; 1452 iinfo->i_next_alloc_goal = 0; 1453 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1454 iinfo->i_efe = 1; 1455 iinfo->i_use = 0; 1456 ret = udf_alloc_i_data(inode, bs - 1457 sizeof(struct extendedFileEntry)); 1458 if (ret) 1459 goto out; 1460 memcpy(iinfo->i_data, 1461 bh->b_data + sizeof(struct extendedFileEntry), 1462 bs - sizeof(struct extendedFileEntry)); 1463 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1464 iinfo->i_efe = 0; 1465 iinfo->i_use = 0; 1466 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1467 if (ret) 1468 goto out; 1469 memcpy(iinfo->i_data, 1470 bh->b_data + sizeof(struct fileEntry), 1471 bs - sizeof(struct fileEntry)); 1472 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1473 iinfo->i_efe = 0; 1474 iinfo->i_use = 1; 1475 iinfo->i_lenAlloc = le32_to_cpu( 1476 ((struct unallocSpaceEntry *)bh->b_data)-> 1477 lengthAllocDescs); 1478 ret = udf_alloc_i_data(inode, bs - 1479 sizeof(struct unallocSpaceEntry)); 1480 if (ret) 1481 goto out; 1482 memcpy(iinfo->i_data, 1483 bh->b_data + sizeof(struct unallocSpaceEntry), 1484 bs - sizeof(struct unallocSpaceEntry)); 1485 return 0; 1486 } 1487 1488 ret = -EIO; 1489 read_lock(&sbi->s_cred_lock); 1490 uid = le32_to_cpu(fe->uid); 1491 if (uid == UDF_INVALID_ID || 1492 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1493 inode->i_uid = sbi->s_uid; 1494 else 1495 i_uid_write(inode, uid); 1496 1497 gid = le32_to_cpu(fe->gid); 1498 if (gid == UDF_INVALID_ID || 1499 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1500 inode->i_gid = sbi->s_gid; 1501 else 1502 i_gid_write(inode, gid); 1503 1504 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1505 sbi->s_fmode != UDF_INVALID_MODE) 1506 inode->i_mode = sbi->s_fmode; 1507 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1508 sbi->s_dmode != UDF_INVALID_MODE) 1509 inode->i_mode = sbi->s_dmode; 1510 else 1511 inode->i_mode = udf_convert_permissions(fe); 1512 inode->i_mode &= ~sbi->s_umask; 1513 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1514 1515 read_unlock(&sbi->s_cred_lock); 1516 1517 link_count = le16_to_cpu(fe->fileLinkCount); 1518 if (!link_count) { 1519 if (!hidden_inode) { 1520 ret = -ESTALE; 1521 goto out; 1522 } 1523 link_count = 1; 1524 } 1525 set_nlink(inode, link_count); 1526 1527 inode->i_size = le64_to_cpu(fe->informationLength); 1528 iinfo->i_lenExtents = inode->i_size; 1529 1530 if (iinfo->i_efe == 0) { 1531 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1532 (inode->i_sb->s_blocksize_bits - 9); 1533 1534 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1535 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1536 udf_disk_stamp_to_time(&ctime, fe->attrTime); 1537 inode_set_ctime_to_ts(inode, ctime); 1538 1539 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1540 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1541 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1542 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1543 iinfo->i_streamdir = 0; 1544 iinfo->i_lenStreams = 0; 1545 } else { 1546 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1547 (inode->i_sb->s_blocksize_bits - 9); 1548 1549 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1550 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1551 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1552 udf_disk_stamp_to_time(&ctime, efe->attrTime); 1553 inode_set_ctime_to_ts(inode, ctime); 1554 1555 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1556 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1557 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1558 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1559 1560 /* Named streams */ 1561 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1562 iinfo->i_locStreamdir = 1563 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1564 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1565 if (iinfo->i_lenStreams >= inode->i_size) 1566 iinfo->i_lenStreams -= inode->i_size; 1567 else 1568 iinfo->i_lenStreams = 0; 1569 } 1570 inode->i_generation = iinfo->i_unique; 1571 1572 /* 1573 * Sanity check length of allocation descriptors and extended attrs to 1574 * avoid integer overflows 1575 */ 1576 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1577 goto out; 1578 /* Now do exact checks */ 1579 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1580 goto out; 1581 /* Sanity checks for files in ICB so that we don't get confused later */ 1582 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1583 /* 1584 * For file in ICB data is stored in allocation descriptor 1585 * so sizes should match 1586 */ 1587 if (iinfo->i_lenAlloc != inode->i_size) 1588 goto out; 1589 /* File in ICB has to fit in there... */ 1590 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1591 goto out; 1592 } 1593 1594 switch (fe->icbTag.fileType) { 1595 case ICBTAG_FILE_TYPE_DIRECTORY: 1596 inode->i_op = &udf_dir_inode_operations; 1597 inode->i_fop = &udf_dir_operations; 1598 inode->i_mode |= S_IFDIR; 1599 inc_nlink(inode); 1600 break; 1601 case ICBTAG_FILE_TYPE_REALTIME: 1602 case ICBTAG_FILE_TYPE_REGULAR: 1603 case ICBTAG_FILE_TYPE_UNDEF: 1604 case ICBTAG_FILE_TYPE_VAT20: 1605 inode->i_data.a_ops = &udf_aops; 1606 inode->i_op = &udf_file_inode_operations; 1607 inode->i_fop = &udf_file_operations; 1608 inode->i_mode |= S_IFREG; 1609 break; 1610 case ICBTAG_FILE_TYPE_BLOCK: 1611 inode->i_mode |= S_IFBLK; 1612 break; 1613 case ICBTAG_FILE_TYPE_CHAR: 1614 inode->i_mode |= S_IFCHR; 1615 break; 1616 case ICBTAG_FILE_TYPE_FIFO: 1617 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1618 break; 1619 case ICBTAG_FILE_TYPE_SOCKET: 1620 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1621 break; 1622 case ICBTAG_FILE_TYPE_SYMLINK: 1623 inode->i_data.a_ops = &udf_symlink_aops; 1624 inode->i_op = &udf_symlink_inode_operations; 1625 inode_nohighmem(inode); 1626 inode->i_mode = S_IFLNK | 0777; 1627 break; 1628 case ICBTAG_FILE_TYPE_MAIN: 1629 udf_debug("METADATA FILE-----\n"); 1630 break; 1631 case ICBTAG_FILE_TYPE_MIRROR: 1632 udf_debug("METADATA MIRROR FILE-----\n"); 1633 break; 1634 case ICBTAG_FILE_TYPE_BITMAP: 1635 udf_debug("METADATA BITMAP FILE-----\n"); 1636 break; 1637 default: 1638 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1639 inode->i_ino, fe->icbTag.fileType); 1640 goto out; 1641 } 1642 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1643 struct deviceSpec *dsea = 1644 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1645 if (dsea) { 1646 init_special_inode(inode, inode->i_mode, 1647 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1648 le32_to_cpu(dsea->minorDeviceIdent))); 1649 /* Developer ID ??? */ 1650 } else 1651 goto out; 1652 } 1653 ret = 0; 1654 out: 1655 brelse(bh); 1656 return ret; 1657 } 1658 1659 static int udf_alloc_i_data(struct inode *inode, size_t size) 1660 { 1661 struct udf_inode_info *iinfo = UDF_I(inode); 1662 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1663 if (!iinfo->i_data) 1664 return -ENOMEM; 1665 return 0; 1666 } 1667 1668 static umode_t udf_convert_permissions(struct fileEntry *fe) 1669 { 1670 umode_t mode; 1671 uint32_t permissions; 1672 uint32_t flags; 1673 1674 permissions = le32_to_cpu(fe->permissions); 1675 flags = le16_to_cpu(fe->icbTag.flags); 1676 1677 mode = ((permissions) & 0007) | 1678 ((permissions >> 2) & 0070) | 1679 ((permissions >> 4) & 0700) | 1680 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1681 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1682 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1683 1684 return mode; 1685 } 1686 1687 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1688 { 1689 struct udf_inode_info *iinfo = UDF_I(inode); 1690 1691 /* 1692 * UDF 2.01 sec. 3.3.3.3 Note 2: 1693 * In Unix, delete permission tracks write 1694 */ 1695 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1696 if (mode & 0200) 1697 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1698 if (mode & 0020) 1699 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1700 if (mode & 0002) 1701 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1702 } 1703 1704 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1705 { 1706 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1707 } 1708 1709 static int udf_sync_inode(struct inode *inode) 1710 { 1711 return udf_update_inode(inode, 1); 1712 } 1713 1714 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1715 { 1716 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1717 (iinfo->i_crtime.tv_sec == time.tv_sec && 1718 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1719 iinfo->i_crtime = time; 1720 } 1721 1722 static int udf_update_inode(struct inode *inode, int do_sync) 1723 { 1724 struct buffer_head *bh = NULL; 1725 struct fileEntry *fe; 1726 struct extendedFileEntry *efe; 1727 uint64_t lb_recorded; 1728 uint32_t udfperms; 1729 uint16_t icbflags; 1730 uint16_t crclen; 1731 int err = 0; 1732 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1733 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1734 struct udf_inode_info *iinfo = UDF_I(inode); 1735 1736 bh = sb_getblk(inode->i_sb, 1737 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1738 if (!bh) { 1739 udf_debug("getblk failure\n"); 1740 return -EIO; 1741 } 1742 1743 lock_buffer(bh); 1744 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1745 fe = (struct fileEntry *)bh->b_data; 1746 efe = (struct extendedFileEntry *)bh->b_data; 1747 1748 if (iinfo->i_use) { 1749 struct unallocSpaceEntry *use = 1750 (struct unallocSpaceEntry *)bh->b_data; 1751 1752 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1753 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1754 iinfo->i_data, inode->i_sb->s_blocksize - 1755 sizeof(struct unallocSpaceEntry)); 1756 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1757 crclen = sizeof(struct unallocSpaceEntry); 1758 1759 goto finish; 1760 } 1761 1762 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1763 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1764 else 1765 fe->uid = cpu_to_le32(i_uid_read(inode)); 1766 1767 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1768 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1769 else 1770 fe->gid = cpu_to_le32(i_gid_read(inode)); 1771 1772 udfperms = ((inode->i_mode & 0007)) | 1773 ((inode->i_mode & 0070) << 2) | 1774 ((inode->i_mode & 0700) << 4); 1775 1776 udfperms |= iinfo->i_extraPerms; 1777 fe->permissions = cpu_to_le32(udfperms); 1778 1779 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1780 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1781 else { 1782 if (iinfo->i_hidden) 1783 fe->fileLinkCount = cpu_to_le16(0); 1784 else 1785 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1786 } 1787 1788 fe->informationLength = cpu_to_le64(inode->i_size); 1789 1790 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1791 struct regid *eid; 1792 struct deviceSpec *dsea = 1793 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1794 if (!dsea) { 1795 dsea = (struct deviceSpec *) 1796 udf_add_extendedattr(inode, 1797 sizeof(struct deviceSpec) + 1798 sizeof(struct regid), 12, 0x3); 1799 dsea->attrType = cpu_to_le32(12); 1800 dsea->attrSubtype = 1; 1801 dsea->attrLength = cpu_to_le32( 1802 sizeof(struct deviceSpec) + 1803 sizeof(struct regid)); 1804 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1805 } 1806 eid = (struct regid *)dsea->impUse; 1807 memset(eid, 0, sizeof(*eid)); 1808 strcpy(eid->ident, UDF_ID_DEVELOPER); 1809 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1810 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1811 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1812 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1813 } 1814 1815 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1816 lb_recorded = 0; /* No extents => no blocks! */ 1817 else 1818 lb_recorded = 1819 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1820 (blocksize_bits - 9); 1821 1822 if (iinfo->i_efe == 0) { 1823 memcpy(bh->b_data + sizeof(struct fileEntry), 1824 iinfo->i_data, 1825 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1826 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1827 1828 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1829 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1830 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1831 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1832 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1833 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1834 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1835 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1836 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1837 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1838 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1839 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1840 crclen = sizeof(struct fileEntry); 1841 } else { 1842 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1843 iinfo->i_data, 1844 inode->i_sb->s_blocksize - 1845 sizeof(struct extendedFileEntry)); 1846 efe->objectSize = 1847 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1848 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1849 1850 if (iinfo->i_streamdir) { 1851 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1852 1853 icb_lad->extLocation = 1854 cpu_to_lelb(iinfo->i_locStreamdir); 1855 icb_lad->extLength = 1856 cpu_to_le32(inode->i_sb->s_blocksize); 1857 } 1858 1859 udf_adjust_time(iinfo, inode->i_atime); 1860 udf_adjust_time(iinfo, inode->i_mtime); 1861 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1862 1863 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1864 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1865 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1866 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1867 1868 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1869 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1870 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1871 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1872 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1873 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1874 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1875 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1876 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1877 crclen = sizeof(struct extendedFileEntry); 1878 } 1879 1880 finish: 1881 if (iinfo->i_strat4096) { 1882 fe->icbTag.strategyType = cpu_to_le16(4096); 1883 fe->icbTag.strategyParameter = cpu_to_le16(1); 1884 fe->icbTag.numEntries = cpu_to_le16(2); 1885 } else { 1886 fe->icbTag.strategyType = cpu_to_le16(4); 1887 fe->icbTag.numEntries = cpu_to_le16(1); 1888 } 1889 1890 if (iinfo->i_use) 1891 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1892 else if (S_ISDIR(inode->i_mode)) 1893 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1894 else if (S_ISREG(inode->i_mode)) 1895 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1896 else if (S_ISLNK(inode->i_mode)) 1897 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1898 else if (S_ISBLK(inode->i_mode)) 1899 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1900 else if (S_ISCHR(inode->i_mode)) 1901 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1902 else if (S_ISFIFO(inode->i_mode)) 1903 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1904 else if (S_ISSOCK(inode->i_mode)) 1905 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1906 1907 icbflags = iinfo->i_alloc_type | 1908 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1909 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1910 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1911 (le16_to_cpu(fe->icbTag.flags) & 1912 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1913 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1914 1915 fe->icbTag.flags = cpu_to_le16(icbflags); 1916 if (sbi->s_udfrev >= 0x0200) 1917 fe->descTag.descVersion = cpu_to_le16(3); 1918 else 1919 fe->descTag.descVersion = cpu_to_le16(2); 1920 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1921 fe->descTag.tagLocation = cpu_to_le32( 1922 iinfo->i_location.logicalBlockNum); 1923 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1924 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1925 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1926 crclen)); 1927 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1928 1929 set_buffer_uptodate(bh); 1930 unlock_buffer(bh); 1931 1932 /* write the data blocks */ 1933 mark_buffer_dirty(bh); 1934 if (do_sync) { 1935 sync_dirty_buffer(bh); 1936 if (buffer_write_io_error(bh)) { 1937 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1938 inode->i_ino); 1939 err = -EIO; 1940 } 1941 } 1942 brelse(bh); 1943 1944 return err; 1945 } 1946 1947 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1948 bool hidden_inode) 1949 { 1950 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1951 struct inode *inode = iget_locked(sb, block); 1952 int err; 1953 1954 if (!inode) 1955 return ERR_PTR(-ENOMEM); 1956 1957 if (!(inode->i_state & I_NEW)) { 1958 if (UDF_I(inode)->i_hidden != hidden_inode) { 1959 iput(inode); 1960 return ERR_PTR(-EFSCORRUPTED); 1961 } 1962 return inode; 1963 } 1964 1965 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1966 err = udf_read_inode(inode, hidden_inode); 1967 if (err < 0) { 1968 iget_failed(inode); 1969 return ERR_PTR(err); 1970 } 1971 unlock_new_inode(inode); 1972 1973 return inode; 1974 } 1975 1976 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1977 struct extent_position *epos) 1978 { 1979 struct super_block *sb = inode->i_sb; 1980 struct buffer_head *bh; 1981 struct allocExtDesc *aed; 1982 struct extent_position nepos; 1983 struct kernel_lb_addr neloc; 1984 int ver, adsize; 1985 int err = 0; 1986 1987 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1988 adsize = sizeof(struct short_ad); 1989 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1990 adsize = sizeof(struct long_ad); 1991 else 1992 return -EIO; 1993 1994 neloc.logicalBlockNum = block; 1995 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1996 1997 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1998 if (!bh) 1999 return -EIO; 2000 lock_buffer(bh); 2001 memset(bh->b_data, 0x00, sb->s_blocksize); 2002 set_buffer_uptodate(bh); 2003 unlock_buffer(bh); 2004 mark_buffer_dirty_inode(bh, inode); 2005 2006 aed = (struct allocExtDesc *)(bh->b_data); 2007 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 2008 aed->previousAllocExtLocation = 2009 cpu_to_le32(epos->block.logicalBlockNum); 2010 } 2011 aed->lengthAllocDescs = cpu_to_le32(0); 2012 if (UDF_SB(sb)->s_udfrev >= 0x0200) 2013 ver = 3; 2014 else 2015 ver = 2; 2016 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 2017 sizeof(struct tag)); 2018 2019 nepos.block = neloc; 2020 nepos.offset = sizeof(struct allocExtDesc); 2021 nepos.bh = bh; 2022 2023 /* 2024 * Do we have to copy current last extent to make space for indirect 2025 * one? 2026 */ 2027 if (epos->offset + adsize > sb->s_blocksize) { 2028 struct kernel_lb_addr cp_loc; 2029 uint32_t cp_len; 2030 int8_t cp_type; 2031 2032 epos->offset -= adsize; 2033 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0); 2034 if (err <= 0) 2035 goto err_out; 2036 cp_len |= ((uint32_t)cp_type) << 30; 2037 2038 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2039 udf_write_aext(inode, epos, &nepos.block, 2040 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2041 } else { 2042 __udf_add_aext(inode, epos, &nepos.block, 2043 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2044 } 2045 2046 brelse(epos->bh); 2047 *epos = nepos; 2048 2049 return 0; 2050 err_out: 2051 brelse(bh); 2052 return err; 2053 } 2054 2055 /* 2056 * Append extent at the given position - should be the first free one in inode 2057 * / indirect extent. This function assumes there is enough space in the inode 2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2059 */ 2060 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2061 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2062 { 2063 struct udf_inode_info *iinfo = UDF_I(inode); 2064 struct allocExtDesc *aed; 2065 int adsize; 2066 2067 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2068 adsize = sizeof(struct short_ad); 2069 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2070 adsize = sizeof(struct long_ad); 2071 else 2072 return -EIO; 2073 2074 if (!epos->bh) { 2075 WARN_ON(iinfo->i_lenAlloc != 2076 epos->offset - udf_file_entry_alloc_offset(inode)); 2077 } else { 2078 aed = (struct allocExtDesc *)epos->bh->b_data; 2079 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2080 epos->offset - sizeof(struct allocExtDesc)); 2081 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2082 } 2083 2084 udf_write_aext(inode, epos, eloc, elen, inc); 2085 2086 if (!epos->bh) { 2087 iinfo->i_lenAlloc += adsize; 2088 mark_inode_dirty(inode); 2089 } else { 2090 aed = (struct allocExtDesc *)epos->bh->b_data; 2091 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2092 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2093 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2094 udf_update_tag(epos->bh->b_data, 2095 epos->offset + (inc ? 0 : adsize)); 2096 else 2097 udf_update_tag(epos->bh->b_data, 2098 sizeof(struct allocExtDesc)); 2099 mark_buffer_dirty_inode(epos->bh, inode); 2100 } 2101 2102 return 0; 2103 } 2104 2105 /* 2106 * Append extent at given position - should be the first free one in inode 2107 * / indirect extent. Takes care of allocating and linking indirect blocks. 2108 */ 2109 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2110 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2111 { 2112 int adsize; 2113 struct super_block *sb = inode->i_sb; 2114 2115 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2116 adsize = sizeof(struct short_ad); 2117 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2118 adsize = sizeof(struct long_ad); 2119 else 2120 return -EIO; 2121 2122 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2123 int err; 2124 udf_pblk_t new_block; 2125 2126 new_block = udf_new_block(sb, NULL, 2127 epos->block.partitionReferenceNum, 2128 epos->block.logicalBlockNum, &err); 2129 if (!new_block) 2130 return -ENOSPC; 2131 2132 err = udf_setup_indirect_aext(inode, new_block, epos); 2133 if (err) 2134 return err; 2135 } 2136 2137 return __udf_add_aext(inode, epos, eloc, elen, inc); 2138 } 2139 2140 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2141 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2142 { 2143 int adsize; 2144 uint8_t *ptr; 2145 struct short_ad *sad; 2146 struct long_ad *lad; 2147 struct udf_inode_info *iinfo = UDF_I(inode); 2148 2149 if (!epos->bh) 2150 ptr = iinfo->i_data + epos->offset - 2151 udf_file_entry_alloc_offset(inode) + 2152 iinfo->i_lenEAttr; 2153 else 2154 ptr = epos->bh->b_data + epos->offset; 2155 2156 switch (iinfo->i_alloc_type) { 2157 case ICBTAG_FLAG_AD_SHORT: 2158 sad = (struct short_ad *)ptr; 2159 sad->extLength = cpu_to_le32(elen); 2160 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2161 adsize = sizeof(struct short_ad); 2162 break; 2163 case ICBTAG_FLAG_AD_LONG: 2164 lad = (struct long_ad *)ptr; 2165 lad->extLength = cpu_to_le32(elen); 2166 lad->extLocation = cpu_to_lelb(*eloc); 2167 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2168 adsize = sizeof(struct long_ad); 2169 break; 2170 default: 2171 return; 2172 } 2173 2174 if (epos->bh) { 2175 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2176 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2177 struct allocExtDesc *aed = 2178 (struct allocExtDesc *)epos->bh->b_data; 2179 udf_update_tag(epos->bh->b_data, 2180 le32_to_cpu(aed->lengthAllocDescs) + 2181 sizeof(struct allocExtDesc)); 2182 } 2183 mark_buffer_dirty_inode(epos->bh, inode); 2184 } else { 2185 mark_inode_dirty(inode); 2186 } 2187 2188 if (inc) 2189 epos->offset += adsize; 2190 } 2191 2192 /* 2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2194 * someone does some weird stuff. 2195 */ 2196 #define UDF_MAX_INDIR_EXTS 16 2197 2198 /* 2199 * Returns 1 on success, -errno on error, 0 on hit EOF. 2200 */ 2201 int udf_next_aext(struct inode *inode, struct extent_position *epos, 2202 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype, 2203 int inc) 2204 { 2205 unsigned int indirections = 0; 2206 int ret = 0; 2207 udf_pblk_t block; 2208 2209 while (1) { 2210 ret = udf_current_aext(inode, epos, eloc, elen, 2211 etype, inc); 2212 if (ret <= 0) 2213 return ret; 2214 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) 2215 return ret; 2216 2217 if (++indirections > UDF_MAX_INDIR_EXTS) { 2218 udf_err(inode->i_sb, 2219 "too many indirect extents in inode %lu\n", 2220 inode->i_ino); 2221 return -EFSCORRUPTED; 2222 } 2223 2224 epos->block = *eloc; 2225 epos->offset = sizeof(struct allocExtDesc); 2226 brelse(epos->bh); 2227 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2228 epos->bh = sb_bread(inode->i_sb, block); 2229 if (!epos->bh) { 2230 udf_debug("reading block %u failed!\n", block); 2231 return -EIO; 2232 } 2233 } 2234 } 2235 2236 /* 2237 * Returns 1 on success, -errno on error, 0 on hit EOF. 2238 */ 2239 int udf_current_aext(struct inode *inode, struct extent_position *epos, 2240 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype, 2241 int inc) 2242 { 2243 int alen; 2244 uint8_t *ptr; 2245 struct short_ad *sad; 2246 struct long_ad *lad; 2247 struct udf_inode_info *iinfo = UDF_I(inode); 2248 2249 if (!epos->bh) { 2250 if (!epos->offset) 2251 epos->offset = udf_file_entry_alloc_offset(inode); 2252 ptr = iinfo->i_data + epos->offset - 2253 udf_file_entry_alloc_offset(inode) + 2254 iinfo->i_lenEAttr; 2255 alen = udf_file_entry_alloc_offset(inode) + 2256 iinfo->i_lenAlloc; 2257 } else { 2258 struct allocExtDesc *header = 2259 (struct allocExtDesc *)epos->bh->b_data; 2260 2261 if (!epos->offset) 2262 epos->offset = sizeof(struct allocExtDesc); 2263 ptr = epos->bh->b_data + epos->offset; 2264 if (check_add_overflow(sizeof(struct allocExtDesc), 2265 le32_to_cpu(header->lengthAllocDescs), &alen)) 2266 return -1; 2267 } 2268 2269 switch (iinfo->i_alloc_type) { 2270 case ICBTAG_FLAG_AD_SHORT: 2271 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2272 if (!sad) 2273 return 0; 2274 *etype = le32_to_cpu(sad->extLength) >> 30; 2275 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2276 eloc->partitionReferenceNum = 2277 iinfo->i_location.partitionReferenceNum; 2278 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2279 break; 2280 case ICBTAG_FLAG_AD_LONG: 2281 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2282 if (!lad) 2283 return 0; 2284 *etype = le32_to_cpu(lad->extLength) >> 30; 2285 *eloc = lelb_to_cpu(lad->extLocation); 2286 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2287 break; 2288 default: 2289 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2290 return -EINVAL; 2291 } 2292 2293 return 1; 2294 } 2295 2296 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2297 struct kernel_lb_addr neloc, uint32_t nelen) 2298 { 2299 struct kernel_lb_addr oeloc; 2300 uint32_t oelen; 2301 int8_t etype; 2302 int ret; 2303 2304 if (epos.bh) 2305 get_bh(epos.bh); 2306 2307 while (1) { 2308 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0); 2309 if (ret <= 0) 2310 break; 2311 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2312 neloc = oeloc; 2313 nelen = (etype << 30) | oelen; 2314 } 2315 if (ret == 0) 2316 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2317 brelse(epos.bh); 2318 2319 return ret; 2320 } 2321 2322 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2323 { 2324 struct extent_position oepos; 2325 int adsize; 2326 int8_t etype; 2327 struct allocExtDesc *aed; 2328 struct udf_inode_info *iinfo; 2329 struct kernel_lb_addr eloc; 2330 uint32_t elen; 2331 int ret; 2332 2333 if (epos.bh) { 2334 get_bh(epos.bh); 2335 get_bh(epos.bh); 2336 } 2337 2338 iinfo = UDF_I(inode); 2339 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2340 adsize = sizeof(struct short_ad); 2341 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2342 adsize = sizeof(struct long_ad); 2343 else 2344 adsize = 0; 2345 2346 oepos = epos; 2347 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0) 2348 return -1; 2349 2350 while (1) { 2351 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1); 2352 if (ret < 0) { 2353 brelse(epos.bh); 2354 brelse(oepos.bh); 2355 return -1; 2356 } 2357 if (ret == 0) 2358 break; 2359 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2360 if (oepos.bh != epos.bh) { 2361 oepos.block = epos.block; 2362 brelse(oepos.bh); 2363 get_bh(epos.bh); 2364 oepos.bh = epos.bh; 2365 oepos.offset = epos.offset - adsize; 2366 } 2367 } 2368 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2369 elen = 0; 2370 2371 if (epos.bh != oepos.bh) { 2372 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2373 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2374 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2375 if (!oepos.bh) { 2376 iinfo->i_lenAlloc -= (adsize * 2); 2377 mark_inode_dirty(inode); 2378 } else { 2379 aed = (struct allocExtDesc *)oepos.bh->b_data; 2380 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2381 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2382 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2383 udf_update_tag(oepos.bh->b_data, 2384 oepos.offset - (2 * adsize)); 2385 else 2386 udf_update_tag(oepos.bh->b_data, 2387 sizeof(struct allocExtDesc)); 2388 mark_buffer_dirty_inode(oepos.bh, inode); 2389 } 2390 } else { 2391 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2392 if (!oepos.bh) { 2393 iinfo->i_lenAlloc -= adsize; 2394 mark_inode_dirty(inode); 2395 } else { 2396 aed = (struct allocExtDesc *)oepos.bh->b_data; 2397 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2398 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2399 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2400 udf_update_tag(oepos.bh->b_data, 2401 epos.offset - adsize); 2402 else 2403 udf_update_tag(oepos.bh->b_data, 2404 sizeof(struct allocExtDesc)); 2405 mark_buffer_dirty_inode(oepos.bh, inode); 2406 } 2407 } 2408 2409 brelse(epos.bh); 2410 brelse(oepos.bh); 2411 2412 return (elen >> 30); 2413 } 2414 2415 /* 2416 * Returns 1 on success, -errno on error, 0 on hit EOF. 2417 */ 2418 int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos, 2419 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset, 2420 int8_t *etype) 2421 { 2422 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2423 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2424 struct udf_inode_info *iinfo; 2425 int err = 0; 2426 2427 iinfo = UDF_I(inode); 2428 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2429 pos->offset = 0; 2430 pos->block = iinfo->i_location; 2431 pos->bh = NULL; 2432 } 2433 *elen = 0; 2434 do { 2435 err = udf_next_aext(inode, pos, eloc, elen, etype, 1); 2436 if (err <= 0) { 2437 if (err == 0) { 2438 *offset = (bcount - lbcount) >> blocksize_bits; 2439 iinfo->i_lenExtents = lbcount; 2440 } 2441 return err; 2442 } 2443 lbcount += *elen; 2444 } while (lbcount <= bcount); 2445 /* update extent cache */ 2446 udf_update_extent_cache(inode, lbcount - *elen, pos); 2447 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2448 2449 return 1; 2450 } 2451