1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode 23 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 24 * block boundaries (which is not actually allowed) 25 * 12/20/98 added support for strategy 4096 26 * 03/07/99 rewrote udf_block_map (again) 27 * New funcs, inode_bmap, udf_next_aext 28 * 04/19/99 Support for writing device EA's for major/minor # 29 */ 30 31 #include "udfdecl.h" 32 #include <linux/mm.h> 33 #include <linux/smp_lock.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 40 #include "udf_i.h" 41 #include "udf_sb.h" 42 43 MODULE_AUTHOR("Ben Fennema"); 44 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 45 MODULE_LICENSE("GPL"); 46 47 #define EXTENT_MERGE_SIZE 5 48 49 static mode_t udf_convert_permissions(struct fileEntry *); 50 static int udf_update_inode(struct inode *, int); 51 static void udf_fill_inode(struct inode *, struct buffer_head *); 52 static int udf_alloc_i_data(struct inode *inode, size_t size); 53 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 54 long *, int *); 55 static int8_t udf_insert_aext(struct inode *, struct extent_position, 56 kernel_lb_addr, uint32_t); 57 static void udf_split_extents(struct inode *, int *, int, int, 58 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 59 static void udf_prealloc_extents(struct inode *, int, int, 60 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_merge_extents(struct inode *, 62 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_update_extents(struct inode *, 64 kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 65 struct extent_position *); 66 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 67 68 /* 69 * udf_delete_inode 70 * 71 * PURPOSE 72 * Clean-up before the specified inode is destroyed. 73 * 74 * DESCRIPTION 75 * This routine is called when the kernel destroys an inode structure 76 * ie. when iput() finds i_count == 0. 77 * 78 * HISTORY 79 * July 1, 1997 - Andrew E. Mileski 80 * Written, tested, and released. 81 * 82 * Called at the last iput() if i_nlink is zero. 83 */ 84 void udf_delete_inode(struct inode *inode) 85 { 86 truncate_inode_pages(&inode->i_data, 0); 87 88 if (is_bad_inode(inode)) 89 goto no_delete; 90 91 inode->i_size = 0; 92 udf_truncate(inode); 93 lock_kernel(); 94 95 udf_update_inode(inode, IS_SYNC(inode)); 96 udf_free_inode(inode); 97 98 unlock_kernel(); 99 return; 100 101 no_delete: 102 clear_inode(inode); 103 } 104 105 /* 106 * If we are going to release inode from memory, we discard preallocation and 107 * truncate last inode extent to proper length. We could use drop_inode() but 108 * it's called under inode_lock and thus we cannot mark inode dirty there. We 109 * use clear_inode() but we have to make sure to write inode as it's not written 110 * automatically. 111 */ 112 void udf_clear_inode(struct inode *inode) 113 { 114 if (!(inode->i_sb->s_flags & MS_RDONLY)) { 115 lock_kernel(); 116 /* Discard preallocation for directories, symlinks, etc. */ 117 udf_discard_prealloc(inode); 118 udf_truncate_tail_extent(inode); 119 unlock_kernel(); 120 write_inode_now(inode, 1); 121 } 122 kfree(UDF_I_DATA(inode)); 123 UDF_I_DATA(inode) = NULL; 124 } 125 126 static int udf_writepage(struct page *page, struct writeback_control *wbc) 127 { 128 return block_write_full_page(page, udf_get_block, wbc); 129 } 130 131 static int udf_readpage(struct file *file, struct page *page) 132 { 133 return block_read_full_page(page, udf_get_block); 134 } 135 136 static int udf_prepare_write(struct file *file, struct page *page, 137 unsigned from, unsigned to) 138 { 139 return block_prepare_write(page, from, to, udf_get_block); 140 } 141 142 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 143 { 144 return generic_block_bmap(mapping, block, udf_get_block); 145 } 146 147 const struct address_space_operations udf_aops = { 148 .readpage = udf_readpage, 149 .writepage = udf_writepage, 150 .sync_page = block_sync_page, 151 .prepare_write = udf_prepare_write, 152 .commit_write = generic_commit_write, 153 .bmap = udf_bmap, 154 }; 155 156 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 157 { 158 struct page *page; 159 char *kaddr; 160 struct writeback_control udf_wbc = { 161 .sync_mode = WB_SYNC_NONE, 162 .nr_to_write = 1, 163 }; 164 165 /* from now on we have normal address_space methods */ 166 inode->i_data.a_ops = &udf_aops; 167 168 if (!UDF_I_LENALLOC(inode)) { 169 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 170 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT; 171 else 172 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG; 173 mark_inode_dirty(inode); 174 return; 175 } 176 177 page = grab_cache_page(inode->i_mapping, 0); 178 BUG_ON(!PageLocked(page)); 179 180 if (!PageUptodate(page)) { 181 kaddr = kmap(page); 182 memset(kaddr + UDF_I_LENALLOC(inode), 0x00, 183 PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode)); 184 memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 185 UDF_I_LENALLOC(inode)); 186 flush_dcache_page(page); 187 SetPageUptodate(page); 188 kunmap(page); 189 } 190 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00, 191 UDF_I_LENALLOC(inode)); 192 UDF_I_LENALLOC(inode) = 0; 193 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 194 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT; 195 else 196 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG; 197 198 inode->i_data.a_ops->writepage(page, &udf_wbc); 199 page_cache_release(page); 200 201 mark_inode_dirty(inode); 202 } 203 204 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 205 int *err) 206 { 207 int newblock; 208 struct buffer_head *dbh = NULL; 209 kernel_lb_addr eloc; 210 uint32_t elen; 211 uint8_t alloctype; 212 struct extent_position epos; 213 214 struct udf_fileident_bh sfibh, dfibh; 215 loff_t f_pos = udf_ext0_offset(inode) >> 2; 216 int size = (udf_ext0_offset(inode) + inode->i_size) >> 2; 217 struct fileIdentDesc cfi, *sfi, *dfi; 218 219 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 220 alloctype = ICBTAG_FLAG_AD_SHORT; 221 else 222 alloctype = ICBTAG_FLAG_AD_LONG; 223 224 if (!inode->i_size) { 225 UDF_I_ALLOCTYPE(inode) = alloctype; 226 mark_inode_dirty(inode); 227 return NULL; 228 } 229 230 /* alloc block, and copy data to it */ 231 *block = udf_new_block(inode->i_sb, inode, 232 UDF_I_LOCATION(inode).partitionReferenceNum, 233 UDF_I_LOCATION(inode).logicalBlockNum, err); 234 if (!(*block)) 235 return NULL; 236 newblock = udf_get_pblock(inode->i_sb, *block, 237 UDF_I_LOCATION(inode).partitionReferenceNum, 0); 238 if (!newblock) 239 return NULL; 240 dbh = udf_tgetblk(inode->i_sb, newblock); 241 if (!dbh) 242 return NULL; 243 lock_buffer(dbh); 244 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 245 set_buffer_uptodate(dbh); 246 unlock_buffer(dbh); 247 mark_buffer_dirty_inode(dbh, inode); 248 249 sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2; 250 sfibh.sbh = sfibh.ebh = NULL; 251 dfibh.soffset = dfibh.eoffset = 0; 252 dfibh.sbh = dfibh.ebh = dbh; 253 while ((f_pos < size)) { 254 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB; 255 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL); 256 if (!sfi) { 257 brelse(dbh); 258 return NULL; 259 } 260 UDF_I_ALLOCTYPE(inode) = alloctype; 261 sfi->descTag.tagLocation = cpu_to_le32(*block); 262 dfibh.soffset = dfibh.eoffset; 263 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 264 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 265 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 266 sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) { 267 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB; 268 brelse(dbh); 269 return NULL; 270 } 271 } 272 mark_buffer_dirty_inode(dbh, inode); 273 274 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode)); 275 UDF_I_LENALLOC(inode) = 0; 276 eloc.logicalBlockNum = *block; 277 eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum; 278 elen = inode->i_size; 279 UDF_I_LENEXTENTS(inode) = elen; 280 epos.bh = NULL; 281 epos.block = UDF_I_LOCATION(inode); 282 epos.offset = udf_file_entry_alloc_offset(inode); 283 udf_add_aext(inode, &epos, eloc, elen, 0); 284 /* UniqueID stuff */ 285 286 brelse(epos.bh); 287 mark_inode_dirty(inode); 288 return dbh; 289 } 290 291 static int udf_get_block(struct inode *inode, sector_t block, 292 struct buffer_head *bh_result, int create) 293 { 294 int err, new; 295 struct buffer_head *bh; 296 unsigned long phys; 297 298 if (!create) { 299 phys = udf_block_map(inode, block); 300 if (phys) 301 map_bh(bh_result, inode->i_sb, phys); 302 return 0; 303 } 304 305 err = -EIO; 306 new = 0; 307 bh = NULL; 308 309 lock_kernel(); 310 311 if (block < 0) 312 goto abort_negative; 313 314 if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) { 315 UDF_I_NEXT_ALLOC_BLOCK(inode)++; 316 UDF_I_NEXT_ALLOC_GOAL(inode)++; 317 } 318 319 err = 0; 320 321 bh = inode_getblk(inode, block, &err, &phys, &new); 322 BUG_ON(bh); 323 if (err) 324 goto abort; 325 BUG_ON(!phys); 326 327 if (new) 328 set_buffer_new(bh_result); 329 map_bh(bh_result, inode->i_sb, phys); 330 331 abort: 332 unlock_kernel(); 333 return err; 334 335 abort_negative: 336 udf_warning(inode->i_sb, "udf_get_block", "block < 0"); 337 goto abort; 338 } 339 340 static struct buffer_head *udf_getblk(struct inode *inode, long block, 341 int create, int *err) 342 { 343 struct buffer_head *bh; 344 struct buffer_head dummy; 345 346 dummy.b_state = 0; 347 dummy.b_blocknr = -1000; 348 *err = udf_get_block(inode, block, &dummy, create); 349 if (!*err && buffer_mapped(&dummy)) { 350 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 351 if (buffer_new(&dummy)) { 352 lock_buffer(bh); 353 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 354 set_buffer_uptodate(bh); 355 unlock_buffer(bh); 356 mark_buffer_dirty_inode(bh, inode); 357 } 358 return bh; 359 } 360 361 return NULL; 362 } 363 364 /* Extend the file by 'blocks' blocks, return the number of extents added */ 365 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 366 kernel_long_ad * last_ext, sector_t blocks) 367 { 368 sector_t add; 369 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 370 struct super_block *sb = inode->i_sb; 371 kernel_lb_addr prealloc_loc = {}; 372 int prealloc_len = 0; 373 374 /* The previous extent is fake and we should not extend by anything 375 * - there's nothing to do... */ 376 if (!blocks && fake) 377 return 0; 378 379 /* Round the last extent up to a multiple of block size */ 380 if (last_ext->extLength & (sb->s_blocksize - 1)) { 381 last_ext->extLength = 382 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 383 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 384 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 385 UDF_I_LENEXTENTS(inode) = 386 (UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) & 387 ~(sb->s_blocksize - 1); 388 } 389 390 /* Last extent are just preallocated blocks? */ 391 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) { 392 /* Save the extent so that we can reattach it to the end */ 393 prealloc_loc = last_ext->extLocation; 394 prealloc_len = last_ext->extLength; 395 /* Mark the extent as a hole */ 396 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 397 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 398 last_ext->extLocation.logicalBlockNum = 0; 399 last_ext->extLocation.partitionReferenceNum = 0; 400 } 401 402 /* Can we merge with the previous extent? */ 403 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) { 404 add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength & 405 UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits; 406 if (add > blocks) 407 add = blocks; 408 blocks -= add; 409 last_ext->extLength += add << sb->s_blocksize_bits; 410 } 411 412 if (fake) { 413 udf_add_aext(inode, last_pos, last_ext->extLocation, 414 last_ext->extLength, 1); 415 count++; 416 } else { 417 udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1); 418 } 419 420 /* Managed to do everything necessary? */ 421 if (!blocks) 422 goto out; 423 424 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 425 last_ext->extLocation.logicalBlockNum = 0; 426 last_ext->extLocation.partitionReferenceNum = 0; 427 add = (1 << (30-sb->s_blocksize_bits)) - 1; 428 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits); 429 430 /* Create enough extents to cover the whole hole */ 431 while (blocks > add) { 432 blocks -= add; 433 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 434 last_ext->extLength, 1) == -1) 435 return -1; 436 count++; 437 } 438 if (blocks) { 439 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 440 (blocks << sb->s_blocksize_bits); 441 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 442 last_ext->extLength, 1) == -1) 443 return -1; 444 count++; 445 } 446 447 out: 448 /* Do we have some preallocated blocks saved? */ 449 if (prealloc_len) { 450 if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1) 451 return -1; 452 last_ext->extLocation = prealloc_loc; 453 last_ext->extLength = prealloc_len; 454 count++; 455 } 456 457 /* last_pos should point to the last written extent... */ 458 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT) 459 last_pos->offset -= sizeof(short_ad); 460 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG) 461 last_pos->offset -= sizeof(long_ad); 462 else 463 return -1; 464 465 return count; 466 } 467 468 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 469 int *err, long *phys, int *new) 470 { 471 static sector_t last_block; 472 struct buffer_head *result = NULL; 473 kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 474 struct extent_position prev_epos, cur_epos, next_epos; 475 int count = 0, startnum = 0, endnum = 0; 476 uint32_t elen = 0, tmpelen; 477 kernel_lb_addr eloc, tmpeloc; 478 int c = 1; 479 loff_t lbcount = 0, b_off = 0; 480 uint32_t newblocknum, newblock; 481 sector_t offset = 0; 482 int8_t etype; 483 int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum; 484 int lastblock = 0; 485 486 prev_epos.offset = udf_file_entry_alloc_offset(inode); 487 prev_epos.block = UDF_I_LOCATION(inode); 488 prev_epos.bh = NULL; 489 cur_epos = next_epos = prev_epos; 490 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 491 492 /* find the extent which contains the block we are looking for. 493 alternate between laarr[0] and laarr[1] for locations of the 494 current extent, and the previous extent */ 495 do { 496 if (prev_epos.bh != cur_epos.bh) { 497 brelse(prev_epos.bh); 498 get_bh(cur_epos.bh); 499 prev_epos.bh = cur_epos.bh; 500 } 501 if (cur_epos.bh != next_epos.bh) { 502 brelse(cur_epos.bh); 503 get_bh(next_epos.bh); 504 cur_epos.bh = next_epos.bh; 505 } 506 507 lbcount += elen; 508 509 prev_epos.block = cur_epos.block; 510 cur_epos.block = next_epos.block; 511 512 prev_epos.offset = cur_epos.offset; 513 cur_epos.offset = next_epos.offset; 514 515 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1) 516 break; 517 518 c = !c; 519 520 laarr[c].extLength = (etype << 30) | elen; 521 laarr[c].extLocation = eloc; 522 523 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 524 pgoal = eloc.logicalBlockNum + 525 ((elen + inode->i_sb->s_blocksize - 1) >> 526 inode->i_sb->s_blocksize_bits); 527 528 count++; 529 } while (lbcount + elen <= b_off); 530 531 b_off -= lbcount; 532 offset = b_off >> inode->i_sb->s_blocksize_bits; 533 /* 534 * Move prev_epos and cur_epos into indirect extent if we are at 535 * the pointer to it 536 */ 537 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 538 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 539 540 /* if the extent is allocated and recorded, return the block 541 if the extent is not a multiple of the blocksize, round up */ 542 543 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 544 if (elen & (inode->i_sb->s_blocksize - 1)) { 545 elen = EXT_RECORDED_ALLOCATED | 546 ((elen + inode->i_sb->s_blocksize - 1) & 547 ~(inode->i_sb->s_blocksize - 1)); 548 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1); 549 } 550 brelse(prev_epos.bh); 551 brelse(cur_epos.bh); 552 brelse(next_epos.bh); 553 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset); 554 *phys = newblock; 555 return NULL; 556 } 557 558 last_block = block; 559 /* Are we beyond EOF? */ 560 if (etype == -1) { 561 int ret; 562 563 if (count) { 564 if (c) 565 laarr[0] = laarr[1]; 566 startnum = 1; 567 } else { 568 /* Create a fake extent when there's not one */ 569 memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr)); 570 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 571 /* Will udf_extend_file() create real extent from a fake one? */ 572 startnum = (offset > 0); 573 } 574 /* Create extents for the hole between EOF and offset */ 575 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 576 if (ret == -1) { 577 brelse(prev_epos.bh); 578 brelse(cur_epos.bh); 579 brelse(next_epos.bh); 580 /* We don't really know the error here so we just make 581 * something up */ 582 *err = -ENOSPC; 583 return NULL; 584 } 585 c = 0; 586 offset = 0; 587 count += ret; 588 /* We are not covered by a preallocated extent? */ 589 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) { 590 /* Is there any real extent? - otherwise we overwrite 591 * the fake one... */ 592 if (count) 593 c = !c; 594 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 595 inode->i_sb->s_blocksize; 596 memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr)); 597 count++; 598 endnum++; 599 } 600 endnum = c + 1; 601 lastblock = 1; 602 } else { 603 endnum = startnum = ((count > 2) ? 2 : count); 604 605 /* if the current extent is in position 0, swap it with the previous */ 606 if (!c && count != 1) { 607 laarr[2] = laarr[0]; 608 laarr[0] = laarr[1]; 609 laarr[1] = laarr[2]; 610 c = 1; 611 } 612 613 /* if the current block is located in an extent, read the next extent */ 614 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) { 615 laarr[c + 1].extLength = (etype << 30) | elen; 616 laarr[c + 1].extLocation = eloc; 617 count++; 618 startnum++; 619 endnum++; 620 } else { 621 lastblock = 1; 622 } 623 } 624 625 /* if the current extent is not recorded but allocated, get the 626 * block in the extent corresponding to the requested block */ 627 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 628 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 629 } else { /* otherwise, allocate a new block */ 630 if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block) 631 goal = UDF_I_NEXT_ALLOC_GOAL(inode); 632 633 if (!goal) { 634 if (!(goal = pgoal)) 635 goal = UDF_I_LOCATION(inode).logicalBlockNum + 1; 636 } 637 638 if (!(newblocknum = udf_new_block(inode->i_sb, inode, 639 UDF_I_LOCATION(inode).partitionReferenceNum, 640 goal, err))) { 641 brelse(prev_epos.bh); 642 *err = -ENOSPC; 643 return NULL; 644 } 645 UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize; 646 } 647 648 /* if the extent the requsted block is located in contains multiple blocks, 649 * split the extent into at most three extents. blocks prior to requested 650 * block, requested block, and blocks after requested block */ 651 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 652 653 #ifdef UDF_PREALLOCATE 654 /* preallocate blocks */ 655 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 656 #endif 657 658 /* merge any continuous blocks in laarr */ 659 udf_merge_extents(inode, laarr, &endnum); 660 661 /* write back the new extents, inserting new extents if the new number 662 * of extents is greater than the old number, and deleting extents if 663 * the new number of extents is less than the old number */ 664 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 665 666 brelse(prev_epos.bh); 667 668 if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum, 669 UDF_I_LOCATION(inode).partitionReferenceNum, 0))) { 670 return NULL; 671 } 672 *phys = newblock; 673 *err = 0; 674 *new = 1; 675 UDF_I_NEXT_ALLOC_BLOCK(inode) = block; 676 UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum; 677 inode->i_ctime = current_fs_time(inode->i_sb); 678 679 if (IS_SYNC(inode)) 680 udf_sync_inode(inode); 681 else 682 mark_inode_dirty(inode); 683 684 return result; 685 } 686 687 static void udf_split_extents(struct inode *inode, int *c, int offset, 688 int newblocknum, 689 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 690 int *endnum) 691 { 692 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 693 (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 694 int curr = *c; 695 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 696 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits; 697 int8_t etype = (laarr[curr].extLength >> 30); 698 699 if (blen == 1) { 700 ; 701 } else if (!offset || blen == offset + 1) { 702 laarr[curr + 2] = laarr[curr + 1]; 703 laarr[curr + 1] = laarr[curr]; 704 } else { 705 laarr[curr + 3] = laarr[curr + 1]; 706 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 707 } 708 709 if (offset) { 710 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 711 udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset); 712 laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 713 (offset << inode->i_sb->s_blocksize_bits); 714 laarr[curr].extLocation.logicalBlockNum = 0; 715 laarr[curr].extLocation.partitionReferenceNum = 0; 716 } else { 717 laarr[curr].extLength = (etype << 30) | 718 (offset << inode->i_sb->s_blocksize_bits); 719 } 720 curr++; 721 (*c)++; 722 (*endnum)++; 723 } 724 725 laarr[curr].extLocation.logicalBlockNum = newblocknum; 726 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 727 laarr[curr].extLocation.partitionReferenceNum = 728 UDF_I_LOCATION(inode).partitionReferenceNum; 729 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 730 inode->i_sb->s_blocksize; 731 curr++; 732 733 if (blen != offset + 1) { 734 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 735 laarr[curr].extLocation.logicalBlockNum += (offset + 1); 736 laarr[curr].extLength = (etype << 30) | 737 ((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits); 738 curr++; 739 (*endnum)++; 740 } 741 } 742 } 743 744 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 745 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 746 int *endnum) 747 { 748 int start, length = 0, currlength = 0, i; 749 750 if (*endnum >= (c + 1)) { 751 if (!lastblock) 752 return; 753 else 754 start = c; 755 } else { 756 if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 757 start = c + 1; 758 length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) + 759 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 760 } else { 761 start = c; 762 } 763 } 764 765 for (i = start + 1; i <= *endnum; i++) { 766 if (i == *endnum) { 767 if (lastblock) 768 length += UDF_DEFAULT_PREALLOC_BLOCKS; 769 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 770 length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 771 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 772 } else { 773 break; 774 } 775 } 776 777 if (length) { 778 int next = laarr[start].extLocation.logicalBlockNum + 779 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 780 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 781 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 782 laarr[start].extLocation.partitionReferenceNum, 783 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length : 784 UDF_DEFAULT_PREALLOC_BLOCKS) - currlength); 785 if (numalloc) { 786 if (start == (c + 1)) { 787 laarr[start].extLength += 788 (numalloc << inode->i_sb->s_blocksize_bits); 789 } else { 790 memmove(&laarr[c + 2], &laarr[c + 1], 791 sizeof(long_ad) * (*endnum - (c + 1))); 792 (*endnum)++; 793 laarr[c + 1].extLocation.logicalBlockNum = next; 794 laarr[c + 1].extLocation.partitionReferenceNum = 795 laarr[c].extLocation.partitionReferenceNum; 796 laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED | 797 (numalloc << inode->i_sb->s_blocksize_bits); 798 start = c + 1; 799 } 800 801 for (i = start + 1; numalloc && i < *endnum; i++) { 802 int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 803 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits; 804 805 if (elen > numalloc) { 806 laarr[i].extLength -= 807 (numalloc << inode->i_sb->s_blocksize_bits); 808 numalloc = 0; 809 } else { 810 numalloc -= elen; 811 if (*endnum > (i + 1)) 812 memmove(&laarr[i], &laarr[i + 1], 813 sizeof(long_ad) * (*endnum - (i + 1))); 814 i--; 815 (*endnum)--; 816 } 817 } 818 UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits; 819 } 820 } 821 } 822 823 static void udf_merge_extents(struct inode *inode, 824 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 825 int *endnum) 826 { 827 int i; 828 829 for (i = 0; i < (*endnum - 1); i++) { 830 if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) { 831 if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 832 ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) == 833 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 834 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) { 835 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 836 (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) + 837 inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 838 laarr[i + 1].extLength = (laarr[i + 1].extLength - 839 (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 840 UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1); 841 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) + 842 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize; 843 laarr[i + 1].extLocation.logicalBlockNum = 844 laarr[i].extLocation.logicalBlockNum + 845 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >> 846 inode->i_sb->s_blocksize_bits); 847 } else { 848 laarr[i].extLength = laarr[i + 1].extLength + 849 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 850 inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1)); 851 if (*endnum > (i + 2)) 852 memmove(&laarr[i + 1], &laarr[i + 2], 853 sizeof(long_ad) * (*endnum - (i + 2))); 854 i--; 855 (*endnum)--; 856 } 857 } 858 } else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 859 ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 860 udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0, 861 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 862 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 863 laarr[i].extLocation.logicalBlockNum = 0; 864 laarr[i].extLocation.partitionReferenceNum = 0; 865 866 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 867 (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) + 868 inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 869 laarr[i + 1].extLength = (laarr[i + 1].extLength - 870 (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 871 UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1); 872 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) + 873 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize; 874 } else { 875 laarr[i].extLength = laarr[i + 1].extLength + 876 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 877 inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1)); 878 if (*endnum > (i + 2)) 879 memmove(&laarr[i + 1], &laarr[i + 2], 880 sizeof(long_ad) * (*endnum - (i + 2))); 881 i--; 882 (*endnum)--; 883 } 884 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 885 udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0, 886 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + 887 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); 888 laarr[i].extLocation.logicalBlockNum = 0; 889 laarr[i].extLocation.partitionReferenceNum = 0; 890 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) | 891 EXT_NOT_RECORDED_NOT_ALLOCATED; 892 } 893 } 894 } 895 896 static void udf_update_extents(struct inode *inode, 897 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 898 int startnum, int endnum, 899 struct extent_position *epos) 900 { 901 int start = 0, i; 902 kernel_lb_addr tmploc; 903 uint32_t tmplen; 904 905 if (startnum > endnum) { 906 for (i = 0; i < (startnum - endnum); i++) 907 udf_delete_aext(inode, *epos, laarr[i].extLocation, 908 laarr[i].extLength); 909 } else if (startnum < endnum) { 910 for (i = 0; i < (endnum - startnum); i++) { 911 udf_insert_aext(inode, *epos, laarr[i].extLocation, 912 laarr[i].extLength); 913 udf_next_aext(inode, epos, &laarr[i].extLocation, 914 &laarr[i].extLength, 1); 915 start++; 916 } 917 } 918 919 for (i = start; i < endnum; i++) { 920 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 921 udf_write_aext(inode, epos, laarr[i].extLocation, 922 laarr[i].extLength, 1); 923 } 924 } 925 926 struct buffer_head *udf_bread(struct inode *inode, int block, 927 int create, int *err) 928 { 929 struct buffer_head *bh = NULL; 930 931 bh = udf_getblk(inode, block, create, err); 932 if (!bh) 933 return NULL; 934 935 if (buffer_uptodate(bh)) 936 return bh; 937 938 ll_rw_block(READ, 1, &bh); 939 940 wait_on_buffer(bh); 941 if (buffer_uptodate(bh)) 942 return bh; 943 944 brelse(bh); 945 *err = -EIO; 946 return NULL; 947 } 948 949 void udf_truncate(struct inode *inode) 950 { 951 int offset; 952 int err; 953 954 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 955 S_ISLNK(inode->i_mode))) 956 return; 957 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 958 return; 959 960 lock_kernel(); 961 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) { 962 if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) + 963 inode->i_size)) { 964 udf_expand_file_adinicb(inode, inode->i_size, &err); 965 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) { 966 inode->i_size = UDF_I_LENALLOC(inode); 967 unlock_kernel(); 968 return; 969 } else { 970 udf_truncate_extents(inode); 971 } 972 } else { 973 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 974 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00, 975 inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode)); 976 UDF_I_LENALLOC(inode) = inode->i_size; 977 } 978 } else { 979 block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block); 980 udf_truncate_extents(inode); 981 } 982 983 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 984 if (IS_SYNC(inode)) 985 udf_sync_inode(inode); 986 else 987 mark_inode_dirty(inode); 988 unlock_kernel(); 989 } 990 991 static void __udf_read_inode(struct inode *inode) 992 { 993 struct buffer_head *bh = NULL; 994 struct fileEntry *fe; 995 uint16_t ident; 996 997 /* 998 * Set defaults, but the inode is still incomplete! 999 * Note: get_new_inode() sets the following on a new inode: 1000 * i_sb = sb 1001 * i_no = ino 1002 * i_flags = sb->s_flags 1003 * i_state = 0 1004 * clean_inode(): zero fills and sets 1005 * i_count = 1 1006 * i_nlink = 1 1007 * i_op = NULL; 1008 */ 1009 bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident); 1010 if (!bh) { 1011 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1012 inode->i_ino); 1013 make_bad_inode(inode); 1014 return; 1015 } 1016 1017 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1018 ident != TAG_IDENT_USE) { 1019 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n", 1020 inode->i_ino, ident); 1021 brelse(bh); 1022 make_bad_inode(inode); 1023 return; 1024 } 1025 1026 fe = (struct fileEntry *)bh->b_data; 1027 1028 if (le16_to_cpu(fe->icbTag.strategyType) == 4096) { 1029 struct buffer_head *ibh = NULL, *nbh = NULL; 1030 struct indirectEntry *ie; 1031 1032 ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident); 1033 if (ident == TAG_IDENT_IE) { 1034 if (ibh) { 1035 kernel_lb_addr loc; 1036 ie = (struct indirectEntry *)ibh->b_data; 1037 1038 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1039 1040 if (ie->indirectICB.extLength && 1041 (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) { 1042 if (ident == TAG_IDENT_FE || 1043 ident == TAG_IDENT_EFE) { 1044 memcpy(&UDF_I_LOCATION(inode), &loc, 1045 sizeof(kernel_lb_addr)); 1046 brelse(bh); 1047 brelse(ibh); 1048 brelse(nbh); 1049 __udf_read_inode(inode); 1050 return; 1051 } else { 1052 brelse(nbh); 1053 brelse(ibh); 1054 } 1055 } else { 1056 brelse(ibh); 1057 } 1058 } 1059 } else { 1060 brelse(ibh); 1061 } 1062 } else if (le16_to_cpu(fe->icbTag.strategyType) != 4) { 1063 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1064 le16_to_cpu(fe->icbTag.strategyType)); 1065 brelse(bh); 1066 make_bad_inode(inode); 1067 return; 1068 } 1069 udf_fill_inode(inode, bh); 1070 1071 brelse(bh); 1072 } 1073 1074 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1075 { 1076 struct fileEntry *fe; 1077 struct extendedFileEntry *efe; 1078 time_t convtime; 1079 long convtime_usec; 1080 int offset; 1081 1082 fe = (struct fileEntry *)bh->b_data; 1083 efe = (struct extendedFileEntry *)bh->b_data; 1084 1085 if (le16_to_cpu(fe->icbTag.strategyType) == 4) 1086 UDF_I_STRAT4096(inode) = 0; 1087 else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */ 1088 UDF_I_STRAT4096(inode) = 1; 1089 1090 UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK; 1091 UDF_I_UNIQUE(inode) = 0; 1092 UDF_I_LENEATTR(inode) = 0; 1093 UDF_I_LENEXTENTS(inode) = 0; 1094 UDF_I_LENALLOC(inode) = 0; 1095 UDF_I_NEXT_ALLOC_BLOCK(inode) = 0; 1096 UDF_I_NEXT_ALLOC_GOAL(inode) = 0; 1097 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) { 1098 UDF_I_EFE(inode) = 1; 1099 UDF_I_USE(inode) = 0; 1100 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) { 1101 make_bad_inode(inode); 1102 return; 1103 } 1104 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry), 1105 inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); 1106 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) { 1107 UDF_I_EFE(inode) = 0; 1108 UDF_I_USE(inode) = 0; 1109 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) { 1110 make_bad_inode(inode); 1111 return; 1112 } 1113 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry), 1114 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1115 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) { 1116 UDF_I_EFE(inode) = 0; 1117 UDF_I_USE(inode) = 1; 1118 UDF_I_LENALLOC(inode) = 1119 le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs); 1120 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) { 1121 make_bad_inode(inode); 1122 return; 1123 } 1124 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry), 1125 inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); 1126 return; 1127 } 1128 1129 inode->i_uid = le32_to_cpu(fe->uid); 1130 if (inode->i_uid == -1 || UDF_QUERY_FLAG(inode->i_sb, 1131 UDF_FLAG_UID_IGNORE)) 1132 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1133 1134 inode->i_gid = le32_to_cpu(fe->gid); 1135 if (inode->i_gid == -1 || UDF_QUERY_FLAG(inode->i_sb, 1136 UDF_FLAG_GID_IGNORE)) 1137 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1138 1139 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1140 if (!inode->i_nlink) 1141 inode->i_nlink = 1; 1142 1143 inode->i_size = le64_to_cpu(fe->informationLength); 1144 UDF_I_LENEXTENTS(inode) = inode->i_size; 1145 1146 inode->i_mode = udf_convert_permissions(fe); 1147 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask; 1148 1149 if (UDF_I_EFE(inode) == 0) { 1150 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1151 (inode->i_sb->s_blocksize_bits - 9); 1152 1153 if (udf_stamp_to_time(&convtime, &convtime_usec, 1154 lets_to_cpu(fe->accessTime))) { 1155 inode->i_atime.tv_sec = convtime; 1156 inode->i_atime.tv_nsec = convtime_usec * 1000; 1157 } else { 1158 inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb); 1159 } 1160 1161 if (udf_stamp_to_time(&convtime, &convtime_usec, 1162 lets_to_cpu(fe->modificationTime))) { 1163 inode->i_mtime.tv_sec = convtime; 1164 inode->i_mtime.tv_nsec = convtime_usec * 1000; 1165 } else { 1166 inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb); 1167 } 1168 1169 if (udf_stamp_to_time(&convtime, &convtime_usec, 1170 lets_to_cpu(fe->attrTime))) { 1171 inode->i_ctime.tv_sec = convtime; 1172 inode->i_ctime.tv_nsec = convtime_usec * 1000; 1173 } else { 1174 inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb); 1175 } 1176 1177 UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID); 1178 UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr); 1179 UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs); 1180 offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode); 1181 } else { 1182 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1183 (inode->i_sb->s_blocksize_bits - 9); 1184 1185 if (udf_stamp_to_time(&convtime, &convtime_usec, 1186 lets_to_cpu(efe->accessTime))) { 1187 inode->i_atime.tv_sec = convtime; 1188 inode->i_atime.tv_nsec = convtime_usec * 1000; 1189 } else { 1190 inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb); 1191 } 1192 1193 if (udf_stamp_to_time(&convtime, &convtime_usec, 1194 lets_to_cpu(efe->modificationTime))) { 1195 inode->i_mtime.tv_sec = convtime; 1196 inode->i_mtime.tv_nsec = convtime_usec * 1000; 1197 } else { 1198 inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb); 1199 } 1200 1201 if (udf_stamp_to_time(&convtime, &convtime_usec, 1202 lets_to_cpu(efe->createTime))) { 1203 UDF_I_CRTIME(inode).tv_sec = convtime; 1204 UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000; 1205 } else { 1206 UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb); 1207 } 1208 1209 if (udf_stamp_to_time(&convtime, &convtime_usec, 1210 lets_to_cpu(efe->attrTime))) { 1211 inode->i_ctime.tv_sec = convtime; 1212 inode->i_ctime.tv_nsec = convtime_usec * 1000; 1213 } else { 1214 inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb); 1215 } 1216 1217 UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID); 1218 UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr); 1219 UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs); 1220 offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode); 1221 } 1222 1223 switch (fe->icbTag.fileType) { 1224 case ICBTAG_FILE_TYPE_DIRECTORY: 1225 inode->i_op = &udf_dir_inode_operations; 1226 inode->i_fop = &udf_dir_operations; 1227 inode->i_mode |= S_IFDIR; 1228 inc_nlink(inode); 1229 break; 1230 case ICBTAG_FILE_TYPE_REALTIME: 1231 case ICBTAG_FILE_TYPE_REGULAR: 1232 case ICBTAG_FILE_TYPE_UNDEF: 1233 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) 1234 inode->i_data.a_ops = &udf_adinicb_aops; 1235 else 1236 inode->i_data.a_ops = &udf_aops; 1237 inode->i_op = &udf_file_inode_operations; 1238 inode->i_fop = &udf_file_operations; 1239 inode->i_mode |= S_IFREG; 1240 break; 1241 case ICBTAG_FILE_TYPE_BLOCK: 1242 inode->i_mode |= S_IFBLK; 1243 break; 1244 case ICBTAG_FILE_TYPE_CHAR: 1245 inode->i_mode |= S_IFCHR; 1246 break; 1247 case ICBTAG_FILE_TYPE_FIFO: 1248 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1249 break; 1250 case ICBTAG_FILE_TYPE_SOCKET: 1251 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1252 break; 1253 case ICBTAG_FILE_TYPE_SYMLINK: 1254 inode->i_data.a_ops = &udf_symlink_aops; 1255 inode->i_op = &page_symlink_inode_operations; 1256 inode->i_mode = S_IFLNK | S_IRWXUGO; 1257 break; 1258 default: 1259 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n", 1260 inode->i_ino, fe->icbTag.fileType); 1261 make_bad_inode(inode); 1262 return; 1263 } 1264 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1265 struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1266 if (dsea) { 1267 init_special_inode(inode, inode->i_mode, 1268 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1269 le32_to_cpu(dsea->minorDeviceIdent))); 1270 /* Developer ID ??? */ 1271 } else { 1272 make_bad_inode(inode); 1273 } 1274 } 1275 } 1276 1277 static int udf_alloc_i_data(struct inode *inode, size_t size) 1278 { 1279 UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL); 1280 1281 if (!UDF_I_DATA(inode)) { 1282 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n", 1283 inode->i_ino); 1284 return -ENOMEM; 1285 } 1286 1287 return 0; 1288 } 1289 1290 static mode_t udf_convert_permissions(struct fileEntry *fe) 1291 { 1292 mode_t mode; 1293 uint32_t permissions; 1294 uint32_t flags; 1295 1296 permissions = le32_to_cpu(fe->permissions); 1297 flags = le16_to_cpu(fe->icbTag.flags); 1298 1299 mode = (( permissions ) & S_IRWXO) | 1300 (( permissions >> 2 ) & S_IRWXG) | 1301 (( permissions >> 4 ) & S_IRWXU) | 1302 (( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1303 (( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1304 (( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1305 1306 return mode; 1307 } 1308 1309 /* 1310 * udf_write_inode 1311 * 1312 * PURPOSE 1313 * Write out the specified inode. 1314 * 1315 * DESCRIPTION 1316 * This routine is called whenever an inode is synced. 1317 * Currently this routine is just a placeholder. 1318 * 1319 * HISTORY 1320 * July 1, 1997 - Andrew E. Mileski 1321 * Written, tested, and released. 1322 */ 1323 1324 int udf_write_inode(struct inode *inode, int sync) 1325 { 1326 int ret; 1327 1328 lock_kernel(); 1329 ret = udf_update_inode(inode, sync); 1330 unlock_kernel(); 1331 1332 return ret; 1333 } 1334 1335 int udf_sync_inode(struct inode *inode) 1336 { 1337 return udf_update_inode(inode, 1); 1338 } 1339 1340 static int udf_update_inode(struct inode *inode, int do_sync) 1341 { 1342 struct buffer_head *bh = NULL; 1343 struct fileEntry *fe; 1344 struct extendedFileEntry *efe; 1345 uint32_t udfperms; 1346 uint16_t icbflags; 1347 uint16_t crclen; 1348 int i; 1349 kernel_timestamp cpu_time; 1350 int err = 0; 1351 1352 bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0)); 1353 if (!bh) { 1354 udf_debug("bread failure\n"); 1355 return -EIO; 1356 } 1357 1358 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1359 1360 fe = (struct fileEntry *)bh->b_data; 1361 efe = (struct extendedFileEntry *)bh->b_data; 1362 1363 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) { 1364 struct unallocSpaceEntry *use = 1365 (struct unallocSpaceEntry *)bh->b_data; 1366 1367 use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); 1368 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode), 1369 inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); 1370 crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag); 1371 use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum); 1372 use->descTag.descCRCLength = cpu_to_le16(crclen); 1373 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0)); 1374 1375 use->descTag.tagChecksum = 0; 1376 for (i = 0; i < 16; i++) { 1377 if (i != 4) 1378 use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i]; 1379 } 1380 1381 mark_buffer_dirty(bh); 1382 brelse(bh); 1383 return err; 1384 } 1385 1386 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1387 fe->uid = cpu_to_le32(-1); 1388 else 1389 fe->uid = cpu_to_le32(inode->i_uid); 1390 1391 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1392 fe->gid = cpu_to_le32(-1); 1393 else 1394 fe->gid = cpu_to_le32(inode->i_gid); 1395 1396 udfperms = ((inode->i_mode & S_IRWXO) ) | 1397 ((inode->i_mode & S_IRWXG) << 2) | 1398 ((inode->i_mode & S_IRWXU) << 4); 1399 1400 udfperms |= (le32_to_cpu(fe->permissions) & 1401 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1402 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1403 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1404 fe->permissions = cpu_to_le32(udfperms); 1405 1406 if (S_ISDIR(inode->i_mode)) 1407 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1408 else 1409 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1410 1411 fe->informationLength = cpu_to_le64(inode->i_size); 1412 1413 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1414 regid *eid; 1415 struct deviceSpec *dsea = 1416 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1417 if (!dsea) { 1418 dsea = (struct deviceSpec *) 1419 udf_add_extendedattr(inode, 1420 sizeof(struct deviceSpec) + 1421 sizeof(regid), 12, 0x3); 1422 dsea->attrType = cpu_to_le32(12); 1423 dsea->attrSubtype = 1; 1424 dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) + 1425 sizeof(regid)); 1426 dsea->impUseLength = cpu_to_le32(sizeof(regid)); 1427 } 1428 eid = (regid *)dsea->impUse; 1429 memset(eid, 0, sizeof(regid)); 1430 strcpy(eid->ident, UDF_ID_DEVELOPER); 1431 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1432 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1433 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1434 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1435 } 1436 1437 if (UDF_I_EFE(inode) == 0) { 1438 memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode), 1439 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1440 fe->logicalBlocksRecorded = cpu_to_le64( 1441 (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >> 1442 (inode->i_sb->s_blocksize_bits - 9)); 1443 1444 if (udf_time_to_stamp(&cpu_time, inode->i_atime)) 1445 fe->accessTime = cpu_to_lets(cpu_time); 1446 if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) 1447 fe->modificationTime = cpu_to_lets(cpu_time); 1448 if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) 1449 fe->attrTime = cpu_to_lets(cpu_time); 1450 memset(&(fe->impIdent), 0, sizeof(regid)); 1451 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1452 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1453 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1454 fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode)); 1455 fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode)); 1456 fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); 1457 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1458 crclen = sizeof(struct fileEntry); 1459 } else { 1460 memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode), 1461 inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); 1462 efe->objectSize = cpu_to_le64(inode->i_size); 1463 efe->logicalBlocksRecorded = cpu_to_le64( 1464 (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >> 1465 (inode->i_sb->s_blocksize_bits - 9)); 1466 1467 if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec || 1468 (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec && 1469 UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) { 1470 UDF_I_CRTIME(inode) = inode->i_atime; 1471 } 1472 if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec || 1473 (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec && 1474 UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) { 1475 UDF_I_CRTIME(inode) = inode->i_mtime; 1476 } 1477 if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec || 1478 (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec && 1479 UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) { 1480 UDF_I_CRTIME(inode) = inode->i_ctime; 1481 } 1482 1483 if (udf_time_to_stamp(&cpu_time, inode->i_atime)) 1484 efe->accessTime = cpu_to_lets(cpu_time); 1485 if (udf_time_to_stamp(&cpu_time, inode->i_mtime)) 1486 efe->modificationTime = cpu_to_lets(cpu_time); 1487 if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode))) 1488 efe->createTime = cpu_to_lets(cpu_time); 1489 if (udf_time_to_stamp(&cpu_time, inode->i_ctime)) 1490 efe->attrTime = cpu_to_lets(cpu_time); 1491 1492 memset(&(efe->impIdent), 0, sizeof(regid)); 1493 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1494 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1495 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1496 efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode)); 1497 efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode)); 1498 efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode)); 1499 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1500 crclen = sizeof(struct extendedFileEntry); 1501 } 1502 if (UDF_I_STRAT4096(inode)) { 1503 fe->icbTag.strategyType = cpu_to_le16(4096); 1504 fe->icbTag.strategyParameter = cpu_to_le16(1); 1505 fe->icbTag.numEntries = cpu_to_le16(2); 1506 } else { 1507 fe->icbTag.strategyType = cpu_to_le16(4); 1508 fe->icbTag.numEntries = cpu_to_le16(1); 1509 } 1510 1511 if (S_ISDIR(inode->i_mode)) 1512 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1513 else if (S_ISREG(inode->i_mode)) 1514 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1515 else if (S_ISLNK(inode->i_mode)) 1516 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1517 else if (S_ISBLK(inode->i_mode)) 1518 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1519 else if (S_ISCHR(inode->i_mode)) 1520 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1521 else if (S_ISFIFO(inode->i_mode)) 1522 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1523 else if (S_ISSOCK(inode->i_mode)) 1524 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1525 1526 icbflags = UDF_I_ALLOCTYPE(inode) | 1527 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1528 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1529 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1530 (le16_to_cpu(fe->icbTag.flags) & 1531 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1532 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1533 1534 fe->icbTag.flags = cpu_to_le16(icbflags); 1535 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200) 1536 fe->descTag.descVersion = cpu_to_le16(3); 1537 else 1538 fe->descTag.descVersion = cpu_to_le16(2); 1539 fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb)); 1540 fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum); 1541 crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag); 1542 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1543 fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0)); 1544 1545 fe->descTag.tagChecksum = 0; 1546 for (i = 0; i < 16; i++) { 1547 if (i != 4) 1548 fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i]; 1549 } 1550 1551 /* write the data blocks */ 1552 mark_buffer_dirty(bh); 1553 if (do_sync) { 1554 sync_dirty_buffer(bh); 1555 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1556 printk("IO error syncing udf inode [%s:%08lx]\n", 1557 inode->i_sb->s_id, inode->i_ino); 1558 err = -EIO; 1559 } 1560 } 1561 brelse(bh); 1562 1563 return err; 1564 } 1565 1566 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino) 1567 { 1568 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1569 struct inode *inode = iget_locked(sb, block); 1570 1571 if (!inode) 1572 return NULL; 1573 1574 if (inode->i_state & I_NEW) { 1575 memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr)); 1576 __udf_read_inode(inode); 1577 unlock_new_inode(inode); 1578 } 1579 1580 if (is_bad_inode(inode)) 1581 goto out_iput; 1582 1583 if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) { 1584 udf_debug("block=%d, partition=%d out of range\n", 1585 ino.logicalBlockNum, ino.partitionReferenceNum); 1586 make_bad_inode(inode); 1587 goto out_iput; 1588 } 1589 1590 return inode; 1591 1592 out_iput: 1593 iput(inode); 1594 return NULL; 1595 } 1596 1597 int8_t udf_add_aext(struct inode * inode, struct extent_position * epos, 1598 kernel_lb_addr eloc, uint32_t elen, int inc) 1599 { 1600 int adsize; 1601 short_ad *sad = NULL; 1602 long_ad *lad = NULL; 1603 struct allocExtDesc *aed; 1604 int8_t etype; 1605 uint8_t *ptr; 1606 1607 if (!epos->bh) 1608 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); 1609 else 1610 ptr = epos->bh->b_data + epos->offset; 1611 1612 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT) 1613 adsize = sizeof(short_ad); 1614 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG) 1615 adsize = sizeof(long_ad); 1616 else 1617 return -1; 1618 1619 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1620 char *sptr, *dptr; 1621 struct buffer_head *nbh; 1622 int err, loffset; 1623 kernel_lb_addr obloc = epos->block; 1624 1625 if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1626 obloc.partitionReferenceNum, 1627 obloc.logicalBlockNum, &err))) { 1628 return -1; 1629 } 1630 if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1631 epos->block, 0)))) { 1632 return -1; 1633 } 1634 lock_buffer(nbh); 1635 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1636 set_buffer_uptodate(nbh); 1637 unlock_buffer(nbh); 1638 mark_buffer_dirty_inode(nbh, inode); 1639 1640 aed = (struct allocExtDesc *)(nbh->b_data); 1641 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1642 aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); 1643 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1644 loffset = epos->offset; 1645 aed->lengthAllocDescs = cpu_to_le32(adsize); 1646 sptr = ptr - adsize; 1647 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1648 memcpy(dptr, sptr, adsize); 1649 epos->offset = sizeof(struct allocExtDesc) + adsize; 1650 } else { 1651 loffset = epos->offset + adsize; 1652 aed->lengthAllocDescs = cpu_to_le32(0); 1653 sptr = ptr; 1654 epos->offset = sizeof(struct allocExtDesc); 1655 1656 if (epos->bh) { 1657 aed = (struct allocExtDesc *)epos->bh->b_data; 1658 aed->lengthAllocDescs = 1659 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); 1660 } else { 1661 UDF_I_LENALLOC(inode) += adsize; 1662 mark_inode_dirty(inode); 1663 } 1664 } 1665 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200) 1666 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1667 epos->block.logicalBlockNum, sizeof(tag)); 1668 else 1669 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1670 epos->block.logicalBlockNum, sizeof(tag)); 1671 switch (UDF_I_ALLOCTYPE(inode)) { 1672 case ICBTAG_FLAG_AD_SHORT: 1673 sad = (short_ad *)sptr; 1674 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1675 inode->i_sb->s_blocksize); 1676 sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum); 1677 break; 1678 case ICBTAG_FLAG_AD_LONG: 1679 lad = (long_ad *)sptr; 1680 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1681 inode->i_sb->s_blocksize); 1682 lad->extLocation = cpu_to_lelb(epos->block); 1683 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1684 break; 1685 } 1686 if (epos->bh) { 1687 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1688 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) 1689 udf_update_tag(epos->bh->b_data, loffset); 1690 else 1691 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc)); 1692 mark_buffer_dirty_inode(epos->bh, inode); 1693 brelse(epos->bh); 1694 } else { 1695 mark_inode_dirty(inode); 1696 } 1697 epos->bh = nbh; 1698 } 1699 1700 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1701 1702 if (!epos->bh) { 1703 UDF_I_LENALLOC(inode) += adsize; 1704 mark_inode_dirty(inode); 1705 } else { 1706 aed = (struct allocExtDesc *)epos->bh->b_data; 1707 aed->lengthAllocDescs = 1708 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); 1709 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201) 1710 udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize)); 1711 else 1712 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc)); 1713 mark_buffer_dirty_inode(epos->bh, inode); 1714 } 1715 1716 return etype; 1717 } 1718 1719 int8_t udf_write_aext(struct inode * inode, struct extent_position * epos, 1720 kernel_lb_addr eloc, uint32_t elen, int inc) 1721 { 1722 int adsize; 1723 uint8_t *ptr; 1724 short_ad *sad; 1725 long_ad *lad; 1726 1727 if (!epos->bh) 1728 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); 1729 else 1730 ptr = epos->bh->b_data + epos->offset; 1731 1732 switch (UDF_I_ALLOCTYPE(inode)) { 1733 case ICBTAG_FLAG_AD_SHORT: 1734 sad = (short_ad *)ptr; 1735 sad->extLength = cpu_to_le32(elen); 1736 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum); 1737 adsize = sizeof(short_ad); 1738 break; 1739 case ICBTAG_FLAG_AD_LONG: 1740 lad = (long_ad *)ptr; 1741 lad->extLength = cpu_to_le32(elen); 1742 lad->extLocation = cpu_to_lelb(eloc); 1743 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1744 adsize = sizeof(long_ad); 1745 break; 1746 default: 1747 return -1; 1748 } 1749 1750 if (epos->bh) { 1751 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1752 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) { 1753 struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data; 1754 udf_update_tag(epos->bh->b_data, 1755 le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc)); 1756 } 1757 mark_buffer_dirty_inode(epos->bh, inode); 1758 } else { 1759 mark_inode_dirty(inode); 1760 } 1761 1762 if (inc) 1763 epos->offset += adsize; 1764 1765 return (elen >> 30); 1766 } 1767 1768 int8_t udf_next_aext(struct inode * inode, struct extent_position * epos, 1769 kernel_lb_addr * eloc, uint32_t * elen, int inc) 1770 { 1771 int8_t etype; 1772 1773 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1774 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1775 epos->block = *eloc; 1776 epos->offset = sizeof(struct allocExtDesc); 1777 brelse(epos->bh); 1778 if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) { 1779 udf_debug("reading block %d failed!\n", 1780 udf_get_lb_pblock(inode->i_sb, epos->block, 0)); 1781 return -1; 1782 } 1783 } 1784 1785 return etype; 1786 } 1787 1788 int8_t udf_current_aext(struct inode * inode, struct extent_position * epos, 1789 kernel_lb_addr * eloc, uint32_t * elen, int inc) 1790 { 1791 int alen; 1792 int8_t etype; 1793 uint8_t *ptr; 1794 short_ad *sad; 1795 long_ad *lad; 1796 1797 1798 if (!epos->bh) { 1799 if (!epos->offset) 1800 epos->offset = udf_file_entry_alloc_offset(inode); 1801 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode); 1802 alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode); 1803 } else { 1804 if (!epos->offset) 1805 epos->offset = sizeof(struct allocExtDesc); 1806 ptr = epos->bh->b_data + epos->offset; 1807 alen = sizeof(struct allocExtDesc) + 1808 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs); 1809 } 1810 1811 switch (UDF_I_ALLOCTYPE(inode)) { 1812 case ICBTAG_FLAG_AD_SHORT: 1813 if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc))) 1814 return -1; 1815 etype = le32_to_cpu(sad->extLength) >> 30; 1816 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1817 eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum; 1818 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1819 break; 1820 case ICBTAG_FLAG_AD_LONG: 1821 if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc))) 1822 return -1; 1823 etype = le32_to_cpu(lad->extLength) >> 30; 1824 *eloc = lelb_to_cpu(lad->extLocation); 1825 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1826 break; 1827 default: 1828 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode)); 1829 return -1; 1830 } 1831 1832 return etype; 1833 } 1834 1835 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1836 kernel_lb_addr neloc, uint32_t nelen) 1837 { 1838 kernel_lb_addr oeloc; 1839 uint32_t oelen; 1840 int8_t etype; 1841 1842 if (epos.bh) 1843 get_bh(epos.bh); 1844 1845 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1846 udf_write_aext(inode, &epos, neloc, nelen, 1); 1847 neloc = oeloc; 1848 nelen = (etype << 30) | oelen; 1849 } 1850 udf_add_aext(inode, &epos, neloc, nelen, 1); 1851 brelse(epos.bh); 1852 1853 return (nelen >> 30); 1854 } 1855 1856 int8_t udf_delete_aext(struct inode * inode, struct extent_position epos, 1857 kernel_lb_addr eloc, uint32_t elen) 1858 { 1859 struct extent_position oepos; 1860 int adsize; 1861 int8_t etype; 1862 struct allocExtDesc *aed; 1863 1864 if (epos.bh) { 1865 get_bh(epos.bh); 1866 get_bh(epos.bh); 1867 } 1868 1869 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT) 1870 adsize = sizeof(short_ad); 1871 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG) 1872 adsize = sizeof(long_ad); 1873 else 1874 adsize = 0; 1875 1876 oepos = epos; 1877 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1878 return -1; 1879 1880 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1881 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1); 1882 if (oepos.bh != epos.bh) { 1883 oepos.block = epos.block; 1884 brelse(oepos.bh); 1885 get_bh(epos.bh); 1886 oepos.bh = epos.bh; 1887 oepos.offset = epos.offset - adsize; 1888 } 1889 } 1890 memset(&eloc, 0x00, sizeof(kernel_lb_addr)); 1891 elen = 0; 1892 1893 if (epos.bh != oepos.bh) { 1894 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1); 1895 udf_write_aext(inode, &oepos, eloc, elen, 1); 1896 udf_write_aext(inode, &oepos, eloc, elen, 1); 1897 if (!oepos.bh) { 1898 UDF_I_LENALLOC(inode) -= (adsize * 2); 1899 mark_inode_dirty(inode); 1900 } else { 1901 aed = (struct allocExtDesc *)oepos.bh->b_data; 1902 aed->lengthAllocDescs = 1903 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize)); 1904 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1905 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) 1906 udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize)); 1907 else 1908 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc)); 1909 mark_buffer_dirty_inode(oepos.bh, inode); 1910 } 1911 } else { 1912 udf_write_aext(inode, &oepos, eloc, elen, 1); 1913 if (!oepos.bh) { 1914 UDF_I_LENALLOC(inode) -= adsize; 1915 mark_inode_dirty(inode); 1916 } else { 1917 aed = (struct allocExtDesc *)oepos.bh->b_data; 1918 aed->lengthAllocDescs = 1919 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize); 1920 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1921 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) 1922 udf_update_tag(oepos.bh->b_data, epos.offset - adsize); 1923 else 1924 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc)); 1925 mark_buffer_dirty_inode(oepos.bh, inode); 1926 } 1927 } 1928 1929 brelse(epos.bh); 1930 brelse(oepos.bh); 1931 1932 return (elen >> 30); 1933 } 1934 1935 int8_t inode_bmap(struct inode * inode, sector_t block, 1936 struct extent_position * pos, kernel_lb_addr * eloc, 1937 uint32_t * elen, sector_t * offset) 1938 { 1939 loff_t lbcount = 0, bcount = 1940 (loff_t) block << inode->i_sb->s_blocksize_bits; 1941 int8_t etype; 1942 1943 if (block < 0) { 1944 printk(KERN_ERR "udf: inode_bmap: block < 0\n"); 1945 return -1; 1946 } 1947 1948 pos->offset = 0; 1949 pos->block = UDF_I_LOCATION(inode); 1950 pos->bh = NULL; 1951 *elen = 0; 1952 1953 do { 1954 if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) { 1955 *offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits; 1956 UDF_I_LENEXTENTS(inode) = lbcount; 1957 return -1; 1958 } 1959 lbcount += *elen; 1960 } while (lbcount <= bcount); 1961 1962 *offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits; 1963 1964 return etype; 1965 } 1966 1967 long udf_block_map(struct inode *inode, sector_t block) 1968 { 1969 kernel_lb_addr eloc; 1970 uint32_t elen; 1971 sector_t offset; 1972 struct extent_position epos = {}; 1973 int ret; 1974 1975 lock_kernel(); 1976 1977 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30)) 1978 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset); 1979 else 1980 ret = 0; 1981 1982 unlock_kernel(); 1983 brelse(epos.bh); 1984 1985 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 1986 return udf_fixed_to_variable(ret); 1987 else 1988 return ret; 1989 } 1990