xref: /openbmc/linux/fs/udf/inode.c (revision c21b37f6)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map and udf_read_inode
23  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
24  *                block boundaries (which is not actually allowed)
25  *  12/20/98      added support for strategy 4096
26  *  03/07/99      rewrote udf_block_map (again)
27  *                New funcs, inode_bmap, udf_next_aext
28  *  04/19/99      Support for writing device EA's for major/minor #
29  */
30 
31 #include "udfdecl.h"
32 #include <linux/mm.h>
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 
40 #include "udf_i.h"
41 #include "udf_sb.h"
42 
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
46 
47 #define EXTENT_MERGE_SIZE 5
48 
49 static mode_t udf_convert_permissions(struct fileEntry *);
50 static int udf_update_inode(struct inode *, int);
51 static void udf_fill_inode(struct inode *, struct buffer_head *);
52 static int udf_alloc_i_data(struct inode *inode, size_t size);
53 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
54 					long *, int *);
55 static int8_t udf_insert_aext(struct inode *, struct extent_position,
56 			      kernel_lb_addr, uint32_t);
57 static void udf_split_extents(struct inode *, int *, int, int,
58 			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
59 static void udf_prealloc_extents(struct inode *, int, int,
60 				 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_merge_extents(struct inode *,
62 			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_update_extents(struct inode *,
64 			       kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
65 			       struct extent_position *);
66 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
67 
68 /*
69  * udf_delete_inode
70  *
71  * PURPOSE
72  *	Clean-up before the specified inode is destroyed.
73  *
74  * DESCRIPTION
75  *	This routine is called when the kernel destroys an inode structure
76  *	ie. when iput() finds i_count == 0.
77  *
78  * HISTORY
79  *	July 1, 1997 - Andrew E. Mileski
80  *	Written, tested, and released.
81  *
82  *  Called at the last iput() if i_nlink is zero.
83  */
84 void udf_delete_inode(struct inode *inode)
85 {
86 	truncate_inode_pages(&inode->i_data, 0);
87 
88 	if (is_bad_inode(inode))
89 		goto no_delete;
90 
91 	inode->i_size = 0;
92 	udf_truncate(inode);
93 	lock_kernel();
94 
95 	udf_update_inode(inode, IS_SYNC(inode));
96 	udf_free_inode(inode);
97 
98 	unlock_kernel();
99 	return;
100 
101 no_delete:
102 	clear_inode(inode);
103 }
104 
105 /*
106  * If we are going to release inode from memory, we discard preallocation and
107  * truncate last inode extent to proper length. We could use drop_inode() but
108  * it's called under inode_lock and thus we cannot mark inode dirty there.  We
109  * use clear_inode() but we have to make sure to write inode as it's not written
110  * automatically.
111  */
112 void udf_clear_inode(struct inode *inode)
113 {
114 	if (!(inode->i_sb->s_flags & MS_RDONLY)) {
115 		lock_kernel();
116 		/* Discard preallocation for directories, symlinks, etc. */
117 		udf_discard_prealloc(inode);
118 		udf_truncate_tail_extent(inode);
119 		unlock_kernel();
120 		write_inode_now(inode, 1);
121 	}
122 	kfree(UDF_I_DATA(inode));
123 	UDF_I_DATA(inode) = NULL;
124 }
125 
126 static int udf_writepage(struct page *page, struct writeback_control *wbc)
127 {
128 	return block_write_full_page(page, udf_get_block, wbc);
129 }
130 
131 static int udf_readpage(struct file *file, struct page *page)
132 {
133 	return block_read_full_page(page, udf_get_block);
134 }
135 
136 static int udf_prepare_write(struct file *file, struct page *page,
137 			     unsigned from, unsigned to)
138 {
139 	return block_prepare_write(page, from, to, udf_get_block);
140 }
141 
142 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
143 {
144 	return generic_block_bmap(mapping, block, udf_get_block);
145 }
146 
147 const struct address_space_operations udf_aops = {
148 	.readpage	= udf_readpage,
149 	.writepage	= udf_writepage,
150 	.sync_page	= block_sync_page,
151 	.prepare_write	= udf_prepare_write,
152 	.commit_write	= generic_commit_write,
153 	.bmap		= udf_bmap,
154 };
155 
156 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
157 {
158 	struct page *page;
159 	char *kaddr;
160 	struct writeback_control udf_wbc = {
161 		.sync_mode = WB_SYNC_NONE,
162 		.nr_to_write = 1,
163 	};
164 
165 	/* from now on we have normal address_space methods */
166 	inode->i_data.a_ops = &udf_aops;
167 
168 	if (!UDF_I_LENALLOC(inode)) {
169 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
170 			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
171 		else
172 			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
173 		mark_inode_dirty(inode);
174 		return;
175 	}
176 
177 	page = grab_cache_page(inode->i_mapping, 0);
178 	BUG_ON(!PageLocked(page));
179 
180 	if (!PageUptodate(page)) {
181 		kaddr = kmap(page);
182 		memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
183 		       PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
184 		memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
185 		       UDF_I_LENALLOC(inode));
186 		flush_dcache_page(page);
187 		SetPageUptodate(page);
188 		kunmap(page);
189 	}
190 	memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
191 	       UDF_I_LENALLOC(inode));
192 	UDF_I_LENALLOC(inode) = 0;
193 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
194 		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
195 	else
196 		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
197 
198 	inode->i_data.a_ops->writepage(page, &udf_wbc);
199 	page_cache_release(page);
200 
201 	mark_inode_dirty(inode);
202 }
203 
204 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
205 					   int *err)
206 {
207 	int newblock;
208 	struct buffer_head *dbh = NULL;
209 	kernel_lb_addr eloc;
210 	uint32_t elen;
211 	uint8_t alloctype;
212 	struct extent_position epos;
213 
214 	struct udf_fileident_bh sfibh, dfibh;
215 	loff_t f_pos = udf_ext0_offset(inode) >> 2;
216 	int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
217 	struct fileIdentDesc cfi, *sfi, *dfi;
218 
219 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
220 		alloctype = ICBTAG_FLAG_AD_SHORT;
221 	else
222 		alloctype = ICBTAG_FLAG_AD_LONG;
223 
224 	if (!inode->i_size) {
225 		UDF_I_ALLOCTYPE(inode) = alloctype;
226 		mark_inode_dirty(inode);
227 		return NULL;
228 	}
229 
230 	/* alloc block, and copy data to it */
231 	*block = udf_new_block(inode->i_sb, inode,
232 			       UDF_I_LOCATION(inode).partitionReferenceNum,
233 			       UDF_I_LOCATION(inode).logicalBlockNum, err);
234 	if (!(*block))
235 		return NULL;
236 	newblock = udf_get_pblock(inode->i_sb, *block,
237 				  UDF_I_LOCATION(inode).partitionReferenceNum, 0);
238 	if (!newblock)
239 		return NULL;
240 	dbh = udf_tgetblk(inode->i_sb, newblock);
241 	if (!dbh)
242 		return NULL;
243 	lock_buffer(dbh);
244 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
245 	set_buffer_uptodate(dbh);
246 	unlock_buffer(dbh);
247 	mark_buffer_dirty_inode(dbh, inode);
248 
249 	sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
250 	sfibh.sbh = sfibh.ebh = NULL;
251 	dfibh.soffset = dfibh.eoffset = 0;
252 	dfibh.sbh = dfibh.ebh = dbh;
253 	while ((f_pos < size)) {
254 		UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
255 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
256 		if (!sfi) {
257 			brelse(dbh);
258 			return NULL;
259 		}
260 		UDF_I_ALLOCTYPE(inode) = alloctype;
261 		sfi->descTag.tagLocation = cpu_to_le32(*block);
262 		dfibh.soffset = dfibh.eoffset;
263 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
264 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
265 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
266 				 sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
267 			UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
268 			brelse(dbh);
269 			return NULL;
270 		}
271 	}
272 	mark_buffer_dirty_inode(dbh, inode);
273 
274 	memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
275 	UDF_I_LENALLOC(inode) = 0;
276 	eloc.logicalBlockNum = *block;
277 	eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
278 	elen = inode->i_size;
279 	UDF_I_LENEXTENTS(inode) = elen;
280 	epos.bh = NULL;
281 	epos.block = UDF_I_LOCATION(inode);
282 	epos.offset = udf_file_entry_alloc_offset(inode);
283 	udf_add_aext(inode, &epos, eloc, elen, 0);
284 	/* UniqueID stuff */
285 
286 	brelse(epos.bh);
287 	mark_inode_dirty(inode);
288 	return dbh;
289 }
290 
291 static int udf_get_block(struct inode *inode, sector_t block,
292 			 struct buffer_head *bh_result, int create)
293 {
294 	int err, new;
295 	struct buffer_head *bh;
296 	unsigned long phys;
297 
298 	if (!create) {
299 		phys = udf_block_map(inode, block);
300 		if (phys)
301 			map_bh(bh_result, inode->i_sb, phys);
302 		return 0;
303 	}
304 
305 	err = -EIO;
306 	new = 0;
307 	bh = NULL;
308 
309 	lock_kernel();
310 
311 	if (block < 0)
312 		goto abort_negative;
313 
314 	if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
315 		UDF_I_NEXT_ALLOC_BLOCK(inode)++;
316 		UDF_I_NEXT_ALLOC_GOAL(inode)++;
317 	}
318 
319 	err = 0;
320 
321 	bh = inode_getblk(inode, block, &err, &phys, &new);
322 	BUG_ON(bh);
323 	if (err)
324 		goto abort;
325 	BUG_ON(!phys);
326 
327 	if (new)
328 		set_buffer_new(bh_result);
329 	map_bh(bh_result, inode->i_sb, phys);
330 
331 abort:
332 	unlock_kernel();
333 	return err;
334 
335 abort_negative:
336 	udf_warning(inode->i_sb, "udf_get_block", "block < 0");
337 	goto abort;
338 }
339 
340 static struct buffer_head *udf_getblk(struct inode *inode, long block,
341 				      int create, int *err)
342 {
343 	struct buffer_head *bh;
344 	struct buffer_head dummy;
345 
346 	dummy.b_state = 0;
347 	dummy.b_blocknr = -1000;
348 	*err = udf_get_block(inode, block, &dummy, create);
349 	if (!*err && buffer_mapped(&dummy)) {
350 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
351 		if (buffer_new(&dummy)) {
352 			lock_buffer(bh);
353 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
354 			set_buffer_uptodate(bh);
355 			unlock_buffer(bh);
356 			mark_buffer_dirty_inode(bh, inode);
357 		}
358 		return bh;
359 	}
360 
361 	return NULL;
362 }
363 
364 /* Extend the file by 'blocks' blocks, return the number of extents added */
365 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
366 		    kernel_long_ad * last_ext, sector_t blocks)
367 {
368 	sector_t add;
369 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
370 	struct super_block *sb = inode->i_sb;
371 	kernel_lb_addr prealloc_loc = {};
372 	int prealloc_len = 0;
373 
374 	/* The previous extent is fake and we should not extend by anything
375 	 * - there's nothing to do... */
376 	if (!blocks && fake)
377 		return 0;
378 
379 	/* Round the last extent up to a multiple of block size */
380 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
381 		last_ext->extLength =
382 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
383 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
384 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
385 		UDF_I_LENEXTENTS(inode) =
386 			(UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
387 			~(sb->s_blocksize - 1);
388 	}
389 
390 	/* Last extent are just preallocated blocks? */
391 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
392 		/* Save the extent so that we can reattach it to the end */
393 		prealloc_loc = last_ext->extLocation;
394 		prealloc_len = last_ext->extLength;
395 		/* Mark the extent as a hole */
396 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
397 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
398 		last_ext->extLocation.logicalBlockNum = 0;
399        		last_ext->extLocation.partitionReferenceNum = 0;
400 	}
401 
402 	/* Can we merge with the previous extent? */
403 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
404 		add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
405 						      UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
406 		if (add > blocks)
407 			add = blocks;
408 		blocks -= add;
409 		last_ext->extLength += add << sb->s_blocksize_bits;
410 	}
411 
412 	if (fake) {
413 		udf_add_aext(inode, last_pos, last_ext->extLocation,
414 			     last_ext->extLength, 1);
415 		count++;
416 	} else {
417 		udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
418 	}
419 
420 	/* Managed to do everything necessary? */
421 	if (!blocks)
422 		goto out;
423 
424 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
425 	last_ext->extLocation.logicalBlockNum = 0;
426        	last_ext->extLocation.partitionReferenceNum = 0;
427 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
428 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);
429 
430 	/* Create enough extents to cover the whole hole */
431 	while (blocks > add) {
432 		blocks -= add;
433 		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
434 				 last_ext->extLength, 1) == -1)
435 			return -1;
436 		count++;
437 	}
438 	if (blocks) {
439 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
440 			(blocks << sb->s_blocksize_bits);
441 		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
442 				 last_ext->extLength, 1) == -1)
443 			return -1;
444 		count++;
445 	}
446 
447 out:
448 	/* Do we have some preallocated blocks saved? */
449 	if (prealloc_len) {
450 		if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
451 			return -1;
452 		last_ext->extLocation = prealloc_loc;
453 		last_ext->extLength = prealloc_len;
454 		count++;
455 	}
456 
457 	/* last_pos should point to the last written extent... */
458 	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
459 		last_pos->offset -= sizeof(short_ad);
460 	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
461 		last_pos->offset -= sizeof(long_ad);
462 	else
463 		return -1;
464 
465 	return count;
466 }
467 
468 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
469 					int *err, long *phys, int *new)
470 {
471 	static sector_t last_block;
472 	struct buffer_head *result = NULL;
473 	kernel_long_ad laarr[EXTENT_MERGE_SIZE];
474 	struct extent_position prev_epos, cur_epos, next_epos;
475 	int count = 0, startnum = 0, endnum = 0;
476 	uint32_t elen = 0, tmpelen;
477 	kernel_lb_addr eloc, tmpeloc;
478 	int c = 1;
479 	loff_t lbcount = 0, b_off = 0;
480 	uint32_t newblocknum, newblock;
481 	sector_t offset = 0;
482 	int8_t etype;
483 	int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
484 	int lastblock = 0;
485 
486 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
487 	prev_epos.block = UDF_I_LOCATION(inode);
488 	prev_epos.bh = NULL;
489 	cur_epos = next_epos = prev_epos;
490 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
491 
492 	/* find the extent which contains the block we are looking for.
493 	   alternate between laarr[0] and laarr[1] for locations of the
494 	   current extent, and the previous extent */
495 	do {
496 		if (prev_epos.bh != cur_epos.bh) {
497 			brelse(prev_epos.bh);
498 			get_bh(cur_epos.bh);
499 			prev_epos.bh = cur_epos.bh;
500 		}
501 		if (cur_epos.bh != next_epos.bh) {
502 			brelse(cur_epos.bh);
503 			get_bh(next_epos.bh);
504 			cur_epos.bh = next_epos.bh;
505 		}
506 
507 		lbcount += elen;
508 
509 		prev_epos.block = cur_epos.block;
510 		cur_epos.block = next_epos.block;
511 
512 		prev_epos.offset = cur_epos.offset;
513 		cur_epos.offset = next_epos.offset;
514 
515 		if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
516 			break;
517 
518 		c = !c;
519 
520 		laarr[c].extLength = (etype << 30) | elen;
521 		laarr[c].extLocation = eloc;
522 
523 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
524 			pgoal = eloc.logicalBlockNum +
525 				((elen + inode->i_sb->s_blocksize - 1) >>
526 				 inode->i_sb->s_blocksize_bits);
527 
528 		count++;
529 	} while (lbcount + elen <= b_off);
530 
531 	b_off -= lbcount;
532 	offset = b_off >> inode->i_sb->s_blocksize_bits;
533 	/*
534 	 * Move prev_epos and cur_epos into indirect extent if we are at
535 	 * the pointer to it
536 	 */
537 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
538 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
539 
540 	/* if the extent is allocated and recorded, return the block
541 	   if the extent is not a multiple of the blocksize, round up */
542 
543 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
544 		if (elen & (inode->i_sb->s_blocksize - 1)) {
545 			elen = EXT_RECORDED_ALLOCATED |
546 				((elen + inode->i_sb->s_blocksize - 1) &
547 				 ~(inode->i_sb->s_blocksize - 1));
548 			etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
549 		}
550 		brelse(prev_epos.bh);
551 		brelse(cur_epos.bh);
552 		brelse(next_epos.bh);
553 		newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
554 		*phys = newblock;
555 		return NULL;
556 	}
557 
558 	last_block = block;
559 	/* Are we beyond EOF? */
560 	if (etype == -1) {
561 		int ret;
562 
563 		if (count) {
564 			if (c)
565 				laarr[0] = laarr[1];
566 			startnum = 1;
567 		} else {
568 			/* Create a fake extent when there's not one */
569 			memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
570 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
571 			/* Will udf_extend_file() create real extent from a fake one? */
572 			startnum = (offset > 0);
573 		}
574 		/* Create extents for the hole between EOF and offset */
575 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
576 		if (ret == -1) {
577 			brelse(prev_epos.bh);
578 			brelse(cur_epos.bh);
579 			brelse(next_epos.bh);
580 			/* We don't really know the error here so we just make
581 			 * something up */
582 			*err = -ENOSPC;
583 			return NULL;
584 		}
585 		c = 0;
586 		offset = 0;
587 		count += ret;
588 		/* We are not covered by a preallocated extent? */
589 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
590 			/* Is there any real extent? - otherwise we overwrite
591 			 * the fake one... */
592 			if (count)
593 				c = !c;
594 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
595 				inode->i_sb->s_blocksize;
596 			memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
597 			count++;
598 			endnum++;
599 		}
600 		endnum = c + 1;
601 		lastblock = 1;
602 	} else {
603 		endnum = startnum = ((count > 2) ? 2 : count);
604 
605 		/* if the current extent is in position 0, swap it with the previous */
606 		if (!c && count != 1) {
607 			laarr[2] = laarr[0];
608 			laarr[0] = laarr[1];
609 			laarr[1] = laarr[2];
610 			c = 1;
611 		}
612 
613 		/* if the current block is located in an extent, read the next extent */
614 		if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
615 			laarr[c + 1].extLength = (etype << 30) | elen;
616 			laarr[c + 1].extLocation = eloc;
617 			count++;
618 			startnum++;
619 			endnum++;
620 		} else {
621 			lastblock = 1;
622 		}
623 	}
624 
625 	/* if the current extent is not recorded but allocated, get the
626 	 * block in the extent corresponding to the requested block */
627 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
628 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
629 	} else { /* otherwise, allocate a new block */
630 		if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
631 			goal = UDF_I_NEXT_ALLOC_GOAL(inode);
632 
633 		if (!goal) {
634 			if (!(goal = pgoal))
635 				goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
636 		}
637 
638 		if (!(newblocknum = udf_new_block(inode->i_sb, inode,
639 						  UDF_I_LOCATION(inode).partitionReferenceNum,
640 						  goal, err))) {
641 			brelse(prev_epos.bh);
642 			*err = -ENOSPC;
643 			return NULL;
644 		}
645 		UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
646 	}
647 
648 	/* if the extent the requsted block is located in contains multiple blocks,
649 	 * split the extent into at most three extents. blocks prior to requested
650 	 * block, requested block, and blocks after requested block */
651 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
652 
653 #ifdef UDF_PREALLOCATE
654 	/* preallocate blocks */
655 	udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
656 #endif
657 
658 	/* merge any continuous blocks in laarr */
659 	udf_merge_extents(inode, laarr, &endnum);
660 
661 	/* write back the new extents, inserting new extents if the new number
662 	 * of extents is greater than the old number, and deleting extents if
663 	 * the new number of extents is less than the old number */
664 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
665 
666 	brelse(prev_epos.bh);
667 
668 	if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
669 					UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
670 		return NULL;
671 	}
672 	*phys = newblock;
673 	*err = 0;
674 	*new = 1;
675 	UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
676 	UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
677 	inode->i_ctime = current_fs_time(inode->i_sb);
678 
679 	if (IS_SYNC(inode))
680 		udf_sync_inode(inode);
681 	else
682 		mark_inode_dirty(inode);
683 
684 	return result;
685 }
686 
687 static void udf_split_extents(struct inode *inode, int *c, int offset,
688 			      int newblocknum,
689 			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
690 			      int *endnum)
691 {
692 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
693 	    (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
694 		int curr = *c;
695 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
696 			    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
697 		int8_t etype = (laarr[curr].extLength >> 30);
698 
699 		if (blen == 1) {
700 			;
701 		} else if (!offset || blen == offset + 1) {
702 			laarr[curr + 2] = laarr[curr + 1];
703 			laarr[curr + 1] = laarr[curr];
704 		} else {
705 			laarr[curr + 3] = laarr[curr + 1];
706 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
707 		}
708 
709 		if (offset) {
710 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
711 				udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
712 				laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
713 					(offset << inode->i_sb->s_blocksize_bits);
714 				laarr[curr].extLocation.logicalBlockNum = 0;
715 				laarr[curr].extLocation.partitionReferenceNum = 0;
716 			} else {
717 				laarr[curr].extLength = (etype << 30) |
718 					(offset << inode->i_sb->s_blocksize_bits);
719 			}
720 			curr++;
721 			(*c)++;
722 			(*endnum)++;
723 		}
724 
725 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
726 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
727 			laarr[curr].extLocation.partitionReferenceNum =
728 				UDF_I_LOCATION(inode).partitionReferenceNum;
729 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
730 			inode->i_sb->s_blocksize;
731 		curr++;
732 
733 		if (blen != offset + 1) {
734 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
735 				laarr[curr].extLocation.logicalBlockNum += (offset + 1);
736 			laarr[curr].extLength = (etype << 30) |
737 				((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
738 			curr++;
739 			(*endnum)++;
740 		}
741 	}
742 }
743 
744 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
745 				 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
746 				 int *endnum)
747 {
748 	int start, length = 0, currlength = 0, i;
749 
750 	if (*endnum >= (c + 1)) {
751 		if (!lastblock)
752 			return;
753 		else
754 			start = c;
755 	} else {
756 		if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
757 			start = c + 1;
758 			length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
759 						inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
760 		} else {
761 			start = c;
762 		}
763 	}
764 
765 	for (i = start + 1; i <= *endnum; i++) {
766 		if (i == *endnum) {
767 			if (lastblock)
768 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
769 		} else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
770 			length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
771 				    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
772 		} else {
773 			break;
774 		}
775 	}
776 
777 	if (length) {
778 		int next = laarr[start].extLocation.logicalBlockNum +
779 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
780 			  inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
781 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
782 						   laarr[start].extLocation.partitionReferenceNum,
783 						   next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
784 							  UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
785 		if (numalloc) 	{
786 			if (start == (c + 1)) {
787 				laarr[start].extLength +=
788 					(numalloc << inode->i_sb->s_blocksize_bits);
789 			} else {
790 				memmove(&laarr[c + 2], &laarr[c + 1],
791 					sizeof(long_ad) * (*endnum - (c + 1)));
792 				(*endnum)++;
793 				laarr[c + 1].extLocation.logicalBlockNum = next;
794 				laarr[c + 1].extLocation.partitionReferenceNum =
795 					laarr[c].extLocation.partitionReferenceNum;
796 				laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
797 					(numalloc << inode->i_sb->s_blocksize_bits);
798 				start = c + 1;
799 			}
800 
801 			for (i = start + 1; numalloc && i < *endnum; i++) {
802 				int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
803 					    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
804 
805 				if (elen > numalloc) {
806 					laarr[i].extLength -=
807 						(numalloc << inode->i_sb->s_blocksize_bits);
808 					numalloc = 0;
809 				} else {
810 					numalloc -= elen;
811 					if (*endnum > (i + 1))
812 						memmove(&laarr[i], &laarr[i + 1],
813 							sizeof(long_ad) * (*endnum - (i + 1)));
814 					i--;
815 					(*endnum)--;
816 				}
817 			}
818 			UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
819 		}
820 	}
821 }
822 
823 static void udf_merge_extents(struct inode *inode,
824 			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
825 			      int *endnum)
826 {
827 	int i;
828 
829 	for (i = 0; i < (*endnum - 1); i++) {
830 		if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
831 			if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
832 			    ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
833 			     (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
834 			       inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
835 				if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
836 				     (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
837 				     inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
838 					laarr[i + 1].extLength = (laarr[i + 1].extLength -
839 								  (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
840 								  UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
841 					laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
842 						(UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
843 					laarr[i + 1].extLocation.logicalBlockNum =
844 						laarr[i].extLocation.logicalBlockNum +
845 						((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
846 						 inode->i_sb->s_blocksize_bits);
847 				} else {
848 					laarr[i].extLength = laarr[i + 1].extLength +
849 						(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
850 						  inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
851 					if (*endnum > (i + 2))
852 						memmove(&laarr[i + 1], &laarr[i + 2],
853 							sizeof(long_ad) * (*endnum - (i + 2)));
854 					i--;
855 					(*endnum)--;
856 				}
857 			}
858 		} else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
859 			   ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
860 			udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
861 					((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
862 					 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
863 			laarr[i].extLocation.logicalBlockNum = 0;
864 			laarr[i].extLocation.partitionReferenceNum = 0;
865 
866 			if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
867 			     (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
868 			     inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
869 				laarr[i + 1].extLength = (laarr[i + 1].extLength -
870 							  (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
871 							  UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
872 				laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
873 					(UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
874 			} else {
875 				laarr[i].extLength = laarr[i + 1].extLength +
876 					(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
877 					  inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
878 				if (*endnum > (i + 2))
879 					memmove(&laarr[i + 1], &laarr[i + 2],
880 						sizeof(long_ad) * (*endnum - (i + 2)));
881 				i--;
882 				(*endnum)--;
883 			}
884 		} else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
885 			udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
886 					((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
887 					 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
888 			laarr[i].extLocation.logicalBlockNum = 0;
889 			laarr[i].extLocation.partitionReferenceNum = 0;
890 			laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
891 				EXT_NOT_RECORDED_NOT_ALLOCATED;
892 		}
893 	}
894 }
895 
896 static void udf_update_extents(struct inode *inode,
897 			       kernel_long_ad laarr[EXTENT_MERGE_SIZE],
898 			       int startnum, int endnum,
899 			       struct extent_position *epos)
900 {
901 	int start = 0, i;
902 	kernel_lb_addr tmploc;
903 	uint32_t tmplen;
904 
905 	if (startnum > endnum) {
906 		for (i = 0; i < (startnum - endnum); i++)
907 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
908 					laarr[i].extLength);
909 	} else if (startnum < endnum) {
910 		for (i = 0; i < (endnum - startnum); i++) {
911 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
912 					laarr[i].extLength);
913 			udf_next_aext(inode, epos, &laarr[i].extLocation,
914 				      &laarr[i].extLength, 1);
915 			start++;
916 		}
917 	}
918 
919 	for (i = start; i < endnum; i++) {
920 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
921 		udf_write_aext(inode, epos, laarr[i].extLocation,
922 			       laarr[i].extLength, 1);
923 	}
924 }
925 
926 struct buffer_head *udf_bread(struct inode *inode, int block,
927 			      int create, int *err)
928 {
929 	struct buffer_head *bh = NULL;
930 
931 	bh = udf_getblk(inode, block, create, err);
932 	if (!bh)
933 		return NULL;
934 
935 	if (buffer_uptodate(bh))
936 		return bh;
937 
938 	ll_rw_block(READ, 1, &bh);
939 
940 	wait_on_buffer(bh);
941 	if (buffer_uptodate(bh))
942 		return bh;
943 
944 	brelse(bh);
945 	*err = -EIO;
946 	return NULL;
947 }
948 
949 void udf_truncate(struct inode *inode)
950 {
951 	int offset;
952 	int err;
953 
954 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
955 	      S_ISLNK(inode->i_mode)))
956 		return;
957 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
958 		return;
959 
960 	lock_kernel();
961 	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
962 		if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
963 						inode->i_size)) {
964 			udf_expand_file_adinicb(inode, inode->i_size, &err);
965 			if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
966 				inode->i_size = UDF_I_LENALLOC(inode);
967 				unlock_kernel();
968 				return;
969 			} else {
970 				udf_truncate_extents(inode);
971 			}
972 		} else {
973 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
974 			memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
975 			       inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
976 			UDF_I_LENALLOC(inode) = inode->i_size;
977 		}
978 	} else {
979 		block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
980 		udf_truncate_extents(inode);
981 	}
982 
983 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
984 	if (IS_SYNC(inode))
985 		udf_sync_inode(inode);
986 	else
987 		mark_inode_dirty(inode);
988 	unlock_kernel();
989 }
990 
991 static void __udf_read_inode(struct inode *inode)
992 {
993 	struct buffer_head *bh = NULL;
994 	struct fileEntry *fe;
995 	uint16_t ident;
996 
997 	/*
998 	 * Set defaults, but the inode is still incomplete!
999 	 * Note: get_new_inode() sets the following on a new inode:
1000 	 *      i_sb = sb
1001 	 *      i_no = ino
1002 	 *      i_flags = sb->s_flags
1003 	 *      i_state = 0
1004 	 * clean_inode(): zero fills and sets
1005 	 *      i_count = 1
1006 	 *      i_nlink = 1
1007 	 *      i_op = NULL;
1008 	 */
1009 	bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
1010 	if (!bh) {
1011 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1012 		       inode->i_ino);
1013 		make_bad_inode(inode);
1014 		return;
1015 	}
1016 
1017 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1018 	    ident != TAG_IDENT_USE) {
1019 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
1020 		       inode->i_ino, ident);
1021 		brelse(bh);
1022 		make_bad_inode(inode);
1023 		return;
1024 	}
1025 
1026 	fe = (struct fileEntry *)bh->b_data;
1027 
1028 	if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
1029 		struct buffer_head *ibh = NULL, *nbh = NULL;
1030 		struct indirectEntry *ie;
1031 
1032 		ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
1033 		if (ident == TAG_IDENT_IE) {
1034 			if (ibh) {
1035 				kernel_lb_addr loc;
1036 				ie = (struct indirectEntry *)ibh->b_data;
1037 
1038 				loc = lelb_to_cpu(ie->indirectICB.extLocation);
1039 
1040 				if (ie->indirectICB.extLength &&
1041 				    (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
1042 					if (ident == TAG_IDENT_FE ||
1043 					    ident == TAG_IDENT_EFE) {
1044 						memcpy(&UDF_I_LOCATION(inode), &loc,
1045 						       sizeof(kernel_lb_addr));
1046 						brelse(bh);
1047 						brelse(ibh);
1048 						brelse(nbh);
1049 						__udf_read_inode(inode);
1050 						return;
1051 					} else {
1052 						brelse(nbh);
1053 						brelse(ibh);
1054 					}
1055 				} else {
1056 					brelse(ibh);
1057 				}
1058 			}
1059 		} else {
1060 			brelse(ibh);
1061 		}
1062 	} else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
1063 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1064 		       le16_to_cpu(fe->icbTag.strategyType));
1065 		brelse(bh);
1066 		make_bad_inode(inode);
1067 		return;
1068 	}
1069 	udf_fill_inode(inode, bh);
1070 
1071 	brelse(bh);
1072 }
1073 
1074 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1075 {
1076 	struct fileEntry *fe;
1077 	struct extendedFileEntry *efe;
1078 	time_t convtime;
1079 	long convtime_usec;
1080 	int offset;
1081 
1082 	fe = (struct fileEntry *)bh->b_data;
1083 	efe = (struct extendedFileEntry *)bh->b_data;
1084 
1085 	if (le16_to_cpu(fe->icbTag.strategyType) == 4)
1086 		UDF_I_STRAT4096(inode) = 0;
1087 	else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1088 		UDF_I_STRAT4096(inode) = 1;
1089 
1090 	UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
1091 	UDF_I_UNIQUE(inode) = 0;
1092 	UDF_I_LENEATTR(inode) = 0;
1093 	UDF_I_LENEXTENTS(inode) = 0;
1094 	UDF_I_LENALLOC(inode) = 0;
1095 	UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
1096 	UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
1097 	if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
1098 		UDF_I_EFE(inode) = 1;
1099 		UDF_I_USE(inode) = 0;
1100 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
1101 			make_bad_inode(inode);
1102 			return;
1103 		}
1104 		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
1105 		       inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1106 	} else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
1107 		UDF_I_EFE(inode) = 0;
1108 		UDF_I_USE(inode) = 0;
1109 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
1110 			make_bad_inode(inode);
1111 			return;
1112 		}
1113 		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
1114 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1115 	} else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1116 		UDF_I_EFE(inode) = 0;
1117 		UDF_I_USE(inode) = 1;
1118 		UDF_I_LENALLOC(inode) =
1119 		    le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
1120 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
1121 			make_bad_inode(inode);
1122 			return;
1123 		}
1124 		memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
1125 		       inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1126 		return;
1127 	}
1128 
1129 	inode->i_uid = le32_to_cpu(fe->uid);
1130 	if (inode->i_uid == -1 || UDF_QUERY_FLAG(inode->i_sb,
1131 						 UDF_FLAG_UID_IGNORE))
1132 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1133 
1134 	inode->i_gid = le32_to_cpu(fe->gid);
1135 	if (inode->i_gid == -1 || UDF_QUERY_FLAG(inode->i_sb,
1136 						 UDF_FLAG_GID_IGNORE))
1137 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1138 
1139 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1140 	if (!inode->i_nlink)
1141 		inode->i_nlink = 1;
1142 
1143 	inode->i_size = le64_to_cpu(fe->informationLength);
1144 	UDF_I_LENEXTENTS(inode) = inode->i_size;
1145 
1146 	inode->i_mode = udf_convert_permissions(fe);
1147 	inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1148 
1149 	if (UDF_I_EFE(inode) == 0) {
1150 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1151 			(inode->i_sb->s_blocksize_bits - 9);
1152 
1153 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1154 				      lets_to_cpu(fe->accessTime))) {
1155 			inode->i_atime.tv_sec = convtime;
1156 			inode->i_atime.tv_nsec = convtime_usec * 1000;
1157 		} else {
1158 			inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1159 		}
1160 
1161 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1162 				      lets_to_cpu(fe->modificationTime))) {
1163 			inode->i_mtime.tv_sec = convtime;
1164 			inode->i_mtime.tv_nsec = convtime_usec * 1000;
1165 		} else {
1166 			inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1167 		}
1168 
1169 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1170 				      lets_to_cpu(fe->attrTime))) {
1171 			inode->i_ctime.tv_sec = convtime;
1172 			inode->i_ctime.tv_nsec = convtime_usec * 1000;
1173 		} else {
1174 			inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1175 		}
1176 
1177 		UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
1178 		UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
1179 		UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
1180 		offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
1181 	} else {
1182 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1183 		    (inode->i_sb->s_blocksize_bits - 9);
1184 
1185 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1186 				      lets_to_cpu(efe->accessTime))) {
1187 			inode->i_atime.tv_sec = convtime;
1188 			inode->i_atime.tv_nsec = convtime_usec * 1000;
1189 		} else {
1190 			inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1191 		}
1192 
1193 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1194 				      lets_to_cpu(efe->modificationTime))) {
1195 			inode->i_mtime.tv_sec = convtime;
1196 			inode->i_mtime.tv_nsec = convtime_usec * 1000;
1197 		} else {
1198 			inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1199 		}
1200 
1201 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1202 				      lets_to_cpu(efe->createTime))) {
1203 			UDF_I_CRTIME(inode).tv_sec = convtime;
1204 			UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
1205 		} else {
1206 			UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb);
1207 		}
1208 
1209 		if (udf_stamp_to_time(&convtime, &convtime_usec,
1210 				      lets_to_cpu(efe->attrTime))) {
1211 			inode->i_ctime.tv_sec = convtime;
1212 			inode->i_ctime.tv_nsec = convtime_usec * 1000;
1213 		} else {
1214 			inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1215 		}
1216 
1217 		UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
1218 		UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
1219 		UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
1220 		offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
1221 	}
1222 
1223 	switch (fe->icbTag.fileType) {
1224 	case ICBTAG_FILE_TYPE_DIRECTORY:
1225 		inode->i_op = &udf_dir_inode_operations;
1226 		inode->i_fop = &udf_dir_operations;
1227 		inode->i_mode |= S_IFDIR;
1228 		inc_nlink(inode);
1229 		break;
1230 	case ICBTAG_FILE_TYPE_REALTIME:
1231 	case ICBTAG_FILE_TYPE_REGULAR:
1232 	case ICBTAG_FILE_TYPE_UNDEF:
1233 		if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
1234 			inode->i_data.a_ops = &udf_adinicb_aops;
1235 		else
1236 			inode->i_data.a_ops = &udf_aops;
1237 		inode->i_op = &udf_file_inode_operations;
1238 		inode->i_fop = &udf_file_operations;
1239 		inode->i_mode |= S_IFREG;
1240 		break;
1241 	case ICBTAG_FILE_TYPE_BLOCK:
1242 		inode->i_mode |= S_IFBLK;
1243 		break;
1244 	case ICBTAG_FILE_TYPE_CHAR:
1245 		inode->i_mode |= S_IFCHR;
1246 		break;
1247 	case ICBTAG_FILE_TYPE_FIFO:
1248 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1249 		break;
1250 	case ICBTAG_FILE_TYPE_SOCKET:
1251 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1252 		break;
1253 	case ICBTAG_FILE_TYPE_SYMLINK:
1254 		inode->i_data.a_ops = &udf_symlink_aops;
1255 		inode->i_op = &page_symlink_inode_operations;
1256 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1257 		break;
1258 	default:
1259 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1260 		       inode->i_ino, fe->icbTag.fileType);
1261 		make_bad_inode(inode);
1262 		return;
1263 	}
1264 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1265 		struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1266 		if (dsea) {
1267 			init_special_inode(inode, inode->i_mode,
1268 					   MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1269 						 le32_to_cpu(dsea->minorDeviceIdent)));
1270 			/* Developer ID ??? */
1271 		} else {
1272 			make_bad_inode(inode);
1273 		}
1274 	}
1275 }
1276 
1277 static int udf_alloc_i_data(struct inode *inode, size_t size)
1278 {
1279 	UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
1280 
1281 	if (!UDF_I_DATA(inode)) {
1282 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
1283 		       inode->i_ino);
1284 		return -ENOMEM;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static mode_t udf_convert_permissions(struct fileEntry *fe)
1291 {
1292 	mode_t mode;
1293 	uint32_t permissions;
1294 	uint32_t flags;
1295 
1296 	permissions = le32_to_cpu(fe->permissions);
1297 	flags = le16_to_cpu(fe->icbTag.flags);
1298 
1299 	mode =	(( permissions      ) & S_IRWXO) |
1300 		(( permissions >> 2 ) & S_IRWXG) |
1301 		(( permissions >> 4 ) & S_IRWXU) |
1302 		(( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1303 		(( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1304 		(( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1305 
1306 	return mode;
1307 }
1308 
1309 /*
1310  * udf_write_inode
1311  *
1312  * PURPOSE
1313  *	Write out the specified inode.
1314  *
1315  * DESCRIPTION
1316  *	This routine is called whenever an inode is synced.
1317  *	Currently this routine is just a placeholder.
1318  *
1319  * HISTORY
1320  *	July 1, 1997 - Andrew E. Mileski
1321  *	Written, tested, and released.
1322  */
1323 
1324 int udf_write_inode(struct inode *inode, int sync)
1325 {
1326 	int ret;
1327 
1328 	lock_kernel();
1329 	ret = udf_update_inode(inode, sync);
1330 	unlock_kernel();
1331 
1332 	return ret;
1333 }
1334 
1335 int udf_sync_inode(struct inode *inode)
1336 {
1337 	return udf_update_inode(inode, 1);
1338 }
1339 
1340 static int udf_update_inode(struct inode *inode, int do_sync)
1341 {
1342 	struct buffer_head *bh = NULL;
1343 	struct fileEntry *fe;
1344 	struct extendedFileEntry *efe;
1345 	uint32_t udfperms;
1346 	uint16_t icbflags;
1347 	uint16_t crclen;
1348 	int i;
1349 	kernel_timestamp cpu_time;
1350 	int err = 0;
1351 
1352 	bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
1353 	if (!bh) {
1354 		udf_debug("bread failure\n");
1355 		return -EIO;
1356 	}
1357 
1358 	memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1359 
1360 	fe = (struct fileEntry *)bh->b_data;
1361 	efe = (struct extendedFileEntry *)bh->b_data;
1362 
1363 	if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1364 		struct unallocSpaceEntry *use =
1365 			(struct unallocSpaceEntry *)bh->b_data;
1366 
1367 		use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1368 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
1369 		       inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1370 		crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
1371 		use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1372 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1373 		use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));
1374 
1375 		use->descTag.tagChecksum = 0;
1376 		for (i = 0; i < 16; i++) {
1377 			if (i != 4)
1378 				use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
1379 		}
1380 
1381 		mark_buffer_dirty(bh);
1382 		brelse(bh);
1383 		return err;
1384 	}
1385 
1386 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1387 		fe->uid = cpu_to_le32(-1);
1388 	else
1389 		fe->uid = cpu_to_le32(inode->i_uid);
1390 
1391 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1392 		fe->gid = cpu_to_le32(-1);
1393 	else
1394 		fe->gid = cpu_to_le32(inode->i_gid);
1395 
1396 	udfperms =	((inode->i_mode & S_IRWXO)     ) |
1397 			((inode->i_mode & S_IRWXG) << 2) |
1398 			((inode->i_mode & S_IRWXU) << 4);
1399 
1400 	udfperms |=	(le32_to_cpu(fe->permissions) &
1401 			(FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1402 			 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1403 			 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1404 	fe->permissions = cpu_to_le32(udfperms);
1405 
1406 	if (S_ISDIR(inode->i_mode))
1407 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1408 	else
1409 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1410 
1411 	fe->informationLength = cpu_to_le64(inode->i_size);
1412 
1413 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1414 		regid *eid;
1415 		struct deviceSpec *dsea =
1416 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1417 		if (!dsea) {
1418 			dsea = (struct deviceSpec *)
1419 				udf_add_extendedattr(inode,
1420 						     sizeof(struct deviceSpec) +
1421 						     sizeof(regid), 12, 0x3);
1422 			dsea->attrType = cpu_to_le32(12);
1423 			dsea->attrSubtype = 1;
1424 			dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
1425 						       sizeof(regid));
1426 			dsea->impUseLength = cpu_to_le32(sizeof(regid));
1427 		}
1428 		eid = (regid *)dsea->impUse;
1429 		memset(eid, 0, sizeof(regid));
1430 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1431 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1432 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1433 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1434 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1435 	}
1436 
1437 	if (UDF_I_EFE(inode) == 0) {
1438 		memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
1439 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1440 		fe->logicalBlocksRecorded = cpu_to_le64(
1441 			(inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1442 			(inode->i_sb->s_blocksize_bits - 9));
1443 
1444 		if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1445 			fe->accessTime = cpu_to_lets(cpu_time);
1446 		if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1447 			fe->modificationTime = cpu_to_lets(cpu_time);
1448 		if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1449 			fe->attrTime = cpu_to_lets(cpu_time);
1450 		memset(&(fe->impIdent), 0, sizeof(regid));
1451 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1452 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1453 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1454 		fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1455 		fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1456 		fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1457 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1458 		crclen = sizeof(struct fileEntry);
1459 	} else {
1460 		memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
1461 		       inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1462 		efe->objectSize = cpu_to_le64(inode->i_size);
1463 		efe->logicalBlocksRecorded = cpu_to_le64(
1464 			(inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1465 			(inode->i_sb->s_blocksize_bits - 9));
1466 
1467 		if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
1468 		    (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
1469 		     UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
1470 			UDF_I_CRTIME(inode) = inode->i_atime;
1471 		}
1472 		if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
1473 		    (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
1474 		     UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
1475 			UDF_I_CRTIME(inode) = inode->i_mtime;
1476 		}
1477 		if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
1478 		    (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
1479 		     UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
1480 			UDF_I_CRTIME(inode) = inode->i_ctime;
1481 		}
1482 
1483 		if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1484 			efe->accessTime = cpu_to_lets(cpu_time);
1485 		if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1486 			efe->modificationTime = cpu_to_lets(cpu_time);
1487 		if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
1488 			efe->createTime = cpu_to_lets(cpu_time);
1489 		if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1490 			efe->attrTime = cpu_to_lets(cpu_time);
1491 
1492 		memset(&(efe->impIdent), 0, sizeof(regid));
1493 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1494 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1495 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1496 		efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1497 		efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1498 		efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1499 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1500 		crclen = sizeof(struct extendedFileEntry);
1501 	}
1502 	if (UDF_I_STRAT4096(inode)) {
1503 		fe->icbTag.strategyType = cpu_to_le16(4096);
1504 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1505 		fe->icbTag.numEntries = cpu_to_le16(2);
1506 	} else {
1507 		fe->icbTag.strategyType = cpu_to_le16(4);
1508 		fe->icbTag.numEntries = cpu_to_le16(1);
1509 	}
1510 
1511 	if (S_ISDIR(inode->i_mode))
1512 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1513 	else if (S_ISREG(inode->i_mode))
1514 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1515 	else if (S_ISLNK(inode->i_mode))
1516 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1517 	else if (S_ISBLK(inode->i_mode))
1518 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1519 	else if (S_ISCHR(inode->i_mode))
1520 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1521 	else if (S_ISFIFO(inode->i_mode))
1522 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1523 	else if (S_ISSOCK(inode->i_mode))
1524 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1525 
1526 	icbflags =	UDF_I_ALLOCTYPE(inode) |
1527 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1528 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1529 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1530 			(le16_to_cpu(fe->icbTag.flags) &
1531 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1532 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1533 
1534 	fe->icbTag.flags = cpu_to_le16(icbflags);
1535 	if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1536 		fe->descTag.descVersion = cpu_to_le16(3);
1537 	else
1538 		fe->descTag.descVersion = cpu_to_le16(2);
1539 	fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb));
1540 	fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1541 	crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
1542 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1543 	fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));
1544 
1545 	fe->descTag.tagChecksum = 0;
1546 	for (i = 0; i < 16; i++) {
1547 		if (i != 4)
1548 			fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
1549 	}
1550 
1551 	/* write the data blocks */
1552 	mark_buffer_dirty(bh);
1553 	if (do_sync) {
1554 		sync_dirty_buffer(bh);
1555 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1556 			printk("IO error syncing udf inode [%s:%08lx]\n",
1557 			       inode->i_sb->s_id, inode->i_ino);
1558 			err = -EIO;
1559 		}
1560 	}
1561 	brelse(bh);
1562 
1563 	return err;
1564 }
1565 
1566 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1567 {
1568 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1569 	struct inode *inode = iget_locked(sb, block);
1570 
1571 	if (!inode)
1572 		return NULL;
1573 
1574 	if (inode->i_state & I_NEW) {
1575 		memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
1576 		__udf_read_inode(inode);
1577 		unlock_new_inode(inode);
1578 	}
1579 
1580 	if (is_bad_inode(inode))
1581 		goto out_iput;
1582 
1583 	if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) {
1584 		udf_debug("block=%d, partition=%d out of range\n",
1585 			  ino.logicalBlockNum, ino.partitionReferenceNum);
1586 		make_bad_inode(inode);
1587 		goto out_iput;
1588 	}
1589 
1590 	return inode;
1591 
1592  out_iput:
1593 	iput(inode);
1594 	return NULL;
1595 }
1596 
1597 int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
1598 		    kernel_lb_addr eloc, uint32_t elen, int inc)
1599 {
1600 	int adsize;
1601 	short_ad *sad = NULL;
1602 	long_ad *lad = NULL;
1603 	struct allocExtDesc *aed;
1604 	int8_t etype;
1605 	uint8_t *ptr;
1606 
1607 	if (!epos->bh)
1608 		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1609 	else
1610 		ptr = epos->bh->b_data + epos->offset;
1611 
1612 	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1613 		adsize = sizeof(short_ad);
1614 	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1615 		adsize = sizeof(long_ad);
1616 	else
1617 		return -1;
1618 
1619 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1620 		char *sptr, *dptr;
1621 		struct buffer_head *nbh;
1622 		int err, loffset;
1623 		kernel_lb_addr obloc = epos->block;
1624 
1625 		if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1626 								  obloc.partitionReferenceNum,
1627 								  obloc.logicalBlockNum, &err))) {
1628 			return -1;
1629 		}
1630 		if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1631 								       epos->block, 0)))) {
1632 			return -1;
1633 		}
1634 		lock_buffer(nbh);
1635 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1636 		set_buffer_uptodate(nbh);
1637 		unlock_buffer(nbh);
1638 		mark_buffer_dirty_inode(nbh, inode);
1639 
1640 		aed = (struct allocExtDesc *)(nbh->b_data);
1641 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1642 			aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
1643 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1644 			loffset = epos->offset;
1645 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1646 			sptr = ptr - adsize;
1647 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1648 			memcpy(dptr, sptr, adsize);
1649 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1650 		} else {
1651 			loffset = epos->offset + adsize;
1652 			aed->lengthAllocDescs = cpu_to_le32(0);
1653 			sptr = ptr;
1654 			epos->offset = sizeof(struct allocExtDesc);
1655 
1656 			if (epos->bh) {
1657 				aed = (struct allocExtDesc *)epos->bh->b_data;
1658 				aed->lengthAllocDescs =
1659 					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1660 			} else {
1661 				UDF_I_LENALLOC(inode) += adsize;
1662 				mark_inode_dirty(inode);
1663 			}
1664 		}
1665 		if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1666 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1667 				    epos->block.logicalBlockNum, sizeof(tag));
1668 		else
1669 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1670 				    epos->block.logicalBlockNum, sizeof(tag));
1671 		switch (UDF_I_ALLOCTYPE(inode)) {
1672 		case ICBTAG_FLAG_AD_SHORT:
1673 			sad = (short_ad *)sptr;
1674 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1675 						     inode->i_sb->s_blocksize);
1676 			sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
1677 			break;
1678 		case ICBTAG_FLAG_AD_LONG:
1679 			lad = (long_ad *)sptr;
1680 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1681 						     inode->i_sb->s_blocksize);
1682 			lad->extLocation = cpu_to_lelb(epos->block);
1683 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1684 			break;
1685 		}
1686 		if (epos->bh) {
1687 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1688 			    UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1689 				udf_update_tag(epos->bh->b_data, loffset);
1690 			else
1691 				udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1692 			mark_buffer_dirty_inode(epos->bh, inode);
1693 			brelse(epos->bh);
1694 		} else {
1695 			mark_inode_dirty(inode);
1696 		}
1697 		epos->bh = nbh;
1698 	}
1699 
1700 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1701 
1702 	if (!epos->bh) {
1703 		UDF_I_LENALLOC(inode) += adsize;
1704 		mark_inode_dirty(inode);
1705 	} else {
1706 		aed = (struct allocExtDesc *)epos->bh->b_data;
1707 		aed->lengthAllocDescs =
1708 			cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1709 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1710 			udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
1711 		else
1712 			udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1713 		mark_buffer_dirty_inode(epos->bh, inode);
1714 	}
1715 
1716 	return etype;
1717 }
1718 
1719 int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
1720 		      kernel_lb_addr eloc, uint32_t elen, int inc)
1721 {
1722 	int adsize;
1723 	uint8_t *ptr;
1724 	short_ad *sad;
1725 	long_ad *lad;
1726 
1727 	if (!epos->bh)
1728 		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1729 	else
1730 		ptr = epos->bh->b_data + epos->offset;
1731 
1732 	switch (UDF_I_ALLOCTYPE(inode)) {
1733 	case ICBTAG_FLAG_AD_SHORT:
1734 		sad = (short_ad *)ptr;
1735 		sad->extLength = cpu_to_le32(elen);
1736 		sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1737 		adsize = sizeof(short_ad);
1738 		break;
1739 	case ICBTAG_FLAG_AD_LONG:
1740 		lad = (long_ad *)ptr;
1741 		lad->extLength = cpu_to_le32(elen);
1742 		lad->extLocation = cpu_to_lelb(eloc);
1743 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1744 		adsize = sizeof(long_ad);
1745 		break;
1746 	default:
1747 		return -1;
1748 	}
1749 
1750 	if (epos->bh) {
1751 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1752 		    UDF_SB_UDFREV(inode->i_sb) >= 0x0201) {
1753 			struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
1754 			udf_update_tag(epos->bh->b_data,
1755 				       le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
1756 		}
1757 		mark_buffer_dirty_inode(epos->bh, inode);
1758 	} else {
1759 		mark_inode_dirty(inode);
1760 	}
1761 
1762 	if (inc)
1763 		epos->offset += adsize;
1764 
1765 	return (elen >> 30);
1766 }
1767 
1768 int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
1769 		     kernel_lb_addr * eloc, uint32_t * elen, int inc)
1770 {
1771 	int8_t etype;
1772 
1773 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1774 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1775 		epos->block = *eloc;
1776 		epos->offset = sizeof(struct allocExtDesc);
1777 		brelse(epos->bh);
1778 		if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
1779 			udf_debug("reading block %d failed!\n",
1780 				  udf_get_lb_pblock(inode->i_sb, epos->block, 0));
1781 			return -1;
1782 		}
1783 	}
1784 
1785 	return etype;
1786 }
1787 
1788 int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
1789 			kernel_lb_addr * eloc, uint32_t * elen, int inc)
1790 {
1791 	int alen;
1792 	int8_t etype;
1793 	uint8_t *ptr;
1794 	short_ad *sad;
1795 	long_ad *lad;
1796 
1797 
1798 	if (!epos->bh) {
1799 		if (!epos->offset)
1800 			epos->offset = udf_file_entry_alloc_offset(inode);
1801 		ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1802 		alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
1803 	} else {
1804 		if (!epos->offset)
1805 			epos->offset = sizeof(struct allocExtDesc);
1806 		ptr = epos->bh->b_data + epos->offset;
1807 		alen = sizeof(struct allocExtDesc) +
1808 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
1809 	}
1810 
1811 	switch (UDF_I_ALLOCTYPE(inode)) {
1812 	case ICBTAG_FLAG_AD_SHORT:
1813 		if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
1814 			return -1;
1815 		etype = le32_to_cpu(sad->extLength) >> 30;
1816 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1817 		eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
1818 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1819 		break;
1820 	case ICBTAG_FLAG_AD_LONG:
1821 		if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
1822 			return -1;
1823 		etype = le32_to_cpu(lad->extLength) >> 30;
1824 		*eloc = lelb_to_cpu(lad->extLocation);
1825 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1826 		break;
1827 	default:
1828 		udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
1829 		return -1;
1830 	}
1831 
1832 	return etype;
1833 }
1834 
1835 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1836 			      kernel_lb_addr neloc, uint32_t nelen)
1837 {
1838 	kernel_lb_addr oeloc;
1839 	uint32_t oelen;
1840 	int8_t etype;
1841 
1842 	if (epos.bh)
1843 		get_bh(epos.bh);
1844 
1845 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1846 		udf_write_aext(inode, &epos, neloc, nelen, 1);
1847 		neloc = oeloc;
1848 		nelen = (etype << 30) | oelen;
1849 	}
1850 	udf_add_aext(inode, &epos, neloc, nelen, 1);
1851 	brelse(epos.bh);
1852 
1853 	return (nelen >> 30);
1854 }
1855 
1856 int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
1857 		       kernel_lb_addr eloc, uint32_t elen)
1858 {
1859 	struct extent_position oepos;
1860 	int adsize;
1861 	int8_t etype;
1862 	struct allocExtDesc *aed;
1863 
1864 	if (epos.bh) {
1865 		get_bh(epos.bh);
1866 		get_bh(epos.bh);
1867 	}
1868 
1869 	if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1870 		adsize = sizeof(short_ad);
1871 	else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1872 		adsize = sizeof(long_ad);
1873 	else
1874 		adsize = 0;
1875 
1876 	oepos = epos;
1877 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1878 		return -1;
1879 
1880 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1881 		udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1882 		if (oepos.bh != epos.bh) {
1883 			oepos.block = epos.block;
1884 			brelse(oepos.bh);
1885 			get_bh(epos.bh);
1886 			oepos.bh = epos.bh;
1887 			oepos.offset = epos.offset - adsize;
1888 		}
1889 	}
1890 	memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1891 	elen = 0;
1892 
1893 	if (epos.bh != oepos.bh) {
1894 		udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1895 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1896 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1897 		if (!oepos.bh) {
1898 			UDF_I_LENALLOC(inode) -= (adsize * 2);
1899 			mark_inode_dirty(inode);
1900 		} else {
1901 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1902 			aed->lengthAllocDescs =
1903 				cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
1904 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1905 			    UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1906 				udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
1907 			else
1908 				udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1909 			mark_buffer_dirty_inode(oepos.bh, inode);
1910 		}
1911 	} else {
1912 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1913 		if (!oepos.bh) {
1914 			UDF_I_LENALLOC(inode) -= adsize;
1915 			mark_inode_dirty(inode);
1916 		} else {
1917 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1918 			aed->lengthAllocDescs =
1919 				cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
1920 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1921 			    UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1922 				udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
1923 			else
1924 				udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1925 			mark_buffer_dirty_inode(oepos.bh, inode);
1926 		}
1927 	}
1928 
1929 	brelse(epos.bh);
1930 	brelse(oepos.bh);
1931 
1932 	return (elen >> 30);
1933 }
1934 
1935 int8_t inode_bmap(struct inode * inode, sector_t block,
1936 		  struct extent_position * pos, kernel_lb_addr * eloc,
1937 		  uint32_t * elen, sector_t * offset)
1938 {
1939 	loff_t lbcount = 0, bcount =
1940 	    (loff_t) block << inode->i_sb->s_blocksize_bits;
1941 	int8_t etype;
1942 
1943 	if (block < 0) {
1944 		printk(KERN_ERR "udf: inode_bmap: block < 0\n");
1945 		return -1;
1946 	}
1947 
1948 	pos->offset = 0;
1949 	pos->block = UDF_I_LOCATION(inode);
1950 	pos->bh = NULL;
1951 	*elen = 0;
1952 
1953 	do {
1954 		if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
1955 			*offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
1956 			UDF_I_LENEXTENTS(inode) = lbcount;
1957 			return -1;
1958 		}
1959 		lbcount += *elen;
1960 	} while (lbcount <= bcount);
1961 
1962 	*offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;
1963 
1964 	return etype;
1965 }
1966 
1967 long udf_block_map(struct inode *inode, sector_t block)
1968 {
1969 	kernel_lb_addr eloc;
1970 	uint32_t elen;
1971 	sector_t offset;
1972 	struct extent_position epos = {};
1973 	int ret;
1974 
1975 	lock_kernel();
1976 
1977 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
1978 		ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
1979 	else
1980 		ret = 0;
1981 
1982 	unlock_kernel();
1983 	brelse(epos.bh);
1984 
1985 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
1986 		return udf_fixed_to_variable(ret);
1987 	else
1988 		return ret;
1989 }
1990