xref: /openbmc/linux/fs/udf/inode.c (revision bf3608f3)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 	return block_write_full_page(page, udf_get_block, wbc);
188 }
189 
190 static int udf_writepages(struct address_space *mapping,
191 			struct writeback_control *wbc)
192 {
193 	return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195 
196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 	return mpage_readpage(page, udf_get_block);
199 }
200 
201 static void udf_readahead(struct readahead_control *rac)
202 {
203 	mpage_readahead(rac, udf_get_block);
204 }
205 
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 			loff_t pos, unsigned len, unsigned flags,
208 			struct page **pagep, void **fsdata)
209 {
210 	int ret;
211 
212 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 	if (unlikely(ret))
214 		udf_write_failed(mapping, pos + len);
215 	return ret;
216 }
217 
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 	struct file *file = iocb->ki_filp;
221 	struct address_space *mapping = file->f_mapping;
222 	struct inode *inode = mapping->host;
223 	size_t count = iov_iter_count(iter);
224 	ssize_t ret;
225 
226 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 		udf_write_failed(mapping, iocb->ki_pos + count);
229 	return ret;
230 }
231 
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 	return generic_block_bmap(mapping, block, udf_get_block);
235 }
236 
237 const struct address_space_operations udf_aops = {
238 	.set_page_dirty	= __set_page_dirty_buffers,
239 	.readpage	= udf_readpage,
240 	.readahead	= udf_readahead,
241 	.writepage	= udf_writepage,
242 	.writepages	= udf_writepages,
243 	.write_begin	= udf_write_begin,
244 	.write_end	= generic_write_end,
245 	.direct_IO	= udf_direct_IO,
246 	.bmap		= udf_bmap,
247 };
248 
249 /*
250  * Expand file stored in ICB to a normal one-block-file
251  *
252  * This function requires i_data_sem for writing and releases it.
253  * This function requires i_mutex held
254  */
255 int udf_expand_file_adinicb(struct inode *inode)
256 {
257 	struct page *page;
258 	char *kaddr;
259 	struct udf_inode_info *iinfo = UDF_I(inode);
260 	int err;
261 
262 	WARN_ON_ONCE(!inode_is_locked(inode));
263 	if (!iinfo->i_lenAlloc) {
264 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
265 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
266 		else
267 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
268 		/* from now on we have normal address_space methods */
269 		inode->i_data.a_ops = &udf_aops;
270 		up_write(&iinfo->i_data_sem);
271 		mark_inode_dirty(inode);
272 		return 0;
273 	}
274 	/*
275 	 * Release i_data_sem so that we can lock a page - page lock ranks
276 	 * above i_data_sem. i_mutex still protects us against file changes.
277 	 */
278 	up_write(&iinfo->i_data_sem);
279 
280 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
281 	if (!page)
282 		return -ENOMEM;
283 
284 	if (!PageUptodate(page)) {
285 		kaddr = kmap_atomic(page);
286 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
287 		       PAGE_SIZE - iinfo->i_lenAlloc);
288 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
289 			iinfo->i_lenAlloc);
290 		flush_dcache_page(page);
291 		SetPageUptodate(page);
292 		kunmap_atomic(kaddr);
293 	}
294 	down_write(&iinfo->i_data_sem);
295 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
296 	       iinfo->i_lenAlloc);
297 	iinfo->i_lenAlloc = 0;
298 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
299 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
300 	else
301 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
302 	/* from now on we have normal address_space methods */
303 	inode->i_data.a_ops = &udf_aops;
304 	set_page_dirty(page);
305 	unlock_page(page);
306 	up_write(&iinfo->i_data_sem);
307 	err = filemap_fdatawrite(inode->i_mapping);
308 	if (err) {
309 		/* Restore everything back so that we don't lose data... */
310 		lock_page(page);
311 		down_write(&iinfo->i_data_sem);
312 		kaddr = kmap_atomic(page);
313 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
314 		kunmap_atomic(kaddr);
315 		unlock_page(page);
316 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
317 		inode->i_data.a_ops = &udf_adinicb_aops;
318 		iinfo->i_lenAlloc = inode->i_size;
319 		up_write(&iinfo->i_data_sem);
320 	}
321 	put_page(page);
322 	mark_inode_dirty(inode);
323 
324 	return err;
325 }
326 
327 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
328 					    udf_pblk_t *block, int *err)
329 {
330 	udf_pblk_t newblock;
331 	struct buffer_head *dbh = NULL;
332 	struct kernel_lb_addr eloc;
333 	uint8_t alloctype;
334 	struct extent_position epos;
335 
336 	struct udf_fileident_bh sfibh, dfibh;
337 	loff_t f_pos = udf_ext0_offset(inode);
338 	int size = udf_ext0_offset(inode) + inode->i_size;
339 	struct fileIdentDesc cfi, *sfi, *dfi;
340 	struct udf_inode_info *iinfo = UDF_I(inode);
341 
342 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
343 		alloctype = ICBTAG_FLAG_AD_SHORT;
344 	else
345 		alloctype = ICBTAG_FLAG_AD_LONG;
346 
347 	if (!inode->i_size) {
348 		iinfo->i_alloc_type = alloctype;
349 		mark_inode_dirty(inode);
350 		return NULL;
351 	}
352 
353 	/* alloc block, and copy data to it */
354 	*block = udf_new_block(inode->i_sb, inode,
355 			       iinfo->i_location.partitionReferenceNum,
356 			       iinfo->i_location.logicalBlockNum, err);
357 	if (!(*block))
358 		return NULL;
359 	newblock = udf_get_pblock(inode->i_sb, *block,
360 				  iinfo->i_location.partitionReferenceNum,
361 				0);
362 	if (!newblock)
363 		return NULL;
364 	dbh = udf_tgetblk(inode->i_sb, newblock);
365 	if (!dbh)
366 		return NULL;
367 	lock_buffer(dbh);
368 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
369 	set_buffer_uptodate(dbh);
370 	unlock_buffer(dbh);
371 	mark_buffer_dirty_inode(dbh, inode);
372 
373 	sfibh.soffset = sfibh.eoffset =
374 			f_pos & (inode->i_sb->s_blocksize - 1);
375 	sfibh.sbh = sfibh.ebh = NULL;
376 	dfibh.soffset = dfibh.eoffset = 0;
377 	dfibh.sbh = dfibh.ebh = dbh;
378 	while (f_pos < size) {
379 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
380 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
381 					 NULL, NULL, NULL);
382 		if (!sfi) {
383 			brelse(dbh);
384 			return NULL;
385 		}
386 		iinfo->i_alloc_type = alloctype;
387 		sfi->descTag.tagLocation = cpu_to_le32(*block);
388 		dfibh.soffset = dfibh.eoffset;
389 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
390 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
391 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
392 				 udf_get_fi_ident(sfi))) {
393 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394 			brelse(dbh);
395 			return NULL;
396 		}
397 	}
398 	mark_buffer_dirty_inode(dbh, inode);
399 
400 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
401 	iinfo->i_lenAlloc = 0;
402 	eloc.logicalBlockNum = *block;
403 	eloc.partitionReferenceNum =
404 				iinfo->i_location.partitionReferenceNum;
405 	iinfo->i_lenExtents = inode->i_size;
406 	epos.bh = NULL;
407 	epos.block = iinfo->i_location;
408 	epos.offset = udf_file_entry_alloc_offset(inode);
409 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410 	/* UniqueID stuff */
411 
412 	brelse(epos.bh);
413 	mark_inode_dirty(inode);
414 	return dbh;
415 }
416 
417 static int udf_get_block(struct inode *inode, sector_t block,
418 			 struct buffer_head *bh_result, int create)
419 {
420 	int err, new;
421 	sector_t phys = 0;
422 	struct udf_inode_info *iinfo;
423 
424 	if (!create) {
425 		phys = udf_block_map(inode, block);
426 		if (phys)
427 			map_bh(bh_result, inode->i_sb, phys);
428 		return 0;
429 	}
430 
431 	err = -EIO;
432 	new = 0;
433 	iinfo = UDF_I(inode);
434 
435 	down_write(&iinfo->i_data_sem);
436 	if (block == iinfo->i_next_alloc_block + 1) {
437 		iinfo->i_next_alloc_block++;
438 		iinfo->i_next_alloc_goal++;
439 	}
440 
441 	udf_clear_extent_cache(inode);
442 	phys = inode_getblk(inode, block, &err, &new);
443 	if (!phys)
444 		goto abort;
445 
446 	if (new)
447 		set_buffer_new(bh_result);
448 	map_bh(bh_result, inode->i_sb, phys);
449 
450 abort:
451 	up_write(&iinfo->i_data_sem);
452 	return err;
453 }
454 
455 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
456 				      int create, int *err)
457 {
458 	struct buffer_head *bh;
459 	struct buffer_head dummy;
460 
461 	dummy.b_state = 0;
462 	dummy.b_blocknr = -1000;
463 	*err = udf_get_block(inode, block, &dummy, create);
464 	if (!*err && buffer_mapped(&dummy)) {
465 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
466 		if (buffer_new(&dummy)) {
467 			lock_buffer(bh);
468 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
469 			set_buffer_uptodate(bh);
470 			unlock_buffer(bh);
471 			mark_buffer_dirty_inode(bh, inode);
472 		}
473 		return bh;
474 	}
475 
476 	return NULL;
477 }
478 
479 /* Extend the file with new blocks totaling 'new_block_bytes',
480  * return the number of extents added
481  */
482 static int udf_do_extend_file(struct inode *inode,
483 			      struct extent_position *last_pos,
484 			      struct kernel_long_ad *last_ext,
485 			      loff_t new_block_bytes)
486 {
487 	uint32_t add;
488 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
489 	struct super_block *sb = inode->i_sb;
490 	struct kernel_lb_addr prealloc_loc = {};
491 	uint32_t prealloc_len = 0;
492 	struct udf_inode_info *iinfo;
493 	int err;
494 
495 	/* The previous extent is fake and we should not extend by anything
496 	 * - there's nothing to do... */
497 	if (!new_block_bytes && fake)
498 		return 0;
499 
500 	iinfo = UDF_I(inode);
501 	/* Round the last extent up to a multiple of block size */
502 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 		last_ext->extLength =
504 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 		iinfo->i_lenExtents =
508 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 			~(sb->s_blocksize - 1);
510 	}
511 
512 	/* Last extent are just preallocated blocks? */
513 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 						EXT_NOT_RECORDED_ALLOCATED) {
515 		/* Save the extent so that we can reattach it to the end */
516 		prealloc_loc = last_ext->extLocation;
517 		prealloc_len = last_ext->extLength;
518 		/* Mark the extent as a hole */
519 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
520 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521 		last_ext->extLocation.logicalBlockNum = 0;
522 		last_ext->extLocation.partitionReferenceNum = 0;
523 	}
524 
525 	/* Can we merge with the previous extent? */
526 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
527 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
528 		add = (1 << 30) - sb->s_blocksize -
529 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
530 		if (add > new_block_bytes)
531 			add = new_block_bytes;
532 		new_block_bytes -= add;
533 		last_ext->extLength += add;
534 	}
535 
536 	if (fake) {
537 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
538 			     last_ext->extLength, 1);
539 		count++;
540 	} else {
541 		struct kernel_lb_addr tmploc;
542 		uint32_t tmplen;
543 
544 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
545 				last_ext->extLength, 1);
546 
547 		/*
548 		 * We've rewritten the last extent. If we are going to add
549 		 * more extents, we may need to enter possible following
550 		 * empty indirect extent.
551 		 */
552 		if (new_block_bytes || prealloc_len)
553 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
554 	}
555 
556 	/* Managed to do everything necessary? */
557 	if (!new_block_bytes)
558 		goto out;
559 
560 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
561 	last_ext->extLocation.logicalBlockNum = 0;
562 	last_ext->extLocation.partitionReferenceNum = 0;
563 	add = (1 << 30) - sb->s_blocksize;
564 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
565 
566 	/* Create enough extents to cover the whole hole */
567 	while (new_block_bytes > add) {
568 		new_block_bytes -= add;
569 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 				   last_ext->extLength, 1);
571 		if (err)
572 			return err;
573 		count++;
574 	}
575 	if (new_block_bytes) {
576 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
577 			new_block_bytes;
578 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
579 				   last_ext->extLength, 1);
580 		if (err)
581 			return err;
582 		count++;
583 	}
584 
585 out:
586 	/* Do we have some preallocated blocks saved? */
587 	if (prealloc_len) {
588 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
589 				   prealloc_len, 1);
590 		if (err)
591 			return err;
592 		last_ext->extLocation = prealloc_loc;
593 		last_ext->extLength = prealloc_len;
594 		count++;
595 	}
596 
597 	/* last_pos should point to the last written extent... */
598 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
599 		last_pos->offset -= sizeof(struct short_ad);
600 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
601 		last_pos->offset -= sizeof(struct long_ad);
602 	else
603 		return -EIO;
604 
605 	return count;
606 }
607 
608 /* Extend the final block of the file to final_block_len bytes */
609 static void udf_do_extend_final_block(struct inode *inode,
610 				      struct extent_position *last_pos,
611 				      struct kernel_long_ad *last_ext,
612 				      uint32_t final_block_len)
613 {
614 	struct super_block *sb = inode->i_sb;
615 	uint32_t added_bytes;
616 
617 	added_bytes = final_block_len -
618 		      (last_ext->extLength & (sb->s_blocksize - 1));
619 	last_ext->extLength += added_bytes;
620 	UDF_I(inode)->i_lenExtents += added_bytes;
621 
622 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
623 			last_ext->extLength, 1);
624 }
625 
626 static int udf_extend_file(struct inode *inode, loff_t newsize)
627 {
628 
629 	struct extent_position epos;
630 	struct kernel_lb_addr eloc;
631 	uint32_t elen;
632 	int8_t etype;
633 	struct super_block *sb = inode->i_sb;
634 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
635 	unsigned long partial_final_block;
636 	int adsize;
637 	struct udf_inode_info *iinfo = UDF_I(inode);
638 	struct kernel_long_ad extent;
639 	int err = 0;
640 	int within_final_block;
641 
642 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
643 		adsize = sizeof(struct short_ad);
644 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
645 		adsize = sizeof(struct long_ad);
646 	else
647 		BUG();
648 
649 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
650 	within_final_block = (etype != -1);
651 
652 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
653 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
654 		/* File has no extents at all or has empty last
655 		 * indirect extent! Create a fake extent... */
656 		extent.extLocation.logicalBlockNum = 0;
657 		extent.extLocation.partitionReferenceNum = 0;
658 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
659 	} else {
660 		epos.offset -= adsize;
661 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
662 				      &extent.extLength, 0);
663 		extent.extLength |= etype << 30;
664 	}
665 
666 	partial_final_block = newsize & (sb->s_blocksize - 1);
667 
668 	/* File has extent covering the new size (could happen when extending
669 	 * inside a block)?
670 	 */
671 	if (within_final_block) {
672 		/* Extending file within the last file block */
673 		udf_do_extend_final_block(inode, &epos, &extent,
674 					  partial_final_block);
675 	} else {
676 		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
677 			     partial_final_block;
678 		err = udf_do_extend_file(inode, &epos, &extent, add);
679 	}
680 
681 	if (err < 0)
682 		goto out;
683 	err = 0;
684 	iinfo->i_lenExtents = newsize;
685 out:
686 	brelse(epos.bh);
687 	return err;
688 }
689 
690 static sector_t inode_getblk(struct inode *inode, sector_t block,
691 			     int *err, int *new)
692 {
693 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
694 	struct extent_position prev_epos, cur_epos, next_epos;
695 	int count = 0, startnum = 0, endnum = 0;
696 	uint32_t elen = 0, tmpelen;
697 	struct kernel_lb_addr eloc, tmpeloc;
698 	int c = 1;
699 	loff_t lbcount = 0, b_off = 0;
700 	udf_pblk_t newblocknum, newblock;
701 	sector_t offset = 0;
702 	int8_t etype;
703 	struct udf_inode_info *iinfo = UDF_I(inode);
704 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
705 	int lastblock = 0;
706 	bool isBeyondEOF;
707 
708 	*err = 0;
709 	*new = 0;
710 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
711 	prev_epos.block = iinfo->i_location;
712 	prev_epos.bh = NULL;
713 	cur_epos = next_epos = prev_epos;
714 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
715 
716 	/* find the extent which contains the block we are looking for.
717 	   alternate between laarr[0] and laarr[1] for locations of the
718 	   current extent, and the previous extent */
719 	do {
720 		if (prev_epos.bh != cur_epos.bh) {
721 			brelse(prev_epos.bh);
722 			get_bh(cur_epos.bh);
723 			prev_epos.bh = cur_epos.bh;
724 		}
725 		if (cur_epos.bh != next_epos.bh) {
726 			brelse(cur_epos.bh);
727 			get_bh(next_epos.bh);
728 			cur_epos.bh = next_epos.bh;
729 		}
730 
731 		lbcount += elen;
732 
733 		prev_epos.block = cur_epos.block;
734 		cur_epos.block = next_epos.block;
735 
736 		prev_epos.offset = cur_epos.offset;
737 		cur_epos.offset = next_epos.offset;
738 
739 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
740 		if (etype == -1)
741 			break;
742 
743 		c = !c;
744 
745 		laarr[c].extLength = (etype << 30) | elen;
746 		laarr[c].extLocation = eloc;
747 
748 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
749 			pgoal = eloc.logicalBlockNum +
750 				((elen + inode->i_sb->s_blocksize - 1) >>
751 				 inode->i_sb->s_blocksize_bits);
752 
753 		count++;
754 	} while (lbcount + elen <= b_off);
755 
756 	b_off -= lbcount;
757 	offset = b_off >> inode->i_sb->s_blocksize_bits;
758 	/*
759 	 * Move prev_epos and cur_epos into indirect extent if we are at
760 	 * the pointer to it
761 	 */
762 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
763 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
764 
765 	/* if the extent is allocated and recorded, return the block
766 	   if the extent is not a multiple of the blocksize, round up */
767 
768 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
769 		if (elen & (inode->i_sb->s_blocksize - 1)) {
770 			elen = EXT_RECORDED_ALLOCATED |
771 				((elen + inode->i_sb->s_blocksize - 1) &
772 				 ~(inode->i_sb->s_blocksize - 1));
773 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
774 		}
775 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
776 		goto out_free;
777 	}
778 
779 	/* Are we beyond EOF? */
780 	if (etype == -1) {
781 		int ret;
782 		loff_t hole_len;
783 		isBeyondEOF = true;
784 		if (count) {
785 			if (c)
786 				laarr[0] = laarr[1];
787 			startnum = 1;
788 		} else {
789 			/* Create a fake extent when there's not one */
790 			memset(&laarr[0].extLocation, 0x00,
791 				sizeof(struct kernel_lb_addr));
792 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
793 			/* Will udf_do_extend_file() create real extent from
794 			   a fake one? */
795 			startnum = (offset > 0);
796 		}
797 		/* Create extents for the hole between EOF and offset */
798 		hole_len = (loff_t)offset << inode->i_blkbits;
799 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
800 		if (ret < 0) {
801 			*err = ret;
802 			newblock = 0;
803 			goto out_free;
804 		}
805 		c = 0;
806 		offset = 0;
807 		count += ret;
808 		/* We are not covered by a preallocated extent? */
809 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
810 						EXT_NOT_RECORDED_ALLOCATED) {
811 			/* Is there any real extent? - otherwise we overwrite
812 			 * the fake one... */
813 			if (count)
814 				c = !c;
815 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
816 				inode->i_sb->s_blocksize;
817 			memset(&laarr[c].extLocation, 0x00,
818 				sizeof(struct kernel_lb_addr));
819 			count++;
820 		}
821 		endnum = c + 1;
822 		lastblock = 1;
823 	} else {
824 		isBeyondEOF = false;
825 		endnum = startnum = ((count > 2) ? 2 : count);
826 
827 		/* if the current extent is in position 0,
828 		   swap it with the previous */
829 		if (!c && count != 1) {
830 			laarr[2] = laarr[0];
831 			laarr[0] = laarr[1];
832 			laarr[1] = laarr[2];
833 			c = 1;
834 		}
835 
836 		/* if the current block is located in an extent,
837 		   read the next extent */
838 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
839 		if (etype != -1) {
840 			laarr[c + 1].extLength = (etype << 30) | elen;
841 			laarr[c + 1].extLocation = eloc;
842 			count++;
843 			startnum++;
844 			endnum++;
845 		} else
846 			lastblock = 1;
847 	}
848 
849 	/* if the current extent is not recorded but allocated, get the
850 	 * block in the extent corresponding to the requested block */
851 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
852 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
853 	else { /* otherwise, allocate a new block */
854 		if (iinfo->i_next_alloc_block == block)
855 			goal = iinfo->i_next_alloc_goal;
856 
857 		if (!goal) {
858 			if (!(goal = pgoal)) /* XXX: what was intended here? */
859 				goal = iinfo->i_location.logicalBlockNum + 1;
860 		}
861 
862 		newblocknum = udf_new_block(inode->i_sb, inode,
863 				iinfo->i_location.partitionReferenceNum,
864 				goal, err);
865 		if (!newblocknum) {
866 			*err = -ENOSPC;
867 			newblock = 0;
868 			goto out_free;
869 		}
870 		if (isBeyondEOF)
871 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
872 	}
873 
874 	/* if the extent the requsted block is located in contains multiple
875 	 * blocks, split the extent into at most three extents. blocks prior
876 	 * to requested block, requested block, and blocks after requested
877 	 * block */
878 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
879 
880 	/* We preallocate blocks only for regular files. It also makes sense
881 	 * for directories but there's a problem when to drop the
882 	 * preallocation. We might use some delayed work for that but I feel
883 	 * it's overengineering for a filesystem like UDF. */
884 	if (S_ISREG(inode->i_mode))
885 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
886 
887 	/* merge any continuous blocks in laarr */
888 	udf_merge_extents(inode, laarr, &endnum);
889 
890 	/* write back the new extents, inserting new extents if the new number
891 	 * of extents is greater than the old number, and deleting extents if
892 	 * the new number of extents is less than the old number */
893 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
894 
895 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
896 				iinfo->i_location.partitionReferenceNum, 0);
897 	if (!newblock) {
898 		*err = -EIO;
899 		goto out_free;
900 	}
901 	*new = 1;
902 	iinfo->i_next_alloc_block = block;
903 	iinfo->i_next_alloc_goal = newblocknum;
904 	inode->i_ctime = current_time(inode);
905 
906 	if (IS_SYNC(inode))
907 		udf_sync_inode(inode);
908 	else
909 		mark_inode_dirty(inode);
910 out_free:
911 	brelse(prev_epos.bh);
912 	brelse(cur_epos.bh);
913 	brelse(next_epos.bh);
914 	return newblock;
915 }
916 
917 static void udf_split_extents(struct inode *inode, int *c, int offset,
918 			       udf_pblk_t newblocknum,
919 			       struct kernel_long_ad *laarr, int *endnum)
920 {
921 	unsigned long blocksize = inode->i_sb->s_blocksize;
922 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
923 
924 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
925 	    (laarr[*c].extLength >> 30) ==
926 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
927 		int curr = *c;
928 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
929 			    blocksize - 1) >> blocksize_bits;
930 		int8_t etype = (laarr[curr].extLength >> 30);
931 
932 		if (blen == 1)
933 			;
934 		else if (!offset || blen == offset + 1) {
935 			laarr[curr + 2] = laarr[curr + 1];
936 			laarr[curr + 1] = laarr[curr];
937 		} else {
938 			laarr[curr + 3] = laarr[curr + 1];
939 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
940 		}
941 
942 		if (offset) {
943 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
944 				udf_free_blocks(inode->i_sb, inode,
945 						&laarr[curr].extLocation,
946 						0, offset);
947 				laarr[curr].extLength =
948 					EXT_NOT_RECORDED_NOT_ALLOCATED |
949 					(offset << blocksize_bits);
950 				laarr[curr].extLocation.logicalBlockNum = 0;
951 				laarr[curr].extLocation.
952 						partitionReferenceNum = 0;
953 			} else
954 				laarr[curr].extLength = (etype << 30) |
955 					(offset << blocksize_bits);
956 			curr++;
957 			(*c)++;
958 			(*endnum)++;
959 		}
960 
961 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
962 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
963 			laarr[curr].extLocation.partitionReferenceNum =
964 				UDF_I(inode)->i_location.partitionReferenceNum;
965 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
966 			blocksize;
967 		curr++;
968 
969 		if (blen != offset + 1) {
970 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
971 				laarr[curr].extLocation.logicalBlockNum +=
972 								offset + 1;
973 			laarr[curr].extLength = (etype << 30) |
974 				((blen - (offset + 1)) << blocksize_bits);
975 			curr++;
976 			(*endnum)++;
977 		}
978 	}
979 }
980 
981 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
982 				 struct kernel_long_ad *laarr,
983 				 int *endnum)
984 {
985 	int start, length = 0, currlength = 0, i;
986 
987 	if (*endnum >= (c + 1)) {
988 		if (!lastblock)
989 			return;
990 		else
991 			start = c;
992 	} else {
993 		if ((laarr[c + 1].extLength >> 30) ==
994 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
995 			start = c + 1;
996 			length = currlength =
997 				(((laarr[c + 1].extLength &
998 					UDF_EXTENT_LENGTH_MASK) +
999 				inode->i_sb->s_blocksize - 1) >>
1000 				inode->i_sb->s_blocksize_bits);
1001 		} else
1002 			start = c;
1003 	}
1004 
1005 	for (i = start + 1; i <= *endnum; i++) {
1006 		if (i == *endnum) {
1007 			if (lastblock)
1008 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1009 		} else if ((laarr[i].extLength >> 30) ==
1010 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1011 			length += (((laarr[i].extLength &
1012 						UDF_EXTENT_LENGTH_MASK) +
1013 				    inode->i_sb->s_blocksize - 1) >>
1014 				    inode->i_sb->s_blocksize_bits);
1015 		} else
1016 			break;
1017 	}
1018 
1019 	if (length) {
1020 		int next = laarr[start].extLocation.logicalBlockNum +
1021 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1022 			  inode->i_sb->s_blocksize - 1) >>
1023 			  inode->i_sb->s_blocksize_bits);
1024 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1025 				laarr[start].extLocation.partitionReferenceNum,
1026 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1027 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1028 				currlength);
1029 		if (numalloc) 	{
1030 			if (start == (c + 1))
1031 				laarr[start].extLength +=
1032 					(numalloc <<
1033 					 inode->i_sb->s_blocksize_bits);
1034 			else {
1035 				memmove(&laarr[c + 2], &laarr[c + 1],
1036 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1037 				(*endnum)++;
1038 				laarr[c + 1].extLocation.logicalBlockNum = next;
1039 				laarr[c + 1].extLocation.partitionReferenceNum =
1040 					laarr[c].extLocation.
1041 							partitionReferenceNum;
1042 				laarr[c + 1].extLength =
1043 					EXT_NOT_RECORDED_ALLOCATED |
1044 					(numalloc <<
1045 					 inode->i_sb->s_blocksize_bits);
1046 				start = c + 1;
1047 			}
1048 
1049 			for (i = start + 1; numalloc && i < *endnum; i++) {
1050 				int elen = ((laarr[i].extLength &
1051 						UDF_EXTENT_LENGTH_MASK) +
1052 					    inode->i_sb->s_blocksize - 1) >>
1053 					    inode->i_sb->s_blocksize_bits;
1054 
1055 				if (elen > numalloc) {
1056 					laarr[i].extLength -=
1057 						(numalloc <<
1058 						 inode->i_sb->s_blocksize_bits);
1059 					numalloc = 0;
1060 				} else {
1061 					numalloc -= elen;
1062 					if (*endnum > (i + 1))
1063 						memmove(&laarr[i],
1064 							&laarr[i + 1],
1065 							sizeof(struct long_ad) *
1066 							(*endnum - (i + 1)));
1067 					i--;
1068 					(*endnum)--;
1069 				}
1070 			}
1071 			UDF_I(inode)->i_lenExtents +=
1072 				numalloc << inode->i_sb->s_blocksize_bits;
1073 		}
1074 	}
1075 }
1076 
1077 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1078 			      int *endnum)
1079 {
1080 	int i;
1081 	unsigned long blocksize = inode->i_sb->s_blocksize;
1082 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1083 
1084 	for (i = 0; i < (*endnum - 1); i++) {
1085 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1086 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1087 
1088 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1089 			(((li->extLength >> 30) ==
1090 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1091 			((lip1->extLocation.logicalBlockNum -
1092 			  li->extLocation.logicalBlockNum) ==
1093 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094 			blocksize - 1) >> blocksize_bits)))) {
1095 
1096 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1097 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1098 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1099 				lip1->extLength = (lip1->extLength -
1100 						  (li->extLength &
1101 						   UDF_EXTENT_LENGTH_MASK) +
1102 						   UDF_EXTENT_LENGTH_MASK) &
1103 							~(blocksize - 1);
1104 				li->extLength = (li->extLength &
1105 						 UDF_EXTENT_FLAG_MASK) +
1106 						(UDF_EXTENT_LENGTH_MASK + 1) -
1107 						blocksize;
1108 				lip1->extLocation.logicalBlockNum =
1109 					li->extLocation.logicalBlockNum +
1110 					((li->extLength &
1111 						UDF_EXTENT_LENGTH_MASK) >>
1112 						blocksize_bits);
1113 			} else {
1114 				li->extLength = lip1->extLength +
1115 					(((li->extLength &
1116 						UDF_EXTENT_LENGTH_MASK) +
1117 					 blocksize - 1) & ~(blocksize - 1));
1118 				if (*endnum > (i + 2))
1119 					memmove(&laarr[i + 1], &laarr[i + 2],
1120 						sizeof(struct long_ad) *
1121 						(*endnum - (i + 2)));
1122 				i--;
1123 				(*endnum)--;
1124 			}
1125 		} else if (((li->extLength >> 30) ==
1126 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1127 			   ((lip1->extLength >> 30) ==
1128 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1129 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1130 					((li->extLength &
1131 					  UDF_EXTENT_LENGTH_MASK) +
1132 					 blocksize - 1) >> blocksize_bits);
1133 			li->extLocation.logicalBlockNum = 0;
1134 			li->extLocation.partitionReferenceNum = 0;
1135 
1136 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1137 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1138 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1139 				lip1->extLength = (lip1->extLength -
1140 						   (li->extLength &
1141 						   UDF_EXTENT_LENGTH_MASK) +
1142 						   UDF_EXTENT_LENGTH_MASK) &
1143 						   ~(blocksize - 1);
1144 				li->extLength = (li->extLength &
1145 						 UDF_EXTENT_FLAG_MASK) +
1146 						(UDF_EXTENT_LENGTH_MASK + 1) -
1147 						blocksize;
1148 			} else {
1149 				li->extLength = lip1->extLength +
1150 					(((li->extLength &
1151 						UDF_EXTENT_LENGTH_MASK) +
1152 					  blocksize - 1) & ~(blocksize - 1));
1153 				if (*endnum > (i + 2))
1154 					memmove(&laarr[i + 1], &laarr[i + 2],
1155 						sizeof(struct long_ad) *
1156 						(*endnum - (i + 2)));
1157 				i--;
1158 				(*endnum)--;
1159 			}
1160 		} else if ((li->extLength >> 30) ==
1161 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1162 			udf_free_blocks(inode->i_sb, inode,
1163 					&li->extLocation, 0,
1164 					((li->extLength &
1165 						UDF_EXTENT_LENGTH_MASK) +
1166 					 blocksize - 1) >> blocksize_bits);
1167 			li->extLocation.logicalBlockNum = 0;
1168 			li->extLocation.partitionReferenceNum = 0;
1169 			li->extLength = (li->extLength &
1170 						UDF_EXTENT_LENGTH_MASK) |
1171 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1172 		}
1173 	}
1174 }
1175 
1176 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1177 			       int startnum, int endnum,
1178 			       struct extent_position *epos)
1179 {
1180 	int start = 0, i;
1181 	struct kernel_lb_addr tmploc;
1182 	uint32_t tmplen;
1183 
1184 	if (startnum > endnum) {
1185 		for (i = 0; i < (startnum - endnum); i++)
1186 			udf_delete_aext(inode, *epos);
1187 	} else if (startnum < endnum) {
1188 		for (i = 0; i < (endnum - startnum); i++) {
1189 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1190 					laarr[i].extLength);
1191 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1192 				      &laarr[i].extLength, 1);
1193 			start++;
1194 		}
1195 	}
1196 
1197 	for (i = start; i < endnum; i++) {
1198 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1199 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1200 			       laarr[i].extLength, 1);
1201 	}
1202 }
1203 
1204 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1205 			      int create, int *err)
1206 {
1207 	struct buffer_head *bh = NULL;
1208 
1209 	bh = udf_getblk(inode, block, create, err);
1210 	if (!bh)
1211 		return NULL;
1212 
1213 	if (buffer_uptodate(bh))
1214 		return bh;
1215 
1216 	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1217 
1218 	wait_on_buffer(bh);
1219 	if (buffer_uptodate(bh))
1220 		return bh;
1221 
1222 	brelse(bh);
1223 	*err = -EIO;
1224 	return NULL;
1225 }
1226 
1227 int udf_setsize(struct inode *inode, loff_t newsize)
1228 {
1229 	int err;
1230 	struct udf_inode_info *iinfo;
1231 	unsigned int bsize = i_blocksize(inode);
1232 
1233 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1234 	      S_ISLNK(inode->i_mode)))
1235 		return -EINVAL;
1236 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1237 		return -EPERM;
1238 
1239 	iinfo = UDF_I(inode);
1240 	if (newsize > inode->i_size) {
1241 		down_write(&iinfo->i_data_sem);
1242 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1243 			if (bsize <
1244 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1245 				err = udf_expand_file_adinicb(inode);
1246 				if (err)
1247 					return err;
1248 				down_write(&iinfo->i_data_sem);
1249 			} else {
1250 				iinfo->i_lenAlloc = newsize;
1251 				goto set_size;
1252 			}
1253 		}
1254 		err = udf_extend_file(inode, newsize);
1255 		if (err) {
1256 			up_write(&iinfo->i_data_sem);
1257 			return err;
1258 		}
1259 set_size:
1260 		up_write(&iinfo->i_data_sem);
1261 		truncate_setsize(inode, newsize);
1262 	} else {
1263 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1264 			down_write(&iinfo->i_data_sem);
1265 			udf_clear_extent_cache(inode);
1266 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1267 			       0x00, bsize - newsize -
1268 			       udf_file_entry_alloc_offset(inode));
1269 			iinfo->i_lenAlloc = newsize;
1270 			truncate_setsize(inode, newsize);
1271 			up_write(&iinfo->i_data_sem);
1272 			goto update_time;
1273 		}
1274 		err = block_truncate_page(inode->i_mapping, newsize,
1275 					  udf_get_block);
1276 		if (err)
1277 			return err;
1278 		truncate_setsize(inode, newsize);
1279 		down_write(&iinfo->i_data_sem);
1280 		udf_clear_extent_cache(inode);
1281 		err = udf_truncate_extents(inode);
1282 		up_write(&iinfo->i_data_sem);
1283 		if (err)
1284 			return err;
1285 	}
1286 update_time:
1287 	inode->i_mtime = inode->i_ctime = current_time(inode);
1288 	if (IS_SYNC(inode))
1289 		udf_sync_inode(inode);
1290 	else
1291 		mark_inode_dirty(inode);
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1297  * arbitrary - just that we hopefully don't limit any real use of rewritten
1298  * inode on write-once media but avoid looping for too long on corrupted media.
1299  */
1300 #define UDF_MAX_ICB_NESTING 1024
1301 
1302 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1303 {
1304 	struct buffer_head *bh = NULL;
1305 	struct fileEntry *fe;
1306 	struct extendedFileEntry *efe;
1307 	uint16_t ident;
1308 	struct udf_inode_info *iinfo = UDF_I(inode);
1309 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1310 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1311 	unsigned int link_count;
1312 	unsigned int indirections = 0;
1313 	int bs = inode->i_sb->s_blocksize;
1314 	int ret = -EIO;
1315 	uint32_t uid, gid;
1316 
1317 reread:
1318 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1319 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1320 			  iloc->partitionReferenceNum, sbi->s_partitions);
1321 		return -EIO;
1322 	}
1323 
1324 	if (iloc->logicalBlockNum >=
1325 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1326 		udf_debug("block=%u, partition=%u out of range\n",
1327 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1328 		return -EIO;
1329 	}
1330 
1331 	/*
1332 	 * Set defaults, but the inode is still incomplete!
1333 	 * Note: get_new_inode() sets the following on a new inode:
1334 	 *      i_sb = sb
1335 	 *      i_no = ino
1336 	 *      i_flags = sb->s_flags
1337 	 *      i_state = 0
1338 	 * clean_inode(): zero fills and sets
1339 	 *      i_count = 1
1340 	 *      i_nlink = 1
1341 	 *      i_op = NULL;
1342 	 */
1343 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1344 	if (!bh) {
1345 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1346 		return -EIO;
1347 	}
1348 
1349 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1350 	    ident != TAG_IDENT_USE) {
1351 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1352 			inode->i_ino, ident);
1353 		goto out;
1354 	}
1355 
1356 	fe = (struct fileEntry *)bh->b_data;
1357 	efe = (struct extendedFileEntry *)bh->b_data;
1358 
1359 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1360 		struct buffer_head *ibh;
1361 
1362 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1363 		if (ident == TAG_IDENT_IE && ibh) {
1364 			struct kernel_lb_addr loc;
1365 			struct indirectEntry *ie;
1366 
1367 			ie = (struct indirectEntry *)ibh->b_data;
1368 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1369 
1370 			if (ie->indirectICB.extLength) {
1371 				brelse(ibh);
1372 				memcpy(&iinfo->i_location, &loc,
1373 				       sizeof(struct kernel_lb_addr));
1374 				if (++indirections > UDF_MAX_ICB_NESTING) {
1375 					udf_err(inode->i_sb,
1376 						"too many ICBs in ICB hierarchy"
1377 						" (max %d supported)\n",
1378 						UDF_MAX_ICB_NESTING);
1379 					goto out;
1380 				}
1381 				brelse(bh);
1382 				goto reread;
1383 			}
1384 		}
1385 		brelse(ibh);
1386 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1387 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1388 			le16_to_cpu(fe->icbTag.strategyType));
1389 		goto out;
1390 	}
1391 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1392 		iinfo->i_strat4096 = 0;
1393 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1394 		iinfo->i_strat4096 = 1;
1395 
1396 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1397 							ICBTAG_FLAG_AD_MASK;
1398 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1399 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1400 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1401 		ret = -EIO;
1402 		goto out;
1403 	}
1404 	iinfo->i_unique = 0;
1405 	iinfo->i_lenEAttr = 0;
1406 	iinfo->i_lenExtents = 0;
1407 	iinfo->i_lenAlloc = 0;
1408 	iinfo->i_next_alloc_block = 0;
1409 	iinfo->i_next_alloc_goal = 0;
1410 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1411 		iinfo->i_efe = 1;
1412 		iinfo->i_use = 0;
1413 		ret = udf_alloc_i_data(inode, bs -
1414 					sizeof(struct extendedFileEntry));
1415 		if (ret)
1416 			goto out;
1417 		memcpy(iinfo->i_data,
1418 		       bh->b_data + sizeof(struct extendedFileEntry),
1419 		       bs - sizeof(struct extendedFileEntry));
1420 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1421 		iinfo->i_efe = 0;
1422 		iinfo->i_use = 0;
1423 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1424 		if (ret)
1425 			goto out;
1426 		memcpy(iinfo->i_data,
1427 		       bh->b_data + sizeof(struct fileEntry),
1428 		       bs - sizeof(struct fileEntry));
1429 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1430 		iinfo->i_efe = 0;
1431 		iinfo->i_use = 1;
1432 		iinfo->i_lenAlloc = le32_to_cpu(
1433 				((struct unallocSpaceEntry *)bh->b_data)->
1434 				 lengthAllocDescs);
1435 		ret = udf_alloc_i_data(inode, bs -
1436 					sizeof(struct unallocSpaceEntry));
1437 		if (ret)
1438 			goto out;
1439 		memcpy(iinfo->i_data,
1440 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1441 		       bs - sizeof(struct unallocSpaceEntry));
1442 		return 0;
1443 	}
1444 
1445 	ret = -EIO;
1446 	read_lock(&sbi->s_cred_lock);
1447 	uid = le32_to_cpu(fe->uid);
1448 	if (uid == UDF_INVALID_ID ||
1449 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1450 		inode->i_uid = sbi->s_uid;
1451 	else
1452 		i_uid_write(inode, uid);
1453 
1454 	gid = le32_to_cpu(fe->gid);
1455 	if (gid == UDF_INVALID_ID ||
1456 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1457 		inode->i_gid = sbi->s_gid;
1458 	else
1459 		i_gid_write(inode, gid);
1460 
1461 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1462 			sbi->s_fmode != UDF_INVALID_MODE)
1463 		inode->i_mode = sbi->s_fmode;
1464 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1465 			sbi->s_dmode != UDF_INVALID_MODE)
1466 		inode->i_mode = sbi->s_dmode;
1467 	else
1468 		inode->i_mode = udf_convert_permissions(fe);
1469 	inode->i_mode &= ~sbi->s_umask;
1470 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1471 
1472 	read_unlock(&sbi->s_cred_lock);
1473 
1474 	link_count = le16_to_cpu(fe->fileLinkCount);
1475 	if (!link_count) {
1476 		if (!hidden_inode) {
1477 			ret = -ESTALE;
1478 			goto out;
1479 		}
1480 		link_count = 1;
1481 	}
1482 	set_nlink(inode, link_count);
1483 
1484 	inode->i_size = le64_to_cpu(fe->informationLength);
1485 	iinfo->i_lenExtents = inode->i_size;
1486 
1487 	if (iinfo->i_efe == 0) {
1488 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1489 			(inode->i_sb->s_blocksize_bits - 9);
1490 
1491 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1492 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1493 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1494 
1495 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1496 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1497 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1498 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1499 		iinfo->i_streamdir = 0;
1500 		iinfo->i_lenStreams = 0;
1501 	} else {
1502 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1503 		    (inode->i_sb->s_blocksize_bits - 9);
1504 
1505 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1506 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1507 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1508 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1509 
1510 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1511 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1512 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1513 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1514 
1515 		/* Named streams */
1516 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1517 		iinfo->i_locStreamdir =
1518 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1519 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1520 		if (iinfo->i_lenStreams >= inode->i_size)
1521 			iinfo->i_lenStreams -= inode->i_size;
1522 		else
1523 			iinfo->i_lenStreams = 0;
1524 	}
1525 	inode->i_generation = iinfo->i_unique;
1526 
1527 	/*
1528 	 * Sanity check length of allocation descriptors and extended attrs to
1529 	 * avoid integer overflows
1530 	 */
1531 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1532 		goto out;
1533 	/* Now do exact checks */
1534 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1535 		goto out;
1536 	/* Sanity checks for files in ICB so that we don't get confused later */
1537 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1538 		/*
1539 		 * For file in ICB data is stored in allocation descriptor
1540 		 * so sizes should match
1541 		 */
1542 		if (iinfo->i_lenAlloc != inode->i_size)
1543 			goto out;
1544 		/* File in ICB has to fit in there... */
1545 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1546 			goto out;
1547 	}
1548 
1549 	switch (fe->icbTag.fileType) {
1550 	case ICBTAG_FILE_TYPE_DIRECTORY:
1551 		inode->i_op = &udf_dir_inode_operations;
1552 		inode->i_fop = &udf_dir_operations;
1553 		inode->i_mode |= S_IFDIR;
1554 		inc_nlink(inode);
1555 		break;
1556 	case ICBTAG_FILE_TYPE_REALTIME:
1557 	case ICBTAG_FILE_TYPE_REGULAR:
1558 	case ICBTAG_FILE_TYPE_UNDEF:
1559 	case ICBTAG_FILE_TYPE_VAT20:
1560 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1561 			inode->i_data.a_ops = &udf_adinicb_aops;
1562 		else
1563 			inode->i_data.a_ops = &udf_aops;
1564 		inode->i_op = &udf_file_inode_operations;
1565 		inode->i_fop = &udf_file_operations;
1566 		inode->i_mode |= S_IFREG;
1567 		break;
1568 	case ICBTAG_FILE_TYPE_BLOCK:
1569 		inode->i_mode |= S_IFBLK;
1570 		break;
1571 	case ICBTAG_FILE_TYPE_CHAR:
1572 		inode->i_mode |= S_IFCHR;
1573 		break;
1574 	case ICBTAG_FILE_TYPE_FIFO:
1575 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1576 		break;
1577 	case ICBTAG_FILE_TYPE_SOCKET:
1578 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1579 		break;
1580 	case ICBTAG_FILE_TYPE_SYMLINK:
1581 		inode->i_data.a_ops = &udf_symlink_aops;
1582 		inode->i_op = &udf_symlink_inode_operations;
1583 		inode_nohighmem(inode);
1584 		inode->i_mode = S_IFLNK | 0777;
1585 		break;
1586 	case ICBTAG_FILE_TYPE_MAIN:
1587 		udf_debug("METADATA FILE-----\n");
1588 		break;
1589 	case ICBTAG_FILE_TYPE_MIRROR:
1590 		udf_debug("METADATA MIRROR FILE-----\n");
1591 		break;
1592 	case ICBTAG_FILE_TYPE_BITMAP:
1593 		udf_debug("METADATA BITMAP FILE-----\n");
1594 		break;
1595 	default:
1596 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1597 			inode->i_ino, fe->icbTag.fileType);
1598 		goto out;
1599 	}
1600 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1601 		struct deviceSpec *dsea =
1602 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1603 		if (dsea) {
1604 			init_special_inode(inode, inode->i_mode,
1605 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1606 				      le32_to_cpu(dsea->minorDeviceIdent)));
1607 			/* Developer ID ??? */
1608 		} else
1609 			goto out;
1610 	}
1611 	ret = 0;
1612 out:
1613 	brelse(bh);
1614 	return ret;
1615 }
1616 
1617 static int udf_alloc_i_data(struct inode *inode, size_t size)
1618 {
1619 	struct udf_inode_info *iinfo = UDF_I(inode);
1620 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1621 	if (!iinfo->i_data)
1622 		return -ENOMEM;
1623 	return 0;
1624 }
1625 
1626 static umode_t udf_convert_permissions(struct fileEntry *fe)
1627 {
1628 	umode_t mode;
1629 	uint32_t permissions;
1630 	uint32_t flags;
1631 
1632 	permissions = le32_to_cpu(fe->permissions);
1633 	flags = le16_to_cpu(fe->icbTag.flags);
1634 
1635 	mode =	((permissions) & 0007) |
1636 		((permissions >> 2) & 0070) |
1637 		((permissions >> 4) & 0700) |
1638 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1639 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1640 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1641 
1642 	return mode;
1643 }
1644 
1645 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1646 {
1647 	struct udf_inode_info *iinfo = UDF_I(inode);
1648 
1649 	/*
1650 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1651 	 * In Unix, delete permission tracks write
1652 	 */
1653 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1654 	if (mode & 0200)
1655 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1656 	if (mode & 0020)
1657 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1658 	if (mode & 0002)
1659 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1660 }
1661 
1662 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1663 {
1664 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1665 }
1666 
1667 static int udf_sync_inode(struct inode *inode)
1668 {
1669 	return udf_update_inode(inode, 1);
1670 }
1671 
1672 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1673 {
1674 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1675 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1676 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1677 		iinfo->i_crtime = time;
1678 }
1679 
1680 static int udf_update_inode(struct inode *inode, int do_sync)
1681 {
1682 	struct buffer_head *bh = NULL;
1683 	struct fileEntry *fe;
1684 	struct extendedFileEntry *efe;
1685 	uint64_t lb_recorded;
1686 	uint32_t udfperms;
1687 	uint16_t icbflags;
1688 	uint16_t crclen;
1689 	int err = 0;
1690 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1691 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1692 	struct udf_inode_info *iinfo = UDF_I(inode);
1693 
1694 	bh = udf_tgetblk(inode->i_sb,
1695 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1696 	if (!bh) {
1697 		udf_debug("getblk failure\n");
1698 		return -EIO;
1699 	}
1700 
1701 	lock_buffer(bh);
1702 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1703 	fe = (struct fileEntry *)bh->b_data;
1704 	efe = (struct extendedFileEntry *)bh->b_data;
1705 
1706 	if (iinfo->i_use) {
1707 		struct unallocSpaceEntry *use =
1708 			(struct unallocSpaceEntry *)bh->b_data;
1709 
1710 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1711 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1712 		       iinfo->i_data, inode->i_sb->s_blocksize -
1713 					sizeof(struct unallocSpaceEntry));
1714 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1715 		crclen = sizeof(struct unallocSpaceEntry);
1716 
1717 		goto finish;
1718 	}
1719 
1720 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1721 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1722 	else
1723 		fe->uid = cpu_to_le32(i_uid_read(inode));
1724 
1725 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1726 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1727 	else
1728 		fe->gid = cpu_to_le32(i_gid_read(inode));
1729 
1730 	udfperms = ((inode->i_mode & 0007)) |
1731 		   ((inode->i_mode & 0070) << 2) |
1732 		   ((inode->i_mode & 0700) << 4);
1733 
1734 	udfperms |= iinfo->i_extraPerms;
1735 	fe->permissions = cpu_to_le32(udfperms);
1736 
1737 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1738 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1739 	else
1740 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1741 
1742 	fe->informationLength = cpu_to_le64(inode->i_size);
1743 
1744 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1745 		struct regid *eid;
1746 		struct deviceSpec *dsea =
1747 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1748 		if (!dsea) {
1749 			dsea = (struct deviceSpec *)
1750 				udf_add_extendedattr(inode,
1751 						     sizeof(struct deviceSpec) +
1752 						     sizeof(struct regid), 12, 0x3);
1753 			dsea->attrType = cpu_to_le32(12);
1754 			dsea->attrSubtype = 1;
1755 			dsea->attrLength = cpu_to_le32(
1756 						sizeof(struct deviceSpec) +
1757 						sizeof(struct regid));
1758 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1759 		}
1760 		eid = (struct regid *)dsea->impUse;
1761 		memset(eid, 0, sizeof(*eid));
1762 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1763 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1764 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1765 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1766 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1767 	}
1768 
1769 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1770 		lb_recorded = 0; /* No extents => no blocks! */
1771 	else
1772 		lb_recorded =
1773 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1774 			(blocksize_bits - 9);
1775 
1776 	if (iinfo->i_efe == 0) {
1777 		memcpy(bh->b_data + sizeof(struct fileEntry),
1778 		       iinfo->i_data,
1779 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1780 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1781 
1782 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1783 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1784 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1785 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1786 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1787 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1788 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1789 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1790 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1791 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1792 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1793 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1794 		crclen = sizeof(struct fileEntry);
1795 	} else {
1796 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1797 		       iinfo->i_data,
1798 		       inode->i_sb->s_blocksize -
1799 					sizeof(struct extendedFileEntry));
1800 		efe->objectSize =
1801 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1802 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1803 
1804 		if (iinfo->i_streamdir) {
1805 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1806 
1807 			icb_lad->extLocation =
1808 				cpu_to_lelb(iinfo->i_locStreamdir);
1809 			icb_lad->extLength =
1810 				cpu_to_le32(inode->i_sb->s_blocksize);
1811 		}
1812 
1813 		udf_adjust_time(iinfo, inode->i_atime);
1814 		udf_adjust_time(iinfo, inode->i_mtime);
1815 		udf_adjust_time(iinfo, inode->i_ctime);
1816 
1817 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1818 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1819 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1820 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1821 
1822 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1823 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1824 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1825 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1826 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1827 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1828 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1829 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1830 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1831 		crclen = sizeof(struct extendedFileEntry);
1832 	}
1833 
1834 finish:
1835 	if (iinfo->i_strat4096) {
1836 		fe->icbTag.strategyType = cpu_to_le16(4096);
1837 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1838 		fe->icbTag.numEntries = cpu_to_le16(2);
1839 	} else {
1840 		fe->icbTag.strategyType = cpu_to_le16(4);
1841 		fe->icbTag.numEntries = cpu_to_le16(1);
1842 	}
1843 
1844 	if (iinfo->i_use)
1845 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1846 	else if (S_ISDIR(inode->i_mode))
1847 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1848 	else if (S_ISREG(inode->i_mode))
1849 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1850 	else if (S_ISLNK(inode->i_mode))
1851 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1852 	else if (S_ISBLK(inode->i_mode))
1853 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1854 	else if (S_ISCHR(inode->i_mode))
1855 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1856 	else if (S_ISFIFO(inode->i_mode))
1857 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1858 	else if (S_ISSOCK(inode->i_mode))
1859 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1860 
1861 	icbflags =	iinfo->i_alloc_type |
1862 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1863 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1864 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1865 			(le16_to_cpu(fe->icbTag.flags) &
1866 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1867 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1868 
1869 	fe->icbTag.flags = cpu_to_le16(icbflags);
1870 	if (sbi->s_udfrev >= 0x0200)
1871 		fe->descTag.descVersion = cpu_to_le16(3);
1872 	else
1873 		fe->descTag.descVersion = cpu_to_le16(2);
1874 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1875 	fe->descTag.tagLocation = cpu_to_le32(
1876 					iinfo->i_location.logicalBlockNum);
1877 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1878 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1879 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1880 						  crclen));
1881 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1882 
1883 	set_buffer_uptodate(bh);
1884 	unlock_buffer(bh);
1885 
1886 	/* write the data blocks */
1887 	mark_buffer_dirty(bh);
1888 	if (do_sync) {
1889 		sync_dirty_buffer(bh);
1890 		if (buffer_write_io_error(bh)) {
1891 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1892 				 inode->i_ino);
1893 			err = -EIO;
1894 		}
1895 	}
1896 	brelse(bh);
1897 
1898 	return err;
1899 }
1900 
1901 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1902 			 bool hidden_inode)
1903 {
1904 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1905 	struct inode *inode = iget_locked(sb, block);
1906 	int err;
1907 
1908 	if (!inode)
1909 		return ERR_PTR(-ENOMEM);
1910 
1911 	if (!(inode->i_state & I_NEW))
1912 		return inode;
1913 
1914 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1915 	err = udf_read_inode(inode, hidden_inode);
1916 	if (err < 0) {
1917 		iget_failed(inode);
1918 		return ERR_PTR(err);
1919 	}
1920 	unlock_new_inode(inode);
1921 
1922 	return inode;
1923 }
1924 
1925 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1926 			    struct extent_position *epos)
1927 {
1928 	struct super_block *sb = inode->i_sb;
1929 	struct buffer_head *bh;
1930 	struct allocExtDesc *aed;
1931 	struct extent_position nepos;
1932 	struct kernel_lb_addr neloc;
1933 	int ver, adsize;
1934 
1935 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1936 		adsize = sizeof(struct short_ad);
1937 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1938 		adsize = sizeof(struct long_ad);
1939 	else
1940 		return -EIO;
1941 
1942 	neloc.logicalBlockNum = block;
1943 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1944 
1945 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1946 	if (!bh)
1947 		return -EIO;
1948 	lock_buffer(bh);
1949 	memset(bh->b_data, 0x00, sb->s_blocksize);
1950 	set_buffer_uptodate(bh);
1951 	unlock_buffer(bh);
1952 	mark_buffer_dirty_inode(bh, inode);
1953 
1954 	aed = (struct allocExtDesc *)(bh->b_data);
1955 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1956 		aed->previousAllocExtLocation =
1957 				cpu_to_le32(epos->block.logicalBlockNum);
1958 	}
1959 	aed->lengthAllocDescs = cpu_to_le32(0);
1960 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1961 		ver = 3;
1962 	else
1963 		ver = 2;
1964 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1965 		    sizeof(struct tag));
1966 
1967 	nepos.block = neloc;
1968 	nepos.offset = sizeof(struct allocExtDesc);
1969 	nepos.bh = bh;
1970 
1971 	/*
1972 	 * Do we have to copy current last extent to make space for indirect
1973 	 * one?
1974 	 */
1975 	if (epos->offset + adsize > sb->s_blocksize) {
1976 		struct kernel_lb_addr cp_loc;
1977 		uint32_t cp_len;
1978 		int cp_type;
1979 
1980 		epos->offset -= adsize;
1981 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1982 		cp_len |= ((uint32_t)cp_type) << 30;
1983 
1984 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1985 		udf_write_aext(inode, epos, &nepos.block,
1986 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987 	} else {
1988 		__udf_add_aext(inode, epos, &nepos.block,
1989 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1990 	}
1991 
1992 	brelse(epos->bh);
1993 	*epos = nepos;
1994 
1995 	return 0;
1996 }
1997 
1998 /*
1999  * Append extent at the given position - should be the first free one in inode
2000  * / indirect extent. This function assumes there is enough space in the inode
2001  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2002  */
2003 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2004 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2005 {
2006 	struct udf_inode_info *iinfo = UDF_I(inode);
2007 	struct allocExtDesc *aed;
2008 	int adsize;
2009 
2010 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2011 		adsize = sizeof(struct short_ad);
2012 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2013 		adsize = sizeof(struct long_ad);
2014 	else
2015 		return -EIO;
2016 
2017 	if (!epos->bh) {
2018 		WARN_ON(iinfo->i_lenAlloc !=
2019 			epos->offset - udf_file_entry_alloc_offset(inode));
2020 	} else {
2021 		aed = (struct allocExtDesc *)epos->bh->b_data;
2022 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2023 			epos->offset - sizeof(struct allocExtDesc));
2024 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2025 	}
2026 
2027 	udf_write_aext(inode, epos, eloc, elen, inc);
2028 
2029 	if (!epos->bh) {
2030 		iinfo->i_lenAlloc += adsize;
2031 		mark_inode_dirty(inode);
2032 	} else {
2033 		aed = (struct allocExtDesc *)epos->bh->b_data;
2034 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2035 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2036 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2037 			udf_update_tag(epos->bh->b_data,
2038 					epos->offset + (inc ? 0 : adsize));
2039 		else
2040 			udf_update_tag(epos->bh->b_data,
2041 					sizeof(struct allocExtDesc));
2042 		mark_buffer_dirty_inode(epos->bh, inode);
2043 	}
2044 
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Append extent at given position - should be the first free one in inode
2050  * / indirect extent. Takes care of allocating and linking indirect blocks.
2051  */
2052 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2053 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2054 {
2055 	int adsize;
2056 	struct super_block *sb = inode->i_sb;
2057 
2058 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2059 		adsize = sizeof(struct short_ad);
2060 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2061 		adsize = sizeof(struct long_ad);
2062 	else
2063 		return -EIO;
2064 
2065 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2066 		int err;
2067 		udf_pblk_t new_block;
2068 
2069 		new_block = udf_new_block(sb, NULL,
2070 					  epos->block.partitionReferenceNum,
2071 					  epos->block.logicalBlockNum, &err);
2072 		if (!new_block)
2073 			return -ENOSPC;
2074 
2075 		err = udf_setup_indirect_aext(inode, new_block, epos);
2076 		if (err)
2077 			return err;
2078 	}
2079 
2080 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2081 }
2082 
2083 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2084 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2085 {
2086 	int adsize;
2087 	uint8_t *ptr;
2088 	struct short_ad *sad;
2089 	struct long_ad *lad;
2090 	struct udf_inode_info *iinfo = UDF_I(inode);
2091 
2092 	if (!epos->bh)
2093 		ptr = iinfo->i_data + epos->offset -
2094 			udf_file_entry_alloc_offset(inode) +
2095 			iinfo->i_lenEAttr;
2096 	else
2097 		ptr = epos->bh->b_data + epos->offset;
2098 
2099 	switch (iinfo->i_alloc_type) {
2100 	case ICBTAG_FLAG_AD_SHORT:
2101 		sad = (struct short_ad *)ptr;
2102 		sad->extLength = cpu_to_le32(elen);
2103 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2104 		adsize = sizeof(struct short_ad);
2105 		break;
2106 	case ICBTAG_FLAG_AD_LONG:
2107 		lad = (struct long_ad *)ptr;
2108 		lad->extLength = cpu_to_le32(elen);
2109 		lad->extLocation = cpu_to_lelb(*eloc);
2110 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2111 		adsize = sizeof(struct long_ad);
2112 		break;
2113 	default:
2114 		return;
2115 	}
2116 
2117 	if (epos->bh) {
2118 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2119 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2120 			struct allocExtDesc *aed =
2121 				(struct allocExtDesc *)epos->bh->b_data;
2122 			udf_update_tag(epos->bh->b_data,
2123 				       le32_to_cpu(aed->lengthAllocDescs) +
2124 				       sizeof(struct allocExtDesc));
2125 		}
2126 		mark_buffer_dirty_inode(epos->bh, inode);
2127 	} else {
2128 		mark_inode_dirty(inode);
2129 	}
2130 
2131 	if (inc)
2132 		epos->offset += adsize;
2133 }
2134 
2135 /*
2136  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2137  * someone does some weird stuff.
2138  */
2139 #define UDF_MAX_INDIR_EXTS 16
2140 
2141 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2142 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2143 {
2144 	int8_t etype;
2145 	unsigned int indirections = 0;
2146 
2147 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2148 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2149 		udf_pblk_t block;
2150 
2151 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2152 			udf_err(inode->i_sb,
2153 				"too many indirect extents in inode %lu\n",
2154 				inode->i_ino);
2155 			return -1;
2156 		}
2157 
2158 		epos->block = *eloc;
2159 		epos->offset = sizeof(struct allocExtDesc);
2160 		brelse(epos->bh);
2161 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2162 		epos->bh = udf_tread(inode->i_sb, block);
2163 		if (!epos->bh) {
2164 			udf_debug("reading block %u failed!\n", block);
2165 			return -1;
2166 		}
2167 	}
2168 
2169 	return etype;
2170 }
2171 
2172 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2173 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2174 {
2175 	int alen;
2176 	int8_t etype;
2177 	uint8_t *ptr;
2178 	struct short_ad *sad;
2179 	struct long_ad *lad;
2180 	struct udf_inode_info *iinfo = UDF_I(inode);
2181 
2182 	if (!epos->bh) {
2183 		if (!epos->offset)
2184 			epos->offset = udf_file_entry_alloc_offset(inode);
2185 		ptr = iinfo->i_data + epos->offset -
2186 			udf_file_entry_alloc_offset(inode) +
2187 			iinfo->i_lenEAttr;
2188 		alen = udf_file_entry_alloc_offset(inode) +
2189 							iinfo->i_lenAlloc;
2190 	} else {
2191 		if (!epos->offset)
2192 			epos->offset = sizeof(struct allocExtDesc);
2193 		ptr = epos->bh->b_data + epos->offset;
2194 		alen = sizeof(struct allocExtDesc) +
2195 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2196 							lengthAllocDescs);
2197 	}
2198 
2199 	switch (iinfo->i_alloc_type) {
2200 	case ICBTAG_FLAG_AD_SHORT:
2201 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2202 		if (!sad)
2203 			return -1;
2204 		etype = le32_to_cpu(sad->extLength) >> 30;
2205 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2206 		eloc->partitionReferenceNum =
2207 				iinfo->i_location.partitionReferenceNum;
2208 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2209 		break;
2210 	case ICBTAG_FLAG_AD_LONG:
2211 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2212 		if (!lad)
2213 			return -1;
2214 		etype = le32_to_cpu(lad->extLength) >> 30;
2215 		*eloc = lelb_to_cpu(lad->extLocation);
2216 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2217 		break;
2218 	default:
2219 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2220 		return -1;
2221 	}
2222 
2223 	return etype;
2224 }
2225 
2226 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2227 			      struct kernel_lb_addr neloc, uint32_t nelen)
2228 {
2229 	struct kernel_lb_addr oeloc;
2230 	uint32_t oelen;
2231 	int8_t etype;
2232 
2233 	if (epos.bh)
2234 		get_bh(epos.bh);
2235 
2236 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2237 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2238 		neloc = oeloc;
2239 		nelen = (etype << 30) | oelen;
2240 	}
2241 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2242 	brelse(epos.bh);
2243 
2244 	return (nelen >> 30);
2245 }
2246 
2247 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2248 {
2249 	struct extent_position oepos;
2250 	int adsize;
2251 	int8_t etype;
2252 	struct allocExtDesc *aed;
2253 	struct udf_inode_info *iinfo;
2254 	struct kernel_lb_addr eloc;
2255 	uint32_t elen;
2256 
2257 	if (epos.bh) {
2258 		get_bh(epos.bh);
2259 		get_bh(epos.bh);
2260 	}
2261 
2262 	iinfo = UDF_I(inode);
2263 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2264 		adsize = sizeof(struct short_ad);
2265 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2266 		adsize = sizeof(struct long_ad);
2267 	else
2268 		adsize = 0;
2269 
2270 	oepos = epos;
2271 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2272 		return -1;
2273 
2274 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2275 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2276 		if (oepos.bh != epos.bh) {
2277 			oepos.block = epos.block;
2278 			brelse(oepos.bh);
2279 			get_bh(epos.bh);
2280 			oepos.bh = epos.bh;
2281 			oepos.offset = epos.offset - adsize;
2282 		}
2283 	}
2284 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2285 	elen = 0;
2286 
2287 	if (epos.bh != oepos.bh) {
2288 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2289 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2290 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2291 		if (!oepos.bh) {
2292 			iinfo->i_lenAlloc -= (adsize * 2);
2293 			mark_inode_dirty(inode);
2294 		} else {
2295 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2296 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2297 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2298 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2299 				udf_update_tag(oepos.bh->b_data,
2300 						oepos.offset - (2 * adsize));
2301 			else
2302 				udf_update_tag(oepos.bh->b_data,
2303 						sizeof(struct allocExtDesc));
2304 			mark_buffer_dirty_inode(oepos.bh, inode);
2305 		}
2306 	} else {
2307 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2308 		if (!oepos.bh) {
2309 			iinfo->i_lenAlloc -= adsize;
2310 			mark_inode_dirty(inode);
2311 		} else {
2312 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2313 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2314 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2315 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2316 				udf_update_tag(oepos.bh->b_data,
2317 						epos.offset - adsize);
2318 			else
2319 				udf_update_tag(oepos.bh->b_data,
2320 						sizeof(struct allocExtDesc));
2321 			mark_buffer_dirty_inode(oepos.bh, inode);
2322 		}
2323 	}
2324 
2325 	brelse(epos.bh);
2326 	brelse(oepos.bh);
2327 
2328 	return (elen >> 30);
2329 }
2330 
2331 int8_t inode_bmap(struct inode *inode, sector_t block,
2332 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2333 		  uint32_t *elen, sector_t *offset)
2334 {
2335 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2336 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2337 	int8_t etype;
2338 	struct udf_inode_info *iinfo;
2339 
2340 	iinfo = UDF_I(inode);
2341 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2342 		pos->offset = 0;
2343 		pos->block = iinfo->i_location;
2344 		pos->bh = NULL;
2345 	}
2346 	*elen = 0;
2347 	do {
2348 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2349 		if (etype == -1) {
2350 			*offset = (bcount - lbcount) >> blocksize_bits;
2351 			iinfo->i_lenExtents = lbcount;
2352 			return -1;
2353 		}
2354 		lbcount += *elen;
2355 	} while (lbcount <= bcount);
2356 	/* update extent cache */
2357 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2358 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2359 
2360 	return etype;
2361 }
2362 
2363 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2364 {
2365 	struct kernel_lb_addr eloc;
2366 	uint32_t elen;
2367 	sector_t offset;
2368 	struct extent_position epos = {};
2369 	udf_pblk_t ret;
2370 
2371 	down_read(&UDF_I(inode)->i_data_sem);
2372 
2373 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2374 						(EXT_RECORDED_ALLOCATED >> 30))
2375 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2376 	else
2377 		ret = 0;
2378 
2379 	up_read(&UDF_I(inode)->i_data_sem);
2380 	brelse(epos.bh);
2381 
2382 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2383 		return udf_fixed_to_variable(ret);
2384 	else
2385 		return ret;
2386 }
2387