1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 static umode_t udf_convert_permissions(struct fileEntry *); 56 static int udf_update_inode(struct inode *, int); 57 static int udf_sync_inode(struct inode *inode); 58 static int udf_alloc_i_data(struct inode *inode, size_t size); 59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 60 static int8_t udf_insert_aext(struct inode *, struct extent_position, 61 struct kernel_lb_addr, uint32_t); 62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 63 struct kernel_long_ad *, int *); 64 static void udf_prealloc_extents(struct inode *, int, int, 65 struct kernel_long_ad *, int *); 66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 68 int, struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 static void __udf_clear_extent_cache(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79 } 80 81 /* Invalidate extent cache */ 82 static void udf_clear_extent_cache(struct inode *inode) 83 { 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89 } 90 91 /* Return contents of extent cache */ 92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94 { 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111 } 112 113 /* Add extent to extent cache */ 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos) 116 { 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 125 iinfo->cached_extent.lstart = estart; 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 129 break; 130 case ICBTAG_FLAG_AD_LONG: 131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 132 break; 133 } 134 spin_unlock(&iinfo->i_extent_cache_lock); 135 } 136 137 void udf_evict_inode(struct inode *inode) 138 { 139 struct udf_inode_info *iinfo = UDF_I(inode); 140 int want_delete = 0; 141 142 if (!is_bad_inode(inode)) { 143 if (!inode->i_nlink) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 149 inode->i_size != iinfo->i_lenExtents) { 150 udf_warn(inode->i_sb, 151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 152 inode->i_ino, inode->i_mode, 153 (unsigned long long)inode->i_size, 154 (unsigned long long)iinfo->i_lenExtents); 155 } 156 } 157 truncate_inode_pages_final(&inode->i_data); 158 invalidate_inode_buffers(inode); 159 clear_inode(inode); 160 kfree(iinfo->i_data); 161 iinfo->i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166 } 167 168 static void udf_write_failed(struct address_space *mapping, loff_t to) 169 { 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183 } 184 185 static int udf_writepage(struct page *page, struct writeback_control *wbc) 186 { 187 return block_write_full_page(page, udf_get_block, wbc); 188 } 189 190 static int udf_writepages(struct address_space *mapping, 191 struct writeback_control *wbc) 192 { 193 return mpage_writepages(mapping, wbc, udf_get_block); 194 } 195 196 static int udf_readpage(struct file *file, struct page *page) 197 { 198 return mpage_readpage(page, udf_get_block); 199 } 200 201 static void udf_readahead(struct readahead_control *rac) 202 { 203 mpage_readahead(rac, udf_get_block); 204 } 205 206 static int udf_write_begin(struct file *file, struct address_space *mapping, 207 loff_t pos, unsigned len, unsigned flags, 208 struct page **pagep, void **fsdata) 209 { 210 int ret; 211 212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 213 if (unlikely(ret)) 214 udf_write_failed(mapping, pos + len); 215 return ret; 216 } 217 218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 219 { 220 struct file *file = iocb->ki_filp; 221 struct address_space *mapping = file->f_mapping; 222 struct inode *inode = mapping->host; 223 size_t count = iov_iter_count(iter); 224 ssize_t ret; 225 226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 228 udf_write_failed(mapping, iocb->ki_pos + count); 229 return ret; 230 } 231 232 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 233 { 234 return generic_block_bmap(mapping, block, udf_get_block); 235 } 236 237 const struct address_space_operations udf_aops = { 238 .set_page_dirty = __set_page_dirty_buffers, 239 .readpage = udf_readpage, 240 .readahead = udf_readahead, 241 .writepage = udf_writepage, 242 .writepages = udf_writepages, 243 .write_begin = udf_write_begin, 244 .write_end = generic_write_end, 245 .direct_IO = udf_direct_IO, 246 .bmap = udf_bmap, 247 }; 248 249 /* 250 * Expand file stored in ICB to a normal one-block-file 251 * 252 * This function requires i_data_sem for writing and releases it. 253 * This function requires i_mutex held 254 */ 255 int udf_expand_file_adinicb(struct inode *inode) 256 { 257 struct page *page; 258 char *kaddr; 259 struct udf_inode_info *iinfo = UDF_I(inode); 260 int err; 261 262 WARN_ON_ONCE(!inode_is_locked(inode)); 263 if (!iinfo->i_lenAlloc) { 264 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 265 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 266 else 267 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 268 /* from now on we have normal address_space methods */ 269 inode->i_data.a_ops = &udf_aops; 270 up_write(&iinfo->i_data_sem); 271 mark_inode_dirty(inode); 272 return 0; 273 } 274 /* 275 * Release i_data_sem so that we can lock a page - page lock ranks 276 * above i_data_sem. i_mutex still protects us against file changes. 277 */ 278 up_write(&iinfo->i_data_sem); 279 280 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 281 if (!page) 282 return -ENOMEM; 283 284 if (!PageUptodate(page)) { 285 kaddr = kmap_atomic(page); 286 memset(kaddr + iinfo->i_lenAlloc, 0x00, 287 PAGE_SIZE - iinfo->i_lenAlloc); 288 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 289 iinfo->i_lenAlloc); 290 flush_dcache_page(page); 291 SetPageUptodate(page); 292 kunmap_atomic(kaddr); 293 } 294 down_write(&iinfo->i_data_sem); 295 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 296 iinfo->i_lenAlloc); 297 iinfo->i_lenAlloc = 0; 298 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 300 else 301 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 302 /* from now on we have normal address_space methods */ 303 inode->i_data.a_ops = &udf_aops; 304 set_page_dirty(page); 305 unlock_page(page); 306 up_write(&iinfo->i_data_sem); 307 err = filemap_fdatawrite(inode->i_mapping); 308 if (err) { 309 /* Restore everything back so that we don't lose data... */ 310 lock_page(page); 311 down_write(&iinfo->i_data_sem); 312 kaddr = kmap_atomic(page); 313 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 314 kunmap_atomic(kaddr); 315 unlock_page(page); 316 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 317 inode->i_data.a_ops = &udf_adinicb_aops; 318 iinfo->i_lenAlloc = inode->i_size; 319 up_write(&iinfo->i_data_sem); 320 } 321 put_page(page); 322 mark_inode_dirty(inode); 323 324 return err; 325 } 326 327 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 328 udf_pblk_t *block, int *err) 329 { 330 udf_pblk_t newblock; 331 struct buffer_head *dbh = NULL; 332 struct kernel_lb_addr eloc; 333 uint8_t alloctype; 334 struct extent_position epos; 335 336 struct udf_fileident_bh sfibh, dfibh; 337 loff_t f_pos = udf_ext0_offset(inode); 338 int size = udf_ext0_offset(inode) + inode->i_size; 339 struct fileIdentDesc cfi, *sfi, *dfi; 340 struct udf_inode_info *iinfo = UDF_I(inode); 341 342 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 343 alloctype = ICBTAG_FLAG_AD_SHORT; 344 else 345 alloctype = ICBTAG_FLAG_AD_LONG; 346 347 if (!inode->i_size) { 348 iinfo->i_alloc_type = alloctype; 349 mark_inode_dirty(inode); 350 return NULL; 351 } 352 353 /* alloc block, and copy data to it */ 354 *block = udf_new_block(inode->i_sb, inode, 355 iinfo->i_location.partitionReferenceNum, 356 iinfo->i_location.logicalBlockNum, err); 357 if (!(*block)) 358 return NULL; 359 newblock = udf_get_pblock(inode->i_sb, *block, 360 iinfo->i_location.partitionReferenceNum, 361 0); 362 if (!newblock) 363 return NULL; 364 dbh = udf_tgetblk(inode->i_sb, newblock); 365 if (!dbh) 366 return NULL; 367 lock_buffer(dbh); 368 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 369 set_buffer_uptodate(dbh); 370 unlock_buffer(dbh); 371 mark_buffer_dirty_inode(dbh, inode); 372 373 sfibh.soffset = sfibh.eoffset = 374 f_pos & (inode->i_sb->s_blocksize - 1); 375 sfibh.sbh = sfibh.ebh = NULL; 376 dfibh.soffset = dfibh.eoffset = 0; 377 dfibh.sbh = dfibh.ebh = dbh; 378 while (f_pos < size) { 379 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 380 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 381 NULL, NULL, NULL); 382 if (!sfi) { 383 brelse(dbh); 384 return NULL; 385 } 386 iinfo->i_alloc_type = alloctype; 387 sfi->descTag.tagLocation = cpu_to_le32(*block); 388 dfibh.soffset = dfibh.eoffset; 389 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 390 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 391 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 392 udf_get_fi_ident(sfi))) { 393 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 394 brelse(dbh); 395 return NULL; 396 } 397 } 398 mark_buffer_dirty_inode(dbh, inode); 399 400 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); 401 iinfo->i_lenAlloc = 0; 402 eloc.logicalBlockNum = *block; 403 eloc.partitionReferenceNum = 404 iinfo->i_location.partitionReferenceNum; 405 iinfo->i_lenExtents = inode->i_size; 406 epos.bh = NULL; 407 epos.block = iinfo->i_location; 408 epos.offset = udf_file_entry_alloc_offset(inode); 409 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 410 /* UniqueID stuff */ 411 412 brelse(epos.bh); 413 mark_inode_dirty(inode); 414 return dbh; 415 } 416 417 static int udf_get_block(struct inode *inode, sector_t block, 418 struct buffer_head *bh_result, int create) 419 { 420 int err, new; 421 sector_t phys = 0; 422 struct udf_inode_info *iinfo; 423 424 if (!create) { 425 phys = udf_block_map(inode, block); 426 if (phys) 427 map_bh(bh_result, inode->i_sb, phys); 428 return 0; 429 } 430 431 err = -EIO; 432 new = 0; 433 iinfo = UDF_I(inode); 434 435 down_write(&iinfo->i_data_sem); 436 if (block == iinfo->i_next_alloc_block + 1) { 437 iinfo->i_next_alloc_block++; 438 iinfo->i_next_alloc_goal++; 439 } 440 441 udf_clear_extent_cache(inode); 442 phys = inode_getblk(inode, block, &err, &new); 443 if (!phys) 444 goto abort; 445 446 if (new) 447 set_buffer_new(bh_result); 448 map_bh(bh_result, inode->i_sb, phys); 449 450 abort: 451 up_write(&iinfo->i_data_sem); 452 return err; 453 } 454 455 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 456 int create, int *err) 457 { 458 struct buffer_head *bh; 459 struct buffer_head dummy; 460 461 dummy.b_state = 0; 462 dummy.b_blocknr = -1000; 463 *err = udf_get_block(inode, block, &dummy, create); 464 if (!*err && buffer_mapped(&dummy)) { 465 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 466 if (buffer_new(&dummy)) { 467 lock_buffer(bh); 468 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 469 set_buffer_uptodate(bh); 470 unlock_buffer(bh); 471 mark_buffer_dirty_inode(bh, inode); 472 } 473 return bh; 474 } 475 476 return NULL; 477 } 478 479 /* Extend the file with new blocks totaling 'new_block_bytes', 480 * return the number of extents added 481 */ 482 static int udf_do_extend_file(struct inode *inode, 483 struct extent_position *last_pos, 484 struct kernel_long_ad *last_ext, 485 loff_t new_block_bytes) 486 { 487 uint32_t add; 488 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 489 struct super_block *sb = inode->i_sb; 490 struct kernel_lb_addr prealloc_loc = {}; 491 uint32_t prealloc_len = 0; 492 struct udf_inode_info *iinfo; 493 int err; 494 495 /* The previous extent is fake and we should not extend by anything 496 * - there's nothing to do... */ 497 if (!new_block_bytes && fake) 498 return 0; 499 500 iinfo = UDF_I(inode); 501 /* Round the last extent up to a multiple of block size */ 502 if (last_ext->extLength & (sb->s_blocksize - 1)) { 503 last_ext->extLength = 504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 507 iinfo->i_lenExtents = 508 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 509 ~(sb->s_blocksize - 1); 510 } 511 512 /* Last extent are just preallocated blocks? */ 513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 514 EXT_NOT_RECORDED_ALLOCATED) { 515 /* Save the extent so that we can reattach it to the end */ 516 prealloc_loc = last_ext->extLocation; 517 prealloc_len = last_ext->extLength; 518 /* Mark the extent as a hole */ 519 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 520 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 521 last_ext->extLocation.logicalBlockNum = 0; 522 last_ext->extLocation.partitionReferenceNum = 0; 523 } 524 525 /* Can we merge with the previous extent? */ 526 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 527 EXT_NOT_RECORDED_NOT_ALLOCATED) { 528 add = (1 << 30) - sb->s_blocksize - 529 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 530 if (add > new_block_bytes) 531 add = new_block_bytes; 532 new_block_bytes -= add; 533 last_ext->extLength += add; 534 } 535 536 if (fake) { 537 udf_add_aext(inode, last_pos, &last_ext->extLocation, 538 last_ext->extLength, 1); 539 count++; 540 } else { 541 struct kernel_lb_addr tmploc; 542 uint32_t tmplen; 543 544 udf_write_aext(inode, last_pos, &last_ext->extLocation, 545 last_ext->extLength, 1); 546 547 /* 548 * We've rewritten the last extent. If we are going to add 549 * more extents, we may need to enter possible following 550 * empty indirect extent. 551 */ 552 if (new_block_bytes || prealloc_len) 553 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 554 } 555 556 /* Managed to do everything necessary? */ 557 if (!new_block_bytes) 558 goto out; 559 560 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 561 last_ext->extLocation.logicalBlockNum = 0; 562 last_ext->extLocation.partitionReferenceNum = 0; 563 add = (1 << 30) - sb->s_blocksize; 564 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 565 566 /* Create enough extents to cover the whole hole */ 567 while (new_block_bytes > add) { 568 new_block_bytes -= add; 569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 570 last_ext->extLength, 1); 571 if (err) 572 return err; 573 count++; 574 } 575 if (new_block_bytes) { 576 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 577 new_block_bytes; 578 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 579 last_ext->extLength, 1); 580 if (err) 581 return err; 582 count++; 583 } 584 585 out: 586 /* Do we have some preallocated blocks saved? */ 587 if (prealloc_len) { 588 err = udf_add_aext(inode, last_pos, &prealloc_loc, 589 prealloc_len, 1); 590 if (err) 591 return err; 592 last_ext->extLocation = prealloc_loc; 593 last_ext->extLength = prealloc_len; 594 count++; 595 } 596 597 /* last_pos should point to the last written extent... */ 598 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 599 last_pos->offset -= sizeof(struct short_ad); 600 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 601 last_pos->offset -= sizeof(struct long_ad); 602 else 603 return -EIO; 604 605 return count; 606 } 607 608 /* Extend the final block of the file to final_block_len bytes */ 609 static void udf_do_extend_final_block(struct inode *inode, 610 struct extent_position *last_pos, 611 struct kernel_long_ad *last_ext, 612 uint32_t final_block_len) 613 { 614 struct super_block *sb = inode->i_sb; 615 uint32_t added_bytes; 616 617 added_bytes = final_block_len - 618 (last_ext->extLength & (sb->s_blocksize - 1)); 619 last_ext->extLength += added_bytes; 620 UDF_I(inode)->i_lenExtents += added_bytes; 621 622 udf_write_aext(inode, last_pos, &last_ext->extLocation, 623 last_ext->extLength, 1); 624 } 625 626 static int udf_extend_file(struct inode *inode, loff_t newsize) 627 { 628 629 struct extent_position epos; 630 struct kernel_lb_addr eloc; 631 uint32_t elen; 632 int8_t etype; 633 struct super_block *sb = inode->i_sb; 634 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 635 unsigned long partial_final_block; 636 int adsize; 637 struct udf_inode_info *iinfo = UDF_I(inode); 638 struct kernel_long_ad extent; 639 int err = 0; 640 int within_final_block; 641 642 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 643 adsize = sizeof(struct short_ad); 644 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 645 adsize = sizeof(struct long_ad); 646 else 647 BUG(); 648 649 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 650 within_final_block = (etype != -1); 651 652 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 653 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 654 /* File has no extents at all or has empty last 655 * indirect extent! Create a fake extent... */ 656 extent.extLocation.logicalBlockNum = 0; 657 extent.extLocation.partitionReferenceNum = 0; 658 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 659 } else { 660 epos.offset -= adsize; 661 etype = udf_next_aext(inode, &epos, &extent.extLocation, 662 &extent.extLength, 0); 663 extent.extLength |= etype << 30; 664 } 665 666 partial_final_block = newsize & (sb->s_blocksize - 1); 667 668 /* File has extent covering the new size (could happen when extending 669 * inside a block)? 670 */ 671 if (within_final_block) { 672 /* Extending file within the last file block */ 673 udf_do_extend_final_block(inode, &epos, &extent, 674 partial_final_block); 675 } else { 676 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) | 677 partial_final_block; 678 err = udf_do_extend_file(inode, &epos, &extent, add); 679 } 680 681 if (err < 0) 682 goto out; 683 err = 0; 684 iinfo->i_lenExtents = newsize; 685 out: 686 brelse(epos.bh); 687 return err; 688 } 689 690 static sector_t inode_getblk(struct inode *inode, sector_t block, 691 int *err, int *new) 692 { 693 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 694 struct extent_position prev_epos, cur_epos, next_epos; 695 int count = 0, startnum = 0, endnum = 0; 696 uint32_t elen = 0, tmpelen; 697 struct kernel_lb_addr eloc, tmpeloc; 698 int c = 1; 699 loff_t lbcount = 0, b_off = 0; 700 udf_pblk_t newblocknum, newblock; 701 sector_t offset = 0; 702 int8_t etype; 703 struct udf_inode_info *iinfo = UDF_I(inode); 704 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 705 int lastblock = 0; 706 bool isBeyondEOF; 707 708 *err = 0; 709 *new = 0; 710 prev_epos.offset = udf_file_entry_alloc_offset(inode); 711 prev_epos.block = iinfo->i_location; 712 prev_epos.bh = NULL; 713 cur_epos = next_epos = prev_epos; 714 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 715 716 /* find the extent which contains the block we are looking for. 717 alternate between laarr[0] and laarr[1] for locations of the 718 current extent, and the previous extent */ 719 do { 720 if (prev_epos.bh != cur_epos.bh) { 721 brelse(prev_epos.bh); 722 get_bh(cur_epos.bh); 723 prev_epos.bh = cur_epos.bh; 724 } 725 if (cur_epos.bh != next_epos.bh) { 726 brelse(cur_epos.bh); 727 get_bh(next_epos.bh); 728 cur_epos.bh = next_epos.bh; 729 } 730 731 lbcount += elen; 732 733 prev_epos.block = cur_epos.block; 734 cur_epos.block = next_epos.block; 735 736 prev_epos.offset = cur_epos.offset; 737 cur_epos.offset = next_epos.offset; 738 739 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 740 if (etype == -1) 741 break; 742 743 c = !c; 744 745 laarr[c].extLength = (etype << 30) | elen; 746 laarr[c].extLocation = eloc; 747 748 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 749 pgoal = eloc.logicalBlockNum + 750 ((elen + inode->i_sb->s_blocksize - 1) >> 751 inode->i_sb->s_blocksize_bits); 752 753 count++; 754 } while (lbcount + elen <= b_off); 755 756 b_off -= lbcount; 757 offset = b_off >> inode->i_sb->s_blocksize_bits; 758 /* 759 * Move prev_epos and cur_epos into indirect extent if we are at 760 * the pointer to it 761 */ 762 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 763 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 764 765 /* if the extent is allocated and recorded, return the block 766 if the extent is not a multiple of the blocksize, round up */ 767 768 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 769 if (elen & (inode->i_sb->s_blocksize - 1)) { 770 elen = EXT_RECORDED_ALLOCATED | 771 ((elen + inode->i_sb->s_blocksize - 1) & 772 ~(inode->i_sb->s_blocksize - 1)); 773 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 774 } 775 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 776 goto out_free; 777 } 778 779 /* Are we beyond EOF? */ 780 if (etype == -1) { 781 int ret; 782 loff_t hole_len; 783 isBeyondEOF = true; 784 if (count) { 785 if (c) 786 laarr[0] = laarr[1]; 787 startnum = 1; 788 } else { 789 /* Create a fake extent when there's not one */ 790 memset(&laarr[0].extLocation, 0x00, 791 sizeof(struct kernel_lb_addr)); 792 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 793 /* Will udf_do_extend_file() create real extent from 794 a fake one? */ 795 startnum = (offset > 0); 796 } 797 /* Create extents for the hole between EOF and offset */ 798 hole_len = (loff_t)offset << inode->i_blkbits; 799 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 800 if (ret < 0) { 801 *err = ret; 802 newblock = 0; 803 goto out_free; 804 } 805 c = 0; 806 offset = 0; 807 count += ret; 808 /* We are not covered by a preallocated extent? */ 809 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 810 EXT_NOT_RECORDED_ALLOCATED) { 811 /* Is there any real extent? - otherwise we overwrite 812 * the fake one... */ 813 if (count) 814 c = !c; 815 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 816 inode->i_sb->s_blocksize; 817 memset(&laarr[c].extLocation, 0x00, 818 sizeof(struct kernel_lb_addr)); 819 count++; 820 } 821 endnum = c + 1; 822 lastblock = 1; 823 } else { 824 isBeyondEOF = false; 825 endnum = startnum = ((count > 2) ? 2 : count); 826 827 /* if the current extent is in position 0, 828 swap it with the previous */ 829 if (!c && count != 1) { 830 laarr[2] = laarr[0]; 831 laarr[0] = laarr[1]; 832 laarr[1] = laarr[2]; 833 c = 1; 834 } 835 836 /* if the current block is located in an extent, 837 read the next extent */ 838 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 839 if (etype != -1) { 840 laarr[c + 1].extLength = (etype << 30) | elen; 841 laarr[c + 1].extLocation = eloc; 842 count++; 843 startnum++; 844 endnum++; 845 } else 846 lastblock = 1; 847 } 848 849 /* if the current extent is not recorded but allocated, get the 850 * block in the extent corresponding to the requested block */ 851 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 852 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 853 else { /* otherwise, allocate a new block */ 854 if (iinfo->i_next_alloc_block == block) 855 goal = iinfo->i_next_alloc_goal; 856 857 if (!goal) { 858 if (!(goal = pgoal)) /* XXX: what was intended here? */ 859 goal = iinfo->i_location.logicalBlockNum + 1; 860 } 861 862 newblocknum = udf_new_block(inode->i_sb, inode, 863 iinfo->i_location.partitionReferenceNum, 864 goal, err); 865 if (!newblocknum) { 866 *err = -ENOSPC; 867 newblock = 0; 868 goto out_free; 869 } 870 if (isBeyondEOF) 871 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 872 } 873 874 /* if the extent the requsted block is located in contains multiple 875 * blocks, split the extent into at most three extents. blocks prior 876 * to requested block, requested block, and blocks after requested 877 * block */ 878 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 879 880 /* We preallocate blocks only for regular files. It also makes sense 881 * for directories but there's a problem when to drop the 882 * preallocation. We might use some delayed work for that but I feel 883 * it's overengineering for a filesystem like UDF. */ 884 if (S_ISREG(inode->i_mode)) 885 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 886 887 /* merge any continuous blocks in laarr */ 888 udf_merge_extents(inode, laarr, &endnum); 889 890 /* write back the new extents, inserting new extents if the new number 891 * of extents is greater than the old number, and deleting extents if 892 * the new number of extents is less than the old number */ 893 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 894 895 newblock = udf_get_pblock(inode->i_sb, newblocknum, 896 iinfo->i_location.partitionReferenceNum, 0); 897 if (!newblock) { 898 *err = -EIO; 899 goto out_free; 900 } 901 *new = 1; 902 iinfo->i_next_alloc_block = block; 903 iinfo->i_next_alloc_goal = newblocknum; 904 inode->i_ctime = current_time(inode); 905 906 if (IS_SYNC(inode)) 907 udf_sync_inode(inode); 908 else 909 mark_inode_dirty(inode); 910 out_free: 911 brelse(prev_epos.bh); 912 brelse(cur_epos.bh); 913 brelse(next_epos.bh); 914 return newblock; 915 } 916 917 static void udf_split_extents(struct inode *inode, int *c, int offset, 918 udf_pblk_t newblocknum, 919 struct kernel_long_ad *laarr, int *endnum) 920 { 921 unsigned long blocksize = inode->i_sb->s_blocksize; 922 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 923 924 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 925 (laarr[*c].extLength >> 30) == 926 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 927 int curr = *c; 928 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 929 blocksize - 1) >> blocksize_bits; 930 int8_t etype = (laarr[curr].extLength >> 30); 931 932 if (blen == 1) 933 ; 934 else if (!offset || blen == offset + 1) { 935 laarr[curr + 2] = laarr[curr + 1]; 936 laarr[curr + 1] = laarr[curr]; 937 } else { 938 laarr[curr + 3] = laarr[curr + 1]; 939 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 940 } 941 942 if (offset) { 943 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 944 udf_free_blocks(inode->i_sb, inode, 945 &laarr[curr].extLocation, 946 0, offset); 947 laarr[curr].extLength = 948 EXT_NOT_RECORDED_NOT_ALLOCATED | 949 (offset << blocksize_bits); 950 laarr[curr].extLocation.logicalBlockNum = 0; 951 laarr[curr].extLocation. 952 partitionReferenceNum = 0; 953 } else 954 laarr[curr].extLength = (etype << 30) | 955 (offset << blocksize_bits); 956 curr++; 957 (*c)++; 958 (*endnum)++; 959 } 960 961 laarr[curr].extLocation.logicalBlockNum = newblocknum; 962 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 963 laarr[curr].extLocation.partitionReferenceNum = 964 UDF_I(inode)->i_location.partitionReferenceNum; 965 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 966 blocksize; 967 curr++; 968 969 if (blen != offset + 1) { 970 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 971 laarr[curr].extLocation.logicalBlockNum += 972 offset + 1; 973 laarr[curr].extLength = (etype << 30) | 974 ((blen - (offset + 1)) << blocksize_bits); 975 curr++; 976 (*endnum)++; 977 } 978 } 979 } 980 981 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 982 struct kernel_long_ad *laarr, 983 int *endnum) 984 { 985 int start, length = 0, currlength = 0, i; 986 987 if (*endnum >= (c + 1)) { 988 if (!lastblock) 989 return; 990 else 991 start = c; 992 } else { 993 if ((laarr[c + 1].extLength >> 30) == 994 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 995 start = c + 1; 996 length = currlength = 997 (((laarr[c + 1].extLength & 998 UDF_EXTENT_LENGTH_MASK) + 999 inode->i_sb->s_blocksize - 1) >> 1000 inode->i_sb->s_blocksize_bits); 1001 } else 1002 start = c; 1003 } 1004 1005 for (i = start + 1; i <= *endnum; i++) { 1006 if (i == *endnum) { 1007 if (lastblock) 1008 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1009 } else if ((laarr[i].extLength >> 30) == 1010 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1011 length += (((laarr[i].extLength & 1012 UDF_EXTENT_LENGTH_MASK) + 1013 inode->i_sb->s_blocksize - 1) >> 1014 inode->i_sb->s_blocksize_bits); 1015 } else 1016 break; 1017 } 1018 1019 if (length) { 1020 int next = laarr[start].extLocation.logicalBlockNum + 1021 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1022 inode->i_sb->s_blocksize - 1) >> 1023 inode->i_sb->s_blocksize_bits); 1024 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1025 laarr[start].extLocation.partitionReferenceNum, 1026 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1027 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1028 currlength); 1029 if (numalloc) { 1030 if (start == (c + 1)) 1031 laarr[start].extLength += 1032 (numalloc << 1033 inode->i_sb->s_blocksize_bits); 1034 else { 1035 memmove(&laarr[c + 2], &laarr[c + 1], 1036 sizeof(struct long_ad) * (*endnum - (c + 1))); 1037 (*endnum)++; 1038 laarr[c + 1].extLocation.logicalBlockNum = next; 1039 laarr[c + 1].extLocation.partitionReferenceNum = 1040 laarr[c].extLocation. 1041 partitionReferenceNum; 1042 laarr[c + 1].extLength = 1043 EXT_NOT_RECORDED_ALLOCATED | 1044 (numalloc << 1045 inode->i_sb->s_blocksize_bits); 1046 start = c + 1; 1047 } 1048 1049 for (i = start + 1; numalloc && i < *endnum; i++) { 1050 int elen = ((laarr[i].extLength & 1051 UDF_EXTENT_LENGTH_MASK) + 1052 inode->i_sb->s_blocksize - 1) >> 1053 inode->i_sb->s_blocksize_bits; 1054 1055 if (elen > numalloc) { 1056 laarr[i].extLength -= 1057 (numalloc << 1058 inode->i_sb->s_blocksize_bits); 1059 numalloc = 0; 1060 } else { 1061 numalloc -= elen; 1062 if (*endnum > (i + 1)) 1063 memmove(&laarr[i], 1064 &laarr[i + 1], 1065 sizeof(struct long_ad) * 1066 (*endnum - (i + 1))); 1067 i--; 1068 (*endnum)--; 1069 } 1070 } 1071 UDF_I(inode)->i_lenExtents += 1072 numalloc << inode->i_sb->s_blocksize_bits; 1073 } 1074 } 1075 } 1076 1077 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1078 int *endnum) 1079 { 1080 int i; 1081 unsigned long blocksize = inode->i_sb->s_blocksize; 1082 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1083 1084 for (i = 0; i < (*endnum - 1); i++) { 1085 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1086 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1087 1088 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1089 (((li->extLength >> 30) == 1090 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1091 ((lip1->extLocation.logicalBlockNum - 1092 li->extLocation.logicalBlockNum) == 1093 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1094 blocksize - 1) >> blocksize_bits)))) { 1095 1096 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1097 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1098 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1099 lip1->extLength = (lip1->extLength - 1100 (li->extLength & 1101 UDF_EXTENT_LENGTH_MASK) + 1102 UDF_EXTENT_LENGTH_MASK) & 1103 ~(blocksize - 1); 1104 li->extLength = (li->extLength & 1105 UDF_EXTENT_FLAG_MASK) + 1106 (UDF_EXTENT_LENGTH_MASK + 1) - 1107 blocksize; 1108 lip1->extLocation.logicalBlockNum = 1109 li->extLocation.logicalBlockNum + 1110 ((li->extLength & 1111 UDF_EXTENT_LENGTH_MASK) >> 1112 blocksize_bits); 1113 } else { 1114 li->extLength = lip1->extLength + 1115 (((li->extLength & 1116 UDF_EXTENT_LENGTH_MASK) + 1117 blocksize - 1) & ~(blocksize - 1)); 1118 if (*endnum > (i + 2)) 1119 memmove(&laarr[i + 1], &laarr[i + 2], 1120 sizeof(struct long_ad) * 1121 (*endnum - (i + 2))); 1122 i--; 1123 (*endnum)--; 1124 } 1125 } else if (((li->extLength >> 30) == 1126 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1127 ((lip1->extLength >> 30) == 1128 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1129 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1130 ((li->extLength & 1131 UDF_EXTENT_LENGTH_MASK) + 1132 blocksize - 1) >> blocksize_bits); 1133 li->extLocation.logicalBlockNum = 0; 1134 li->extLocation.partitionReferenceNum = 0; 1135 1136 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1137 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1138 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1139 lip1->extLength = (lip1->extLength - 1140 (li->extLength & 1141 UDF_EXTENT_LENGTH_MASK) + 1142 UDF_EXTENT_LENGTH_MASK) & 1143 ~(blocksize - 1); 1144 li->extLength = (li->extLength & 1145 UDF_EXTENT_FLAG_MASK) + 1146 (UDF_EXTENT_LENGTH_MASK + 1) - 1147 blocksize; 1148 } else { 1149 li->extLength = lip1->extLength + 1150 (((li->extLength & 1151 UDF_EXTENT_LENGTH_MASK) + 1152 blocksize - 1) & ~(blocksize - 1)); 1153 if (*endnum > (i + 2)) 1154 memmove(&laarr[i + 1], &laarr[i + 2], 1155 sizeof(struct long_ad) * 1156 (*endnum - (i + 2))); 1157 i--; 1158 (*endnum)--; 1159 } 1160 } else if ((li->extLength >> 30) == 1161 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1162 udf_free_blocks(inode->i_sb, inode, 1163 &li->extLocation, 0, 1164 ((li->extLength & 1165 UDF_EXTENT_LENGTH_MASK) + 1166 blocksize - 1) >> blocksize_bits); 1167 li->extLocation.logicalBlockNum = 0; 1168 li->extLocation.partitionReferenceNum = 0; 1169 li->extLength = (li->extLength & 1170 UDF_EXTENT_LENGTH_MASK) | 1171 EXT_NOT_RECORDED_NOT_ALLOCATED; 1172 } 1173 } 1174 } 1175 1176 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1177 int startnum, int endnum, 1178 struct extent_position *epos) 1179 { 1180 int start = 0, i; 1181 struct kernel_lb_addr tmploc; 1182 uint32_t tmplen; 1183 1184 if (startnum > endnum) { 1185 for (i = 0; i < (startnum - endnum); i++) 1186 udf_delete_aext(inode, *epos); 1187 } else if (startnum < endnum) { 1188 for (i = 0; i < (endnum - startnum); i++) { 1189 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1190 laarr[i].extLength); 1191 udf_next_aext(inode, epos, &laarr[i].extLocation, 1192 &laarr[i].extLength, 1); 1193 start++; 1194 } 1195 } 1196 1197 for (i = start; i < endnum; i++) { 1198 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1199 udf_write_aext(inode, epos, &laarr[i].extLocation, 1200 laarr[i].extLength, 1); 1201 } 1202 } 1203 1204 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1205 int create, int *err) 1206 { 1207 struct buffer_head *bh = NULL; 1208 1209 bh = udf_getblk(inode, block, create, err); 1210 if (!bh) 1211 return NULL; 1212 1213 if (buffer_uptodate(bh)) 1214 return bh; 1215 1216 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1217 1218 wait_on_buffer(bh); 1219 if (buffer_uptodate(bh)) 1220 return bh; 1221 1222 brelse(bh); 1223 *err = -EIO; 1224 return NULL; 1225 } 1226 1227 int udf_setsize(struct inode *inode, loff_t newsize) 1228 { 1229 int err; 1230 struct udf_inode_info *iinfo; 1231 unsigned int bsize = i_blocksize(inode); 1232 1233 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1234 S_ISLNK(inode->i_mode))) 1235 return -EINVAL; 1236 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1237 return -EPERM; 1238 1239 iinfo = UDF_I(inode); 1240 if (newsize > inode->i_size) { 1241 down_write(&iinfo->i_data_sem); 1242 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1243 if (bsize < 1244 (udf_file_entry_alloc_offset(inode) + newsize)) { 1245 err = udf_expand_file_adinicb(inode); 1246 if (err) 1247 return err; 1248 down_write(&iinfo->i_data_sem); 1249 } else { 1250 iinfo->i_lenAlloc = newsize; 1251 goto set_size; 1252 } 1253 } 1254 err = udf_extend_file(inode, newsize); 1255 if (err) { 1256 up_write(&iinfo->i_data_sem); 1257 return err; 1258 } 1259 set_size: 1260 up_write(&iinfo->i_data_sem); 1261 truncate_setsize(inode, newsize); 1262 } else { 1263 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1264 down_write(&iinfo->i_data_sem); 1265 udf_clear_extent_cache(inode); 1266 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1267 0x00, bsize - newsize - 1268 udf_file_entry_alloc_offset(inode)); 1269 iinfo->i_lenAlloc = newsize; 1270 truncate_setsize(inode, newsize); 1271 up_write(&iinfo->i_data_sem); 1272 goto update_time; 1273 } 1274 err = block_truncate_page(inode->i_mapping, newsize, 1275 udf_get_block); 1276 if (err) 1277 return err; 1278 truncate_setsize(inode, newsize); 1279 down_write(&iinfo->i_data_sem); 1280 udf_clear_extent_cache(inode); 1281 err = udf_truncate_extents(inode); 1282 up_write(&iinfo->i_data_sem); 1283 if (err) 1284 return err; 1285 } 1286 update_time: 1287 inode->i_mtime = inode->i_ctime = current_time(inode); 1288 if (IS_SYNC(inode)) 1289 udf_sync_inode(inode); 1290 else 1291 mark_inode_dirty(inode); 1292 return 0; 1293 } 1294 1295 /* 1296 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1297 * arbitrary - just that we hopefully don't limit any real use of rewritten 1298 * inode on write-once media but avoid looping for too long on corrupted media. 1299 */ 1300 #define UDF_MAX_ICB_NESTING 1024 1301 1302 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1303 { 1304 struct buffer_head *bh = NULL; 1305 struct fileEntry *fe; 1306 struct extendedFileEntry *efe; 1307 uint16_t ident; 1308 struct udf_inode_info *iinfo = UDF_I(inode); 1309 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1310 struct kernel_lb_addr *iloc = &iinfo->i_location; 1311 unsigned int link_count; 1312 unsigned int indirections = 0; 1313 int bs = inode->i_sb->s_blocksize; 1314 int ret = -EIO; 1315 uint32_t uid, gid; 1316 1317 reread: 1318 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1319 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1320 iloc->partitionReferenceNum, sbi->s_partitions); 1321 return -EIO; 1322 } 1323 1324 if (iloc->logicalBlockNum >= 1325 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1326 udf_debug("block=%u, partition=%u out of range\n", 1327 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1328 return -EIO; 1329 } 1330 1331 /* 1332 * Set defaults, but the inode is still incomplete! 1333 * Note: get_new_inode() sets the following on a new inode: 1334 * i_sb = sb 1335 * i_no = ino 1336 * i_flags = sb->s_flags 1337 * i_state = 0 1338 * clean_inode(): zero fills and sets 1339 * i_count = 1 1340 * i_nlink = 1 1341 * i_op = NULL; 1342 */ 1343 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1344 if (!bh) { 1345 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1346 return -EIO; 1347 } 1348 1349 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1350 ident != TAG_IDENT_USE) { 1351 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1352 inode->i_ino, ident); 1353 goto out; 1354 } 1355 1356 fe = (struct fileEntry *)bh->b_data; 1357 efe = (struct extendedFileEntry *)bh->b_data; 1358 1359 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1360 struct buffer_head *ibh; 1361 1362 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1363 if (ident == TAG_IDENT_IE && ibh) { 1364 struct kernel_lb_addr loc; 1365 struct indirectEntry *ie; 1366 1367 ie = (struct indirectEntry *)ibh->b_data; 1368 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1369 1370 if (ie->indirectICB.extLength) { 1371 brelse(ibh); 1372 memcpy(&iinfo->i_location, &loc, 1373 sizeof(struct kernel_lb_addr)); 1374 if (++indirections > UDF_MAX_ICB_NESTING) { 1375 udf_err(inode->i_sb, 1376 "too many ICBs in ICB hierarchy" 1377 " (max %d supported)\n", 1378 UDF_MAX_ICB_NESTING); 1379 goto out; 1380 } 1381 brelse(bh); 1382 goto reread; 1383 } 1384 } 1385 brelse(ibh); 1386 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1387 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1388 le16_to_cpu(fe->icbTag.strategyType)); 1389 goto out; 1390 } 1391 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1392 iinfo->i_strat4096 = 0; 1393 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1394 iinfo->i_strat4096 = 1; 1395 1396 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1397 ICBTAG_FLAG_AD_MASK; 1398 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1399 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1400 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1401 ret = -EIO; 1402 goto out; 1403 } 1404 iinfo->i_unique = 0; 1405 iinfo->i_lenEAttr = 0; 1406 iinfo->i_lenExtents = 0; 1407 iinfo->i_lenAlloc = 0; 1408 iinfo->i_next_alloc_block = 0; 1409 iinfo->i_next_alloc_goal = 0; 1410 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1411 iinfo->i_efe = 1; 1412 iinfo->i_use = 0; 1413 ret = udf_alloc_i_data(inode, bs - 1414 sizeof(struct extendedFileEntry)); 1415 if (ret) 1416 goto out; 1417 memcpy(iinfo->i_data, 1418 bh->b_data + sizeof(struct extendedFileEntry), 1419 bs - sizeof(struct extendedFileEntry)); 1420 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1421 iinfo->i_efe = 0; 1422 iinfo->i_use = 0; 1423 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1424 if (ret) 1425 goto out; 1426 memcpy(iinfo->i_data, 1427 bh->b_data + sizeof(struct fileEntry), 1428 bs - sizeof(struct fileEntry)); 1429 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1430 iinfo->i_efe = 0; 1431 iinfo->i_use = 1; 1432 iinfo->i_lenAlloc = le32_to_cpu( 1433 ((struct unallocSpaceEntry *)bh->b_data)-> 1434 lengthAllocDescs); 1435 ret = udf_alloc_i_data(inode, bs - 1436 sizeof(struct unallocSpaceEntry)); 1437 if (ret) 1438 goto out; 1439 memcpy(iinfo->i_data, 1440 bh->b_data + sizeof(struct unallocSpaceEntry), 1441 bs - sizeof(struct unallocSpaceEntry)); 1442 return 0; 1443 } 1444 1445 ret = -EIO; 1446 read_lock(&sbi->s_cred_lock); 1447 uid = le32_to_cpu(fe->uid); 1448 if (uid == UDF_INVALID_ID || 1449 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1450 inode->i_uid = sbi->s_uid; 1451 else 1452 i_uid_write(inode, uid); 1453 1454 gid = le32_to_cpu(fe->gid); 1455 if (gid == UDF_INVALID_ID || 1456 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1457 inode->i_gid = sbi->s_gid; 1458 else 1459 i_gid_write(inode, gid); 1460 1461 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1462 sbi->s_fmode != UDF_INVALID_MODE) 1463 inode->i_mode = sbi->s_fmode; 1464 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1465 sbi->s_dmode != UDF_INVALID_MODE) 1466 inode->i_mode = sbi->s_dmode; 1467 else 1468 inode->i_mode = udf_convert_permissions(fe); 1469 inode->i_mode &= ~sbi->s_umask; 1470 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1471 1472 read_unlock(&sbi->s_cred_lock); 1473 1474 link_count = le16_to_cpu(fe->fileLinkCount); 1475 if (!link_count) { 1476 if (!hidden_inode) { 1477 ret = -ESTALE; 1478 goto out; 1479 } 1480 link_count = 1; 1481 } 1482 set_nlink(inode, link_count); 1483 1484 inode->i_size = le64_to_cpu(fe->informationLength); 1485 iinfo->i_lenExtents = inode->i_size; 1486 1487 if (iinfo->i_efe == 0) { 1488 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1489 (inode->i_sb->s_blocksize_bits - 9); 1490 1491 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1492 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1493 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1494 1495 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1496 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1497 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1498 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1499 iinfo->i_streamdir = 0; 1500 iinfo->i_lenStreams = 0; 1501 } else { 1502 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1503 (inode->i_sb->s_blocksize_bits - 9); 1504 1505 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1506 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1507 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1508 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1509 1510 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1511 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1512 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1513 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1514 1515 /* Named streams */ 1516 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1517 iinfo->i_locStreamdir = 1518 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1519 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1520 if (iinfo->i_lenStreams >= inode->i_size) 1521 iinfo->i_lenStreams -= inode->i_size; 1522 else 1523 iinfo->i_lenStreams = 0; 1524 } 1525 inode->i_generation = iinfo->i_unique; 1526 1527 /* 1528 * Sanity check length of allocation descriptors and extended attrs to 1529 * avoid integer overflows 1530 */ 1531 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1532 goto out; 1533 /* Now do exact checks */ 1534 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1535 goto out; 1536 /* Sanity checks for files in ICB so that we don't get confused later */ 1537 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1538 /* 1539 * For file in ICB data is stored in allocation descriptor 1540 * so sizes should match 1541 */ 1542 if (iinfo->i_lenAlloc != inode->i_size) 1543 goto out; 1544 /* File in ICB has to fit in there... */ 1545 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1546 goto out; 1547 } 1548 1549 switch (fe->icbTag.fileType) { 1550 case ICBTAG_FILE_TYPE_DIRECTORY: 1551 inode->i_op = &udf_dir_inode_operations; 1552 inode->i_fop = &udf_dir_operations; 1553 inode->i_mode |= S_IFDIR; 1554 inc_nlink(inode); 1555 break; 1556 case ICBTAG_FILE_TYPE_REALTIME: 1557 case ICBTAG_FILE_TYPE_REGULAR: 1558 case ICBTAG_FILE_TYPE_UNDEF: 1559 case ICBTAG_FILE_TYPE_VAT20: 1560 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1561 inode->i_data.a_ops = &udf_adinicb_aops; 1562 else 1563 inode->i_data.a_ops = &udf_aops; 1564 inode->i_op = &udf_file_inode_operations; 1565 inode->i_fop = &udf_file_operations; 1566 inode->i_mode |= S_IFREG; 1567 break; 1568 case ICBTAG_FILE_TYPE_BLOCK: 1569 inode->i_mode |= S_IFBLK; 1570 break; 1571 case ICBTAG_FILE_TYPE_CHAR: 1572 inode->i_mode |= S_IFCHR; 1573 break; 1574 case ICBTAG_FILE_TYPE_FIFO: 1575 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1576 break; 1577 case ICBTAG_FILE_TYPE_SOCKET: 1578 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1579 break; 1580 case ICBTAG_FILE_TYPE_SYMLINK: 1581 inode->i_data.a_ops = &udf_symlink_aops; 1582 inode->i_op = &udf_symlink_inode_operations; 1583 inode_nohighmem(inode); 1584 inode->i_mode = S_IFLNK | 0777; 1585 break; 1586 case ICBTAG_FILE_TYPE_MAIN: 1587 udf_debug("METADATA FILE-----\n"); 1588 break; 1589 case ICBTAG_FILE_TYPE_MIRROR: 1590 udf_debug("METADATA MIRROR FILE-----\n"); 1591 break; 1592 case ICBTAG_FILE_TYPE_BITMAP: 1593 udf_debug("METADATA BITMAP FILE-----\n"); 1594 break; 1595 default: 1596 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1597 inode->i_ino, fe->icbTag.fileType); 1598 goto out; 1599 } 1600 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1601 struct deviceSpec *dsea = 1602 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1603 if (dsea) { 1604 init_special_inode(inode, inode->i_mode, 1605 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1606 le32_to_cpu(dsea->minorDeviceIdent))); 1607 /* Developer ID ??? */ 1608 } else 1609 goto out; 1610 } 1611 ret = 0; 1612 out: 1613 brelse(bh); 1614 return ret; 1615 } 1616 1617 static int udf_alloc_i_data(struct inode *inode, size_t size) 1618 { 1619 struct udf_inode_info *iinfo = UDF_I(inode); 1620 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1621 if (!iinfo->i_data) 1622 return -ENOMEM; 1623 return 0; 1624 } 1625 1626 static umode_t udf_convert_permissions(struct fileEntry *fe) 1627 { 1628 umode_t mode; 1629 uint32_t permissions; 1630 uint32_t flags; 1631 1632 permissions = le32_to_cpu(fe->permissions); 1633 flags = le16_to_cpu(fe->icbTag.flags); 1634 1635 mode = ((permissions) & 0007) | 1636 ((permissions >> 2) & 0070) | 1637 ((permissions >> 4) & 0700) | 1638 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1639 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1640 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1641 1642 return mode; 1643 } 1644 1645 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1646 { 1647 struct udf_inode_info *iinfo = UDF_I(inode); 1648 1649 /* 1650 * UDF 2.01 sec. 3.3.3.3 Note 2: 1651 * In Unix, delete permission tracks write 1652 */ 1653 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1654 if (mode & 0200) 1655 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1656 if (mode & 0020) 1657 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1658 if (mode & 0002) 1659 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1660 } 1661 1662 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1663 { 1664 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1665 } 1666 1667 static int udf_sync_inode(struct inode *inode) 1668 { 1669 return udf_update_inode(inode, 1); 1670 } 1671 1672 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1673 { 1674 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1675 (iinfo->i_crtime.tv_sec == time.tv_sec && 1676 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1677 iinfo->i_crtime = time; 1678 } 1679 1680 static int udf_update_inode(struct inode *inode, int do_sync) 1681 { 1682 struct buffer_head *bh = NULL; 1683 struct fileEntry *fe; 1684 struct extendedFileEntry *efe; 1685 uint64_t lb_recorded; 1686 uint32_t udfperms; 1687 uint16_t icbflags; 1688 uint16_t crclen; 1689 int err = 0; 1690 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1691 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1692 struct udf_inode_info *iinfo = UDF_I(inode); 1693 1694 bh = udf_tgetblk(inode->i_sb, 1695 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1696 if (!bh) { 1697 udf_debug("getblk failure\n"); 1698 return -EIO; 1699 } 1700 1701 lock_buffer(bh); 1702 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1703 fe = (struct fileEntry *)bh->b_data; 1704 efe = (struct extendedFileEntry *)bh->b_data; 1705 1706 if (iinfo->i_use) { 1707 struct unallocSpaceEntry *use = 1708 (struct unallocSpaceEntry *)bh->b_data; 1709 1710 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1711 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1712 iinfo->i_data, inode->i_sb->s_blocksize - 1713 sizeof(struct unallocSpaceEntry)); 1714 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1715 crclen = sizeof(struct unallocSpaceEntry); 1716 1717 goto finish; 1718 } 1719 1720 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1721 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1722 else 1723 fe->uid = cpu_to_le32(i_uid_read(inode)); 1724 1725 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1726 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1727 else 1728 fe->gid = cpu_to_le32(i_gid_read(inode)); 1729 1730 udfperms = ((inode->i_mode & 0007)) | 1731 ((inode->i_mode & 0070) << 2) | 1732 ((inode->i_mode & 0700) << 4); 1733 1734 udfperms |= iinfo->i_extraPerms; 1735 fe->permissions = cpu_to_le32(udfperms); 1736 1737 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1738 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1739 else 1740 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1741 1742 fe->informationLength = cpu_to_le64(inode->i_size); 1743 1744 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1745 struct regid *eid; 1746 struct deviceSpec *dsea = 1747 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1748 if (!dsea) { 1749 dsea = (struct deviceSpec *) 1750 udf_add_extendedattr(inode, 1751 sizeof(struct deviceSpec) + 1752 sizeof(struct regid), 12, 0x3); 1753 dsea->attrType = cpu_to_le32(12); 1754 dsea->attrSubtype = 1; 1755 dsea->attrLength = cpu_to_le32( 1756 sizeof(struct deviceSpec) + 1757 sizeof(struct regid)); 1758 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1759 } 1760 eid = (struct regid *)dsea->impUse; 1761 memset(eid, 0, sizeof(*eid)); 1762 strcpy(eid->ident, UDF_ID_DEVELOPER); 1763 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1764 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1765 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1766 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1767 } 1768 1769 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1770 lb_recorded = 0; /* No extents => no blocks! */ 1771 else 1772 lb_recorded = 1773 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1774 (blocksize_bits - 9); 1775 1776 if (iinfo->i_efe == 0) { 1777 memcpy(bh->b_data + sizeof(struct fileEntry), 1778 iinfo->i_data, 1779 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1780 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1781 1782 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1783 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1784 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1785 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1786 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1787 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1788 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1789 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1790 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1791 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1792 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1793 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1794 crclen = sizeof(struct fileEntry); 1795 } else { 1796 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1797 iinfo->i_data, 1798 inode->i_sb->s_blocksize - 1799 sizeof(struct extendedFileEntry)); 1800 efe->objectSize = 1801 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1802 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1803 1804 if (iinfo->i_streamdir) { 1805 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1806 1807 icb_lad->extLocation = 1808 cpu_to_lelb(iinfo->i_locStreamdir); 1809 icb_lad->extLength = 1810 cpu_to_le32(inode->i_sb->s_blocksize); 1811 } 1812 1813 udf_adjust_time(iinfo, inode->i_atime); 1814 udf_adjust_time(iinfo, inode->i_mtime); 1815 udf_adjust_time(iinfo, inode->i_ctime); 1816 1817 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1818 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1819 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1820 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1821 1822 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1823 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1824 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1825 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1826 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1827 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1828 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1829 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1830 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1831 crclen = sizeof(struct extendedFileEntry); 1832 } 1833 1834 finish: 1835 if (iinfo->i_strat4096) { 1836 fe->icbTag.strategyType = cpu_to_le16(4096); 1837 fe->icbTag.strategyParameter = cpu_to_le16(1); 1838 fe->icbTag.numEntries = cpu_to_le16(2); 1839 } else { 1840 fe->icbTag.strategyType = cpu_to_le16(4); 1841 fe->icbTag.numEntries = cpu_to_le16(1); 1842 } 1843 1844 if (iinfo->i_use) 1845 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1846 else if (S_ISDIR(inode->i_mode)) 1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1848 else if (S_ISREG(inode->i_mode)) 1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1850 else if (S_ISLNK(inode->i_mode)) 1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1852 else if (S_ISBLK(inode->i_mode)) 1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1854 else if (S_ISCHR(inode->i_mode)) 1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1856 else if (S_ISFIFO(inode->i_mode)) 1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1858 else if (S_ISSOCK(inode->i_mode)) 1859 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1860 1861 icbflags = iinfo->i_alloc_type | 1862 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1863 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1864 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1865 (le16_to_cpu(fe->icbTag.flags) & 1866 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1867 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1868 1869 fe->icbTag.flags = cpu_to_le16(icbflags); 1870 if (sbi->s_udfrev >= 0x0200) 1871 fe->descTag.descVersion = cpu_to_le16(3); 1872 else 1873 fe->descTag.descVersion = cpu_to_le16(2); 1874 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1875 fe->descTag.tagLocation = cpu_to_le32( 1876 iinfo->i_location.logicalBlockNum); 1877 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1878 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1879 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1880 crclen)); 1881 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1882 1883 set_buffer_uptodate(bh); 1884 unlock_buffer(bh); 1885 1886 /* write the data blocks */ 1887 mark_buffer_dirty(bh); 1888 if (do_sync) { 1889 sync_dirty_buffer(bh); 1890 if (buffer_write_io_error(bh)) { 1891 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1892 inode->i_ino); 1893 err = -EIO; 1894 } 1895 } 1896 brelse(bh); 1897 1898 return err; 1899 } 1900 1901 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1902 bool hidden_inode) 1903 { 1904 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1905 struct inode *inode = iget_locked(sb, block); 1906 int err; 1907 1908 if (!inode) 1909 return ERR_PTR(-ENOMEM); 1910 1911 if (!(inode->i_state & I_NEW)) 1912 return inode; 1913 1914 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1915 err = udf_read_inode(inode, hidden_inode); 1916 if (err < 0) { 1917 iget_failed(inode); 1918 return ERR_PTR(err); 1919 } 1920 unlock_new_inode(inode); 1921 1922 return inode; 1923 } 1924 1925 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1926 struct extent_position *epos) 1927 { 1928 struct super_block *sb = inode->i_sb; 1929 struct buffer_head *bh; 1930 struct allocExtDesc *aed; 1931 struct extent_position nepos; 1932 struct kernel_lb_addr neloc; 1933 int ver, adsize; 1934 1935 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1936 adsize = sizeof(struct short_ad); 1937 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1938 adsize = sizeof(struct long_ad); 1939 else 1940 return -EIO; 1941 1942 neloc.logicalBlockNum = block; 1943 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1944 1945 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1946 if (!bh) 1947 return -EIO; 1948 lock_buffer(bh); 1949 memset(bh->b_data, 0x00, sb->s_blocksize); 1950 set_buffer_uptodate(bh); 1951 unlock_buffer(bh); 1952 mark_buffer_dirty_inode(bh, inode); 1953 1954 aed = (struct allocExtDesc *)(bh->b_data); 1955 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1956 aed->previousAllocExtLocation = 1957 cpu_to_le32(epos->block.logicalBlockNum); 1958 } 1959 aed->lengthAllocDescs = cpu_to_le32(0); 1960 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1961 ver = 3; 1962 else 1963 ver = 2; 1964 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1965 sizeof(struct tag)); 1966 1967 nepos.block = neloc; 1968 nepos.offset = sizeof(struct allocExtDesc); 1969 nepos.bh = bh; 1970 1971 /* 1972 * Do we have to copy current last extent to make space for indirect 1973 * one? 1974 */ 1975 if (epos->offset + adsize > sb->s_blocksize) { 1976 struct kernel_lb_addr cp_loc; 1977 uint32_t cp_len; 1978 int cp_type; 1979 1980 epos->offset -= adsize; 1981 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1982 cp_len |= ((uint32_t)cp_type) << 30; 1983 1984 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1985 udf_write_aext(inode, epos, &nepos.block, 1986 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1987 } else { 1988 __udf_add_aext(inode, epos, &nepos.block, 1989 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1990 } 1991 1992 brelse(epos->bh); 1993 *epos = nepos; 1994 1995 return 0; 1996 } 1997 1998 /* 1999 * Append extent at the given position - should be the first free one in inode 2000 * / indirect extent. This function assumes there is enough space in the inode 2001 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2002 */ 2003 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2004 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2005 { 2006 struct udf_inode_info *iinfo = UDF_I(inode); 2007 struct allocExtDesc *aed; 2008 int adsize; 2009 2010 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2011 adsize = sizeof(struct short_ad); 2012 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2013 adsize = sizeof(struct long_ad); 2014 else 2015 return -EIO; 2016 2017 if (!epos->bh) { 2018 WARN_ON(iinfo->i_lenAlloc != 2019 epos->offset - udf_file_entry_alloc_offset(inode)); 2020 } else { 2021 aed = (struct allocExtDesc *)epos->bh->b_data; 2022 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2023 epos->offset - sizeof(struct allocExtDesc)); 2024 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2025 } 2026 2027 udf_write_aext(inode, epos, eloc, elen, inc); 2028 2029 if (!epos->bh) { 2030 iinfo->i_lenAlloc += adsize; 2031 mark_inode_dirty(inode); 2032 } else { 2033 aed = (struct allocExtDesc *)epos->bh->b_data; 2034 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2035 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2036 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2037 udf_update_tag(epos->bh->b_data, 2038 epos->offset + (inc ? 0 : adsize)); 2039 else 2040 udf_update_tag(epos->bh->b_data, 2041 sizeof(struct allocExtDesc)); 2042 mark_buffer_dirty_inode(epos->bh, inode); 2043 } 2044 2045 return 0; 2046 } 2047 2048 /* 2049 * Append extent at given position - should be the first free one in inode 2050 * / indirect extent. Takes care of allocating and linking indirect blocks. 2051 */ 2052 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2053 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2054 { 2055 int adsize; 2056 struct super_block *sb = inode->i_sb; 2057 2058 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2059 adsize = sizeof(struct short_ad); 2060 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2061 adsize = sizeof(struct long_ad); 2062 else 2063 return -EIO; 2064 2065 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2066 int err; 2067 udf_pblk_t new_block; 2068 2069 new_block = udf_new_block(sb, NULL, 2070 epos->block.partitionReferenceNum, 2071 epos->block.logicalBlockNum, &err); 2072 if (!new_block) 2073 return -ENOSPC; 2074 2075 err = udf_setup_indirect_aext(inode, new_block, epos); 2076 if (err) 2077 return err; 2078 } 2079 2080 return __udf_add_aext(inode, epos, eloc, elen, inc); 2081 } 2082 2083 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2084 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2085 { 2086 int adsize; 2087 uint8_t *ptr; 2088 struct short_ad *sad; 2089 struct long_ad *lad; 2090 struct udf_inode_info *iinfo = UDF_I(inode); 2091 2092 if (!epos->bh) 2093 ptr = iinfo->i_data + epos->offset - 2094 udf_file_entry_alloc_offset(inode) + 2095 iinfo->i_lenEAttr; 2096 else 2097 ptr = epos->bh->b_data + epos->offset; 2098 2099 switch (iinfo->i_alloc_type) { 2100 case ICBTAG_FLAG_AD_SHORT: 2101 sad = (struct short_ad *)ptr; 2102 sad->extLength = cpu_to_le32(elen); 2103 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2104 adsize = sizeof(struct short_ad); 2105 break; 2106 case ICBTAG_FLAG_AD_LONG: 2107 lad = (struct long_ad *)ptr; 2108 lad->extLength = cpu_to_le32(elen); 2109 lad->extLocation = cpu_to_lelb(*eloc); 2110 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2111 adsize = sizeof(struct long_ad); 2112 break; 2113 default: 2114 return; 2115 } 2116 2117 if (epos->bh) { 2118 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2119 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2120 struct allocExtDesc *aed = 2121 (struct allocExtDesc *)epos->bh->b_data; 2122 udf_update_tag(epos->bh->b_data, 2123 le32_to_cpu(aed->lengthAllocDescs) + 2124 sizeof(struct allocExtDesc)); 2125 } 2126 mark_buffer_dirty_inode(epos->bh, inode); 2127 } else { 2128 mark_inode_dirty(inode); 2129 } 2130 2131 if (inc) 2132 epos->offset += adsize; 2133 } 2134 2135 /* 2136 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2137 * someone does some weird stuff. 2138 */ 2139 #define UDF_MAX_INDIR_EXTS 16 2140 2141 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2142 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2143 { 2144 int8_t etype; 2145 unsigned int indirections = 0; 2146 2147 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2148 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2149 udf_pblk_t block; 2150 2151 if (++indirections > UDF_MAX_INDIR_EXTS) { 2152 udf_err(inode->i_sb, 2153 "too many indirect extents in inode %lu\n", 2154 inode->i_ino); 2155 return -1; 2156 } 2157 2158 epos->block = *eloc; 2159 epos->offset = sizeof(struct allocExtDesc); 2160 brelse(epos->bh); 2161 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2162 epos->bh = udf_tread(inode->i_sb, block); 2163 if (!epos->bh) { 2164 udf_debug("reading block %u failed!\n", block); 2165 return -1; 2166 } 2167 } 2168 2169 return etype; 2170 } 2171 2172 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2173 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2174 { 2175 int alen; 2176 int8_t etype; 2177 uint8_t *ptr; 2178 struct short_ad *sad; 2179 struct long_ad *lad; 2180 struct udf_inode_info *iinfo = UDF_I(inode); 2181 2182 if (!epos->bh) { 2183 if (!epos->offset) 2184 epos->offset = udf_file_entry_alloc_offset(inode); 2185 ptr = iinfo->i_data + epos->offset - 2186 udf_file_entry_alloc_offset(inode) + 2187 iinfo->i_lenEAttr; 2188 alen = udf_file_entry_alloc_offset(inode) + 2189 iinfo->i_lenAlloc; 2190 } else { 2191 if (!epos->offset) 2192 epos->offset = sizeof(struct allocExtDesc); 2193 ptr = epos->bh->b_data + epos->offset; 2194 alen = sizeof(struct allocExtDesc) + 2195 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2196 lengthAllocDescs); 2197 } 2198 2199 switch (iinfo->i_alloc_type) { 2200 case ICBTAG_FLAG_AD_SHORT: 2201 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2202 if (!sad) 2203 return -1; 2204 etype = le32_to_cpu(sad->extLength) >> 30; 2205 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2206 eloc->partitionReferenceNum = 2207 iinfo->i_location.partitionReferenceNum; 2208 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2209 break; 2210 case ICBTAG_FLAG_AD_LONG: 2211 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2212 if (!lad) 2213 return -1; 2214 etype = le32_to_cpu(lad->extLength) >> 30; 2215 *eloc = lelb_to_cpu(lad->extLocation); 2216 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2217 break; 2218 default: 2219 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2220 return -1; 2221 } 2222 2223 return etype; 2224 } 2225 2226 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2227 struct kernel_lb_addr neloc, uint32_t nelen) 2228 { 2229 struct kernel_lb_addr oeloc; 2230 uint32_t oelen; 2231 int8_t etype; 2232 2233 if (epos.bh) 2234 get_bh(epos.bh); 2235 2236 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2237 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2238 neloc = oeloc; 2239 nelen = (etype << 30) | oelen; 2240 } 2241 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2242 brelse(epos.bh); 2243 2244 return (nelen >> 30); 2245 } 2246 2247 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2248 { 2249 struct extent_position oepos; 2250 int adsize; 2251 int8_t etype; 2252 struct allocExtDesc *aed; 2253 struct udf_inode_info *iinfo; 2254 struct kernel_lb_addr eloc; 2255 uint32_t elen; 2256 2257 if (epos.bh) { 2258 get_bh(epos.bh); 2259 get_bh(epos.bh); 2260 } 2261 2262 iinfo = UDF_I(inode); 2263 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2264 adsize = sizeof(struct short_ad); 2265 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2266 adsize = sizeof(struct long_ad); 2267 else 2268 adsize = 0; 2269 2270 oepos = epos; 2271 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2272 return -1; 2273 2274 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2275 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2276 if (oepos.bh != epos.bh) { 2277 oepos.block = epos.block; 2278 brelse(oepos.bh); 2279 get_bh(epos.bh); 2280 oepos.bh = epos.bh; 2281 oepos.offset = epos.offset - adsize; 2282 } 2283 } 2284 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2285 elen = 0; 2286 2287 if (epos.bh != oepos.bh) { 2288 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2289 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2290 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2291 if (!oepos.bh) { 2292 iinfo->i_lenAlloc -= (adsize * 2); 2293 mark_inode_dirty(inode); 2294 } else { 2295 aed = (struct allocExtDesc *)oepos.bh->b_data; 2296 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2297 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2298 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2299 udf_update_tag(oepos.bh->b_data, 2300 oepos.offset - (2 * adsize)); 2301 else 2302 udf_update_tag(oepos.bh->b_data, 2303 sizeof(struct allocExtDesc)); 2304 mark_buffer_dirty_inode(oepos.bh, inode); 2305 } 2306 } else { 2307 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2308 if (!oepos.bh) { 2309 iinfo->i_lenAlloc -= adsize; 2310 mark_inode_dirty(inode); 2311 } else { 2312 aed = (struct allocExtDesc *)oepos.bh->b_data; 2313 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2314 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2315 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2316 udf_update_tag(oepos.bh->b_data, 2317 epos.offset - adsize); 2318 else 2319 udf_update_tag(oepos.bh->b_data, 2320 sizeof(struct allocExtDesc)); 2321 mark_buffer_dirty_inode(oepos.bh, inode); 2322 } 2323 } 2324 2325 brelse(epos.bh); 2326 brelse(oepos.bh); 2327 2328 return (elen >> 30); 2329 } 2330 2331 int8_t inode_bmap(struct inode *inode, sector_t block, 2332 struct extent_position *pos, struct kernel_lb_addr *eloc, 2333 uint32_t *elen, sector_t *offset) 2334 { 2335 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2336 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2337 int8_t etype; 2338 struct udf_inode_info *iinfo; 2339 2340 iinfo = UDF_I(inode); 2341 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2342 pos->offset = 0; 2343 pos->block = iinfo->i_location; 2344 pos->bh = NULL; 2345 } 2346 *elen = 0; 2347 do { 2348 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2349 if (etype == -1) { 2350 *offset = (bcount - lbcount) >> blocksize_bits; 2351 iinfo->i_lenExtents = lbcount; 2352 return -1; 2353 } 2354 lbcount += *elen; 2355 } while (lbcount <= bcount); 2356 /* update extent cache */ 2357 udf_update_extent_cache(inode, lbcount - *elen, pos); 2358 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2359 2360 return etype; 2361 } 2362 2363 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2364 { 2365 struct kernel_lb_addr eloc; 2366 uint32_t elen; 2367 sector_t offset; 2368 struct extent_position epos = {}; 2369 udf_pblk_t ret; 2370 2371 down_read(&UDF_I(inode)->i_data_sem); 2372 2373 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2374 (EXT_RECORDED_ALLOCATED >> 30)) 2375 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2376 else 2377 ret = 0; 2378 2379 up_read(&UDF_I(inode)->i_data_sem); 2380 brelse(epos.bh); 2381 2382 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2383 return udf_fixed_to_variable(ret); 2384 else 2385 return ret; 2386 } 2387