1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 static umode_t udf_convert_permissions(struct fileEntry *); 56 static int udf_update_inode(struct inode *, int); 57 static int udf_sync_inode(struct inode *inode); 58 static int udf_alloc_i_data(struct inode *inode, size_t size); 59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 60 static int8_t udf_insert_aext(struct inode *, struct extent_position, 61 struct kernel_lb_addr, uint32_t); 62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 63 struct kernel_long_ad *, int *); 64 static void udf_prealloc_extents(struct inode *, int, int, 65 struct kernel_long_ad *, int *); 66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 68 int, struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 static void __udf_clear_extent_cache(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79 } 80 81 /* Invalidate extent cache */ 82 static void udf_clear_extent_cache(struct inode *inode) 83 { 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89 } 90 91 /* Return contents of extent cache */ 92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94 { 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111 } 112 113 /* Add extent to extent cache */ 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos) 116 { 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 125 iinfo->cached_extent.lstart = estart; 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 129 break; 130 case ICBTAG_FLAG_AD_LONG: 131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 132 break; 133 } 134 spin_unlock(&iinfo->i_extent_cache_lock); 135 } 136 137 void udf_evict_inode(struct inode *inode) 138 { 139 struct udf_inode_info *iinfo = UDF_I(inode); 140 int want_delete = 0; 141 142 if (!is_bad_inode(inode)) { 143 if (!inode->i_nlink) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 149 inode->i_size != iinfo->i_lenExtents) { 150 udf_warn(inode->i_sb, 151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 152 inode->i_ino, inode->i_mode, 153 (unsigned long long)inode->i_size, 154 (unsigned long long)iinfo->i_lenExtents); 155 } 156 } 157 truncate_inode_pages_final(&inode->i_data); 158 invalidate_inode_buffers(inode); 159 clear_inode(inode); 160 kfree(iinfo->i_data); 161 iinfo->i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166 } 167 168 static void udf_write_failed(struct address_space *mapping, loff_t to) 169 { 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183 } 184 185 static int udf_writepage(struct page *page, struct writeback_control *wbc) 186 { 187 return block_write_full_page(page, udf_get_block, wbc); 188 } 189 190 static int udf_writepages(struct address_space *mapping, 191 struct writeback_control *wbc) 192 { 193 return mpage_writepages(mapping, wbc, udf_get_block); 194 } 195 196 static int udf_readpage(struct file *file, struct page *page) 197 { 198 return mpage_readpage(page, udf_get_block); 199 } 200 201 static void udf_readahead(struct readahead_control *rac) 202 { 203 mpage_readahead(rac, udf_get_block); 204 } 205 206 static int udf_write_begin(struct file *file, struct address_space *mapping, 207 loff_t pos, unsigned len, unsigned flags, 208 struct page **pagep, void **fsdata) 209 { 210 int ret; 211 212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 213 if (unlikely(ret)) 214 udf_write_failed(mapping, pos + len); 215 return ret; 216 } 217 218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 219 { 220 struct file *file = iocb->ki_filp; 221 struct address_space *mapping = file->f_mapping; 222 struct inode *inode = mapping->host; 223 size_t count = iov_iter_count(iter); 224 ssize_t ret; 225 226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 228 udf_write_failed(mapping, iocb->ki_pos + count); 229 return ret; 230 } 231 232 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 233 { 234 return generic_block_bmap(mapping, block, udf_get_block); 235 } 236 237 const struct address_space_operations udf_aops = { 238 .readpage = udf_readpage, 239 .readahead = udf_readahead, 240 .writepage = udf_writepage, 241 .writepages = udf_writepages, 242 .write_begin = udf_write_begin, 243 .write_end = generic_write_end, 244 .direct_IO = udf_direct_IO, 245 .bmap = udf_bmap, 246 }; 247 248 /* 249 * Expand file stored in ICB to a normal one-block-file 250 * 251 * This function requires i_data_sem for writing and releases it. 252 * This function requires i_mutex held 253 */ 254 int udf_expand_file_adinicb(struct inode *inode) 255 { 256 struct page *page; 257 char *kaddr; 258 struct udf_inode_info *iinfo = UDF_I(inode); 259 int err; 260 struct writeback_control udf_wbc = { 261 .sync_mode = WB_SYNC_NONE, 262 .nr_to_write = 1, 263 }; 264 265 WARN_ON_ONCE(!inode_is_locked(inode)); 266 if (!iinfo->i_lenAlloc) { 267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 269 else 270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 271 /* from now on we have normal address_space methods */ 272 inode->i_data.a_ops = &udf_aops; 273 up_write(&iinfo->i_data_sem); 274 mark_inode_dirty(inode); 275 return 0; 276 } 277 /* 278 * Release i_data_sem so that we can lock a page - page lock ranks 279 * above i_data_sem. i_mutex still protects us against file changes. 280 */ 281 up_write(&iinfo->i_data_sem); 282 283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 284 if (!page) 285 return -ENOMEM; 286 287 if (!PageUptodate(page)) { 288 kaddr = kmap_atomic(page); 289 memset(kaddr + iinfo->i_lenAlloc, 0x00, 290 PAGE_SIZE - iinfo->i_lenAlloc); 291 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 292 iinfo->i_lenAlloc); 293 flush_dcache_page(page); 294 SetPageUptodate(page); 295 kunmap_atomic(kaddr); 296 } 297 down_write(&iinfo->i_data_sem); 298 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 299 iinfo->i_lenAlloc); 300 iinfo->i_lenAlloc = 0; 301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 303 else 304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 305 /* from now on we have normal address_space methods */ 306 inode->i_data.a_ops = &udf_aops; 307 up_write(&iinfo->i_data_sem); 308 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 309 if (err) { 310 /* Restore everything back so that we don't lose data... */ 311 lock_page(page); 312 down_write(&iinfo->i_data_sem); 313 kaddr = kmap_atomic(page); 314 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 315 kunmap_atomic(kaddr); 316 unlock_page(page); 317 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 318 inode->i_data.a_ops = &udf_adinicb_aops; 319 up_write(&iinfo->i_data_sem); 320 } 321 put_page(page); 322 mark_inode_dirty(inode); 323 324 return err; 325 } 326 327 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 328 udf_pblk_t *block, int *err) 329 { 330 udf_pblk_t newblock; 331 struct buffer_head *dbh = NULL; 332 struct kernel_lb_addr eloc; 333 uint8_t alloctype; 334 struct extent_position epos; 335 336 struct udf_fileident_bh sfibh, dfibh; 337 loff_t f_pos = udf_ext0_offset(inode); 338 int size = udf_ext0_offset(inode) + inode->i_size; 339 struct fileIdentDesc cfi, *sfi, *dfi; 340 struct udf_inode_info *iinfo = UDF_I(inode); 341 342 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 343 alloctype = ICBTAG_FLAG_AD_SHORT; 344 else 345 alloctype = ICBTAG_FLAG_AD_LONG; 346 347 if (!inode->i_size) { 348 iinfo->i_alloc_type = alloctype; 349 mark_inode_dirty(inode); 350 return NULL; 351 } 352 353 /* alloc block, and copy data to it */ 354 *block = udf_new_block(inode->i_sb, inode, 355 iinfo->i_location.partitionReferenceNum, 356 iinfo->i_location.logicalBlockNum, err); 357 if (!(*block)) 358 return NULL; 359 newblock = udf_get_pblock(inode->i_sb, *block, 360 iinfo->i_location.partitionReferenceNum, 361 0); 362 if (!newblock) 363 return NULL; 364 dbh = udf_tgetblk(inode->i_sb, newblock); 365 if (!dbh) 366 return NULL; 367 lock_buffer(dbh); 368 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 369 set_buffer_uptodate(dbh); 370 unlock_buffer(dbh); 371 mark_buffer_dirty_inode(dbh, inode); 372 373 sfibh.soffset = sfibh.eoffset = 374 f_pos & (inode->i_sb->s_blocksize - 1); 375 sfibh.sbh = sfibh.ebh = NULL; 376 dfibh.soffset = dfibh.eoffset = 0; 377 dfibh.sbh = dfibh.ebh = dbh; 378 while (f_pos < size) { 379 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 380 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 381 NULL, NULL, NULL); 382 if (!sfi) { 383 brelse(dbh); 384 return NULL; 385 } 386 iinfo->i_alloc_type = alloctype; 387 sfi->descTag.tagLocation = cpu_to_le32(*block); 388 dfibh.soffset = dfibh.eoffset; 389 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 390 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 391 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 392 sfi->fileIdent + 393 le16_to_cpu(sfi->lengthOfImpUse))) { 394 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 395 brelse(dbh); 396 return NULL; 397 } 398 } 399 mark_buffer_dirty_inode(dbh, inode); 400 401 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); 402 iinfo->i_lenAlloc = 0; 403 eloc.logicalBlockNum = *block; 404 eloc.partitionReferenceNum = 405 iinfo->i_location.partitionReferenceNum; 406 iinfo->i_lenExtents = inode->i_size; 407 epos.bh = NULL; 408 epos.block = iinfo->i_location; 409 epos.offset = udf_file_entry_alloc_offset(inode); 410 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 411 /* UniqueID stuff */ 412 413 brelse(epos.bh); 414 mark_inode_dirty(inode); 415 return dbh; 416 } 417 418 static int udf_get_block(struct inode *inode, sector_t block, 419 struct buffer_head *bh_result, int create) 420 { 421 int err, new; 422 sector_t phys = 0; 423 struct udf_inode_info *iinfo; 424 425 if (!create) { 426 phys = udf_block_map(inode, block); 427 if (phys) 428 map_bh(bh_result, inode->i_sb, phys); 429 return 0; 430 } 431 432 err = -EIO; 433 new = 0; 434 iinfo = UDF_I(inode); 435 436 down_write(&iinfo->i_data_sem); 437 if (block == iinfo->i_next_alloc_block + 1) { 438 iinfo->i_next_alloc_block++; 439 iinfo->i_next_alloc_goal++; 440 } 441 442 udf_clear_extent_cache(inode); 443 phys = inode_getblk(inode, block, &err, &new); 444 if (!phys) 445 goto abort; 446 447 if (new) 448 set_buffer_new(bh_result); 449 map_bh(bh_result, inode->i_sb, phys); 450 451 abort: 452 up_write(&iinfo->i_data_sem); 453 return err; 454 } 455 456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 457 int create, int *err) 458 { 459 struct buffer_head *bh; 460 struct buffer_head dummy; 461 462 dummy.b_state = 0; 463 dummy.b_blocknr = -1000; 464 *err = udf_get_block(inode, block, &dummy, create); 465 if (!*err && buffer_mapped(&dummy)) { 466 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 467 if (buffer_new(&dummy)) { 468 lock_buffer(bh); 469 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 470 set_buffer_uptodate(bh); 471 unlock_buffer(bh); 472 mark_buffer_dirty_inode(bh, inode); 473 } 474 return bh; 475 } 476 477 return NULL; 478 } 479 480 /* Extend the file with new blocks totaling 'new_block_bytes', 481 * return the number of extents added 482 */ 483 static int udf_do_extend_file(struct inode *inode, 484 struct extent_position *last_pos, 485 struct kernel_long_ad *last_ext, 486 loff_t new_block_bytes) 487 { 488 uint32_t add; 489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 490 struct super_block *sb = inode->i_sb; 491 struct kernel_lb_addr prealloc_loc = {}; 492 uint32_t prealloc_len = 0; 493 struct udf_inode_info *iinfo; 494 int err; 495 496 /* The previous extent is fake and we should not extend by anything 497 * - there's nothing to do... */ 498 if (!new_block_bytes && fake) 499 return 0; 500 501 iinfo = UDF_I(inode); 502 /* Round the last extent up to a multiple of block size */ 503 if (last_ext->extLength & (sb->s_blocksize - 1)) { 504 last_ext->extLength = 505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 508 iinfo->i_lenExtents = 509 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 510 ~(sb->s_blocksize - 1); 511 } 512 513 /* Last extent are just preallocated blocks? */ 514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 515 EXT_NOT_RECORDED_ALLOCATED) { 516 /* Save the extent so that we can reattach it to the end */ 517 prealloc_loc = last_ext->extLocation; 518 prealloc_len = last_ext->extLength; 519 /* Mark the extent as a hole */ 520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 522 last_ext->extLocation.logicalBlockNum = 0; 523 last_ext->extLocation.partitionReferenceNum = 0; 524 } 525 526 /* Can we merge with the previous extent? */ 527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 528 EXT_NOT_RECORDED_NOT_ALLOCATED) { 529 add = (1 << 30) - sb->s_blocksize - 530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 531 if (add > new_block_bytes) 532 add = new_block_bytes; 533 new_block_bytes -= add; 534 last_ext->extLength += add; 535 } 536 537 if (fake) { 538 udf_add_aext(inode, last_pos, &last_ext->extLocation, 539 last_ext->extLength, 1); 540 count++; 541 } else { 542 struct kernel_lb_addr tmploc; 543 uint32_t tmplen; 544 545 udf_write_aext(inode, last_pos, &last_ext->extLocation, 546 last_ext->extLength, 1); 547 548 /* 549 * We've rewritten the last extent. If we are going to add 550 * more extents, we may need to enter possible following 551 * empty indirect extent. 552 */ 553 if (new_block_bytes || prealloc_len) 554 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 555 } 556 557 /* Managed to do everything necessary? */ 558 if (!new_block_bytes) 559 goto out; 560 561 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 562 last_ext->extLocation.logicalBlockNum = 0; 563 last_ext->extLocation.partitionReferenceNum = 0; 564 add = (1 << 30) - sb->s_blocksize; 565 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 566 567 /* Create enough extents to cover the whole hole */ 568 while (new_block_bytes > add) { 569 new_block_bytes -= add; 570 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 571 last_ext->extLength, 1); 572 if (err) 573 return err; 574 count++; 575 } 576 if (new_block_bytes) { 577 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 578 new_block_bytes; 579 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 580 last_ext->extLength, 1); 581 if (err) 582 return err; 583 count++; 584 } 585 586 out: 587 /* Do we have some preallocated blocks saved? */ 588 if (prealloc_len) { 589 err = udf_add_aext(inode, last_pos, &prealloc_loc, 590 prealloc_len, 1); 591 if (err) 592 return err; 593 last_ext->extLocation = prealloc_loc; 594 last_ext->extLength = prealloc_len; 595 count++; 596 } 597 598 /* last_pos should point to the last written extent... */ 599 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 600 last_pos->offset -= sizeof(struct short_ad); 601 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 602 last_pos->offset -= sizeof(struct long_ad); 603 else 604 return -EIO; 605 606 return count; 607 } 608 609 /* Extend the final block of the file to final_block_len bytes */ 610 static void udf_do_extend_final_block(struct inode *inode, 611 struct extent_position *last_pos, 612 struct kernel_long_ad *last_ext, 613 uint32_t final_block_len) 614 { 615 struct super_block *sb = inode->i_sb; 616 uint32_t added_bytes; 617 618 added_bytes = final_block_len - 619 (last_ext->extLength & (sb->s_blocksize - 1)); 620 last_ext->extLength += added_bytes; 621 UDF_I(inode)->i_lenExtents += added_bytes; 622 623 udf_write_aext(inode, last_pos, &last_ext->extLocation, 624 last_ext->extLength, 1); 625 } 626 627 static int udf_extend_file(struct inode *inode, loff_t newsize) 628 { 629 630 struct extent_position epos; 631 struct kernel_lb_addr eloc; 632 uint32_t elen; 633 int8_t etype; 634 struct super_block *sb = inode->i_sb; 635 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 636 unsigned long partial_final_block; 637 int adsize; 638 struct udf_inode_info *iinfo = UDF_I(inode); 639 struct kernel_long_ad extent; 640 int err = 0; 641 int within_final_block; 642 643 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 644 adsize = sizeof(struct short_ad); 645 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 646 adsize = sizeof(struct long_ad); 647 else 648 BUG(); 649 650 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 651 within_final_block = (etype != -1); 652 653 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 654 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 655 /* File has no extents at all or has empty last 656 * indirect extent! Create a fake extent... */ 657 extent.extLocation.logicalBlockNum = 0; 658 extent.extLocation.partitionReferenceNum = 0; 659 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 660 } else { 661 epos.offset -= adsize; 662 etype = udf_next_aext(inode, &epos, &extent.extLocation, 663 &extent.extLength, 0); 664 extent.extLength |= etype << 30; 665 } 666 667 partial_final_block = newsize & (sb->s_blocksize - 1); 668 669 /* File has extent covering the new size (could happen when extending 670 * inside a block)? 671 */ 672 if (within_final_block) { 673 /* Extending file within the last file block */ 674 udf_do_extend_final_block(inode, &epos, &extent, 675 partial_final_block); 676 } else { 677 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) | 678 partial_final_block; 679 err = udf_do_extend_file(inode, &epos, &extent, add); 680 } 681 682 if (err < 0) 683 goto out; 684 err = 0; 685 iinfo->i_lenExtents = newsize; 686 out: 687 brelse(epos.bh); 688 return err; 689 } 690 691 static sector_t inode_getblk(struct inode *inode, sector_t block, 692 int *err, int *new) 693 { 694 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 695 struct extent_position prev_epos, cur_epos, next_epos; 696 int count = 0, startnum = 0, endnum = 0; 697 uint32_t elen = 0, tmpelen; 698 struct kernel_lb_addr eloc, tmpeloc; 699 int c = 1; 700 loff_t lbcount = 0, b_off = 0; 701 udf_pblk_t newblocknum, newblock; 702 sector_t offset = 0; 703 int8_t etype; 704 struct udf_inode_info *iinfo = UDF_I(inode); 705 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 706 int lastblock = 0; 707 bool isBeyondEOF; 708 709 *err = 0; 710 *new = 0; 711 prev_epos.offset = udf_file_entry_alloc_offset(inode); 712 prev_epos.block = iinfo->i_location; 713 prev_epos.bh = NULL; 714 cur_epos = next_epos = prev_epos; 715 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 716 717 /* find the extent which contains the block we are looking for. 718 alternate between laarr[0] and laarr[1] for locations of the 719 current extent, and the previous extent */ 720 do { 721 if (prev_epos.bh != cur_epos.bh) { 722 brelse(prev_epos.bh); 723 get_bh(cur_epos.bh); 724 prev_epos.bh = cur_epos.bh; 725 } 726 if (cur_epos.bh != next_epos.bh) { 727 brelse(cur_epos.bh); 728 get_bh(next_epos.bh); 729 cur_epos.bh = next_epos.bh; 730 } 731 732 lbcount += elen; 733 734 prev_epos.block = cur_epos.block; 735 cur_epos.block = next_epos.block; 736 737 prev_epos.offset = cur_epos.offset; 738 cur_epos.offset = next_epos.offset; 739 740 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 741 if (etype == -1) 742 break; 743 744 c = !c; 745 746 laarr[c].extLength = (etype << 30) | elen; 747 laarr[c].extLocation = eloc; 748 749 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 750 pgoal = eloc.logicalBlockNum + 751 ((elen + inode->i_sb->s_blocksize - 1) >> 752 inode->i_sb->s_blocksize_bits); 753 754 count++; 755 } while (lbcount + elen <= b_off); 756 757 b_off -= lbcount; 758 offset = b_off >> inode->i_sb->s_blocksize_bits; 759 /* 760 * Move prev_epos and cur_epos into indirect extent if we are at 761 * the pointer to it 762 */ 763 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 764 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 765 766 /* if the extent is allocated and recorded, return the block 767 if the extent is not a multiple of the blocksize, round up */ 768 769 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 770 if (elen & (inode->i_sb->s_blocksize - 1)) { 771 elen = EXT_RECORDED_ALLOCATED | 772 ((elen + inode->i_sb->s_blocksize - 1) & 773 ~(inode->i_sb->s_blocksize - 1)); 774 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 775 } 776 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 777 goto out_free; 778 } 779 780 /* Are we beyond EOF? */ 781 if (etype == -1) { 782 int ret; 783 loff_t hole_len; 784 isBeyondEOF = true; 785 if (count) { 786 if (c) 787 laarr[0] = laarr[1]; 788 startnum = 1; 789 } else { 790 /* Create a fake extent when there's not one */ 791 memset(&laarr[0].extLocation, 0x00, 792 sizeof(struct kernel_lb_addr)); 793 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 794 /* Will udf_do_extend_file() create real extent from 795 a fake one? */ 796 startnum = (offset > 0); 797 } 798 /* Create extents for the hole between EOF and offset */ 799 hole_len = (loff_t)offset << inode->i_blkbits; 800 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 801 if (ret < 0) { 802 *err = ret; 803 newblock = 0; 804 goto out_free; 805 } 806 c = 0; 807 offset = 0; 808 count += ret; 809 /* We are not covered by a preallocated extent? */ 810 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 811 EXT_NOT_RECORDED_ALLOCATED) { 812 /* Is there any real extent? - otherwise we overwrite 813 * the fake one... */ 814 if (count) 815 c = !c; 816 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 817 inode->i_sb->s_blocksize; 818 memset(&laarr[c].extLocation, 0x00, 819 sizeof(struct kernel_lb_addr)); 820 count++; 821 } 822 endnum = c + 1; 823 lastblock = 1; 824 } else { 825 isBeyondEOF = false; 826 endnum = startnum = ((count > 2) ? 2 : count); 827 828 /* if the current extent is in position 0, 829 swap it with the previous */ 830 if (!c && count != 1) { 831 laarr[2] = laarr[0]; 832 laarr[0] = laarr[1]; 833 laarr[1] = laarr[2]; 834 c = 1; 835 } 836 837 /* if the current block is located in an extent, 838 read the next extent */ 839 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 840 if (etype != -1) { 841 laarr[c + 1].extLength = (etype << 30) | elen; 842 laarr[c + 1].extLocation = eloc; 843 count++; 844 startnum++; 845 endnum++; 846 } else 847 lastblock = 1; 848 } 849 850 /* if the current extent is not recorded but allocated, get the 851 * block in the extent corresponding to the requested block */ 852 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 853 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 854 else { /* otherwise, allocate a new block */ 855 if (iinfo->i_next_alloc_block == block) 856 goal = iinfo->i_next_alloc_goal; 857 858 if (!goal) { 859 if (!(goal = pgoal)) /* XXX: what was intended here? */ 860 goal = iinfo->i_location.logicalBlockNum + 1; 861 } 862 863 newblocknum = udf_new_block(inode->i_sb, inode, 864 iinfo->i_location.partitionReferenceNum, 865 goal, err); 866 if (!newblocknum) { 867 *err = -ENOSPC; 868 newblock = 0; 869 goto out_free; 870 } 871 if (isBeyondEOF) 872 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 873 } 874 875 /* if the extent the requsted block is located in contains multiple 876 * blocks, split the extent into at most three extents. blocks prior 877 * to requested block, requested block, and blocks after requested 878 * block */ 879 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 880 881 /* We preallocate blocks only for regular files. It also makes sense 882 * for directories but there's a problem when to drop the 883 * preallocation. We might use some delayed work for that but I feel 884 * it's overengineering for a filesystem like UDF. */ 885 if (S_ISREG(inode->i_mode)) 886 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 887 888 /* merge any continuous blocks in laarr */ 889 udf_merge_extents(inode, laarr, &endnum); 890 891 /* write back the new extents, inserting new extents if the new number 892 * of extents is greater than the old number, and deleting extents if 893 * the new number of extents is less than the old number */ 894 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 895 896 newblock = udf_get_pblock(inode->i_sb, newblocknum, 897 iinfo->i_location.partitionReferenceNum, 0); 898 if (!newblock) { 899 *err = -EIO; 900 goto out_free; 901 } 902 *new = 1; 903 iinfo->i_next_alloc_block = block; 904 iinfo->i_next_alloc_goal = newblocknum; 905 inode->i_ctime = current_time(inode); 906 907 if (IS_SYNC(inode)) 908 udf_sync_inode(inode); 909 else 910 mark_inode_dirty(inode); 911 out_free: 912 brelse(prev_epos.bh); 913 brelse(cur_epos.bh); 914 brelse(next_epos.bh); 915 return newblock; 916 } 917 918 static void udf_split_extents(struct inode *inode, int *c, int offset, 919 udf_pblk_t newblocknum, 920 struct kernel_long_ad *laarr, int *endnum) 921 { 922 unsigned long blocksize = inode->i_sb->s_blocksize; 923 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 924 925 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 926 (laarr[*c].extLength >> 30) == 927 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 928 int curr = *c; 929 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 930 blocksize - 1) >> blocksize_bits; 931 int8_t etype = (laarr[curr].extLength >> 30); 932 933 if (blen == 1) 934 ; 935 else if (!offset || blen == offset + 1) { 936 laarr[curr + 2] = laarr[curr + 1]; 937 laarr[curr + 1] = laarr[curr]; 938 } else { 939 laarr[curr + 3] = laarr[curr + 1]; 940 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 941 } 942 943 if (offset) { 944 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 945 udf_free_blocks(inode->i_sb, inode, 946 &laarr[curr].extLocation, 947 0, offset); 948 laarr[curr].extLength = 949 EXT_NOT_RECORDED_NOT_ALLOCATED | 950 (offset << blocksize_bits); 951 laarr[curr].extLocation.logicalBlockNum = 0; 952 laarr[curr].extLocation. 953 partitionReferenceNum = 0; 954 } else 955 laarr[curr].extLength = (etype << 30) | 956 (offset << blocksize_bits); 957 curr++; 958 (*c)++; 959 (*endnum)++; 960 } 961 962 laarr[curr].extLocation.logicalBlockNum = newblocknum; 963 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 964 laarr[curr].extLocation.partitionReferenceNum = 965 UDF_I(inode)->i_location.partitionReferenceNum; 966 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 967 blocksize; 968 curr++; 969 970 if (blen != offset + 1) { 971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 972 laarr[curr].extLocation.logicalBlockNum += 973 offset + 1; 974 laarr[curr].extLength = (etype << 30) | 975 ((blen - (offset + 1)) << blocksize_bits); 976 curr++; 977 (*endnum)++; 978 } 979 } 980 } 981 982 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 983 struct kernel_long_ad *laarr, 984 int *endnum) 985 { 986 int start, length = 0, currlength = 0, i; 987 988 if (*endnum >= (c + 1)) { 989 if (!lastblock) 990 return; 991 else 992 start = c; 993 } else { 994 if ((laarr[c + 1].extLength >> 30) == 995 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 996 start = c + 1; 997 length = currlength = 998 (((laarr[c + 1].extLength & 999 UDF_EXTENT_LENGTH_MASK) + 1000 inode->i_sb->s_blocksize - 1) >> 1001 inode->i_sb->s_blocksize_bits); 1002 } else 1003 start = c; 1004 } 1005 1006 for (i = start + 1; i <= *endnum; i++) { 1007 if (i == *endnum) { 1008 if (lastblock) 1009 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1010 } else if ((laarr[i].extLength >> 30) == 1011 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1012 length += (((laarr[i].extLength & 1013 UDF_EXTENT_LENGTH_MASK) + 1014 inode->i_sb->s_blocksize - 1) >> 1015 inode->i_sb->s_blocksize_bits); 1016 } else 1017 break; 1018 } 1019 1020 if (length) { 1021 int next = laarr[start].extLocation.logicalBlockNum + 1022 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1023 inode->i_sb->s_blocksize - 1) >> 1024 inode->i_sb->s_blocksize_bits); 1025 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1026 laarr[start].extLocation.partitionReferenceNum, 1027 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1028 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1029 currlength); 1030 if (numalloc) { 1031 if (start == (c + 1)) 1032 laarr[start].extLength += 1033 (numalloc << 1034 inode->i_sb->s_blocksize_bits); 1035 else { 1036 memmove(&laarr[c + 2], &laarr[c + 1], 1037 sizeof(struct long_ad) * (*endnum - (c + 1))); 1038 (*endnum)++; 1039 laarr[c + 1].extLocation.logicalBlockNum = next; 1040 laarr[c + 1].extLocation.partitionReferenceNum = 1041 laarr[c].extLocation. 1042 partitionReferenceNum; 1043 laarr[c + 1].extLength = 1044 EXT_NOT_RECORDED_ALLOCATED | 1045 (numalloc << 1046 inode->i_sb->s_blocksize_bits); 1047 start = c + 1; 1048 } 1049 1050 for (i = start + 1; numalloc && i < *endnum; i++) { 1051 int elen = ((laarr[i].extLength & 1052 UDF_EXTENT_LENGTH_MASK) + 1053 inode->i_sb->s_blocksize - 1) >> 1054 inode->i_sb->s_blocksize_bits; 1055 1056 if (elen > numalloc) { 1057 laarr[i].extLength -= 1058 (numalloc << 1059 inode->i_sb->s_blocksize_bits); 1060 numalloc = 0; 1061 } else { 1062 numalloc -= elen; 1063 if (*endnum > (i + 1)) 1064 memmove(&laarr[i], 1065 &laarr[i + 1], 1066 sizeof(struct long_ad) * 1067 (*endnum - (i + 1))); 1068 i--; 1069 (*endnum)--; 1070 } 1071 } 1072 UDF_I(inode)->i_lenExtents += 1073 numalloc << inode->i_sb->s_blocksize_bits; 1074 } 1075 } 1076 } 1077 1078 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1079 int *endnum) 1080 { 1081 int i; 1082 unsigned long blocksize = inode->i_sb->s_blocksize; 1083 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1084 1085 for (i = 0; i < (*endnum - 1); i++) { 1086 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1087 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1088 1089 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1090 (((li->extLength >> 30) == 1091 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1092 ((lip1->extLocation.logicalBlockNum - 1093 li->extLocation.logicalBlockNum) == 1094 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1095 blocksize - 1) >> blocksize_bits)))) { 1096 1097 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1098 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1099 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1100 lip1->extLength = (lip1->extLength - 1101 (li->extLength & 1102 UDF_EXTENT_LENGTH_MASK) + 1103 UDF_EXTENT_LENGTH_MASK) & 1104 ~(blocksize - 1); 1105 li->extLength = (li->extLength & 1106 UDF_EXTENT_FLAG_MASK) + 1107 (UDF_EXTENT_LENGTH_MASK + 1) - 1108 blocksize; 1109 lip1->extLocation.logicalBlockNum = 1110 li->extLocation.logicalBlockNum + 1111 ((li->extLength & 1112 UDF_EXTENT_LENGTH_MASK) >> 1113 blocksize_bits); 1114 } else { 1115 li->extLength = lip1->extLength + 1116 (((li->extLength & 1117 UDF_EXTENT_LENGTH_MASK) + 1118 blocksize - 1) & ~(blocksize - 1)); 1119 if (*endnum > (i + 2)) 1120 memmove(&laarr[i + 1], &laarr[i + 2], 1121 sizeof(struct long_ad) * 1122 (*endnum - (i + 2))); 1123 i--; 1124 (*endnum)--; 1125 } 1126 } else if (((li->extLength >> 30) == 1127 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1128 ((lip1->extLength >> 30) == 1129 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1130 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1131 ((li->extLength & 1132 UDF_EXTENT_LENGTH_MASK) + 1133 blocksize - 1) >> blocksize_bits); 1134 li->extLocation.logicalBlockNum = 0; 1135 li->extLocation.partitionReferenceNum = 0; 1136 1137 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1138 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1139 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1140 lip1->extLength = (lip1->extLength - 1141 (li->extLength & 1142 UDF_EXTENT_LENGTH_MASK) + 1143 UDF_EXTENT_LENGTH_MASK) & 1144 ~(blocksize - 1); 1145 li->extLength = (li->extLength & 1146 UDF_EXTENT_FLAG_MASK) + 1147 (UDF_EXTENT_LENGTH_MASK + 1) - 1148 blocksize; 1149 } else { 1150 li->extLength = lip1->extLength + 1151 (((li->extLength & 1152 UDF_EXTENT_LENGTH_MASK) + 1153 blocksize - 1) & ~(blocksize - 1)); 1154 if (*endnum > (i + 2)) 1155 memmove(&laarr[i + 1], &laarr[i + 2], 1156 sizeof(struct long_ad) * 1157 (*endnum - (i + 2))); 1158 i--; 1159 (*endnum)--; 1160 } 1161 } else if ((li->extLength >> 30) == 1162 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1163 udf_free_blocks(inode->i_sb, inode, 1164 &li->extLocation, 0, 1165 ((li->extLength & 1166 UDF_EXTENT_LENGTH_MASK) + 1167 blocksize - 1) >> blocksize_bits); 1168 li->extLocation.logicalBlockNum = 0; 1169 li->extLocation.partitionReferenceNum = 0; 1170 li->extLength = (li->extLength & 1171 UDF_EXTENT_LENGTH_MASK) | 1172 EXT_NOT_RECORDED_NOT_ALLOCATED; 1173 } 1174 } 1175 } 1176 1177 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1178 int startnum, int endnum, 1179 struct extent_position *epos) 1180 { 1181 int start = 0, i; 1182 struct kernel_lb_addr tmploc; 1183 uint32_t tmplen; 1184 1185 if (startnum > endnum) { 1186 for (i = 0; i < (startnum - endnum); i++) 1187 udf_delete_aext(inode, *epos); 1188 } else if (startnum < endnum) { 1189 for (i = 0; i < (endnum - startnum); i++) { 1190 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1191 laarr[i].extLength); 1192 udf_next_aext(inode, epos, &laarr[i].extLocation, 1193 &laarr[i].extLength, 1); 1194 start++; 1195 } 1196 } 1197 1198 for (i = start; i < endnum; i++) { 1199 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1200 udf_write_aext(inode, epos, &laarr[i].extLocation, 1201 laarr[i].extLength, 1); 1202 } 1203 } 1204 1205 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1206 int create, int *err) 1207 { 1208 struct buffer_head *bh = NULL; 1209 1210 bh = udf_getblk(inode, block, create, err); 1211 if (!bh) 1212 return NULL; 1213 1214 if (buffer_uptodate(bh)) 1215 return bh; 1216 1217 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1218 1219 wait_on_buffer(bh); 1220 if (buffer_uptodate(bh)) 1221 return bh; 1222 1223 brelse(bh); 1224 *err = -EIO; 1225 return NULL; 1226 } 1227 1228 int udf_setsize(struct inode *inode, loff_t newsize) 1229 { 1230 int err; 1231 struct udf_inode_info *iinfo; 1232 unsigned int bsize = i_blocksize(inode); 1233 1234 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1235 S_ISLNK(inode->i_mode))) 1236 return -EINVAL; 1237 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1238 return -EPERM; 1239 1240 iinfo = UDF_I(inode); 1241 if (newsize > inode->i_size) { 1242 down_write(&iinfo->i_data_sem); 1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1244 if (bsize < 1245 (udf_file_entry_alloc_offset(inode) + newsize)) { 1246 err = udf_expand_file_adinicb(inode); 1247 if (err) 1248 return err; 1249 down_write(&iinfo->i_data_sem); 1250 } else { 1251 iinfo->i_lenAlloc = newsize; 1252 goto set_size; 1253 } 1254 } 1255 err = udf_extend_file(inode, newsize); 1256 if (err) { 1257 up_write(&iinfo->i_data_sem); 1258 return err; 1259 } 1260 set_size: 1261 up_write(&iinfo->i_data_sem); 1262 truncate_setsize(inode, newsize); 1263 } else { 1264 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1265 down_write(&iinfo->i_data_sem); 1266 udf_clear_extent_cache(inode); 1267 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1268 0x00, bsize - newsize - 1269 udf_file_entry_alloc_offset(inode)); 1270 iinfo->i_lenAlloc = newsize; 1271 truncate_setsize(inode, newsize); 1272 up_write(&iinfo->i_data_sem); 1273 goto update_time; 1274 } 1275 err = block_truncate_page(inode->i_mapping, newsize, 1276 udf_get_block); 1277 if (err) 1278 return err; 1279 truncate_setsize(inode, newsize); 1280 down_write(&iinfo->i_data_sem); 1281 udf_clear_extent_cache(inode); 1282 err = udf_truncate_extents(inode); 1283 up_write(&iinfo->i_data_sem); 1284 if (err) 1285 return err; 1286 } 1287 update_time: 1288 inode->i_mtime = inode->i_ctime = current_time(inode); 1289 if (IS_SYNC(inode)) 1290 udf_sync_inode(inode); 1291 else 1292 mark_inode_dirty(inode); 1293 return 0; 1294 } 1295 1296 /* 1297 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1298 * arbitrary - just that we hopefully don't limit any real use of rewritten 1299 * inode on write-once media but avoid looping for too long on corrupted media. 1300 */ 1301 #define UDF_MAX_ICB_NESTING 1024 1302 1303 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1304 { 1305 struct buffer_head *bh = NULL; 1306 struct fileEntry *fe; 1307 struct extendedFileEntry *efe; 1308 uint16_t ident; 1309 struct udf_inode_info *iinfo = UDF_I(inode); 1310 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1311 struct kernel_lb_addr *iloc = &iinfo->i_location; 1312 unsigned int link_count; 1313 unsigned int indirections = 0; 1314 int bs = inode->i_sb->s_blocksize; 1315 int ret = -EIO; 1316 uint32_t uid, gid; 1317 1318 reread: 1319 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1320 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1321 iloc->partitionReferenceNum, sbi->s_partitions); 1322 return -EIO; 1323 } 1324 1325 if (iloc->logicalBlockNum >= 1326 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1327 udf_debug("block=%u, partition=%u out of range\n", 1328 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1329 return -EIO; 1330 } 1331 1332 /* 1333 * Set defaults, but the inode is still incomplete! 1334 * Note: get_new_inode() sets the following on a new inode: 1335 * i_sb = sb 1336 * i_no = ino 1337 * i_flags = sb->s_flags 1338 * i_state = 0 1339 * clean_inode(): zero fills and sets 1340 * i_count = 1 1341 * i_nlink = 1 1342 * i_op = NULL; 1343 */ 1344 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1345 if (!bh) { 1346 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1347 return -EIO; 1348 } 1349 1350 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1351 ident != TAG_IDENT_USE) { 1352 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1353 inode->i_ino, ident); 1354 goto out; 1355 } 1356 1357 fe = (struct fileEntry *)bh->b_data; 1358 efe = (struct extendedFileEntry *)bh->b_data; 1359 1360 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1361 struct buffer_head *ibh; 1362 1363 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1364 if (ident == TAG_IDENT_IE && ibh) { 1365 struct kernel_lb_addr loc; 1366 struct indirectEntry *ie; 1367 1368 ie = (struct indirectEntry *)ibh->b_data; 1369 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1370 1371 if (ie->indirectICB.extLength) { 1372 brelse(ibh); 1373 memcpy(&iinfo->i_location, &loc, 1374 sizeof(struct kernel_lb_addr)); 1375 if (++indirections > UDF_MAX_ICB_NESTING) { 1376 udf_err(inode->i_sb, 1377 "too many ICBs in ICB hierarchy" 1378 " (max %d supported)\n", 1379 UDF_MAX_ICB_NESTING); 1380 goto out; 1381 } 1382 brelse(bh); 1383 goto reread; 1384 } 1385 } 1386 brelse(ibh); 1387 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1388 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1389 le16_to_cpu(fe->icbTag.strategyType)); 1390 goto out; 1391 } 1392 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1393 iinfo->i_strat4096 = 0; 1394 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1395 iinfo->i_strat4096 = 1; 1396 1397 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1398 ICBTAG_FLAG_AD_MASK; 1399 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1400 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1401 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1402 ret = -EIO; 1403 goto out; 1404 } 1405 iinfo->i_unique = 0; 1406 iinfo->i_lenEAttr = 0; 1407 iinfo->i_lenExtents = 0; 1408 iinfo->i_lenAlloc = 0; 1409 iinfo->i_next_alloc_block = 0; 1410 iinfo->i_next_alloc_goal = 0; 1411 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1412 iinfo->i_efe = 1; 1413 iinfo->i_use = 0; 1414 ret = udf_alloc_i_data(inode, bs - 1415 sizeof(struct extendedFileEntry)); 1416 if (ret) 1417 goto out; 1418 memcpy(iinfo->i_data, 1419 bh->b_data + sizeof(struct extendedFileEntry), 1420 bs - sizeof(struct extendedFileEntry)); 1421 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1422 iinfo->i_efe = 0; 1423 iinfo->i_use = 0; 1424 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1425 if (ret) 1426 goto out; 1427 memcpy(iinfo->i_data, 1428 bh->b_data + sizeof(struct fileEntry), 1429 bs - sizeof(struct fileEntry)); 1430 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1431 iinfo->i_efe = 0; 1432 iinfo->i_use = 1; 1433 iinfo->i_lenAlloc = le32_to_cpu( 1434 ((struct unallocSpaceEntry *)bh->b_data)-> 1435 lengthAllocDescs); 1436 ret = udf_alloc_i_data(inode, bs - 1437 sizeof(struct unallocSpaceEntry)); 1438 if (ret) 1439 goto out; 1440 memcpy(iinfo->i_data, 1441 bh->b_data + sizeof(struct unallocSpaceEntry), 1442 bs - sizeof(struct unallocSpaceEntry)); 1443 return 0; 1444 } 1445 1446 ret = -EIO; 1447 read_lock(&sbi->s_cred_lock); 1448 uid = le32_to_cpu(fe->uid); 1449 if (uid == UDF_INVALID_ID || 1450 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1451 inode->i_uid = sbi->s_uid; 1452 else 1453 i_uid_write(inode, uid); 1454 1455 gid = le32_to_cpu(fe->gid); 1456 if (gid == UDF_INVALID_ID || 1457 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1458 inode->i_gid = sbi->s_gid; 1459 else 1460 i_gid_write(inode, gid); 1461 1462 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1463 sbi->s_fmode != UDF_INVALID_MODE) 1464 inode->i_mode = sbi->s_fmode; 1465 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1466 sbi->s_dmode != UDF_INVALID_MODE) 1467 inode->i_mode = sbi->s_dmode; 1468 else 1469 inode->i_mode = udf_convert_permissions(fe); 1470 inode->i_mode &= ~sbi->s_umask; 1471 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1472 1473 read_unlock(&sbi->s_cred_lock); 1474 1475 link_count = le16_to_cpu(fe->fileLinkCount); 1476 if (!link_count) { 1477 if (!hidden_inode) { 1478 ret = -ESTALE; 1479 goto out; 1480 } 1481 link_count = 1; 1482 } 1483 set_nlink(inode, link_count); 1484 1485 inode->i_size = le64_to_cpu(fe->informationLength); 1486 iinfo->i_lenExtents = inode->i_size; 1487 1488 if (iinfo->i_efe == 0) { 1489 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1490 (inode->i_sb->s_blocksize_bits - 9); 1491 1492 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1493 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1494 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1495 1496 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1497 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1498 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1499 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1500 iinfo->i_streamdir = 0; 1501 iinfo->i_lenStreams = 0; 1502 } else { 1503 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1504 (inode->i_sb->s_blocksize_bits - 9); 1505 1506 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1507 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1508 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1509 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1510 1511 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1512 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1513 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1514 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1515 1516 /* Named streams */ 1517 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1518 iinfo->i_locStreamdir = 1519 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1520 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1521 if (iinfo->i_lenStreams >= inode->i_size) 1522 iinfo->i_lenStreams -= inode->i_size; 1523 else 1524 iinfo->i_lenStreams = 0; 1525 } 1526 inode->i_generation = iinfo->i_unique; 1527 1528 /* 1529 * Sanity check length of allocation descriptors and extended attrs to 1530 * avoid integer overflows 1531 */ 1532 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1533 goto out; 1534 /* Now do exact checks */ 1535 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1536 goto out; 1537 /* Sanity checks for files in ICB so that we don't get confused later */ 1538 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1539 /* 1540 * For file in ICB data is stored in allocation descriptor 1541 * so sizes should match 1542 */ 1543 if (iinfo->i_lenAlloc != inode->i_size) 1544 goto out; 1545 /* File in ICB has to fit in there... */ 1546 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1547 goto out; 1548 } 1549 1550 switch (fe->icbTag.fileType) { 1551 case ICBTAG_FILE_TYPE_DIRECTORY: 1552 inode->i_op = &udf_dir_inode_operations; 1553 inode->i_fop = &udf_dir_operations; 1554 inode->i_mode |= S_IFDIR; 1555 inc_nlink(inode); 1556 break; 1557 case ICBTAG_FILE_TYPE_REALTIME: 1558 case ICBTAG_FILE_TYPE_REGULAR: 1559 case ICBTAG_FILE_TYPE_UNDEF: 1560 case ICBTAG_FILE_TYPE_VAT20: 1561 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1562 inode->i_data.a_ops = &udf_adinicb_aops; 1563 else 1564 inode->i_data.a_ops = &udf_aops; 1565 inode->i_op = &udf_file_inode_operations; 1566 inode->i_fop = &udf_file_operations; 1567 inode->i_mode |= S_IFREG; 1568 break; 1569 case ICBTAG_FILE_TYPE_BLOCK: 1570 inode->i_mode |= S_IFBLK; 1571 break; 1572 case ICBTAG_FILE_TYPE_CHAR: 1573 inode->i_mode |= S_IFCHR; 1574 break; 1575 case ICBTAG_FILE_TYPE_FIFO: 1576 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1577 break; 1578 case ICBTAG_FILE_TYPE_SOCKET: 1579 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1580 break; 1581 case ICBTAG_FILE_TYPE_SYMLINK: 1582 inode->i_data.a_ops = &udf_symlink_aops; 1583 inode->i_op = &udf_symlink_inode_operations; 1584 inode_nohighmem(inode); 1585 inode->i_mode = S_IFLNK | 0777; 1586 break; 1587 case ICBTAG_FILE_TYPE_MAIN: 1588 udf_debug("METADATA FILE-----\n"); 1589 break; 1590 case ICBTAG_FILE_TYPE_MIRROR: 1591 udf_debug("METADATA MIRROR FILE-----\n"); 1592 break; 1593 case ICBTAG_FILE_TYPE_BITMAP: 1594 udf_debug("METADATA BITMAP FILE-----\n"); 1595 break; 1596 default: 1597 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1598 inode->i_ino, fe->icbTag.fileType); 1599 goto out; 1600 } 1601 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1602 struct deviceSpec *dsea = 1603 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1604 if (dsea) { 1605 init_special_inode(inode, inode->i_mode, 1606 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1607 le32_to_cpu(dsea->minorDeviceIdent))); 1608 /* Developer ID ??? */ 1609 } else 1610 goto out; 1611 } 1612 ret = 0; 1613 out: 1614 brelse(bh); 1615 return ret; 1616 } 1617 1618 static int udf_alloc_i_data(struct inode *inode, size_t size) 1619 { 1620 struct udf_inode_info *iinfo = UDF_I(inode); 1621 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1622 if (!iinfo->i_data) 1623 return -ENOMEM; 1624 return 0; 1625 } 1626 1627 static umode_t udf_convert_permissions(struct fileEntry *fe) 1628 { 1629 umode_t mode; 1630 uint32_t permissions; 1631 uint32_t flags; 1632 1633 permissions = le32_to_cpu(fe->permissions); 1634 flags = le16_to_cpu(fe->icbTag.flags); 1635 1636 mode = ((permissions) & 0007) | 1637 ((permissions >> 2) & 0070) | 1638 ((permissions >> 4) & 0700) | 1639 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1640 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1641 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1642 1643 return mode; 1644 } 1645 1646 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1647 { 1648 struct udf_inode_info *iinfo = UDF_I(inode); 1649 1650 /* 1651 * UDF 2.01 sec. 3.3.3.3 Note 2: 1652 * In Unix, delete permission tracks write 1653 */ 1654 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1655 if (mode & 0200) 1656 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1657 if (mode & 0020) 1658 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1659 if (mode & 0002) 1660 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1661 } 1662 1663 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1664 { 1665 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1666 } 1667 1668 static int udf_sync_inode(struct inode *inode) 1669 { 1670 return udf_update_inode(inode, 1); 1671 } 1672 1673 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1674 { 1675 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1676 (iinfo->i_crtime.tv_sec == time.tv_sec && 1677 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1678 iinfo->i_crtime = time; 1679 } 1680 1681 static int udf_update_inode(struct inode *inode, int do_sync) 1682 { 1683 struct buffer_head *bh = NULL; 1684 struct fileEntry *fe; 1685 struct extendedFileEntry *efe; 1686 uint64_t lb_recorded; 1687 uint32_t udfperms; 1688 uint16_t icbflags; 1689 uint16_t crclen; 1690 int err = 0; 1691 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1692 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1693 struct udf_inode_info *iinfo = UDF_I(inode); 1694 1695 bh = udf_tgetblk(inode->i_sb, 1696 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1697 if (!bh) { 1698 udf_debug("getblk failure\n"); 1699 return -EIO; 1700 } 1701 1702 lock_buffer(bh); 1703 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1704 fe = (struct fileEntry *)bh->b_data; 1705 efe = (struct extendedFileEntry *)bh->b_data; 1706 1707 if (iinfo->i_use) { 1708 struct unallocSpaceEntry *use = 1709 (struct unallocSpaceEntry *)bh->b_data; 1710 1711 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1712 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1713 iinfo->i_data, inode->i_sb->s_blocksize - 1714 sizeof(struct unallocSpaceEntry)); 1715 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1716 crclen = sizeof(struct unallocSpaceEntry); 1717 1718 goto finish; 1719 } 1720 1721 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1722 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1723 else 1724 fe->uid = cpu_to_le32(i_uid_read(inode)); 1725 1726 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1727 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1728 else 1729 fe->gid = cpu_to_le32(i_gid_read(inode)); 1730 1731 udfperms = ((inode->i_mode & 0007)) | 1732 ((inode->i_mode & 0070) << 2) | 1733 ((inode->i_mode & 0700) << 4); 1734 1735 udfperms |= iinfo->i_extraPerms; 1736 fe->permissions = cpu_to_le32(udfperms); 1737 1738 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1739 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1740 else 1741 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1742 1743 fe->informationLength = cpu_to_le64(inode->i_size); 1744 1745 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1746 struct regid *eid; 1747 struct deviceSpec *dsea = 1748 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1749 if (!dsea) { 1750 dsea = (struct deviceSpec *) 1751 udf_add_extendedattr(inode, 1752 sizeof(struct deviceSpec) + 1753 sizeof(struct regid), 12, 0x3); 1754 dsea->attrType = cpu_to_le32(12); 1755 dsea->attrSubtype = 1; 1756 dsea->attrLength = cpu_to_le32( 1757 sizeof(struct deviceSpec) + 1758 sizeof(struct regid)); 1759 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1760 } 1761 eid = (struct regid *)dsea->impUse; 1762 memset(eid, 0, sizeof(*eid)); 1763 strcpy(eid->ident, UDF_ID_DEVELOPER); 1764 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1765 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1766 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1767 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1768 } 1769 1770 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1771 lb_recorded = 0; /* No extents => no blocks! */ 1772 else 1773 lb_recorded = 1774 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1775 (blocksize_bits - 9); 1776 1777 if (iinfo->i_efe == 0) { 1778 memcpy(bh->b_data + sizeof(struct fileEntry), 1779 iinfo->i_data, 1780 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1781 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1782 1783 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1784 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1785 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1786 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1787 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1788 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1789 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1790 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1791 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1792 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1793 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1794 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1795 crclen = sizeof(struct fileEntry); 1796 } else { 1797 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1798 iinfo->i_data, 1799 inode->i_sb->s_blocksize - 1800 sizeof(struct extendedFileEntry)); 1801 efe->objectSize = 1802 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1803 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1804 1805 if (iinfo->i_streamdir) { 1806 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1807 1808 icb_lad->extLocation = 1809 cpu_to_lelb(iinfo->i_locStreamdir); 1810 icb_lad->extLength = 1811 cpu_to_le32(inode->i_sb->s_blocksize); 1812 } 1813 1814 udf_adjust_time(iinfo, inode->i_atime); 1815 udf_adjust_time(iinfo, inode->i_mtime); 1816 udf_adjust_time(iinfo, inode->i_ctime); 1817 1818 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1819 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1820 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1821 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1822 1823 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1824 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1825 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1826 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1827 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1828 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1829 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1830 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1831 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1832 crclen = sizeof(struct extendedFileEntry); 1833 } 1834 1835 finish: 1836 if (iinfo->i_strat4096) { 1837 fe->icbTag.strategyType = cpu_to_le16(4096); 1838 fe->icbTag.strategyParameter = cpu_to_le16(1); 1839 fe->icbTag.numEntries = cpu_to_le16(2); 1840 } else { 1841 fe->icbTag.strategyType = cpu_to_le16(4); 1842 fe->icbTag.numEntries = cpu_to_le16(1); 1843 } 1844 1845 if (iinfo->i_use) 1846 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1847 else if (S_ISDIR(inode->i_mode)) 1848 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1849 else if (S_ISREG(inode->i_mode)) 1850 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1851 else if (S_ISLNK(inode->i_mode)) 1852 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1853 else if (S_ISBLK(inode->i_mode)) 1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1855 else if (S_ISCHR(inode->i_mode)) 1856 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1857 else if (S_ISFIFO(inode->i_mode)) 1858 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1859 else if (S_ISSOCK(inode->i_mode)) 1860 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1861 1862 icbflags = iinfo->i_alloc_type | 1863 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1864 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1865 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1866 (le16_to_cpu(fe->icbTag.flags) & 1867 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1868 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1869 1870 fe->icbTag.flags = cpu_to_le16(icbflags); 1871 if (sbi->s_udfrev >= 0x0200) 1872 fe->descTag.descVersion = cpu_to_le16(3); 1873 else 1874 fe->descTag.descVersion = cpu_to_le16(2); 1875 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1876 fe->descTag.tagLocation = cpu_to_le32( 1877 iinfo->i_location.logicalBlockNum); 1878 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1879 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1880 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1881 crclen)); 1882 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1883 1884 set_buffer_uptodate(bh); 1885 unlock_buffer(bh); 1886 1887 /* write the data blocks */ 1888 mark_buffer_dirty(bh); 1889 if (do_sync) { 1890 sync_dirty_buffer(bh); 1891 if (buffer_write_io_error(bh)) { 1892 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1893 inode->i_ino); 1894 err = -EIO; 1895 } 1896 } 1897 brelse(bh); 1898 1899 return err; 1900 } 1901 1902 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1903 bool hidden_inode) 1904 { 1905 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1906 struct inode *inode = iget_locked(sb, block); 1907 int err; 1908 1909 if (!inode) 1910 return ERR_PTR(-ENOMEM); 1911 1912 if (!(inode->i_state & I_NEW)) 1913 return inode; 1914 1915 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1916 err = udf_read_inode(inode, hidden_inode); 1917 if (err < 0) { 1918 iget_failed(inode); 1919 return ERR_PTR(err); 1920 } 1921 unlock_new_inode(inode); 1922 1923 return inode; 1924 } 1925 1926 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1927 struct extent_position *epos) 1928 { 1929 struct super_block *sb = inode->i_sb; 1930 struct buffer_head *bh; 1931 struct allocExtDesc *aed; 1932 struct extent_position nepos; 1933 struct kernel_lb_addr neloc; 1934 int ver, adsize; 1935 1936 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1937 adsize = sizeof(struct short_ad); 1938 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1939 adsize = sizeof(struct long_ad); 1940 else 1941 return -EIO; 1942 1943 neloc.logicalBlockNum = block; 1944 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1945 1946 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1947 if (!bh) 1948 return -EIO; 1949 lock_buffer(bh); 1950 memset(bh->b_data, 0x00, sb->s_blocksize); 1951 set_buffer_uptodate(bh); 1952 unlock_buffer(bh); 1953 mark_buffer_dirty_inode(bh, inode); 1954 1955 aed = (struct allocExtDesc *)(bh->b_data); 1956 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1957 aed->previousAllocExtLocation = 1958 cpu_to_le32(epos->block.logicalBlockNum); 1959 } 1960 aed->lengthAllocDescs = cpu_to_le32(0); 1961 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1962 ver = 3; 1963 else 1964 ver = 2; 1965 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1966 sizeof(struct tag)); 1967 1968 nepos.block = neloc; 1969 nepos.offset = sizeof(struct allocExtDesc); 1970 nepos.bh = bh; 1971 1972 /* 1973 * Do we have to copy current last extent to make space for indirect 1974 * one? 1975 */ 1976 if (epos->offset + adsize > sb->s_blocksize) { 1977 struct kernel_lb_addr cp_loc; 1978 uint32_t cp_len; 1979 int cp_type; 1980 1981 epos->offset -= adsize; 1982 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1983 cp_len |= ((uint32_t)cp_type) << 30; 1984 1985 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1986 udf_write_aext(inode, epos, &nepos.block, 1987 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1988 } else { 1989 __udf_add_aext(inode, epos, &nepos.block, 1990 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1991 } 1992 1993 brelse(epos->bh); 1994 *epos = nepos; 1995 1996 return 0; 1997 } 1998 1999 /* 2000 * Append extent at the given position - should be the first free one in inode 2001 * / indirect extent. This function assumes there is enough space in the inode 2002 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2003 */ 2004 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2005 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2006 { 2007 struct udf_inode_info *iinfo = UDF_I(inode); 2008 struct allocExtDesc *aed; 2009 int adsize; 2010 2011 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2012 adsize = sizeof(struct short_ad); 2013 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2014 adsize = sizeof(struct long_ad); 2015 else 2016 return -EIO; 2017 2018 if (!epos->bh) { 2019 WARN_ON(iinfo->i_lenAlloc != 2020 epos->offset - udf_file_entry_alloc_offset(inode)); 2021 } else { 2022 aed = (struct allocExtDesc *)epos->bh->b_data; 2023 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2024 epos->offset - sizeof(struct allocExtDesc)); 2025 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2026 } 2027 2028 udf_write_aext(inode, epos, eloc, elen, inc); 2029 2030 if (!epos->bh) { 2031 iinfo->i_lenAlloc += adsize; 2032 mark_inode_dirty(inode); 2033 } else { 2034 aed = (struct allocExtDesc *)epos->bh->b_data; 2035 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2036 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2037 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2038 udf_update_tag(epos->bh->b_data, 2039 epos->offset + (inc ? 0 : adsize)); 2040 else 2041 udf_update_tag(epos->bh->b_data, 2042 sizeof(struct allocExtDesc)); 2043 mark_buffer_dirty_inode(epos->bh, inode); 2044 } 2045 2046 return 0; 2047 } 2048 2049 /* 2050 * Append extent at given position - should be the first free one in inode 2051 * / indirect extent. Takes care of allocating and linking indirect blocks. 2052 */ 2053 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2054 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2055 { 2056 int adsize; 2057 struct super_block *sb = inode->i_sb; 2058 2059 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2060 adsize = sizeof(struct short_ad); 2061 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2062 adsize = sizeof(struct long_ad); 2063 else 2064 return -EIO; 2065 2066 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2067 int err; 2068 udf_pblk_t new_block; 2069 2070 new_block = udf_new_block(sb, NULL, 2071 epos->block.partitionReferenceNum, 2072 epos->block.logicalBlockNum, &err); 2073 if (!new_block) 2074 return -ENOSPC; 2075 2076 err = udf_setup_indirect_aext(inode, new_block, epos); 2077 if (err) 2078 return err; 2079 } 2080 2081 return __udf_add_aext(inode, epos, eloc, elen, inc); 2082 } 2083 2084 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2085 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2086 { 2087 int adsize; 2088 uint8_t *ptr; 2089 struct short_ad *sad; 2090 struct long_ad *lad; 2091 struct udf_inode_info *iinfo = UDF_I(inode); 2092 2093 if (!epos->bh) 2094 ptr = iinfo->i_data + epos->offset - 2095 udf_file_entry_alloc_offset(inode) + 2096 iinfo->i_lenEAttr; 2097 else 2098 ptr = epos->bh->b_data + epos->offset; 2099 2100 switch (iinfo->i_alloc_type) { 2101 case ICBTAG_FLAG_AD_SHORT: 2102 sad = (struct short_ad *)ptr; 2103 sad->extLength = cpu_to_le32(elen); 2104 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2105 adsize = sizeof(struct short_ad); 2106 break; 2107 case ICBTAG_FLAG_AD_LONG: 2108 lad = (struct long_ad *)ptr; 2109 lad->extLength = cpu_to_le32(elen); 2110 lad->extLocation = cpu_to_lelb(*eloc); 2111 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2112 adsize = sizeof(struct long_ad); 2113 break; 2114 default: 2115 return; 2116 } 2117 2118 if (epos->bh) { 2119 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2120 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2121 struct allocExtDesc *aed = 2122 (struct allocExtDesc *)epos->bh->b_data; 2123 udf_update_tag(epos->bh->b_data, 2124 le32_to_cpu(aed->lengthAllocDescs) + 2125 sizeof(struct allocExtDesc)); 2126 } 2127 mark_buffer_dirty_inode(epos->bh, inode); 2128 } else { 2129 mark_inode_dirty(inode); 2130 } 2131 2132 if (inc) 2133 epos->offset += adsize; 2134 } 2135 2136 /* 2137 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2138 * someone does some weird stuff. 2139 */ 2140 #define UDF_MAX_INDIR_EXTS 16 2141 2142 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2143 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2144 { 2145 int8_t etype; 2146 unsigned int indirections = 0; 2147 2148 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2149 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2150 udf_pblk_t block; 2151 2152 if (++indirections > UDF_MAX_INDIR_EXTS) { 2153 udf_err(inode->i_sb, 2154 "too many indirect extents in inode %lu\n", 2155 inode->i_ino); 2156 return -1; 2157 } 2158 2159 epos->block = *eloc; 2160 epos->offset = sizeof(struct allocExtDesc); 2161 brelse(epos->bh); 2162 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2163 epos->bh = udf_tread(inode->i_sb, block); 2164 if (!epos->bh) { 2165 udf_debug("reading block %u failed!\n", block); 2166 return -1; 2167 } 2168 } 2169 2170 return etype; 2171 } 2172 2173 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2174 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2175 { 2176 int alen; 2177 int8_t etype; 2178 uint8_t *ptr; 2179 struct short_ad *sad; 2180 struct long_ad *lad; 2181 struct udf_inode_info *iinfo = UDF_I(inode); 2182 2183 if (!epos->bh) { 2184 if (!epos->offset) 2185 epos->offset = udf_file_entry_alloc_offset(inode); 2186 ptr = iinfo->i_data + epos->offset - 2187 udf_file_entry_alloc_offset(inode) + 2188 iinfo->i_lenEAttr; 2189 alen = udf_file_entry_alloc_offset(inode) + 2190 iinfo->i_lenAlloc; 2191 } else { 2192 if (!epos->offset) 2193 epos->offset = sizeof(struct allocExtDesc); 2194 ptr = epos->bh->b_data + epos->offset; 2195 alen = sizeof(struct allocExtDesc) + 2196 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2197 lengthAllocDescs); 2198 } 2199 2200 switch (iinfo->i_alloc_type) { 2201 case ICBTAG_FLAG_AD_SHORT: 2202 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2203 if (!sad) 2204 return -1; 2205 etype = le32_to_cpu(sad->extLength) >> 30; 2206 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2207 eloc->partitionReferenceNum = 2208 iinfo->i_location.partitionReferenceNum; 2209 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2210 break; 2211 case ICBTAG_FLAG_AD_LONG: 2212 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2213 if (!lad) 2214 return -1; 2215 etype = le32_to_cpu(lad->extLength) >> 30; 2216 *eloc = lelb_to_cpu(lad->extLocation); 2217 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2218 break; 2219 default: 2220 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2221 return -1; 2222 } 2223 2224 return etype; 2225 } 2226 2227 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2228 struct kernel_lb_addr neloc, uint32_t nelen) 2229 { 2230 struct kernel_lb_addr oeloc; 2231 uint32_t oelen; 2232 int8_t etype; 2233 2234 if (epos.bh) 2235 get_bh(epos.bh); 2236 2237 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2238 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2239 neloc = oeloc; 2240 nelen = (etype << 30) | oelen; 2241 } 2242 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2243 brelse(epos.bh); 2244 2245 return (nelen >> 30); 2246 } 2247 2248 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2249 { 2250 struct extent_position oepos; 2251 int adsize; 2252 int8_t etype; 2253 struct allocExtDesc *aed; 2254 struct udf_inode_info *iinfo; 2255 struct kernel_lb_addr eloc; 2256 uint32_t elen; 2257 2258 if (epos.bh) { 2259 get_bh(epos.bh); 2260 get_bh(epos.bh); 2261 } 2262 2263 iinfo = UDF_I(inode); 2264 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2265 adsize = sizeof(struct short_ad); 2266 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2267 adsize = sizeof(struct long_ad); 2268 else 2269 adsize = 0; 2270 2271 oepos = epos; 2272 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2273 return -1; 2274 2275 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2276 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2277 if (oepos.bh != epos.bh) { 2278 oepos.block = epos.block; 2279 brelse(oepos.bh); 2280 get_bh(epos.bh); 2281 oepos.bh = epos.bh; 2282 oepos.offset = epos.offset - adsize; 2283 } 2284 } 2285 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2286 elen = 0; 2287 2288 if (epos.bh != oepos.bh) { 2289 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2290 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2291 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2292 if (!oepos.bh) { 2293 iinfo->i_lenAlloc -= (adsize * 2); 2294 mark_inode_dirty(inode); 2295 } else { 2296 aed = (struct allocExtDesc *)oepos.bh->b_data; 2297 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2298 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2299 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2300 udf_update_tag(oepos.bh->b_data, 2301 oepos.offset - (2 * adsize)); 2302 else 2303 udf_update_tag(oepos.bh->b_data, 2304 sizeof(struct allocExtDesc)); 2305 mark_buffer_dirty_inode(oepos.bh, inode); 2306 } 2307 } else { 2308 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2309 if (!oepos.bh) { 2310 iinfo->i_lenAlloc -= adsize; 2311 mark_inode_dirty(inode); 2312 } else { 2313 aed = (struct allocExtDesc *)oepos.bh->b_data; 2314 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2315 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2316 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2317 udf_update_tag(oepos.bh->b_data, 2318 epos.offset - adsize); 2319 else 2320 udf_update_tag(oepos.bh->b_data, 2321 sizeof(struct allocExtDesc)); 2322 mark_buffer_dirty_inode(oepos.bh, inode); 2323 } 2324 } 2325 2326 brelse(epos.bh); 2327 brelse(oepos.bh); 2328 2329 return (elen >> 30); 2330 } 2331 2332 int8_t inode_bmap(struct inode *inode, sector_t block, 2333 struct extent_position *pos, struct kernel_lb_addr *eloc, 2334 uint32_t *elen, sector_t *offset) 2335 { 2336 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2337 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2338 int8_t etype; 2339 struct udf_inode_info *iinfo; 2340 2341 iinfo = UDF_I(inode); 2342 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2343 pos->offset = 0; 2344 pos->block = iinfo->i_location; 2345 pos->bh = NULL; 2346 } 2347 *elen = 0; 2348 do { 2349 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2350 if (etype == -1) { 2351 *offset = (bcount - lbcount) >> blocksize_bits; 2352 iinfo->i_lenExtents = lbcount; 2353 return -1; 2354 } 2355 lbcount += *elen; 2356 } while (lbcount <= bcount); 2357 /* update extent cache */ 2358 udf_update_extent_cache(inode, lbcount - *elen, pos); 2359 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2360 2361 return etype; 2362 } 2363 2364 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2365 { 2366 struct kernel_lb_addr eloc; 2367 uint32_t elen; 2368 sector_t offset; 2369 struct extent_position epos = {}; 2370 udf_pblk_t ret; 2371 2372 down_read(&UDF_I(inode)->i_data_sem); 2373 2374 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2375 (EXT_RECORDED_ALLOCATED >> 30)) 2376 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2377 else 2378 ret = 0; 2379 2380 up_read(&UDF_I(inode)->i_data_sem); 2381 brelse(epos.bh); 2382 2383 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2384 return udf_fixed_to_variable(ret); 2385 else 2386 return ret; 2387 } 2388