1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 static umode_t udf_convert_permissions(struct fileEntry *); 49 static int udf_update_inode(struct inode *, int); 50 static int udf_sync_inode(struct inode *inode); 51 static int udf_alloc_i_data(struct inode *inode, size_t size); 52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 53 static int8_t udf_insert_aext(struct inode *, struct extent_position, 54 struct kernel_lb_addr, uint32_t); 55 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 56 struct kernel_long_ad *, int *); 57 static void udf_prealloc_extents(struct inode *, int, int, 58 struct kernel_long_ad *, int *); 59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 61 int, struct extent_position *); 62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 63 64 static void __udf_clear_extent_cache(struct inode *inode) 65 { 66 struct udf_inode_info *iinfo = UDF_I(inode); 67 68 if (iinfo->cached_extent.lstart != -1) { 69 brelse(iinfo->cached_extent.epos.bh); 70 iinfo->cached_extent.lstart = -1; 71 } 72 } 73 74 /* Invalidate extent cache */ 75 static void udf_clear_extent_cache(struct inode *inode) 76 { 77 struct udf_inode_info *iinfo = UDF_I(inode); 78 79 spin_lock(&iinfo->i_extent_cache_lock); 80 __udf_clear_extent_cache(inode); 81 spin_unlock(&iinfo->i_extent_cache_lock); 82 } 83 84 /* Return contents of extent cache */ 85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 86 loff_t *lbcount, struct extent_position *pos) 87 { 88 struct udf_inode_info *iinfo = UDF_I(inode); 89 int ret = 0; 90 91 spin_lock(&iinfo->i_extent_cache_lock); 92 if ((iinfo->cached_extent.lstart <= bcount) && 93 (iinfo->cached_extent.lstart != -1)) { 94 /* Cache hit */ 95 *lbcount = iinfo->cached_extent.lstart; 96 memcpy(pos, &iinfo->cached_extent.epos, 97 sizeof(struct extent_position)); 98 if (pos->bh) 99 get_bh(pos->bh); 100 ret = 1; 101 } 102 spin_unlock(&iinfo->i_extent_cache_lock); 103 return ret; 104 } 105 106 /* Add extent to extent cache */ 107 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 108 struct extent_position *pos) 109 { 110 struct udf_inode_info *iinfo = UDF_I(inode); 111 112 spin_lock(&iinfo->i_extent_cache_lock); 113 /* Invalidate previously cached extent */ 114 __udf_clear_extent_cache(inode); 115 if (pos->bh) 116 get_bh(pos->bh); 117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 118 iinfo->cached_extent.lstart = estart; 119 switch (iinfo->i_alloc_type) { 120 case ICBTAG_FLAG_AD_SHORT: 121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 122 break; 123 case ICBTAG_FLAG_AD_LONG: 124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 125 break; 126 } 127 spin_unlock(&iinfo->i_extent_cache_lock); 128 } 129 130 void udf_evict_inode(struct inode *inode) 131 { 132 struct udf_inode_info *iinfo = UDF_I(inode); 133 int want_delete = 0; 134 135 if (!inode->i_nlink && !is_bad_inode(inode)) { 136 want_delete = 1; 137 udf_setsize(inode, 0); 138 udf_update_inode(inode, IS_SYNC(inode)); 139 } 140 truncate_inode_pages_final(&inode->i_data); 141 invalidate_inode_buffers(inode); 142 clear_inode(inode); 143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 144 inode->i_size != iinfo->i_lenExtents) { 145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 146 inode->i_ino, inode->i_mode, 147 (unsigned long long)inode->i_size, 148 (unsigned long long)iinfo->i_lenExtents); 149 } 150 kfree(iinfo->i_ext.i_data); 151 iinfo->i_ext.i_data = NULL; 152 udf_clear_extent_cache(inode); 153 if (want_delete) { 154 udf_free_inode(inode); 155 } 156 } 157 158 static void udf_write_failed(struct address_space *mapping, loff_t to) 159 { 160 struct inode *inode = mapping->host; 161 struct udf_inode_info *iinfo = UDF_I(inode); 162 loff_t isize = inode->i_size; 163 164 if (to > isize) { 165 truncate_pagecache(inode, isize); 166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 167 down_write(&iinfo->i_data_sem); 168 udf_clear_extent_cache(inode); 169 udf_truncate_extents(inode); 170 up_write(&iinfo->i_data_sem); 171 } 172 } 173 } 174 175 static int udf_writepage(struct page *page, struct writeback_control *wbc) 176 { 177 return block_write_full_page(page, udf_get_block, wbc); 178 } 179 180 static int udf_writepages(struct address_space *mapping, 181 struct writeback_control *wbc) 182 { 183 return mpage_writepages(mapping, wbc, udf_get_block); 184 } 185 186 static int udf_readpage(struct file *file, struct page *page) 187 { 188 return mpage_readpage(page, udf_get_block); 189 } 190 191 static int udf_readpages(struct file *file, struct address_space *mapping, 192 struct list_head *pages, unsigned nr_pages) 193 { 194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 195 } 196 197 static int udf_write_begin(struct file *file, struct address_space *mapping, 198 loff_t pos, unsigned len, unsigned flags, 199 struct page **pagep, void **fsdata) 200 { 201 int ret; 202 203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 204 if (unlikely(ret)) 205 udf_write_failed(mapping, pos + len); 206 return ret; 207 } 208 209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 210 { 211 struct file *file = iocb->ki_filp; 212 struct address_space *mapping = file->f_mapping; 213 struct inode *inode = mapping->host; 214 size_t count = iov_iter_count(iter); 215 ssize_t ret; 216 217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 219 udf_write_failed(mapping, iocb->ki_pos + count); 220 return ret; 221 } 222 223 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 224 { 225 return generic_block_bmap(mapping, block, udf_get_block); 226 } 227 228 const struct address_space_operations udf_aops = { 229 .readpage = udf_readpage, 230 .readpages = udf_readpages, 231 .writepage = udf_writepage, 232 .writepages = udf_writepages, 233 .write_begin = udf_write_begin, 234 .write_end = generic_write_end, 235 .direct_IO = udf_direct_IO, 236 .bmap = udf_bmap, 237 }; 238 239 /* 240 * Expand file stored in ICB to a normal one-block-file 241 * 242 * This function requires i_data_sem for writing and releases it. 243 * This function requires i_mutex held 244 */ 245 int udf_expand_file_adinicb(struct inode *inode) 246 { 247 struct page *page; 248 char *kaddr; 249 struct udf_inode_info *iinfo = UDF_I(inode); 250 int err; 251 struct writeback_control udf_wbc = { 252 .sync_mode = WB_SYNC_NONE, 253 .nr_to_write = 1, 254 }; 255 256 WARN_ON_ONCE(!inode_is_locked(inode)); 257 if (!iinfo->i_lenAlloc) { 258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 260 else 261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 262 /* from now on we have normal address_space methods */ 263 inode->i_data.a_ops = &udf_aops; 264 up_write(&iinfo->i_data_sem); 265 mark_inode_dirty(inode); 266 return 0; 267 } 268 /* 269 * Release i_data_sem so that we can lock a page - page lock ranks 270 * above i_data_sem. i_mutex still protects us against file changes. 271 */ 272 up_write(&iinfo->i_data_sem); 273 274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 275 if (!page) 276 return -ENOMEM; 277 278 if (!PageUptodate(page)) { 279 kaddr = kmap_atomic(page); 280 memset(kaddr + iinfo->i_lenAlloc, 0x00, 281 PAGE_SIZE - iinfo->i_lenAlloc); 282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 283 iinfo->i_lenAlloc); 284 flush_dcache_page(page); 285 SetPageUptodate(page); 286 kunmap_atomic(kaddr); 287 } 288 down_write(&iinfo->i_data_sem); 289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 290 iinfo->i_lenAlloc); 291 iinfo->i_lenAlloc = 0; 292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 294 else 295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 296 /* from now on we have normal address_space methods */ 297 inode->i_data.a_ops = &udf_aops; 298 up_write(&iinfo->i_data_sem); 299 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 300 if (err) { 301 /* Restore everything back so that we don't lose data... */ 302 lock_page(page); 303 down_write(&iinfo->i_data_sem); 304 kaddr = kmap_atomic(page); 305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 306 inode->i_size); 307 kunmap_atomic(kaddr); 308 unlock_page(page); 309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 310 inode->i_data.a_ops = &udf_adinicb_aops; 311 up_write(&iinfo->i_data_sem); 312 } 313 put_page(page); 314 mark_inode_dirty(inode); 315 316 return err; 317 } 318 319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 320 udf_pblk_t *block, int *err) 321 { 322 udf_pblk_t newblock; 323 struct buffer_head *dbh = NULL; 324 struct kernel_lb_addr eloc; 325 uint8_t alloctype; 326 struct extent_position epos; 327 328 struct udf_fileident_bh sfibh, dfibh; 329 loff_t f_pos = udf_ext0_offset(inode); 330 int size = udf_ext0_offset(inode) + inode->i_size; 331 struct fileIdentDesc cfi, *sfi, *dfi; 332 struct udf_inode_info *iinfo = UDF_I(inode); 333 334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 335 alloctype = ICBTAG_FLAG_AD_SHORT; 336 else 337 alloctype = ICBTAG_FLAG_AD_LONG; 338 339 if (!inode->i_size) { 340 iinfo->i_alloc_type = alloctype; 341 mark_inode_dirty(inode); 342 return NULL; 343 } 344 345 /* alloc block, and copy data to it */ 346 *block = udf_new_block(inode->i_sb, inode, 347 iinfo->i_location.partitionReferenceNum, 348 iinfo->i_location.logicalBlockNum, err); 349 if (!(*block)) 350 return NULL; 351 newblock = udf_get_pblock(inode->i_sb, *block, 352 iinfo->i_location.partitionReferenceNum, 353 0); 354 if (!newblock) 355 return NULL; 356 dbh = udf_tgetblk(inode->i_sb, newblock); 357 if (!dbh) 358 return NULL; 359 lock_buffer(dbh); 360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 361 set_buffer_uptodate(dbh); 362 unlock_buffer(dbh); 363 mark_buffer_dirty_inode(dbh, inode); 364 365 sfibh.soffset = sfibh.eoffset = 366 f_pos & (inode->i_sb->s_blocksize - 1); 367 sfibh.sbh = sfibh.ebh = NULL; 368 dfibh.soffset = dfibh.eoffset = 0; 369 dfibh.sbh = dfibh.ebh = dbh; 370 while (f_pos < size) { 371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 373 NULL, NULL, NULL); 374 if (!sfi) { 375 brelse(dbh); 376 return NULL; 377 } 378 iinfo->i_alloc_type = alloctype; 379 sfi->descTag.tagLocation = cpu_to_le32(*block); 380 dfibh.soffset = dfibh.eoffset; 381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 384 sfi->fileIdent + 385 le16_to_cpu(sfi->lengthOfImpUse))) { 386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 387 brelse(dbh); 388 return NULL; 389 } 390 } 391 mark_buffer_dirty_inode(dbh, inode); 392 393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 394 iinfo->i_lenAlloc); 395 iinfo->i_lenAlloc = 0; 396 eloc.logicalBlockNum = *block; 397 eloc.partitionReferenceNum = 398 iinfo->i_location.partitionReferenceNum; 399 iinfo->i_lenExtents = inode->i_size; 400 epos.bh = NULL; 401 epos.block = iinfo->i_location; 402 epos.offset = udf_file_entry_alloc_offset(inode); 403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 404 /* UniqueID stuff */ 405 406 brelse(epos.bh); 407 mark_inode_dirty(inode); 408 return dbh; 409 } 410 411 static int udf_get_block(struct inode *inode, sector_t block, 412 struct buffer_head *bh_result, int create) 413 { 414 int err, new; 415 sector_t phys = 0; 416 struct udf_inode_info *iinfo; 417 418 if (!create) { 419 phys = udf_block_map(inode, block); 420 if (phys) 421 map_bh(bh_result, inode->i_sb, phys); 422 return 0; 423 } 424 425 err = -EIO; 426 new = 0; 427 iinfo = UDF_I(inode); 428 429 down_write(&iinfo->i_data_sem); 430 if (block == iinfo->i_next_alloc_block + 1) { 431 iinfo->i_next_alloc_block++; 432 iinfo->i_next_alloc_goal++; 433 } 434 435 udf_clear_extent_cache(inode); 436 phys = inode_getblk(inode, block, &err, &new); 437 if (!phys) 438 goto abort; 439 440 if (new) 441 set_buffer_new(bh_result); 442 map_bh(bh_result, inode->i_sb, phys); 443 444 abort: 445 up_write(&iinfo->i_data_sem); 446 return err; 447 } 448 449 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 450 int create, int *err) 451 { 452 struct buffer_head *bh; 453 struct buffer_head dummy; 454 455 dummy.b_state = 0; 456 dummy.b_blocknr = -1000; 457 *err = udf_get_block(inode, block, &dummy, create); 458 if (!*err && buffer_mapped(&dummy)) { 459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 460 if (buffer_new(&dummy)) { 461 lock_buffer(bh); 462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 463 set_buffer_uptodate(bh); 464 unlock_buffer(bh); 465 mark_buffer_dirty_inode(bh, inode); 466 } 467 return bh; 468 } 469 470 return NULL; 471 } 472 473 /* Extend the file by 'blocks' blocks, return the number of extents added */ 474 static int udf_do_extend_file(struct inode *inode, 475 struct extent_position *last_pos, 476 struct kernel_long_ad *last_ext, 477 sector_t blocks) 478 { 479 sector_t add; 480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 481 struct super_block *sb = inode->i_sb; 482 struct kernel_lb_addr prealloc_loc = {}; 483 uint32_t prealloc_len = 0; 484 struct udf_inode_info *iinfo; 485 int err; 486 487 /* The previous extent is fake and we should not extend by anything 488 * - there's nothing to do... */ 489 if (!blocks && fake) 490 return 0; 491 492 iinfo = UDF_I(inode); 493 /* Round the last extent up to a multiple of block size */ 494 if (last_ext->extLength & (sb->s_blocksize - 1)) { 495 last_ext->extLength = 496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 499 iinfo->i_lenExtents = 500 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 501 ~(sb->s_blocksize - 1); 502 } 503 504 /* Last extent are just preallocated blocks? */ 505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 506 EXT_NOT_RECORDED_ALLOCATED) { 507 /* Save the extent so that we can reattach it to the end */ 508 prealloc_loc = last_ext->extLocation; 509 prealloc_len = last_ext->extLength; 510 /* Mark the extent as a hole */ 511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 513 last_ext->extLocation.logicalBlockNum = 0; 514 last_ext->extLocation.partitionReferenceNum = 0; 515 } 516 517 /* Can we merge with the previous extent? */ 518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 519 EXT_NOT_RECORDED_NOT_ALLOCATED) { 520 add = ((1 << 30) - sb->s_blocksize - 521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 522 sb->s_blocksize_bits; 523 if (add > blocks) 524 add = blocks; 525 blocks -= add; 526 last_ext->extLength += add << sb->s_blocksize_bits; 527 } 528 529 if (fake) { 530 udf_add_aext(inode, last_pos, &last_ext->extLocation, 531 last_ext->extLength, 1); 532 count++; 533 } else { 534 struct kernel_lb_addr tmploc; 535 uint32_t tmplen; 536 537 udf_write_aext(inode, last_pos, &last_ext->extLocation, 538 last_ext->extLength, 1); 539 /* 540 * We've rewritten the last extent but there may be empty 541 * indirect extent after it - enter it. 542 */ 543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 544 } 545 546 /* Managed to do everything necessary? */ 547 if (!blocks) 548 goto out; 549 550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 551 last_ext->extLocation.logicalBlockNum = 0; 552 last_ext->extLocation.partitionReferenceNum = 0; 553 add = (1 << (30-sb->s_blocksize_bits)) - 1; 554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 555 (add << sb->s_blocksize_bits); 556 557 /* Create enough extents to cover the whole hole */ 558 while (blocks > add) { 559 blocks -= add; 560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 561 last_ext->extLength, 1); 562 if (err) 563 return err; 564 count++; 565 } 566 if (blocks) { 567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 568 (blocks << sb->s_blocksize_bits); 569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 570 last_ext->extLength, 1); 571 if (err) 572 return err; 573 count++; 574 } 575 576 out: 577 /* Do we have some preallocated blocks saved? */ 578 if (prealloc_len) { 579 err = udf_add_aext(inode, last_pos, &prealloc_loc, 580 prealloc_len, 1); 581 if (err) 582 return err; 583 last_ext->extLocation = prealloc_loc; 584 last_ext->extLength = prealloc_len; 585 count++; 586 } 587 588 /* last_pos should point to the last written extent... */ 589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 590 last_pos->offset -= sizeof(struct short_ad); 591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 592 last_pos->offset -= sizeof(struct long_ad); 593 else 594 return -EIO; 595 596 return count; 597 } 598 599 static int udf_extend_file(struct inode *inode, loff_t newsize) 600 { 601 602 struct extent_position epos; 603 struct kernel_lb_addr eloc; 604 uint32_t elen; 605 int8_t etype; 606 struct super_block *sb = inode->i_sb; 607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 608 int adsize; 609 struct udf_inode_info *iinfo = UDF_I(inode); 610 struct kernel_long_ad extent; 611 int err; 612 613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 614 adsize = sizeof(struct short_ad); 615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 616 adsize = sizeof(struct long_ad); 617 else 618 BUG(); 619 620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 621 622 /* File has extent covering the new size (could happen when extending 623 * inside a block)? */ 624 if (etype != -1) 625 return 0; 626 if (newsize & (sb->s_blocksize - 1)) 627 offset++; 628 /* Extended file just to the boundary of the last file block? */ 629 if (offset == 0) 630 return 0; 631 632 /* Truncate is extending the file by 'offset' blocks */ 633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 635 /* File has no extents at all or has empty last 636 * indirect extent! Create a fake extent... */ 637 extent.extLocation.logicalBlockNum = 0; 638 extent.extLocation.partitionReferenceNum = 0; 639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 640 } else { 641 epos.offset -= adsize; 642 etype = udf_next_aext(inode, &epos, &extent.extLocation, 643 &extent.extLength, 0); 644 extent.extLength |= etype << 30; 645 } 646 err = udf_do_extend_file(inode, &epos, &extent, offset); 647 if (err < 0) 648 goto out; 649 err = 0; 650 iinfo->i_lenExtents = newsize; 651 out: 652 brelse(epos.bh); 653 return err; 654 } 655 656 static sector_t inode_getblk(struct inode *inode, sector_t block, 657 int *err, int *new) 658 { 659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 660 struct extent_position prev_epos, cur_epos, next_epos; 661 int count = 0, startnum = 0, endnum = 0; 662 uint32_t elen = 0, tmpelen; 663 struct kernel_lb_addr eloc, tmpeloc; 664 int c = 1; 665 loff_t lbcount = 0, b_off = 0; 666 udf_pblk_t newblocknum, newblock; 667 sector_t offset = 0; 668 int8_t etype; 669 struct udf_inode_info *iinfo = UDF_I(inode); 670 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 671 int lastblock = 0; 672 bool isBeyondEOF; 673 674 *err = 0; 675 *new = 0; 676 prev_epos.offset = udf_file_entry_alloc_offset(inode); 677 prev_epos.block = iinfo->i_location; 678 prev_epos.bh = NULL; 679 cur_epos = next_epos = prev_epos; 680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 681 682 /* find the extent which contains the block we are looking for. 683 alternate between laarr[0] and laarr[1] for locations of the 684 current extent, and the previous extent */ 685 do { 686 if (prev_epos.bh != cur_epos.bh) { 687 brelse(prev_epos.bh); 688 get_bh(cur_epos.bh); 689 prev_epos.bh = cur_epos.bh; 690 } 691 if (cur_epos.bh != next_epos.bh) { 692 brelse(cur_epos.bh); 693 get_bh(next_epos.bh); 694 cur_epos.bh = next_epos.bh; 695 } 696 697 lbcount += elen; 698 699 prev_epos.block = cur_epos.block; 700 cur_epos.block = next_epos.block; 701 702 prev_epos.offset = cur_epos.offset; 703 cur_epos.offset = next_epos.offset; 704 705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 706 if (etype == -1) 707 break; 708 709 c = !c; 710 711 laarr[c].extLength = (etype << 30) | elen; 712 laarr[c].extLocation = eloc; 713 714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 715 pgoal = eloc.logicalBlockNum + 716 ((elen + inode->i_sb->s_blocksize - 1) >> 717 inode->i_sb->s_blocksize_bits); 718 719 count++; 720 } while (lbcount + elen <= b_off); 721 722 b_off -= lbcount; 723 offset = b_off >> inode->i_sb->s_blocksize_bits; 724 /* 725 * Move prev_epos and cur_epos into indirect extent if we are at 726 * the pointer to it 727 */ 728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 730 731 /* if the extent is allocated and recorded, return the block 732 if the extent is not a multiple of the blocksize, round up */ 733 734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 735 if (elen & (inode->i_sb->s_blocksize - 1)) { 736 elen = EXT_RECORDED_ALLOCATED | 737 ((elen + inode->i_sb->s_blocksize - 1) & 738 ~(inode->i_sb->s_blocksize - 1)); 739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 740 } 741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 742 goto out_free; 743 } 744 745 /* Are we beyond EOF? */ 746 if (etype == -1) { 747 int ret; 748 isBeyondEOF = true; 749 if (count) { 750 if (c) 751 laarr[0] = laarr[1]; 752 startnum = 1; 753 } else { 754 /* Create a fake extent when there's not one */ 755 memset(&laarr[0].extLocation, 0x00, 756 sizeof(struct kernel_lb_addr)); 757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 758 /* Will udf_do_extend_file() create real extent from 759 a fake one? */ 760 startnum = (offset > 0); 761 } 762 /* Create extents for the hole between EOF and offset */ 763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 764 if (ret < 0) { 765 *err = ret; 766 newblock = 0; 767 goto out_free; 768 } 769 c = 0; 770 offset = 0; 771 count += ret; 772 /* We are not covered by a preallocated extent? */ 773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 774 EXT_NOT_RECORDED_ALLOCATED) { 775 /* Is there any real extent? - otherwise we overwrite 776 * the fake one... */ 777 if (count) 778 c = !c; 779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 780 inode->i_sb->s_blocksize; 781 memset(&laarr[c].extLocation, 0x00, 782 sizeof(struct kernel_lb_addr)); 783 count++; 784 } 785 endnum = c + 1; 786 lastblock = 1; 787 } else { 788 isBeyondEOF = false; 789 endnum = startnum = ((count > 2) ? 2 : count); 790 791 /* if the current extent is in position 0, 792 swap it with the previous */ 793 if (!c && count != 1) { 794 laarr[2] = laarr[0]; 795 laarr[0] = laarr[1]; 796 laarr[1] = laarr[2]; 797 c = 1; 798 } 799 800 /* if the current block is located in an extent, 801 read the next extent */ 802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 803 if (etype != -1) { 804 laarr[c + 1].extLength = (etype << 30) | elen; 805 laarr[c + 1].extLocation = eloc; 806 count++; 807 startnum++; 808 endnum++; 809 } else 810 lastblock = 1; 811 } 812 813 /* if the current extent is not recorded but allocated, get the 814 * block in the extent corresponding to the requested block */ 815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 817 else { /* otherwise, allocate a new block */ 818 if (iinfo->i_next_alloc_block == block) 819 goal = iinfo->i_next_alloc_goal; 820 821 if (!goal) { 822 if (!(goal = pgoal)) /* XXX: what was intended here? */ 823 goal = iinfo->i_location.logicalBlockNum + 1; 824 } 825 826 newblocknum = udf_new_block(inode->i_sb, inode, 827 iinfo->i_location.partitionReferenceNum, 828 goal, err); 829 if (!newblocknum) { 830 *err = -ENOSPC; 831 newblock = 0; 832 goto out_free; 833 } 834 if (isBeyondEOF) 835 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 836 } 837 838 /* if the extent the requsted block is located in contains multiple 839 * blocks, split the extent into at most three extents. blocks prior 840 * to requested block, requested block, and blocks after requested 841 * block */ 842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 843 844 /* We preallocate blocks only for regular files. It also makes sense 845 * for directories but there's a problem when to drop the 846 * preallocation. We might use some delayed work for that but I feel 847 * it's overengineering for a filesystem like UDF. */ 848 if (S_ISREG(inode->i_mode)) 849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 850 851 /* merge any continuous blocks in laarr */ 852 udf_merge_extents(inode, laarr, &endnum); 853 854 /* write back the new extents, inserting new extents if the new number 855 * of extents is greater than the old number, and deleting extents if 856 * the new number of extents is less than the old number */ 857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 858 859 newblock = udf_get_pblock(inode->i_sb, newblocknum, 860 iinfo->i_location.partitionReferenceNum, 0); 861 if (!newblock) { 862 *err = -EIO; 863 goto out_free; 864 } 865 *new = 1; 866 iinfo->i_next_alloc_block = block; 867 iinfo->i_next_alloc_goal = newblocknum; 868 inode->i_ctime = current_time(inode); 869 870 if (IS_SYNC(inode)) 871 udf_sync_inode(inode); 872 else 873 mark_inode_dirty(inode); 874 out_free: 875 brelse(prev_epos.bh); 876 brelse(cur_epos.bh); 877 brelse(next_epos.bh); 878 return newblock; 879 } 880 881 static void udf_split_extents(struct inode *inode, int *c, int offset, 882 udf_pblk_t newblocknum, 883 struct kernel_long_ad *laarr, int *endnum) 884 { 885 unsigned long blocksize = inode->i_sb->s_blocksize; 886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 887 888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 889 (laarr[*c].extLength >> 30) == 890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 891 int curr = *c; 892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 893 blocksize - 1) >> blocksize_bits; 894 int8_t etype = (laarr[curr].extLength >> 30); 895 896 if (blen == 1) 897 ; 898 else if (!offset || blen == offset + 1) { 899 laarr[curr + 2] = laarr[curr + 1]; 900 laarr[curr + 1] = laarr[curr]; 901 } else { 902 laarr[curr + 3] = laarr[curr + 1]; 903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 904 } 905 906 if (offset) { 907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 908 udf_free_blocks(inode->i_sb, inode, 909 &laarr[curr].extLocation, 910 0, offset); 911 laarr[curr].extLength = 912 EXT_NOT_RECORDED_NOT_ALLOCATED | 913 (offset << blocksize_bits); 914 laarr[curr].extLocation.logicalBlockNum = 0; 915 laarr[curr].extLocation. 916 partitionReferenceNum = 0; 917 } else 918 laarr[curr].extLength = (etype << 30) | 919 (offset << blocksize_bits); 920 curr++; 921 (*c)++; 922 (*endnum)++; 923 } 924 925 laarr[curr].extLocation.logicalBlockNum = newblocknum; 926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 927 laarr[curr].extLocation.partitionReferenceNum = 928 UDF_I(inode)->i_location.partitionReferenceNum; 929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 930 blocksize; 931 curr++; 932 933 if (blen != offset + 1) { 934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 935 laarr[curr].extLocation.logicalBlockNum += 936 offset + 1; 937 laarr[curr].extLength = (etype << 30) | 938 ((blen - (offset + 1)) << blocksize_bits); 939 curr++; 940 (*endnum)++; 941 } 942 } 943 } 944 945 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 946 struct kernel_long_ad *laarr, 947 int *endnum) 948 { 949 int start, length = 0, currlength = 0, i; 950 951 if (*endnum >= (c + 1)) { 952 if (!lastblock) 953 return; 954 else 955 start = c; 956 } else { 957 if ((laarr[c + 1].extLength >> 30) == 958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 959 start = c + 1; 960 length = currlength = 961 (((laarr[c + 1].extLength & 962 UDF_EXTENT_LENGTH_MASK) + 963 inode->i_sb->s_blocksize - 1) >> 964 inode->i_sb->s_blocksize_bits); 965 } else 966 start = c; 967 } 968 969 for (i = start + 1; i <= *endnum; i++) { 970 if (i == *endnum) { 971 if (lastblock) 972 length += UDF_DEFAULT_PREALLOC_BLOCKS; 973 } else if ((laarr[i].extLength >> 30) == 974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 975 length += (((laarr[i].extLength & 976 UDF_EXTENT_LENGTH_MASK) + 977 inode->i_sb->s_blocksize - 1) >> 978 inode->i_sb->s_blocksize_bits); 979 } else 980 break; 981 } 982 983 if (length) { 984 int next = laarr[start].extLocation.logicalBlockNum + 985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 986 inode->i_sb->s_blocksize - 1) >> 987 inode->i_sb->s_blocksize_bits); 988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 989 laarr[start].extLocation.partitionReferenceNum, 990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 991 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 992 currlength); 993 if (numalloc) { 994 if (start == (c + 1)) 995 laarr[start].extLength += 996 (numalloc << 997 inode->i_sb->s_blocksize_bits); 998 else { 999 memmove(&laarr[c + 2], &laarr[c + 1], 1000 sizeof(struct long_ad) * (*endnum - (c + 1))); 1001 (*endnum)++; 1002 laarr[c + 1].extLocation.logicalBlockNum = next; 1003 laarr[c + 1].extLocation.partitionReferenceNum = 1004 laarr[c].extLocation. 1005 partitionReferenceNum; 1006 laarr[c + 1].extLength = 1007 EXT_NOT_RECORDED_ALLOCATED | 1008 (numalloc << 1009 inode->i_sb->s_blocksize_bits); 1010 start = c + 1; 1011 } 1012 1013 for (i = start + 1; numalloc && i < *endnum; i++) { 1014 int elen = ((laarr[i].extLength & 1015 UDF_EXTENT_LENGTH_MASK) + 1016 inode->i_sb->s_blocksize - 1) >> 1017 inode->i_sb->s_blocksize_bits; 1018 1019 if (elen > numalloc) { 1020 laarr[i].extLength -= 1021 (numalloc << 1022 inode->i_sb->s_blocksize_bits); 1023 numalloc = 0; 1024 } else { 1025 numalloc -= elen; 1026 if (*endnum > (i + 1)) 1027 memmove(&laarr[i], 1028 &laarr[i + 1], 1029 sizeof(struct long_ad) * 1030 (*endnum - (i + 1))); 1031 i--; 1032 (*endnum)--; 1033 } 1034 } 1035 UDF_I(inode)->i_lenExtents += 1036 numalloc << inode->i_sb->s_blocksize_bits; 1037 } 1038 } 1039 } 1040 1041 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1042 int *endnum) 1043 { 1044 int i; 1045 unsigned long blocksize = inode->i_sb->s_blocksize; 1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1047 1048 for (i = 0; i < (*endnum - 1); i++) { 1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1051 1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1053 (((li->extLength >> 30) == 1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1055 ((lip1->extLocation.logicalBlockNum - 1056 li->extLocation.logicalBlockNum) == 1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1058 blocksize - 1) >> blocksize_bits)))) { 1059 1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1063 lip1->extLength = (lip1->extLength - 1064 (li->extLength & 1065 UDF_EXTENT_LENGTH_MASK) + 1066 UDF_EXTENT_LENGTH_MASK) & 1067 ~(blocksize - 1); 1068 li->extLength = (li->extLength & 1069 UDF_EXTENT_FLAG_MASK) + 1070 (UDF_EXTENT_LENGTH_MASK + 1) - 1071 blocksize; 1072 lip1->extLocation.logicalBlockNum = 1073 li->extLocation.logicalBlockNum + 1074 ((li->extLength & 1075 UDF_EXTENT_LENGTH_MASK) >> 1076 blocksize_bits); 1077 } else { 1078 li->extLength = lip1->extLength + 1079 (((li->extLength & 1080 UDF_EXTENT_LENGTH_MASK) + 1081 blocksize - 1) & ~(blocksize - 1)); 1082 if (*endnum > (i + 2)) 1083 memmove(&laarr[i + 1], &laarr[i + 2], 1084 sizeof(struct long_ad) * 1085 (*endnum - (i + 2))); 1086 i--; 1087 (*endnum)--; 1088 } 1089 } else if (((li->extLength >> 30) == 1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1091 ((lip1->extLength >> 30) == 1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1094 ((li->extLength & 1095 UDF_EXTENT_LENGTH_MASK) + 1096 blocksize - 1) >> blocksize_bits); 1097 li->extLocation.logicalBlockNum = 0; 1098 li->extLocation.partitionReferenceNum = 0; 1099 1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1103 lip1->extLength = (lip1->extLength - 1104 (li->extLength & 1105 UDF_EXTENT_LENGTH_MASK) + 1106 UDF_EXTENT_LENGTH_MASK) & 1107 ~(blocksize - 1); 1108 li->extLength = (li->extLength & 1109 UDF_EXTENT_FLAG_MASK) + 1110 (UDF_EXTENT_LENGTH_MASK + 1) - 1111 blocksize; 1112 } else { 1113 li->extLength = lip1->extLength + 1114 (((li->extLength & 1115 UDF_EXTENT_LENGTH_MASK) + 1116 blocksize - 1) & ~(blocksize - 1)); 1117 if (*endnum > (i + 2)) 1118 memmove(&laarr[i + 1], &laarr[i + 2], 1119 sizeof(struct long_ad) * 1120 (*endnum - (i + 2))); 1121 i--; 1122 (*endnum)--; 1123 } 1124 } else if ((li->extLength >> 30) == 1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1126 udf_free_blocks(inode->i_sb, inode, 1127 &li->extLocation, 0, 1128 ((li->extLength & 1129 UDF_EXTENT_LENGTH_MASK) + 1130 blocksize - 1) >> blocksize_bits); 1131 li->extLocation.logicalBlockNum = 0; 1132 li->extLocation.partitionReferenceNum = 0; 1133 li->extLength = (li->extLength & 1134 UDF_EXTENT_LENGTH_MASK) | 1135 EXT_NOT_RECORDED_NOT_ALLOCATED; 1136 } 1137 } 1138 } 1139 1140 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1141 int startnum, int endnum, 1142 struct extent_position *epos) 1143 { 1144 int start = 0, i; 1145 struct kernel_lb_addr tmploc; 1146 uint32_t tmplen; 1147 1148 if (startnum > endnum) { 1149 for (i = 0; i < (startnum - endnum); i++) 1150 udf_delete_aext(inode, *epos); 1151 } else if (startnum < endnum) { 1152 for (i = 0; i < (endnum - startnum); i++) { 1153 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1154 laarr[i].extLength); 1155 udf_next_aext(inode, epos, &laarr[i].extLocation, 1156 &laarr[i].extLength, 1); 1157 start++; 1158 } 1159 } 1160 1161 for (i = start; i < endnum; i++) { 1162 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1163 udf_write_aext(inode, epos, &laarr[i].extLocation, 1164 laarr[i].extLength, 1); 1165 } 1166 } 1167 1168 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1169 int create, int *err) 1170 { 1171 struct buffer_head *bh = NULL; 1172 1173 bh = udf_getblk(inode, block, create, err); 1174 if (!bh) 1175 return NULL; 1176 1177 if (buffer_uptodate(bh)) 1178 return bh; 1179 1180 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1181 1182 wait_on_buffer(bh); 1183 if (buffer_uptodate(bh)) 1184 return bh; 1185 1186 brelse(bh); 1187 *err = -EIO; 1188 return NULL; 1189 } 1190 1191 int udf_setsize(struct inode *inode, loff_t newsize) 1192 { 1193 int err; 1194 struct udf_inode_info *iinfo; 1195 unsigned int bsize = i_blocksize(inode); 1196 1197 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1198 S_ISLNK(inode->i_mode))) 1199 return -EINVAL; 1200 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1201 return -EPERM; 1202 1203 iinfo = UDF_I(inode); 1204 if (newsize > inode->i_size) { 1205 down_write(&iinfo->i_data_sem); 1206 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1207 if (bsize < 1208 (udf_file_entry_alloc_offset(inode) + newsize)) { 1209 err = udf_expand_file_adinicb(inode); 1210 if (err) 1211 return err; 1212 down_write(&iinfo->i_data_sem); 1213 } else { 1214 iinfo->i_lenAlloc = newsize; 1215 goto set_size; 1216 } 1217 } 1218 err = udf_extend_file(inode, newsize); 1219 if (err) { 1220 up_write(&iinfo->i_data_sem); 1221 return err; 1222 } 1223 set_size: 1224 up_write(&iinfo->i_data_sem); 1225 truncate_setsize(inode, newsize); 1226 } else { 1227 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1228 down_write(&iinfo->i_data_sem); 1229 udf_clear_extent_cache(inode); 1230 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1231 0x00, bsize - newsize - 1232 udf_file_entry_alloc_offset(inode)); 1233 iinfo->i_lenAlloc = newsize; 1234 truncate_setsize(inode, newsize); 1235 up_write(&iinfo->i_data_sem); 1236 goto update_time; 1237 } 1238 err = block_truncate_page(inode->i_mapping, newsize, 1239 udf_get_block); 1240 if (err) 1241 return err; 1242 truncate_setsize(inode, newsize); 1243 down_write(&iinfo->i_data_sem); 1244 udf_clear_extent_cache(inode); 1245 udf_truncate_extents(inode); 1246 up_write(&iinfo->i_data_sem); 1247 } 1248 update_time: 1249 inode->i_mtime = inode->i_ctime = current_time(inode); 1250 if (IS_SYNC(inode)) 1251 udf_sync_inode(inode); 1252 else 1253 mark_inode_dirty(inode); 1254 return 0; 1255 } 1256 1257 /* 1258 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1259 * arbitrary - just that we hopefully don't limit any real use of rewritten 1260 * inode on write-once media but avoid looping for too long on corrupted media. 1261 */ 1262 #define UDF_MAX_ICB_NESTING 1024 1263 1264 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1265 { 1266 struct buffer_head *bh = NULL; 1267 struct fileEntry *fe; 1268 struct extendedFileEntry *efe; 1269 uint16_t ident; 1270 struct udf_inode_info *iinfo = UDF_I(inode); 1271 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1272 struct kernel_lb_addr *iloc = &iinfo->i_location; 1273 unsigned int link_count; 1274 unsigned int indirections = 0; 1275 int bs = inode->i_sb->s_blocksize; 1276 int ret = -EIO; 1277 uint32_t uid, gid; 1278 1279 reread: 1280 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1281 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1282 iloc->partitionReferenceNum, sbi->s_partitions); 1283 return -EIO; 1284 } 1285 1286 if (iloc->logicalBlockNum >= 1287 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1288 udf_debug("block=%u, partition=%u out of range\n", 1289 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1290 return -EIO; 1291 } 1292 1293 /* 1294 * Set defaults, but the inode is still incomplete! 1295 * Note: get_new_inode() sets the following on a new inode: 1296 * i_sb = sb 1297 * i_no = ino 1298 * i_flags = sb->s_flags 1299 * i_state = 0 1300 * clean_inode(): zero fills and sets 1301 * i_count = 1 1302 * i_nlink = 1 1303 * i_op = NULL; 1304 */ 1305 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1306 if (!bh) { 1307 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1308 return -EIO; 1309 } 1310 1311 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1312 ident != TAG_IDENT_USE) { 1313 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1314 inode->i_ino, ident); 1315 goto out; 1316 } 1317 1318 fe = (struct fileEntry *)bh->b_data; 1319 efe = (struct extendedFileEntry *)bh->b_data; 1320 1321 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1322 struct buffer_head *ibh; 1323 1324 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1325 if (ident == TAG_IDENT_IE && ibh) { 1326 struct kernel_lb_addr loc; 1327 struct indirectEntry *ie; 1328 1329 ie = (struct indirectEntry *)ibh->b_data; 1330 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1331 1332 if (ie->indirectICB.extLength) { 1333 brelse(ibh); 1334 memcpy(&iinfo->i_location, &loc, 1335 sizeof(struct kernel_lb_addr)); 1336 if (++indirections > UDF_MAX_ICB_NESTING) { 1337 udf_err(inode->i_sb, 1338 "too many ICBs in ICB hierarchy" 1339 " (max %d supported)\n", 1340 UDF_MAX_ICB_NESTING); 1341 goto out; 1342 } 1343 brelse(bh); 1344 goto reread; 1345 } 1346 } 1347 brelse(ibh); 1348 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1349 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1350 le16_to_cpu(fe->icbTag.strategyType)); 1351 goto out; 1352 } 1353 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1354 iinfo->i_strat4096 = 0; 1355 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1356 iinfo->i_strat4096 = 1; 1357 1358 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1359 ICBTAG_FLAG_AD_MASK; 1360 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1361 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1362 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1363 ret = -EIO; 1364 goto out; 1365 } 1366 iinfo->i_unique = 0; 1367 iinfo->i_lenEAttr = 0; 1368 iinfo->i_lenExtents = 0; 1369 iinfo->i_lenAlloc = 0; 1370 iinfo->i_next_alloc_block = 0; 1371 iinfo->i_next_alloc_goal = 0; 1372 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1373 iinfo->i_efe = 1; 1374 iinfo->i_use = 0; 1375 ret = udf_alloc_i_data(inode, bs - 1376 sizeof(struct extendedFileEntry)); 1377 if (ret) 1378 goto out; 1379 memcpy(iinfo->i_ext.i_data, 1380 bh->b_data + sizeof(struct extendedFileEntry), 1381 bs - sizeof(struct extendedFileEntry)); 1382 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1383 iinfo->i_efe = 0; 1384 iinfo->i_use = 0; 1385 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1386 if (ret) 1387 goto out; 1388 memcpy(iinfo->i_ext.i_data, 1389 bh->b_data + sizeof(struct fileEntry), 1390 bs - sizeof(struct fileEntry)); 1391 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1392 iinfo->i_efe = 0; 1393 iinfo->i_use = 1; 1394 iinfo->i_lenAlloc = le32_to_cpu( 1395 ((struct unallocSpaceEntry *)bh->b_data)-> 1396 lengthAllocDescs); 1397 ret = udf_alloc_i_data(inode, bs - 1398 sizeof(struct unallocSpaceEntry)); 1399 if (ret) 1400 goto out; 1401 memcpy(iinfo->i_ext.i_data, 1402 bh->b_data + sizeof(struct unallocSpaceEntry), 1403 bs - sizeof(struct unallocSpaceEntry)); 1404 return 0; 1405 } 1406 1407 ret = -EIO; 1408 read_lock(&sbi->s_cred_lock); 1409 uid = le32_to_cpu(fe->uid); 1410 if (uid == UDF_INVALID_ID || 1411 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1412 inode->i_uid = sbi->s_uid; 1413 else 1414 i_uid_write(inode, uid); 1415 1416 gid = le32_to_cpu(fe->gid); 1417 if (gid == UDF_INVALID_ID || 1418 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1419 inode->i_gid = sbi->s_gid; 1420 else 1421 i_gid_write(inode, gid); 1422 1423 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1424 sbi->s_fmode != UDF_INVALID_MODE) 1425 inode->i_mode = sbi->s_fmode; 1426 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1427 sbi->s_dmode != UDF_INVALID_MODE) 1428 inode->i_mode = sbi->s_dmode; 1429 else 1430 inode->i_mode = udf_convert_permissions(fe); 1431 inode->i_mode &= ~sbi->s_umask; 1432 read_unlock(&sbi->s_cred_lock); 1433 1434 link_count = le16_to_cpu(fe->fileLinkCount); 1435 if (!link_count) { 1436 if (!hidden_inode) { 1437 ret = -ESTALE; 1438 goto out; 1439 } 1440 link_count = 1; 1441 } 1442 set_nlink(inode, link_count); 1443 1444 inode->i_size = le64_to_cpu(fe->informationLength); 1445 iinfo->i_lenExtents = inode->i_size; 1446 1447 if (iinfo->i_efe == 0) { 1448 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1449 (inode->i_sb->s_blocksize_bits - 9); 1450 1451 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1452 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1453 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1454 1455 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1456 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1457 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1458 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1459 } else { 1460 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1461 (inode->i_sb->s_blocksize_bits - 9); 1462 1463 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1464 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1465 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1466 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1467 1468 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1469 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1470 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1471 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1472 } 1473 inode->i_generation = iinfo->i_unique; 1474 1475 /* 1476 * Sanity check length of allocation descriptors and extended attrs to 1477 * avoid integer overflows 1478 */ 1479 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1480 goto out; 1481 /* Now do exact checks */ 1482 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1483 goto out; 1484 /* Sanity checks for files in ICB so that we don't get confused later */ 1485 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1486 /* 1487 * For file in ICB data is stored in allocation descriptor 1488 * so sizes should match 1489 */ 1490 if (iinfo->i_lenAlloc != inode->i_size) 1491 goto out; 1492 /* File in ICB has to fit in there... */ 1493 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1494 goto out; 1495 } 1496 1497 switch (fe->icbTag.fileType) { 1498 case ICBTAG_FILE_TYPE_DIRECTORY: 1499 inode->i_op = &udf_dir_inode_operations; 1500 inode->i_fop = &udf_dir_operations; 1501 inode->i_mode |= S_IFDIR; 1502 inc_nlink(inode); 1503 break; 1504 case ICBTAG_FILE_TYPE_REALTIME: 1505 case ICBTAG_FILE_TYPE_REGULAR: 1506 case ICBTAG_FILE_TYPE_UNDEF: 1507 case ICBTAG_FILE_TYPE_VAT20: 1508 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1509 inode->i_data.a_ops = &udf_adinicb_aops; 1510 else 1511 inode->i_data.a_ops = &udf_aops; 1512 inode->i_op = &udf_file_inode_operations; 1513 inode->i_fop = &udf_file_operations; 1514 inode->i_mode |= S_IFREG; 1515 break; 1516 case ICBTAG_FILE_TYPE_BLOCK: 1517 inode->i_mode |= S_IFBLK; 1518 break; 1519 case ICBTAG_FILE_TYPE_CHAR: 1520 inode->i_mode |= S_IFCHR; 1521 break; 1522 case ICBTAG_FILE_TYPE_FIFO: 1523 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1524 break; 1525 case ICBTAG_FILE_TYPE_SOCKET: 1526 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1527 break; 1528 case ICBTAG_FILE_TYPE_SYMLINK: 1529 inode->i_data.a_ops = &udf_symlink_aops; 1530 inode->i_op = &udf_symlink_inode_operations; 1531 inode_nohighmem(inode); 1532 inode->i_mode = S_IFLNK | 0777; 1533 break; 1534 case ICBTAG_FILE_TYPE_MAIN: 1535 udf_debug("METADATA FILE-----\n"); 1536 break; 1537 case ICBTAG_FILE_TYPE_MIRROR: 1538 udf_debug("METADATA MIRROR FILE-----\n"); 1539 break; 1540 case ICBTAG_FILE_TYPE_BITMAP: 1541 udf_debug("METADATA BITMAP FILE-----\n"); 1542 break; 1543 default: 1544 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1545 inode->i_ino, fe->icbTag.fileType); 1546 goto out; 1547 } 1548 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1549 struct deviceSpec *dsea = 1550 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1551 if (dsea) { 1552 init_special_inode(inode, inode->i_mode, 1553 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1554 le32_to_cpu(dsea->minorDeviceIdent))); 1555 /* Developer ID ??? */ 1556 } else 1557 goto out; 1558 } 1559 ret = 0; 1560 out: 1561 brelse(bh); 1562 return ret; 1563 } 1564 1565 static int udf_alloc_i_data(struct inode *inode, size_t size) 1566 { 1567 struct udf_inode_info *iinfo = UDF_I(inode); 1568 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1569 if (!iinfo->i_ext.i_data) 1570 return -ENOMEM; 1571 return 0; 1572 } 1573 1574 static umode_t udf_convert_permissions(struct fileEntry *fe) 1575 { 1576 umode_t mode; 1577 uint32_t permissions; 1578 uint32_t flags; 1579 1580 permissions = le32_to_cpu(fe->permissions); 1581 flags = le16_to_cpu(fe->icbTag.flags); 1582 1583 mode = ((permissions) & 0007) | 1584 ((permissions >> 2) & 0070) | 1585 ((permissions >> 4) & 0700) | 1586 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1587 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1588 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1589 1590 return mode; 1591 } 1592 1593 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1594 { 1595 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1596 } 1597 1598 static int udf_sync_inode(struct inode *inode) 1599 { 1600 return udf_update_inode(inode, 1); 1601 } 1602 1603 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1604 { 1605 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1606 (iinfo->i_crtime.tv_sec == time.tv_sec && 1607 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1608 iinfo->i_crtime = time; 1609 } 1610 1611 static int udf_update_inode(struct inode *inode, int do_sync) 1612 { 1613 struct buffer_head *bh = NULL; 1614 struct fileEntry *fe; 1615 struct extendedFileEntry *efe; 1616 uint64_t lb_recorded; 1617 uint32_t udfperms; 1618 uint16_t icbflags; 1619 uint16_t crclen; 1620 int err = 0; 1621 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1622 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1623 struct udf_inode_info *iinfo = UDF_I(inode); 1624 1625 bh = udf_tgetblk(inode->i_sb, 1626 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1627 if (!bh) { 1628 udf_debug("getblk failure\n"); 1629 return -EIO; 1630 } 1631 1632 lock_buffer(bh); 1633 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1634 fe = (struct fileEntry *)bh->b_data; 1635 efe = (struct extendedFileEntry *)bh->b_data; 1636 1637 if (iinfo->i_use) { 1638 struct unallocSpaceEntry *use = 1639 (struct unallocSpaceEntry *)bh->b_data; 1640 1641 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1642 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1643 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1644 sizeof(struct unallocSpaceEntry)); 1645 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1646 crclen = sizeof(struct unallocSpaceEntry); 1647 1648 goto finish; 1649 } 1650 1651 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1652 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1653 else 1654 fe->uid = cpu_to_le32(i_uid_read(inode)); 1655 1656 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1657 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1658 else 1659 fe->gid = cpu_to_le32(i_gid_read(inode)); 1660 1661 udfperms = ((inode->i_mode & 0007)) | 1662 ((inode->i_mode & 0070) << 2) | 1663 ((inode->i_mode & 0700) << 4); 1664 1665 udfperms |= (le32_to_cpu(fe->permissions) & 1666 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1667 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1668 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1669 fe->permissions = cpu_to_le32(udfperms); 1670 1671 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1672 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1673 else 1674 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1675 1676 fe->informationLength = cpu_to_le64(inode->i_size); 1677 1678 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1679 struct regid *eid; 1680 struct deviceSpec *dsea = 1681 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1682 if (!dsea) { 1683 dsea = (struct deviceSpec *) 1684 udf_add_extendedattr(inode, 1685 sizeof(struct deviceSpec) + 1686 sizeof(struct regid), 12, 0x3); 1687 dsea->attrType = cpu_to_le32(12); 1688 dsea->attrSubtype = 1; 1689 dsea->attrLength = cpu_to_le32( 1690 sizeof(struct deviceSpec) + 1691 sizeof(struct regid)); 1692 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1693 } 1694 eid = (struct regid *)dsea->impUse; 1695 memset(eid, 0, sizeof(*eid)); 1696 strcpy(eid->ident, UDF_ID_DEVELOPER); 1697 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1698 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1699 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1700 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1701 } 1702 1703 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1704 lb_recorded = 0; /* No extents => no blocks! */ 1705 else 1706 lb_recorded = 1707 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1708 (blocksize_bits - 9); 1709 1710 if (iinfo->i_efe == 0) { 1711 memcpy(bh->b_data + sizeof(struct fileEntry), 1712 iinfo->i_ext.i_data, 1713 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1714 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1715 1716 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1717 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1718 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1719 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1720 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1721 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1722 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1723 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1724 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1725 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1726 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1727 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1728 crclen = sizeof(struct fileEntry); 1729 } else { 1730 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1731 iinfo->i_ext.i_data, 1732 inode->i_sb->s_blocksize - 1733 sizeof(struct extendedFileEntry)); 1734 efe->objectSize = cpu_to_le64(inode->i_size); 1735 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1736 1737 udf_adjust_time(iinfo, inode->i_atime); 1738 udf_adjust_time(iinfo, inode->i_mtime); 1739 udf_adjust_time(iinfo, inode->i_ctime); 1740 1741 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1742 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1743 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1744 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1745 1746 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1747 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1748 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1749 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1750 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1751 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1752 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1753 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1754 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1755 crclen = sizeof(struct extendedFileEntry); 1756 } 1757 1758 finish: 1759 if (iinfo->i_strat4096) { 1760 fe->icbTag.strategyType = cpu_to_le16(4096); 1761 fe->icbTag.strategyParameter = cpu_to_le16(1); 1762 fe->icbTag.numEntries = cpu_to_le16(2); 1763 } else { 1764 fe->icbTag.strategyType = cpu_to_le16(4); 1765 fe->icbTag.numEntries = cpu_to_le16(1); 1766 } 1767 1768 if (iinfo->i_use) 1769 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1770 else if (S_ISDIR(inode->i_mode)) 1771 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1772 else if (S_ISREG(inode->i_mode)) 1773 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1774 else if (S_ISLNK(inode->i_mode)) 1775 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1776 else if (S_ISBLK(inode->i_mode)) 1777 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1778 else if (S_ISCHR(inode->i_mode)) 1779 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1780 else if (S_ISFIFO(inode->i_mode)) 1781 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1782 else if (S_ISSOCK(inode->i_mode)) 1783 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1784 1785 icbflags = iinfo->i_alloc_type | 1786 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1787 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1788 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1789 (le16_to_cpu(fe->icbTag.flags) & 1790 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1791 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1792 1793 fe->icbTag.flags = cpu_to_le16(icbflags); 1794 if (sbi->s_udfrev >= 0x0200) 1795 fe->descTag.descVersion = cpu_to_le16(3); 1796 else 1797 fe->descTag.descVersion = cpu_to_le16(2); 1798 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1799 fe->descTag.tagLocation = cpu_to_le32( 1800 iinfo->i_location.logicalBlockNum); 1801 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1802 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1803 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1804 crclen)); 1805 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1806 1807 set_buffer_uptodate(bh); 1808 unlock_buffer(bh); 1809 1810 /* write the data blocks */ 1811 mark_buffer_dirty(bh); 1812 if (do_sync) { 1813 sync_dirty_buffer(bh); 1814 if (buffer_write_io_error(bh)) { 1815 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1816 inode->i_ino); 1817 err = -EIO; 1818 } 1819 } 1820 brelse(bh); 1821 1822 return err; 1823 } 1824 1825 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1826 bool hidden_inode) 1827 { 1828 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1829 struct inode *inode = iget_locked(sb, block); 1830 int err; 1831 1832 if (!inode) 1833 return ERR_PTR(-ENOMEM); 1834 1835 if (!(inode->i_state & I_NEW)) 1836 return inode; 1837 1838 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1839 err = udf_read_inode(inode, hidden_inode); 1840 if (err < 0) { 1841 iget_failed(inode); 1842 return ERR_PTR(err); 1843 } 1844 unlock_new_inode(inode); 1845 1846 return inode; 1847 } 1848 1849 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1850 struct extent_position *epos) 1851 { 1852 struct super_block *sb = inode->i_sb; 1853 struct buffer_head *bh; 1854 struct allocExtDesc *aed; 1855 struct extent_position nepos; 1856 struct kernel_lb_addr neloc; 1857 int ver, adsize; 1858 1859 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1860 adsize = sizeof(struct short_ad); 1861 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1862 adsize = sizeof(struct long_ad); 1863 else 1864 return -EIO; 1865 1866 neloc.logicalBlockNum = block; 1867 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1868 1869 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1870 if (!bh) 1871 return -EIO; 1872 lock_buffer(bh); 1873 memset(bh->b_data, 0x00, sb->s_blocksize); 1874 set_buffer_uptodate(bh); 1875 unlock_buffer(bh); 1876 mark_buffer_dirty_inode(bh, inode); 1877 1878 aed = (struct allocExtDesc *)(bh->b_data); 1879 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1880 aed->previousAllocExtLocation = 1881 cpu_to_le32(epos->block.logicalBlockNum); 1882 } 1883 aed->lengthAllocDescs = cpu_to_le32(0); 1884 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1885 ver = 3; 1886 else 1887 ver = 2; 1888 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1889 sizeof(struct tag)); 1890 1891 nepos.block = neloc; 1892 nepos.offset = sizeof(struct allocExtDesc); 1893 nepos.bh = bh; 1894 1895 /* 1896 * Do we have to copy current last extent to make space for indirect 1897 * one? 1898 */ 1899 if (epos->offset + adsize > sb->s_blocksize) { 1900 struct kernel_lb_addr cp_loc; 1901 uint32_t cp_len; 1902 int cp_type; 1903 1904 epos->offset -= adsize; 1905 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1906 cp_len |= ((uint32_t)cp_type) << 30; 1907 1908 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1909 udf_write_aext(inode, epos, &nepos.block, 1910 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1911 } else { 1912 __udf_add_aext(inode, epos, &nepos.block, 1913 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1914 } 1915 1916 brelse(epos->bh); 1917 *epos = nepos; 1918 1919 return 0; 1920 } 1921 1922 /* 1923 * Append extent at the given position - should be the first free one in inode 1924 * / indirect extent. This function assumes there is enough space in the inode 1925 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1926 */ 1927 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1928 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1929 { 1930 struct udf_inode_info *iinfo = UDF_I(inode); 1931 struct allocExtDesc *aed; 1932 int adsize; 1933 1934 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1935 adsize = sizeof(struct short_ad); 1936 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1937 adsize = sizeof(struct long_ad); 1938 else 1939 return -EIO; 1940 1941 if (!epos->bh) { 1942 WARN_ON(iinfo->i_lenAlloc != 1943 epos->offset - udf_file_entry_alloc_offset(inode)); 1944 } else { 1945 aed = (struct allocExtDesc *)epos->bh->b_data; 1946 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 1947 epos->offset - sizeof(struct allocExtDesc)); 1948 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 1949 } 1950 1951 udf_write_aext(inode, epos, eloc, elen, inc); 1952 1953 if (!epos->bh) { 1954 iinfo->i_lenAlloc += adsize; 1955 mark_inode_dirty(inode); 1956 } else { 1957 aed = (struct allocExtDesc *)epos->bh->b_data; 1958 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1959 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1960 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1961 udf_update_tag(epos->bh->b_data, 1962 epos->offset + (inc ? 0 : adsize)); 1963 else 1964 udf_update_tag(epos->bh->b_data, 1965 sizeof(struct allocExtDesc)); 1966 mark_buffer_dirty_inode(epos->bh, inode); 1967 } 1968 1969 return 0; 1970 } 1971 1972 /* 1973 * Append extent at given position - should be the first free one in inode 1974 * / indirect extent. Takes care of allocating and linking indirect blocks. 1975 */ 1976 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1977 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1978 { 1979 int adsize; 1980 struct super_block *sb = inode->i_sb; 1981 1982 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1983 adsize = sizeof(struct short_ad); 1984 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1985 adsize = sizeof(struct long_ad); 1986 else 1987 return -EIO; 1988 1989 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 1990 int err; 1991 udf_pblk_t new_block; 1992 1993 new_block = udf_new_block(sb, NULL, 1994 epos->block.partitionReferenceNum, 1995 epos->block.logicalBlockNum, &err); 1996 if (!new_block) 1997 return -ENOSPC; 1998 1999 err = udf_setup_indirect_aext(inode, new_block, epos); 2000 if (err) 2001 return err; 2002 } 2003 2004 return __udf_add_aext(inode, epos, eloc, elen, inc); 2005 } 2006 2007 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2008 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2009 { 2010 int adsize; 2011 uint8_t *ptr; 2012 struct short_ad *sad; 2013 struct long_ad *lad; 2014 struct udf_inode_info *iinfo = UDF_I(inode); 2015 2016 if (!epos->bh) 2017 ptr = iinfo->i_ext.i_data + epos->offset - 2018 udf_file_entry_alloc_offset(inode) + 2019 iinfo->i_lenEAttr; 2020 else 2021 ptr = epos->bh->b_data + epos->offset; 2022 2023 switch (iinfo->i_alloc_type) { 2024 case ICBTAG_FLAG_AD_SHORT: 2025 sad = (struct short_ad *)ptr; 2026 sad->extLength = cpu_to_le32(elen); 2027 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2028 adsize = sizeof(struct short_ad); 2029 break; 2030 case ICBTAG_FLAG_AD_LONG: 2031 lad = (struct long_ad *)ptr; 2032 lad->extLength = cpu_to_le32(elen); 2033 lad->extLocation = cpu_to_lelb(*eloc); 2034 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2035 adsize = sizeof(struct long_ad); 2036 break; 2037 default: 2038 return; 2039 } 2040 2041 if (epos->bh) { 2042 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2043 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2044 struct allocExtDesc *aed = 2045 (struct allocExtDesc *)epos->bh->b_data; 2046 udf_update_tag(epos->bh->b_data, 2047 le32_to_cpu(aed->lengthAllocDescs) + 2048 sizeof(struct allocExtDesc)); 2049 } 2050 mark_buffer_dirty_inode(epos->bh, inode); 2051 } else { 2052 mark_inode_dirty(inode); 2053 } 2054 2055 if (inc) 2056 epos->offset += adsize; 2057 } 2058 2059 /* 2060 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2061 * someone does some weird stuff. 2062 */ 2063 #define UDF_MAX_INDIR_EXTS 16 2064 2065 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2066 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2067 { 2068 int8_t etype; 2069 unsigned int indirections = 0; 2070 2071 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2072 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2073 udf_pblk_t block; 2074 2075 if (++indirections > UDF_MAX_INDIR_EXTS) { 2076 udf_err(inode->i_sb, 2077 "too many indirect extents in inode %lu\n", 2078 inode->i_ino); 2079 return -1; 2080 } 2081 2082 epos->block = *eloc; 2083 epos->offset = sizeof(struct allocExtDesc); 2084 brelse(epos->bh); 2085 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2086 epos->bh = udf_tread(inode->i_sb, block); 2087 if (!epos->bh) { 2088 udf_debug("reading block %u failed!\n", block); 2089 return -1; 2090 } 2091 } 2092 2093 return etype; 2094 } 2095 2096 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2097 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2098 { 2099 int alen; 2100 int8_t etype; 2101 uint8_t *ptr; 2102 struct short_ad *sad; 2103 struct long_ad *lad; 2104 struct udf_inode_info *iinfo = UDF_I(inode); 2105 2106 if (!epos->bh) { 2107 if (!epos->offset) 2108 epos->offset = udf_file_entry_alloc_offset(inode); 2109 ptr = iinfo->i_ext.i_data + epos->offset - 2110 udf_file_entry_alloc_offset(inode) + 2111 iinfo->i_lenEAttr; 2112 alen = udf_file_entry_alloc_offset(inode) + 2113 iinfo->i_lenAlloc; 2114 } else { 2115 if (!epos->offset) 2116 epos->offset = sizeof(struct allocExtDesc); 2117 ptr = epos->bh->b_data + epos->offset; 2118 alen = sizeof(struct allocExtDesc) + 2119 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2120 lengthAllocDescs); 2121 } 2122 2123 switch (iinfo->i_alloc_type) { 2124 case ICBTAG_FLAG_AD_SHORT: 2125 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2126 if (!sad) 2127 return -1; 2128 etype = le32_to_cpu(sad->extLength) >> 30; 2129 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2130 eloc->partitionReferenceNum = 2131 iinfo->i_location.partitionReferenceNum; 2132 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2133 break; 2134 case ICBTAG_FLAG_AD_LONG: 2135 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2136 if (!lad) 2137 return -1; 2138 etype = le32_to_cpu(lad->extLength) >> 30; 2139 *eloc = lelb_to_cpu(lad->extLocation); 2140 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2141 break; 2142 default: 2143 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2144 return -1; 2145 } 2146 2147 return etype; 2148 } 2149 2150 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2151 struct kernel_lb_addr neloc, uint32_t nelen) 2152 { 2153 struct kernel_lb_addr oeloc; 2154 uint32_t oelen; 2155 int8_t etype; 2156 2157 if (epos.bh) 2158 get_bh(epos.bh); 2159 2160 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2161 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2162 neloc = oeloc; 2163 nelen = (etype << 30) | oelen; 2164 } 2165 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2166 brelse(epos.bh); 2167 2168 return (nelen >> 30); 2169 } 2170 2171 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2172 { 2173 struct extent_position oepos; 2174 int adsize; 2175 int8_t etype; 2176 struct allocExtDesc *aed; 2177 struct udf_inode_info *iinfo; 2178 struct kernel_lb_addr eloc; 2179 uint32_t elen; 2180 2181 if (epos.bh) { 2182 get_bh(epos.bh); 2183 get_bh(epos.bh); 2184 } 2185 2186 iinfo = UDF_I(inode); 2187 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2188 adsize = sizeof(struct short_ad); 2189 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2190 adsize = sizeof(struct long_ad); 2191 else 2192 adsize = 0; 2193 2194 oepos = epos; 2195 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2196 return -1; 2197 2198 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2199 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2200 if (oepos.bh != epos.bh) { 2201 oepos.block = epos.block; 2202 brelse(oepos.bh); 2203 get_bh(epos.bh); 2204 oepos.bh = epos.bh; 2205 oepos.offset = epos.offset - adsize; 2206 } 2207 } 2208 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2209 elen = 0; 2210 2211 if (epos.bh != oepos.bh) { 2212 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2213 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2214 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2215 if (!oepos.bh) { 2216 iinfo->i_lenAlloc -= (adsize * 2); 2217 mark_inode_dirty(inode); 2218 } else { 2219 aed = (struct allocExtDesc *)oepos.bh->b_data; 2220 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2221 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2222 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2223 udf_update_tag(oepos.bh->b_data, 2224 oepos.offset - (2 * adsize)); 2225 else 2226 udf_update_tag(oepos.bh->b_data, 2227 sizeof(struct allocExtDesc)); 2228 mark_buffer_dirty_inode(oepos.bh, inode); 2229 } 2230 } else { 2231 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2232 if (!oepos.bh) { 2233 iinfo->i_lenAlloc -= adsize; 2234 mark_inode_dirty(inode); 2235 } else { 2236 aed = (struct allocExtDesc *)oepos.bh->b_data; 2237 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2238 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2239 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2240 udf_update_tag(oepos.bh->b_data, 2241 epos.offset - adsize); 2242 else 2243 udf_update_tag(oepos.bh->b_data, 2244 sizeof(struct allocExtDesc)); 2245 mark_buffer_dirty_inode(oepos.bh, inode); 2246 } 2247 } 2248 2249 brelse(epos.bh); 2250 brelse(oepos.bh); 2251 2252 return (elen >> 30); 2253 } 2254 2255 int8_t inode_bmap(struct inode *inode, sector_t block, 2256 struct extent_position *pos, struct kernel_lb_addr *eloc, 2257 uint32_t *elen, sector_t *offset) 2258 { 2259 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2260 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2261 int8_t etype; 2262 struct udf_inode_info *iinfo; 2263 2264 iinfo = UDF_I(inode); 2265 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2266 pos->offset = 0; 2267 pos->block = iinfo->i_location; 2268 pos->bh = NULL; 2269 } 2270 *elen = 0; 2271 do { 2272 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2273 if (etype == -1) { 2274 *offset = (bcount - lbcount) >> blocksize_bits; 2275 iinfo->i_lenExtents = lbcount; 2276 return -1; 2277 } 2278 lbcount += *elen; 2279 } while (lbcount <= bcount); 2280 /* update extent cache */ 2281 udf_update_extent_cache(inode, lbcount - *elen, pos); 2282 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2283 2284 return etype; 2285 } 2286 2287 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2288 { 2289 struct kernel_lb_addr eloc; 2290 uint32_t elen; 2291 sector_t offset; 2292 struct extent_position epos = {}; 2293 udf_pblk_t ret; 2294 2295 down_read(&UDF_I(inode)->i_data_sem); 2296 2297 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2298 (EXT_RECORDED_ALLOCATED >> 30)) 2299 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2300 else 2301 ret = 0; 2302 2303 up_read(&UDF_I(inode)->i_data_sem); 2304 brelse(epos.bh); 2305 2306 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2307 return udf_fixed_to_variable(ret); 2308 else 2309 return ret; 2310 } 2311