1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 #include <linux/crc-itu-t.h> 40 #include <linux/mpage.h> 41 #include <linux/aio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 MODULE_AUTHOR("Ben Fennema"); 47 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 48 MODULE_LICENSE("GPL"); 49 50 #define EXTENT_MERGE_SIZE 5 51 52 static umode_t udf_convert_permissions(struct fileEntry *); 53 static int udf_update_inode(struct inode *, int); 54 static void udf_fill_inode(struct inode *, struct buffer_head *); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 58 static int8_t udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, int, 61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 64 static void udf_merge_extents(struct inode *, 65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 66 static void udf_update_extents(struct inode *, 67 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 68 struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 static void __udf_clear_extent_cache(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79 } 80 81 /* Invalidate extent cache */ 82 static void udf_clear_extent_cache(struct inode *inode) 83 { 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89 } 90 91 /* Return contents of extent cache */ 92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94 { 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111 } 112 113 /* Add extent to extent cache */ 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos, int next_epos) 116 { 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, 125 sizeof(struct extent_position)); 126 iinfo->cached_extent.lstart = estart; 127 if (next_epos) 128 switch (iinfo->i_alloc_type) { 129 case ICBTAG_FLAG_AD_SHORT: 130 iinfo->cached_extent.epos.offset -= 131 sizeof(struct short_ad); 132 break; 133 case ICBTAG_FLAG_AD_LONG: 134 iinfo->cached_extent.epos.offset -= 135 sizeof(struct long_ad); 136 } 137 spin_unlock(&iinfo->i_extent_cache_lock); 138 } 139 140 void udf_evict_inode(struct inode *inode) 141 { 142 struct udf_inode_info *iinfo = UDF_I(inode); 143 int want_delete = 0; 144 145 if (!inode->i_nlink && !is_bad_inode(inode)) { 146 want_delete = 1; 147 udf_setsize(inode, 0); 148 udf_update_inode(inode, IS_SYNC(inode)); 149 } 150 truncate_inode_pages_final(&inode->i_data); 151 invalidate_inode_buffers(inode); 152 clear_inode(inode); 153 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 154 inode->i_size != iinfo->i_lenExtents) { 155 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 156 inode->i_ino, inode->i_mode, 157 (unsigned long long)inode->i_size, 158 (unsigned long long)iinfo->i_lenExtents); 159 } 160 kfree(iinfo->i_ext.i_data); 161 iinfo->i_ext.i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166 } 167 168 static void udf_write_failed(struct address_space *mapping, loff_t to) 169 { 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183 } 184 185 static int udf_writepage(struct page *page, struct writeback_control *wbc) 186 { 187 return block_write_full_page(page, udf_get_block, wbc); 188 } 189 190 static int udf_writepages(struct address_space *mapping, 191 struct writeback_control *wbc) 192 { 193 return mpage_writepages(mapping, wbc, udf_get_block); 194 } 195 196 static int udf_readpage(struct file *file, struct page *page) 197 { 198 return mpage_readpage(page, udf_get_block); 199 } 200 201 static int udf_readpages(struct file *file, struct address_space *mapping, 202 struct list_head *pages, unsigned nr_pages) 203 { 204 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 205 } 206 207 static int udf_write_begin(struct file *file, struct address_space *mapping, 208 loff_t pos, unsigned len, unsigned flags, 209 struct page **pagep, void **fsdata) 210 { 211 int ret; 212 213 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 214 if (unlikely(ret)) 215 udf_write_failed(mapping, pos + len); 216 return ret; 217 } 218 219 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb, 220 const struct iovec *iov, 221 loff_t offset, unsigned long nr_segs) 222 { 223 struct file *file = iocb->ki_filp; 224 struct address_space *mapping = file->f_mapping; 225 struct inode *inode = mapping->host; 226 ssize_t ret; 227 228 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 229 udf_get_block); 230 if (unlikely(ret < 0 && (rw & WRITE))) 231 udf_write_failed(mapping, offset + iov_length(iov, nr_segs)); 232 return ret; 233 } 234 235 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 236 { 237 return generic_block_bmap(mapping, block, udf_get_block); 238 } 239 240 const struct address_space_operations udf_aops = { 241 .readpage = udf_readpage, 242 .readpages = udf_readpages, 243 .writepage = udf_writepage, 244 .writepages = udf_writepages, 245 .write_begin = udf_write_begin, 246 .write_end = generic_write_end, 247 .direct_IO = udf_direct_IO, 248 .bmap = udf_bmap, 249 }; 250 251 /* 252 * Expand file stored in ICB to a normal one-block-file 253 * 254 * This function requires i_data_sem for writing and releases it. 255 * This function requires i_mutex held 256 */ 257 int udf_expand_file_adinicb(struct inode *inode) 258 { 259 struct page *page; 260 char *kaddr; 261 struct udf_inode_info *iinfo = UDF_I(inode); 262 int err; 263 struct writeback_control udf_wbc = { 264 .sync_mode = WB_SYNC_NONE, 265 .nr_to_write = 1, 266 }; 267 268 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex)); 269 if (!iinfo->i_lenAlloc) { 270 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 272 else 273 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 274 /* from now on we have normal address_space methods */ 275 inode->i_data.a_ops = &udf_aops; 276 up_write(&iinfo->i_data_sem); 277 mark_inode_dirty(inode); 278 return 0; 279 } 280 /* 281 * Release i_data_sem so that we can lock a page - page lock ranks 282 * above i_data_sem. i_mutex still protects us against file changes. 283 */ 284 up_write(&iinfo->i_data_sem); 285 286 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 287 if (!page) 288 return -ENOMEM; 289 290 if (!PageUptodate(page)) { 291 kaddr = kmap(page); 292 memset(kaddr + iinfo->i_lenAlloc, 0x00, 293 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 294 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 295 iinfo->i_lenAlloc); 296 flush_dcache_page(page); 297 SetPageUptodate(page); 298 kunmap(page); 299 } 300 down_write(&iinfo->i_data_sem); 301 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 302 iinfo->i_lenAlloc); 303 iinfo->i_lenAlloc = 0; 304 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 306 else 307 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 308 /* from now on we have normal address_space methods */ 309 inode->i_data.a_ops = &udf_aops; 310 up_write(&iinfo->i_data_sem); 311 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 312 if (err) { 313 /* Restore everything back so that we don't lose data... */ 314 lock_page(page); 315 kaddr = kmap(page); 316 down_write(&iinfo->i_data_sem); 317 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 318 inode->i_size); 319 kunmap(page); 320 unlock_page(page); 321 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 322 inode->i_data.a_ops = &udf_adinicb_aops; 323 up_write(&iinfo->i_data_sem); 324 } 325 page_cache_release(page); 326 mark_inode_dirty(inode); 327 328 return err; 329 } 330 331 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 332 int *err) 333 { 334 int newblock; 335 struct buffer_head *dbh = NULL; 336 struct kernel_lb_addr eloc; 337 uint8_t alloctype; 338 struct extent_position epos; 339 340 struct udf_fileident_bh sfibh, dfibh; 341 loff_t f_pos = udf_ext0_offset(inode); 342 int size = udf_ext0_offset(inode) + inode->i_size; 343 struct fileIdentDesc cfi, *sfi, *dfi; 344 struct udf_inode_info *iinfo = UDF_I(inode); 345 346 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 347 alloctype = ICBTAG_FLAG_AD_SHORT; 348 else 349 alloctype = ICBTAG_FLAG_AD_LONG; 350 351 if (!inode->i_size) { 352 iinfo->i_alloc_type = alloctype; 353 mark_inode_dirty(inode); 354 return NULL; 355 } 356 357 /* alloc block, and copy data to it */ 358 *block = udf_new_block(inode->i_sb, inode, 359 iinfo->i_location.partitionReferenceNum, 360 iinfo->i_location.logicalBlockNum, err); 361 if (!(*block)) 362 return NULL; 363 newblock = udf_get_pblock(inode->i_sb, *block, 364 iinfo->i_location.partitionReferenceNum, 365 0); 366 if (!newblock) 367 return NULL; 368 dbh = udf_tgetblk(inode->i_sb, newblock); 369 if (!dbh) 370 return NULL; 371 lock_buffer(dbh); 372 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 373 set_buffer_uptodate(dbh); 374 unlock_buffer(dbh); 375 mark_buffer_dirty_inode(dbh, inode); 376 377 sfibh.soffset = sfibh.eoffset = 378 f_pos & (inode->i_sb->s_blocksize - 1); 379 sfibh.sbh = sfibh.ebh = NULL; 380 dfibh.soffset = dfibh.eoffset = 0; 381 dfibh.sbh = dfibh.ebh = dbh; 382 while (f_pos < size) { 383 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 384 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 385 NULL, NULL, NULL); 386 if (!sfi) { 387 brelse(dbh); 388 return NULL; 389 } 390 iinfo->i_alloc_type = alloctype; 391 sfi->descTag.tagLocation = cpu_to_le32(*block); 392 dfibh.soffset = dfibh.eoffset; 393 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 394 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 395 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 396 sfi->fileIdent + 397 le16_to_cpu(sfi->lengthOfImpUse))) { 398 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 399 brelse(dbh); 400 return NULL; 401 } 402 } 403 mark_buffer_dirty_inode(dbh, inode); 404 405 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 406 iinfo->i_lenAlloc); 407 iinfo->i_lenAlloc = 0; 408 eloc.logicalBlockNum = *block; 409 eloc.partitionReferenceNum = 410 iinfo->i_location.partitionReferenceNum; 411 iinfo->i_lenExtents = inode->i_size; 412 epos.bh = NULL; 413 epos.block = iinfo->i_location; 414 epos.offset = udf_file_entry_alloc_offset(inode); 415 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 416 /* UniqueID stuff */ 417 418 brelse(epos.bh); 419 mark_inode_dirty(inode); 420 return dbh; 421 } 422 423 static int udf_get_block(struct inode *inode, sector_t block, 424 struct buffer_head *bh_result, int create) 425 { 426 int err, new; 427 sector_t phys = 0; 428 struct udf_inode_info *iinfo; 429 430 if (!create) { 431 phys = udf_block_map(inode, block); 432 if (phys) 433 map_bh(bh_result, inode->i_sb, phys); 434 return 0; 435 } 436 437 err = -EIO; 438 new = 0; 439 iinfo = UDF_I(inode); 440 441 down_write(&iinfo->i_data_sem); 442 if (block == iinfo->i_next_alloc_block + 1) { 443 iinfo->i_next_alloc_block++; 444 iinfo->i_next_alloc_goal++; 445 } 446 447 udf_clear_extent_cache(inode); 448 phys = inode_getblk(inode, block, &err, &new); 449 if (!phys) 450 goto abort; 451 452 if (new) 453 set_buffer_new(bh_result); 454 map_bh(bh_result, inode->i_sb, phys); 455 456 abort: 457 up_write(&iinfo->i_data_sem); 458 return err; 459 } 460 461 static struct buffer_head *udf_getblk(struct inode *inode, long block, 462 int create, int *err) 463 { 464 struct buffer_head *bh; 465 struct buffer_head dummy; 466 467 dummy.b_state = 0; 468 dummy.b_blocknr = -1000; 469 *err = udf_get_block(inode, block, &dummy, create); 470 if (!*err && buffer_mapped(&dummy)) { 471 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 472 if (buffer_new(&dummy)) { 473 lock_buffer(bh); 474 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 475 set_buffer_uptodate(bh); 476 unlock_buffer(bh); 477 mark_buffer_dirty_inode(bh, inode); 478 } 479 return bh; 480 } 481 482 return NULL; 483 } 484 485 /* Extend the file by 'blocks' blocks, return the number of extents added */ 486 static int udf_do_extend_file(struct inode *inode, 487 struct extent_position *last_pos, 488 struct kernel_long_ad *last_ext, 489 sector_t blocks) 490 { 491 sector_t add; 492 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 493 struct super_block *sb = inode->i_sb; 494 struct kernel_lb_addr prealloc_loc = {}; 495 int prealloc_len = 0; 496 struct udf_inode_info *iinfo; 497 int err; 498 499 /* The previous extent is fake and we should not extend by anything 500 * - there's nothing to do... */ 501 if (!blocks && fake) 502 return 0; 503 504 iinfo = UDF_I(inode); 505 /* Round the last extent up to a multiple of block size */ 506 if (last_ext->extLength & (sb->s_blocksize - 1)) { 507 last_ext->extLength = 508 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 509 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 510 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 511 iinfo->i_lenExtents = 512 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 513 ~(sb->s_blocksize - 1); 514 } 515 516 /* Last extent are just preallocated blocks? */ 517 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 518 EXT_NOT_RECORDED_ALLOCATED) { 519 /* Save the extent so that we can reattach it to the end */ 520 prealloc_loc = last_ext->extLocation; 521 prealloc_len = last_ext->extLength; 522 /* Mark the extent as a hole */ 523 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 524 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 525 last_ext->extLocation.logicalBlockNum = 0; 526 last_ext->extLocation.partitionReferenceNum = 0; 527 } 528 529 /* Can we merge with the previous extent? */ 530 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 531 EXT_NOT_RECORDED_NOT_ALLOCATED) { 532 add = ((1 << 30) - sb->s_blocksize - 533 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 534 sb->s_blocksize_bits; 535 if (add > blocks) 536 add = blocks; 537 blocks -= add; 538 last_ext->extLength += add << sb->s_blocksize_bits; 539 } 540 541 if (fake) { 542 udf_add_aext(inode, last_pos, &last_ext->extLocation, 543 last_ext->extLength, 1); 544 count++; 545 } else 546 udf_write_aext(inode, last_pos, &last_ext->extLocation, 547 last_ext->extLength, 1); 548 549 /* Managed to do everything necessary? */ 550 if (!blocks) 551 goto out; 552 553 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 554 last_ext->extLocation.logicalBlockNum = 0; 555 last_ext->extLocation.partitionReferenceNum = 0; 556 add = (1 << (30-sb->s_blocksize_bits)) - 1; 557 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 558 (add << sb->s_blocksize_bits); 559 560 /* Create enough extents to cover the whole hole */ 561 while (blocks > add) { 562 blocks -= add; 563 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 564 last_ext->extLength, 1); 565 if (err) 566 return err; 567 count++; 568 } 569 if (blocks) { 570 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 571 (blocks << sb->s_blocksize_bits); 572 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 573 last_ext->extLength, 1); 574 if (err) 575 return err; 576 count++; 577 } 578 579 out: 580 /* Do we have some preallocated blocks saved? */ 581 if (prealloc_len) { 582 err = udf_add_aext(inode, last_pos, &prealloc_loc, 583 prealloc_len, 1); 584 if (err) 585 return err; 586 last_ext->extLocation = prealloc_loc; 587 last_ext->extLength = prealloc_len; 588 count++; 589 } 590 591 /* last_pos should point to the last written extent... */ 592 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 593 last_pos->offset -= sizeof(struct short_ad); 594 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 595 last_pos->offset -= sizeof(struct long_ad); 596 else 597 return -EIO; 598 599 return count; 600 } 601 602 static int udf_extend_file(struct inode *inode, loff_t newsize) 603 { 604 605 struct extent_position epos; 606 struct kernel_lb_addr eloc; 607 uint32_t elen; 608 int8_t etype; 609 struct super_block *sb = inode->i_sb; 610 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 611 int adsize; 612 struct udf_inode_info *iinfo = UDF_I(inode); 613 struct kernel_long_ad extent; 614 int err; 615 616 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 617 adsize = sizeof(struct short_ad); 618 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 619 adsize = sizeof(struct long_ad); 620 else 621 BUG(); 622 623 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 624 625 /* File has extent covering the new size (could happen when extending 626 * inside a block)? */ 627 if (etype != -1) 628 return 0; 629 if (newsize & (sb->s_blocksize - 1)) 630 offset++; 631 /* Extended file just to the boundary of the last file block? */ 632 if (offset == 0) 633 return 0; 634 635 /* Truncate is extending the file by 'offset' blocks */ 636 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 637 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 638 /* File has no extents at all or has empty last 639 * indirect extent! Create a fake extent... */ 640 extent.extLocation.logicalBlockNum = 0; 641 extent.extLocation.partitionReferenceNum = 0; 642 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 643 } else { 644 epos.offset -= adsize; 645 etype = udf_next_aext(inode, &epos, &extent.extLocation, 646 &extent.extLength, 0); 647 extent.extLength |= etype << 30; 648 } 649 err = udf_do_extend_file(inode, &epos, &extent, offset); 650 if (err < 0) 651 goto out; 652 err = 0; 653 iinfo->i_lenExtents = newsize; 654 out: 655 brelse(epos.bh); 656 return err; 657 } 658 659 static sector_t inode_getblk(struct inode *inode, sector_t block, 660 int *err, int *new) 661 { 662 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 663 struct extent_position prev_epos, cur_epos, next_epos; 664 int count = 0, startnum = 0, endnum = 0; 665 uint32_t elen = 0, tmpelen; 666 struct kernel_lb_addr eloc, tmpeloc; 667 int c = 1; 668 loff_t lbcount = 0, b_off = 0; 669 uint32_t newblocknum, newblock; 670 sector_t offset = 0; 671 int8_t etype; 672 struct udf_inode_info *iinfo = UDF_I(inode); 673 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 674 int lastblock = 0; 675 bool isBeyondEOF; 676 677 *err = 0; 678 *new = 0; 679 prev_epos.offset = udf_file_entry_alloc_offset(inode); 680 prev_epos.block = iinfo->i_location; 681 prev_epos.bh = NULL; 682 cur_epos = next_epos = prev_epos; 683 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 684 685 /* find the extent which contains the block we are looking for. 686 alternate between laarr[0] and laarr[1] for locations of the 687 current extent, and the previous extent */ 688 do { 689 if (prev_epos.bh != cur_epos.bh) { 690 brelse(prev_epos.bh); 691 get_bh(cur_epos.bh); 692 prev_epos.bh = cur_epos.bh; 693 } 694 if (cur_epos.bh != next_epos.bh) { 695 brelse(cur_epos.bh); 696 get_bh(next_epos.bh); 697 cur_epos.bh = next_epos.bh; 698 } 699 700 lbcount += elen; 701 702 prev_epos.block = cur_epos.block; 703 cur_epos.block = next_epos.block; 704 705 prev_epos.offset = cur_epos.offset; 706 cur_epos.offset = next_epos.offset; 707 708 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 709 if (etype == -1) 710 break; 711 712 c = !c; 713 714 laarr[c].extLength = (etype << 30) | elen; 715 laarr[c].extLocation = eloc; 716 717 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 718 pgoal = eloc.logicalBlockNum + 719 ((elen + inode->i_sb->s_blocksize - 1) >> 720 inode->i_sb->s_blocksize_bits); 721 722 count++; 723 } while (lbcount + elen <= b_off); 724 725 b_off -= lbcount; 726 offset = b_off >> inode->i_sb->s_blocksize_bits; 727 /* 728 * Move prev_epos and cur_epos into indirect extent if we are at 729 * the pointer to it 730 */ 731 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 732 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 733 734 /* if the extent is allocated and recorded, return the block 735 if the extent is not a multiple of the blocksize, round up */ 736 737 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 738 if (elen & (inode->i_sb->s_blocksize - 1)) { 739 elen = EXT_RECORDED_ALLOCATED | 740 ((elen + inode->i_sb->s_blocksize - 1) & 741 ~(inode->i_sb->s_blocksize - 1)); 742 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 743 } 744 brelse(prev_epos.bh); 745 brelse(cur_epos.bh); 746 brelse(next_epos.bh); 747 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 748 return newblock; 749 } 750 751 /* Are we beyond EOF? */ 752 if (etype == -1) { 753 int ret; 754 isBeyondEOF = 1; 755 if (count) { 756 if (c) 757 laarr[0] = laarr[1]; 758 startnum = 1; 759 } else { 760 /* Create a fake extent when there's not one */ 761 memset(&laarr[0].extLocation, 0x00, 762 sizeof(struct kernel_lb_addr)); 763 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 764 /* Will udf_do_extend_file() create real extent from 765 a fake one? */ 766 startnum = (offset > 0); 767 } 768 /* Create extents for the hole between EOF and offset */ 769 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 770 if (ret < 0) { 771 brelse(prev_epos.bh); 772 brelse(cur_epos.bh); 773 brelse(next_epos.bh); 774 *err = ret; 775 return 0; 776 } 777 c = 0; 778 offset = 0; 779 count += ret; 780 /* We are not covered by a preallocated extent? */ 781 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 782 EXT_NOT_RECORDED_ALLOCATED) { 783 /* Is there any real extent? - otherwise we overwrite 784 * the fake one... */ 785 if (count) 786 c = !c; 787 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 788 inode->i_sb->s_blocksize; 789 memset(&laarr[c].extLocation, 0x00, 790 sizeof(struct kernel_lb_addr)); 791 count++; 792 } 793 endnum = c + 1; 794 lastblock = 1; 795 } else { 796 isBeyondEOF = 0; 797 endnum = startnum = ((count > 2) ? 2 : count); 798 799 /* if the current extent is in position 0, 800 swap it with the previous */ 801 if (!c && count != 1) { 802 laarr[2] = laarr[0]; 803 laarr[0] = laarr[1]; 804 laarr[1] = laarr[2]; 805 c = 1; 806 } 807 808 /* if the current block is located in an extent, 809 read the next extent */ 810 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 811 if (etype != -1) { 812 laarr[c + 1].extLength = (etype << 30) | elen; 813 laarr[c + 1].extLocation = eloc; 814 count++; 815 startnum++; 816 endnum++; 817 } else 818 lastblock = 1; 819 } 820 821 /* if the current extent is not recorded but allocated, get the 822 * block in the extent corresponding to the requested block */ 823 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 824 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 825 else { /* otherwise, allocate a new block */ 826 if (iinfo->i_next_alloc_block == block) 827 goal = iinfo->i_next_alloc_goal; 828 829 if (!goal) { 830 if (!(goal = pgoal)) /* XXX: what was intended here? */ 831 goal = iinfo->i_location.logicalBlockNum + 1; 832 } 833 834 newblocknum = udf_new_block(inode->i_sb, inode, 835 iinfo->i_location.partitionReferenceNum, 836 goal, err); 837 if (!newblocknum) { 838 brelse(prev_epos.bh); 839 brelse(cur_epos.bh); 840 brelse(next_epos.bh); 841 *err = -ENOSPC; 842 return 0; 843 } 844 if (isBeyondEOF) 845 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 846 } 847 848 /* if the extent the requsted block is located in contains multiple 849 * blocks, split the extent into at most three extents. blocks prior 850 * to requested block, requested block, and blocks after requested 851 * block */ 852 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 853 854 #ifdef UDF_PREALLOCATE 855 /* We preallocate blocks only for regular files. It also makes sense 856 * for directories but there's a problem when to drop the 857 * preallocation. We might use some delayed work for that but I feel 858 * it's overengineering for a filesystem like UDF. */ 859 if (S_ISREG(inode->i_mode)) 860 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 861 #endif 862 863 /* merge any continuous blocks in laarr */ 864 udf_merge_extents(inode, laarr, &endnum); 865 866 /* write back the new extents, inserting new extents if the new number 867 * of extents is greater than the old number, and deleting extents if 868 * the new number of extents is less than the old number */ 869 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 870 871 brelse(prev_epos.bh); 872 brelse(cur_epos.bh); 873 brelse(next_epos.bh); 874 875 newblock = udf_get_pblock(inode->i_sb, newblocknum, 876 iinfo->i_location.partitionReferenceNum, 0); 877 if (!newblock) { 878 *err = -EIO; 879 return 0; 880 } 881 *new = 1; 882 iinfo->i_next_alloc_block = block; 883 iinfo->i_next_alloc_goal = newblocknum; 884 inode->i_ctime = current_fs_time(inode->i_sb); 885 886 if (IS_SYNC(inode)) 887 udf_sync_inode(inode); 888 else 889 mark_inode_dirty(inode); 890 891 return newblock; 892 } 893 894 static void udf_split_extents(struct inode *inode, int *c, int offset, 895 int newblocknum, 896 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 897 int *endnum) 898 { 899 unsigned long blocksize = inode->i_sb->s_blocksize; 900 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 901 902 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 903 (laarr[*c].extLength >> 30) == 904 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 905 int curr = *c; 906 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 907 blocksize - 1) >> blocksize_bits; 908 int8_t etype = (laarr[curr].extLength >> 30); 909 910 if (blen == 1) 911 ; 912 else if (!offset || blen == offset + 1) { 913 laarr[curr + 2] = laarr[curr + 1]; 914 laarr[curr + 1] = laarr[curr]; 915 } else { 916 laarr[curr + 3] = laarr[curr + 1]; 917 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 918 } 919 920 if (offset) { 921 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 922 udf_free_blocks(inode->i_sb, inode, 923 &laarr[curr].extLocation, 924 0, offset); 925 laarr[curr].extLength = 926 EXT_NOT_RECORDED_NOT_ALLOCATED | 927 (offset << blocksize_bits); 928 laarr[curr].extLocation.logicalBlockNum = 0; 929 laarr[curr].extLocation. 930 partitionReferenceNum = 0; 931 } else 932 laarr[curr].extLength = (etype << 30) | 933 (offset << blocksize_bits); 934 curr++; 935 (*c)++; 936 (*endnum)++; 937 } 938 939 laarr[curr].extLocation.logicalBlockNum = newblocknum; 940 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 941 laarr[curr].extLocation.partitionReferenceNum = 942 UDF_I(inode)->i_location.partitionReferenceNum; 943 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 944 blocksize; 945 curr++; 946 947 if (blen != offset + 1) { 948 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 949 laarr[curr].extLocation.logicalBlockNum += 950 offset + 1; 951 laarr[curr].extLength = (etype << 30) | 952 ((blen - (offset + 1)) << blocksize_bits); 953 curr++; 954 (*endnum)++; 955 } 956 } 957 } 958 959 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 960 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 961 int *endnum) 962 { 963 int start, length = 0, currlength = 0, i; 964 965 if (*endnum >= (c + 1)) { 966 if (!lastblock) 967 return; 968 else 969 start = c; 970 } else { 971 if ((laarr[c + 1].extLength >> 30) == 972 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 973 start = c + 1; 974 length = currlength = 975 (((laarr[c + 1].extLength & 976 UDF_EXTENT_LENGTH_MASK) + 977 inode->i_sb->s_blocksize - 1) >> 978 inode->i_sb->s_blocksize_bits); 979 } else 980 start = c; 981 } 982 983 for (i = start + 1; i <= *endnum; i++) { 984 if (i == *endnum) { 985 if (lastblock) 986 length += UDF_DEFAULT_PREALLOC_BLOCKS; 987 } else if ((laarr[i].extLength >> 30) == 988 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 989 length += (((laarr[i].extLength & 990 UDF_EXTENT_LENGTH_MASK) + 991 inode->i_sb->s_blocksize - 1) >> 992 inode->i_sb->s_blocksize_bits); 993 } else 994 break; 995 } 996 997 if (length) { 998 int next = laarr[start].extLocation.logicalBlockNum + 999 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1000 inode->i_sb->s_blocksize - 1) >> 1001 inode->i_sb->s_blocksize_bits); 1002 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1003 laarr[start].extLocation.partitionReferenceNum, 1004 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1005 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1006 currlength); 1007 if (numalloc) { 1008 if (start == (c + 1)) 1009 laarr[start].extLength += 1010 (numalloc << 1011 inode->i_sb->s_blocksize_bits); 1012 else { 1013 memmove(&laarr[c + 2], &laarr[c + 1], 1014 sizeof(struct long_ad) * (*endnum - (c + 1))); 1015 (*endnum)++; 1016 laarr[c + 1].extLocation.logicalBlockNum = next; 1017 laarr[c + 1].extLocation.partitionReferenceNum = 1018 laarr[c].extLocation. 1019 partitionReferenceNum; 1020 laarr[c + 1].extLength = 1021 EXT_NOT_RECORDED_ALLOCATED | 1022 (numalloc << 1023 inode->i_sb->s_blocksize_bits); 1024 start = c + 1; 1025 } 1026 1027 for (i = start + 1; numalloc && i < *endnum; i++) { 1028 int elen = ((laarr[i].extLength & 1029 UDF_EXTENT_LENGTH_MASK) + 1030 inode->i_sb->s_blocksize - 1) >> 1031 inode->i_sb->s_blocksize_bits; 1032 1033 if (elen > numalloc) { 1034 laarr[i].extLength -= 1035 (numalloc << 1036 inode->i_sb->s_blocksize_bits); 1037 numalloc = 0; 1038 } else { 1039 numalloc -= elen; 1040 if (*endnum > (i + 1)) 1041 memmove(&laarr[i], 1042 &laarr[i + 1], 1043 sizeof(struct long_ad) * 1044 (*endnum - (i + 1))); 1045 i--; 1046 (*endnum)--; 1047 } 1048 } 1049 UDF_I(inode)->i_lenExtents += 1050 numalloc << inode->i_sb->s_blocksize_bits; 1051 } 1052 } 1053 } 1054 1055 static void udf_merge_extents(struct inode *inode, 1056 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1057 int *endnum) 1058 { 1059 int i; 1060 unsigned long blocksize = inode->i_sb->s_blocksize; 1061 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1062 1063 for (i = 0; i < (*endnum - 1); i++) { 1064 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1065 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1066 1067 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1068 (((li->extLength >> 30) == 1069 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1070 ((lip1->extLocation.logicalBlockNum - 1071 li->extLocation.logicalBlockNum) == 1072 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1073 blocksize - 1) >> blocksize_bits)))) { 1074 1075 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1076 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1077 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1078 lip1->extLength = (lip1->extLength - 1079 (li->extLength & 1080 UDF_EXTENT_LENGTH_MASK) + 1081 UDF_EXTENT_LENGTH_MASK) & 1082 ~(blocksize - 1); 1083 li->extLength = (li->extLength & 1084 UDF_EXTENT_FLAG_MASK) + 1085 (UDF_EXTENT_LENGTH_MASK + 1) - 1086 blocksize; 1087 lip1->extLocation.logicalBlockNum = 1088 li->extLocation.logicalBlockNum + 1089 ((li->extLength & 1090 UDF_EXTENT_LENGTH_MASK) >> 1091 blocksize_bits); 1092 } else { 1093 li->extLength = lip1->extLength + 1094 (((li->extLength & 1095 UDF_EXTENT_LENGTH_MASK) + 1096 blocksize - 1) & ~(blocksize - 1)); 1097 if (*endnum > (i + 2)) 1098 memmove(&laarr[i + 1], &laarr[i + 2], 1099 sizeof(struct long_ad) * 1100 (*endnum - (i + 2))); 1101 i--; 1102 (*endnum)--; 1103 } 1104 } else if (((li->extLength >> 30) == 1105 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1106 ((lip1->extLength >> 30) == 1107 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1108 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1109 ((li->extLength & 1110 UDF_EXTENT_LENGTH_MASK) + 1111 blocksize - 1) >> blocksize_bits); 1112 li->extLocation.logicalBlockNum = 0; 1113 li->extLocation.partitionReferenceNum = 0; 1114 1115 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1116 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1117 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1118 lip1->extLength = (lip1->extLength - 1119 (li->extLength & 1120 UDF_EXTENT_LENGTH_MASK) + 1121 UDF_EXTENT_LENGTH_MASK) & 1122 ~(blocksize - 1); 1123 li->extLength = (li->extLength & 1124 UDF_EXTENT_FLAG_MASK) + 1125 (UDF_EXTENT_LENGTH_MASK + 1) - 1126 blocksize; 1127 } else { 1128 li->extLength = lip1->extLength + 1129 (((li->extLength & 1130 UDF_EXTENT_LENGTH_MASK) + 1131 blocksize - 1) & ~(blocksize - 1)); 1132 if (*endnum > (i + 2)) 1133 memmove(&laarr[i + 1], &laarr[i + 2], 1134 sizeof(struct long_ad) * 1135 (*endnum - (i + 2))); 1136 i--; 1137 (*endnum)--; 1138 } 1139 } else if ((li->extLength >> 30) == 1140 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1141 udf_free_blocks(inode->i_sb, inode, 1142 &li->extLocation, 0, 1143 ((li->extLength & 1144 UDF_EXTENT_LENGTH_MASK) + 1145 blocksize - 1) >> blocksize_bits); 1146 li->extLocation.logicalBlockNum = 0; 1147 li->extLocation.partitionReferenceNum = 0; 1148 li->extLength = (li->extLength & 1149 UDF_EXTENT_LENGTH_MASK) | 1150 EXT_NOT_RECORDED_NOT_ALLOCATED; 1151 } 1152 } 1153 } 1154 1155 static void udf_update_extents(struct inode *inode, 1156 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1157 int startnum, int endnum, 1158 struct extent_position *epos) 1159 { 1160 int start = 0, i; 1161 struct kernel_lb_addr tmploc; 1162 uint32_t tmplen; 1163 1164 if (startnum > endnum) { 1165 for (i = 0; i < (startnum - endnum); i++) 1166 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1167 laarr[i].extLength); 1168 } else if (startnum < endnum) { 1169 for (i = 0; i < (endnum - startnum); i++) { 1170 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1171 laarr[i].extLength); 1172 udf_next_aext(inode, epos, &laarr[i].extLocation, 1173 &laarr[i].extLength, 1); 1174 start++; 1175 } 1176 } 1177 1178 for (i = start; i < endnum; i++) { 1179 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1180 udf_write_aext(inode, epos, &laarr[i].extLocation, 1181 laarr[i].extLength, 1); 1182 } 1183 } 1184 1185 struct buffer_head *udf_bread(struct inode *inode, int block, 1186 int create, int *err) 1187 { 1188 struct buffer_head *bh = NULL; 1189 1190 bh = udf_getblk(inode, block, create, err); 1191 if (!bh) 1192 return NULL; 1193 1194 if (buffer_uptodate(bh)) 1195 return bh; 1196 1197 ll_rw_block(READ, 1, &bh); 1198 1199 wait_on_buffer(bh); 1200 if (buffer_uptodate(bh)) 1201 return bh; 1202 1203 brelse(bh); 1204 *err = -EIO; 1205 return NULL; 1206 } 1207 1208 int udf_setsize(struct inode *inode, loff_t newsize) 1209 { 1210 int err; 1211 struct udf_inode_info *iinfo; 1212 int bsize = 1 << inode->i_blkbits; 1213 1214 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1215 S_ISLNK(inode->i_mode))) 1216 return -EINVAL; 1217 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1218 return -EPERM; 1219 1220 iinfo = UDF_I(inode); 1221 if (newsize > inode->i_size) { 1222 down_write(&iinfo->i_data_sem); 1223 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1224 if (bsize < 1225 (udf_file_entry_alloc_offset(inode) + newsize)) { 1226 err = udf_expand_file_adinicb(inode); 1227 if (err) 1228 return err; 1229 down_write(&iinfo->i_data_sem); 1230 } else { 1231 iinfo->i_lenAlloc = newsize; 1232 goto set_size; 1233 } 1234 } 1235 err = udf_extend_file(inode, newsize); 1236 if (err) { 1237 up_write(&iinfo->i_data_sem); 1238 return err; 1239 } 1240 set_size: 1241 truncate_setsize(inode, newsize); 1242 up_write(&iinfo->i_data_sem); 1243 } else { 1244 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1245 down_write(&iinfo->i_data_sem); 1246 udf_clear_extent_cache(inode); 1247 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1248 0x00, bsize - newsize - 1249 udf_file_entry_alloc_offset(inode)); 1250 iinfo->i_lenAlloc = newsize; 1251 truncate_setsize(inode, newsize); 1252 up_write(&iinfo->i_data_sem); 1253 goto update_time; 1254 } 1255 err = block_truncate_page(inode->i_mapping, newsize, 1256 udf_get_block); 1257 if (err) 1258 return err; 1259 down_write(&iinfo->i_data_sem); 1260 udf_clear_extent_cache(inode); 1261 truncate_setsize(inode, newsize); 1262 udf_truncate_extents(inode); 1263 up_write(&iinfo->i_data_sem); 1264 } 1265 update_time: 1266 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1267 if (IS_SYNC(inode)) 1268 udf_sync_inode(inode); 1269 else 1270 mark_inode_dirty(inode); 1271 return 0; 1272 } 1273 1274 static void __udf_read_inode(struct inode *inode) 1275 { 1276 struct buffer_head *bh = NULL; 1277 struct fileEntry *fe; 1278 uint16_t ident; 1279 struct udf_inode_info *iinfo = UDF_I(inode); 1280 1281 /* 1282 * Set defaults, but the inode is still incomplete! 1283 * Note: get_new_inode() sets the following on a new inode: 1284 * i_sb = sb 1285 * i_no = ino 1286 * i_flags = sb->s_flags 1287 * i_state = 0 1288 * clean_inode(): zero fills and sets 1289 * i_count = 1 1290 * i_nlink = 1 1291 * i_op = NULL; 1292 */ 1293 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1294 if (!bh) { 1295 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1296 make_bad_inode(inode); 1297 return; 1298 } 1299 1300 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1301 ident != TAG_IDENT_USE) { 1302 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1303 inode->i_ino, ident); 1304 brelse(bh); 1305 make_bad_inode(inode); 1306 return; 1307 } 1308 1309 fe = (struct fileEntry *)bh->b_data; 1310 1311 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1312 struct buffer_head *ibh; 1313 1314 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1315 &ident); 1316 if (ident == TAG_IDENT_IE && ibh) { 1317 struct buffer_head *nbh = NULL; 1318 struct kernel_lb_addr loc; 1319 struct indirectEntry *ie; 1320 1321 ie = (struct indirectEntry *)ibh->b_data; 1322 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1323 1324 if (ie->indirectICB.extLength && 1325 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1326 &ident))) { 1327 if (ident == TAG_IDENT_FE || 1328 ident == TAG_IDENT_EFE) { 1329 memcpy(&iinfo->i_location, 1330 &loc, 1331 sizeof(struct kernel_lb_addr)); 1332 brelse(bh); 1333 brelse(ibh); 1334 brelse(nbh); 1335 __udf_read_inode(inode); 1336 return; 1337 } 1338 brelse(nbh); 1339 } 1340 } 1341 brelse(ibh); 1342 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1343 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1344 le16_to_cpu(fe->icbTag.strategyType)); 1345 brelse(bh); 1346 make_bad_inode(inode); 1347 return; 1348 } 1349 udf_fill_inode(inode, bh); 1350 1351 brelse(bh); 1352 } 1353 1354 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1355 { 1356 struct fileEntry *fe; 1357 struct extendedFileEntry *efe; 1358 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1359 struct udf_inode_info *iinfo = UDF_I(inode); 1360 unsigned int link_count; 1361 1362 fe = (struct fileEntry *)bh->b_data; 1363 efe = (struct extendedFileEntry *)bh->b_data; 1364 1365 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1366 iinfo->i_strat4096 = 0; 1367 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1368 iinfo->i_strat4096 = 1; 1369 1370 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1371 ICBTAG_FLAG_AD_MASK; 1372 iinfo->i_unique = 0; 1373 iinfo->i_lenEAttr = 0; 1374 iinfo->i_lenExtents = 0; 1375 iinfo->i_lenAlloc = 0; 1376 iinfo->i_next_alloc_block = 0; 1377 iinfo->i_next_alloc_goal = 0; 1378 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1379 iinfo->i_efe = 1; 1380 iinfo->i_use = 0; 1381 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1382 sizeof(struct extendedFileEntry))) { 1383 make_bad_inode(inode); 1384 return; 1385 } 1386 memcpy(iinfo->i_ext.i_data, 1387 bh->b_data + sizeof(struct extendedFileEntry), 1388 inode->i_sb->s_blocksize - 1389 sizeof(struct extendedFileEntry)); 1390 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1391 iinfo->i_efe = 0; 1392 iinfo->i_use = 0; 1393 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1394 sizeof(struct fileEntry))) { 1395 make_bad_inode(inode); 1396 return; 1397 } 1398 memcpy(iinfo->i_ext.i_data, 1399 bh->b_data + sizeof(struct fileEntry), 1400 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1401 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1402 iinfo->i_efe = 0; 1403 iinfo->i_use = 1; 1404 iinfo->i_lenAlloc = le32_to_cpu( 1405 ((struct unallocSpaceEntry *)bh->b_data)-> 1406 lengthAllocDescs); 1407 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1408 sizeof(struct unallocSpaceEntry))) { 1409 make_bad_inode(inode); 1410 return; 1411 } 1412 memcpy(iinfo->i_ext.i_data, 1413 bh->b_data + sizeof(struct unallocSpaceEntry), 1414 inode->i_sb->s_blocksize - 1415 sizeof(struct unallocSpaceEntry)); 1416 return; 1417 } 1418 1419 read_lock(&sbi->s_cred_lock); 1420 i_uid_write(inode, le32_to_cpu(fe->uid)); 1421 if (!uid_valid(inode->i_uid) || 1422 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1423 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1424 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1425 1426 i_gid_write(inode, le32_to_cpu(fe->gid)); 1427 if (!gid_valid(inode->i_gid) || 1428 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1429 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1430 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1431 1432 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1433 sbi->s_fmode != UDF_INVALID_MODE) 1434 inode->i_mode = sbi->s_fmode; 1435 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1436 sbi->s_dmode != UDF_INVALID_MODE) 1437 inode->i_mode = sbi->s_dmode; 1438 else 1439 inode->i_mode = udf_convert_permissions(fe); 1440 inode->i_mode &= ~sbi->s_umask; 1441 read_unlock(&sbi->s_cred_lock); 1442 1443 link_count = le16_to_cpu(fe->fileLinkCount); 1444 if (!link_count) 1445 link_count = 1; 1446 set_nlink(inode, link_count); 1447 1448 inode->i_size = le64_to_cpu(fe->informationLength); 1449 iinfo->i_lenExtents = inode->i_size; 1450 1451 if (iinfo->i_efe == 0) { 1452 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1453 (inode->i_sb->s_blocksize_bits - 9); 1454 1455 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1456 inode->i_atime = sbi->s_record_time; 1457 1458 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1459 fe->modificationTime)) 1460 inode->i_mtime = sbi->s_record_time; 1461 1462 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1463 inode->i_ctime = sbi->s_record_time; 1464 1465 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1466 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1467 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1468 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1469 } else { 1470 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1471 (inode->i_sb->s_blocksize_bits - 9); 1472 1473 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1474 inode->i_atime = sbi->s_record_time; 1475 1476 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1477 efe->modificationTime)) 1478 inode->i_mtime = sbi->s_record_time; 1479 1480 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1481 iinfo->i_crtime = sbi->s_record_time; 1482 1483 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1484 inode->i_ctime = sbi->s_record_time; 1485 1486 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1487 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1488 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1489 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1490 } 1491 1492 switch (fe->icbTag.fileType) { 1493 case ICBTAG_FILE_TYPE_DIRECTORY: 1494 inode->i_op = &udf_dir_inode_operations; 1495 inode->i_fop = &udf_dir_operations; 1496 inode->i_mode |= S_IFDIR; 1497 inc_nlink(inode); 1498 break; 1499 case ICBTAG_FILE_TYPE_REALTIME: 1500 case ICBTAG_FILE_TYPE_REGULAR: 1501 case ICBTAG_FILE_TYPE_UNDEF: 1502 case ICBTAG_FILE_TYPE_VAT20: 1503 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1504 inode->i_data.a_ops = &udf_adinicb_aops; 1505 else 1506 inode->i_data.a_ops = &udf_aops; 1507 inode->i_op = &udf_file_inode_operations; 1508 inode->i_fop = &udf_file_operations; 1509 inode->i_mode |= S_IFREG; 1510 break; 1511 case ICBTAG_FILE_TYPE_BLOCK: 1512 inode->i_mode |= S_IFBLK; 1513 break; 1514 case ICBTAG_FILE_TYPE_CHAR: 1515 inode->i_mode |= S_IFCHR; 1516 break; 1517 case ICBTAG_FILE_TYPE_FIFO: 1518 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1519 break; 1520 case ICBTAG_FILE_TYPE_SOCKET: 1521 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1522 break; 1523 case ICBTAG_FILE_TYPE_SYMLINK: 1524 inode->i_data.a_ops = &udf_symlink_aops; 1525 inode->i_op = &udf_symlink_inode_operations; 1526 inode->i_mode = S_IFLNK | S_IRWXUGO; 1527 break; 1528 case ICBTAG_FILE_TYPE_MAIN: 1529 udf_debug("METADATA FILE-----\n"); 1530 break; 1531 case ICBTAG_FILE_TYPE_MIRROR: 1532 udf_debug("METADATA MIRROR FILE-----\n"); 1533 break; 1534 case ICBTAG_FILE_TYPE_BITMAP: 1535 udf_debug("METADATA BITMAP FILE-----\n"); 1536 break; 1537 default: 1538 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1539 inode->i_ino, fe->icbTag.fileType); 1540 make_bad_inode(inode); 1541 return; 1542 } 1543 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1544 struct deviceSpec *dsea = 1545 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1546 if (dsea) { 1547 init_special_inode(inode, inode->i_mode, 1548 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1549 le32_to_cpu(dsea->minorDeviceIdent))); 1550 /* Developer ID ??? */ 1551 } else 1552 make_bad_inode(inode); 1553 } 1554 } 1555 1556 static int udf_alloc_i_data(struct inode *inode, size_t size) 1557 { 1558 struct udf_inode_info *iinfo = UDF_I(inode); 1559 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1560 1561 if (!iinfo->i_ext.i_data) { 1562 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1563 inode->i_ino); 1564 return -ENOMEM; 1565 } 1566 1567 return 0; 1568 } 1569 1570 static umode_t udf_convert_permissions(struct fileEntry *fe) 1571 { 1572 umode_t mode; 1573 uint32_t permissions; 1574 uint32_t flags; 1575 1576 permissions = le32_to_cpu(fe->permissions); 1577 flags = le16_to_cpu(fe->icbTag.flags); 1578 1579 mode = ((permissions) & S_IRWXO) | 1580 ((permissions >> 2) & S_IRWXG) | 1581 ((permissions >> 4) & S_IRWXU) | 1582 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1583 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1584 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1585 1586 return mode; 1587 } 1588 1589 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1590 { 1591 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1592 } 1593 1594 static int udf_sync_inode(struct inode *inode) 1595 { 1596 return udf_update_inode(inode, 1); 1597 } 1598 1599 static int udf_update_inode(struct inode *inode, int do_sync) 1600 { 1601 struct buffer_head *bh = NULL; 1602 struct fileEntry *fe; 1603 struct extendedFileEntry *efe; 1604 uint64_t lb_recorded; 1605 uint32_t udfperms; 1606 uint16_t icbflags; 1607 uint16_t crclen; 1608 int err = 0; 1609 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1610 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1611 struct udf_inode_info *iinfo = UDF_I(inode); 1612 1613 bh = udf_tgetblk(inode->i_sb, 1614 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1615 if (!bh) { 1616 udf_debug("getblk failure\n"); 1617 return -ENOMEM; 1618 } 1619 1620 lock_buffer(bh); 1621 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1622 fe = (struct fileEntry *)bh->b_data; 1623 efe = (struct extendedFileEntry *)bh->b_data; 1624 1625 if (iinfo->i_use) { 1626 struct unallocSpaceEntry *use = 1627 (struct unallocSpaceEntry *)bh->b_data; 1628 1629 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1630 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1631 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1632 sizeof(struct unallocSpaceEntry)); 1633 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1634 use->descTag.tagLocation = 1635 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1636 crclen = sizeof(struct unallocSpaceEntry) + 1637 iinfo->i_lenAlloc - sizeof(struct tag); 1638 use->descTag.descCRCLength = cpu_to_le16(crclen); 1639 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1640 sizeof(struct tag), 1641 crclen)); 1642 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1643 1644 goto out; 1645 } 1646 1647 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1648 fe->uid = cpu_to_le32(-1); 1649 else 1650 fe->uid = cpu_to_le32(i_uid_read(inode)); 1651 1652 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1653 fe->gid = cpu_to_le32(-1); 1654 else 1655 fe->gid = cpu_to_le32(i_gid_read(inode)); 1656 1657 udfperms = ((inode->i_mode & S_IRWXO)) | 1658 ((inode->i_mode & S_IRWXG) << 2) | 1659 ((inode->i_mode & S_IRWXU) << 4); 1660 1661 udfperms |= (le32_to_cpu(fe->permissions) & 1662 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1663 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1664 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1665 fe->permissions = cpu_to_le32(udfperms); 1666 1667 if (S_ISDIR(inode->i_mode)) 1668 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1669 else 1670 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1671 1672 fe->informationLength = cpu_to_le64(inode->i_size); 1673 1674 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1675 struct regid *eid; 1676 struct deviceSpec *dsea = 1677 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1678 if (!dsea) { 1679 dsea = (struct deviceSpec *) 1680 udf_add_extendedattr(inode, 1681 sizeof(struct deviceSpec) + 1682 sizeof(struct regid), 12, 0x3); 1683 dsea->attrType = cpu_to_le32(12); 1684 dsea->attrSubtype = 1; 1685 dsea->attrLength = cpu_to_le32( 1686 sizeof(struct deviceSpec) + 1687 sizeof(struct regid)); 1688 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1689 } 1690 eid = (struct regid *)dsea->impUse; 1691 memset(eid, 0, sizeof(struct regid)); 1692 strcpy(eid->ident, UDF_ID_DEVELOPER); 1693 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1694 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1695 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1696 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1697 } 1698 1699 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1700 lb_recorded = 0; /* No extents => no blocks! */ 1701 else 1702 lb_recorded = 1703 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1704 (blocksize_bits - 9); 1705 1706 if (iinfo->i_efe == 0) { 1707 memcpy(bh->b_data + sizeof(struct fileEntry), 1708 iinfo->i_ext.i_data, 1709 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1710 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1711 1712 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1713 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1714 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1715 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1716 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1717 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1718 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1719 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1720 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1721 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1722 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1723 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1724 crclen = sizeof(struct fileEntry); 1725 } else { 1726 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1727 iinfo->i_ext.i_data, 1728 inode->i_sb->s_blocksize - 1729 sizeof(struct extendedFileEntry)); 1730 efe->objectSize = cpu_to_le64(inode->i_size); 1731 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1732 1733 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1734 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1735 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1736 iinfo->i_crtime = inode->i_atime; 1737 1738 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1739 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1740 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1741 iinfo->i_crtime = inode->i_mtime; 1742 1743 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1744 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1745 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1746 iinfo->i_crtime = inode->i_ctime; 1747 1748 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1749 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1750 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1751 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1752 1753 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1754 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1755 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1756 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1757 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1758 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1759 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1760 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1761 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1762 crclen = sizeof(struct extendedFileEntry); 1763 } 1764 if (iinfo->i_strat4096) { 1765 fe->icbTag.strategyType = cpu_to_le16(4096); 1766 fe->icbTag.strategyParameter = cpu_to_le16(1); 1767 fe->icbTag.numEntries = cpu_to_le16(2); 1768 } else { 1769 fe->icbTag.strategyType = cpu_to_le16(4); 1770 fe->icbTag.numEntries = cpu_to_le16(1); 1771 } 1772 1773 if (S_ISDIR(inode->i_mode)) 1774 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1775 else if (S_ISREG(inode->i_mode)) 1776 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1777 else if (S_ISLNK(inode->i_mode)) 1778 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1779 else if (S_ISBLK(inode->i_mode)) 1780 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1781 else if (S_ISCHR(inode->i_mode)) 1782 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1783 else if (S_ISFIFO(inode->i_mode)) 1784 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1785 else if (S_ISSOCK(inode->i_mode)) 1786 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1787 1788 icbflags = iinfo->i_alloc_type | 1789 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1790 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1791 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1792 (le16_to_cpu(fe->icbTag.flags) & 1793 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1794 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1795 1796 fe->icbTag.flags = cpu_to_le16(icbflags); 1797 if (sbi->s_udfrev >= 0x0200) 1798 fe->descTag.descVersion = cpu_to_le16(3); 1799 else 1800 fe->descTag.descVersion = cpu_to_le16(2); 1801 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1802 fe->descTag.tagLocation = cpu_to_le32( 1803 iinfo->i_location.logicalBlockNum); 1804 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1805 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1806 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1807 crclen)); 1808 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1809 1810 out: 1811 set_buffer_uptodate(bh); 1812 unlock_buffer(bh); 1813 1814 /* write the data blocks */ 1815 mark_buffer_dirty(bh); 1816 if (do_sync) { 1817 sync_dirty_buffer(bh); 1818 if (buffer_write_io_error(bh)) { 1819 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1820 inode->i_ino); 1821 err = -EIO; 1822 } 1823 } 1824 brelse(bh); 1825 1826 return err; 1827 } 1828 1829 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1830 { 1831 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1832 struct inode *inode = iget_locked(sb, block); 1833 1834 if (!inode) 1835 return NULL; 1836 1837 if (inode->i_state & I_NEW) { 1838 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1839 __udf_read_inode(inode); 1840 unlock_new_inode(inode); 1841 } 1842 1843 if (is_bad_inode(inode)) 1844 goto out_iput; 1845 1846 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1847 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1848 udf_debug("block=%d, partition=%d out of range\n", 1849 ino->logicalBlockNum, ino->partitionReferenceNum); 1850 make_bad_inode(inode); 1851 goto out_iput; 1852 } 1853 1854 return inode; 1855 1856 out_iput: 1857 iput(inode); 1858 return NULL; 1859 } 1860 1861 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1862 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1863 { 1864 int adsize; 1865 struct short_ad *sad = NULL; 1866 struct long_ad *lad = NULL; 1867 struct allocExtDesc *aed; 1868 uint8_t *ptr; 1869 struct udf_inode_info *iinfo = UDF_I(inode); 1870 1871 if (!epos->bh) 1872 ptr = iinfo->i_ext.i_data + epos->offset - 1873 udf_file_entry_alloc_offset(inode) + 1874 iinfo->i_lenEAttr; 1875 else 1876 ptr = epos->bh->b_data + epos->offset; 1877 1878 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1879 adsize = sizeof(struct short_ad); 1880 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1881 adsize = sizeof(struct long_ad); 1882 else 1883 return -EIO; 1884 1885 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1886 unsigned char *sptr, *dptr; 1887 struct buffer_head *nbh; 1888 int err, loffset; 1889 struct kernel_lb_addr obloc = epos->block; 1890 1891 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1892 obloc.partitionReferenceNum, 1893 obloc.logicalBlockNum, &err); 1894 if (!epos->block.logicalBlockNum) 1895 return -ENOSPC; 1896 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1897 &epos->block, 1898 0)); 1899 if (!nbh) 1900 return -EIO; 1901 lock_buffer(nbh); 1902 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1903 set_buffer_uptodate(nbh); 1904 unlock_buffer(nbh); 1905 mark_buffer_dirty_inode(nbh, inode); 1906 1907 aed = (struct allocExtDesc *)(nbh->b_data); 1908 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1909 aed->previousAllocExtLocation = 1910 cpu_to_le32(obloc.logicalBlockNum); 1911 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1912 loffset = epos->offset; 1913 aed->lengthAllocDescs = cpu_to_le32(adsize); 1914 sptr = ptr - adsize; 1915 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1916 memcpy(dptr, sptr, adsize); 1917 epos->offset = sizeof(struct allocExtDesc) + adsize; 1918 } else { 1919 loffset = epos->offset + adsize; 1920 aed->lengthAllocDescs = cpu_to_le32(0); 1921 sptr = ptr; 1922 epos->offset = sizeof(struct allocExtDesc); 1923 1924 if (epos->bh) { 1925 aed = (struct allocExtDesc *)epos->bh->b_data; 1926 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1927 } else { 1928 iinfo->i_lenAlloc += adsize; 1929 mark_inode_dirty(inode); 1930 } 1931 } 1932 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1933 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1934 epos->block.logicalBlockNum, sizeof(struct tag)); 1935 else 1936 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1937 epos->block.logicalBlockNum, sizeof(struct tag)); 1938 switch (iinfo->i_alloc_type) { 1939 case ICBTAG_FLAG_AD_SHORT: 1940 sad = (struct short_ad *)sptr; 1941 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1942 inode->i_sb->s_blocksize); 1943 sad->extPosition = 1944 cpu_to_le32(epos->block.logicalBlockNum); 1945 break; 1946 case ICBTAG_FLAG_AD_LONG: 1947 lad = (struct long_ad *)sptr; 1948 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1949 inode->i_sb->s_blocksize); 1950 lad->extLocation = cpu_to_lelb(epos->block); 1951 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1952 break; 1953 } 1954 if (epos->bh) { 1955 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1956 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1957 udf_update_tag(epos->bh->b_data, loffset); 1958 else 1959 udf_update_tag(epos->bh->b_data, 1960 sizeof(struct allocExtDesc)); 1961 mark_buffer_dirty_inode(epos->bh, inode); 1962 brelse(epos->bh); 1963 } else { 1964 mark_inode_dirty(inode); 1965 } 1966 epos->bh = nbh; 1967 } 1968 1969 udf_write_aext(inode, epos, eloc, elen, inc); 1970 1971 if (!epos->bh) { 1972 iinfo->i_lenAlloc += adsize; 1973 mark_inode_dirty(inode); 1974 } else { 1975 aed = (struct allocExtDesc *)epos->bh->b_data; 1976 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1977 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1978 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1979 udf_update_tag(epos->bh->b_data, 1980 epos->offset + (inc ? 0 : adsize)); 1981 else 1982 udf_update_tag(epos->bh->b_data, 1983 sizeof(struct allocExtDesc)); 1984 mark_buffer_dirty_inode(epos->bh, inode); 1985 } 1986 1987 return 0; 1988 } 1989 1990 void udf_write_aext(struct inode *inode, struct extent_position *epos, 1991 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1992 { 1993 int adsize; 1994 uint8_t *ptr; 1995 struct short_ad *sad; 1996 struct long_ad *lad; 1997 struct udf_inode_info *iinfo = UDF_I(inode); 1998 1999 if (!epos->bh) 2000 ptr = iinfo->i_ext.i_data + epos->offset - 2001 udf_file_entry_alloc_offset(inode) + 2002 iinfo->i_lenEAttr; 2003 else 2004 ptr = epos->bh->b_data + epos->offset; 2005 2006 switch (iinfo->i_alloc_type) { 2007 case ICBTAG_FLAG_AD_SHORT: 2008 sad = (struct short_ad *)ptr; 2009 sad->extLength = cpu_to_le32(elen); 2010 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2011 adsize = sizeof(struct short_ad); 2012 break; 2013 case ICBTAG_FLAG_AD_LONG: 2014 lad = (struct long_ad *)ptr; 2015 lad->extLength = cpu_to_le32(elen); 2016 lad->extLocation = cpu_to_lelb(*eloc); 2017 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2018 adsize = sizeof(struct long_ad); 2019 break; 2020 default: 2021 return; 2022 } 2023 2024 if (epos->bh) { 2025 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2026 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2027 struct allocExtDesc *aed = 2028 (struct allocExtDesc *)epos->bh->b_data; 2029 udf_update_tag(epos->bh->b_data, 2030 le32_to_cpu(aed->lengthAllocDescs) + 2031 sizeof(struct allocExtDesc)); 2032 } 2033 mark_buffer_dirty_inode(epos->bh, inode); 2034 } else { 2035 mark_inode_dirty(inode); 2036 } 2037 2038 if (inc) 2039 epos->offset += adsize; 2040 } 2041 2042 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2043 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2044 { 2045 int8_t etype; 2046 2047 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2048 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2049 int block; 2050 epos->block = *eloc; 2051 epos->offset = sizeof(struct allocExtDesc); 2052 brelse(epos->bh); 2053 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2054 epos->bh = udf_tread(inode->i_sb, block); 2055 if (!epos->bh) { 2056 udf_debug("reading block %d failed!\n", block); 2057 return -1; 2058 } 2059 } 2060 2061 return etype; 2062 } 2063 2064 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2065 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2066 { 2067 int alen; 2068 int8_t etype; 2069 uint8_t *ptr; 2070 struct short_ad *sad; 2071 struct long_ad *lad; 2072 struct udf_inode_info *iinfo = UDF_I(inode); 2073 2074 if (!epos->bh) { 2075 if (!epos->offset) 2076 epos->offset = udf_file_entry_alloc_offset(inode); 2077 ptr = iinfo->i_ext.i_data + epos->offset - 2078 udf_file_entry_alloc_offset(inode) + 2079 iinfo->i_lenEAttr; 2080 alen = udf_file_entry_alloc_offset(inode) + 2081 iinfo->i_lenAlloc; 2082 } else { 2083 if (!epos->offset) 2084 epos->offset = sizeof(struct allocExtDesc); 2085 ptr = epos->bh->b_data + epos->offset; 2086 alen = sizeof(struct allocExtDesc) + 2087 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2088 lengthAllocDescs); 2089 } 2090 2091 switch (iinfo->i_alloc_type) { 2092 case ICBTAG_FLAG_AD_SHORT: 2093 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2094 if (!sad) 2095 return -1; 2096 etype = le32_to_cpu(sad->extLength) >> 30; 2097 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2098 eloc->partitionReferenceNum = 2099 iinfo->i_location.partitionReferenceNum; 2100 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2101 break; 2102 case ICBTAG_FLAG_AD_LONG: 2103 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2104 if (!lad) 2105 return -1; 2106 etype = le32_to_cpu(lad->extLength) >> 30; 2107 *eloc = lelb_to_cpu(lad->extLocation); 2108 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2109 break; 2110 default: 2111 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2112 return -1; 2113 } 2114 2115 return etype; 2116 } 2117 2118 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2119 struct kernel_lb_addr neloc, uint32_t nelen) 2120 { 2121 struct kernel_lb_addr oeloc; 2122 uint32_t oelen; 2123 int8_t etype; 2124 2125 if (epos.bh) 2126 get_bh(epos.bh); 2127 2128 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2129 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2130 neloc = oeloc; 2131 nelen = (etype << 30) | oelen; 2132 } 2133 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2134 brelse(epos.bh); 2135 2136 return (nelen >> 30); 2137 } 2138 2139 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2140 struct kernel_lb_addr eloc, uint32_t elen) 2141 { 2142 struct extent_position oepos; 2143 int adsize; 2144 int8_t etype; 2145 struct allocExtDesc *aed; 2146 struct udf_inode_info *iinfo; 2147 2148 if (epos.bh) { 2149 get_bh(epos.bh); 2150 get_bh(epos.bh); 2151 } 2152 2153 iinfo = UDF_I(inode); 2154 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2155 adsize = sizeof(struct short_ad); 2156 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2157 adsize = sizeof(struct long_ad); 2158 else 2159 adsize = 0; 2160 2161 oepos = epos; 2162 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2163 return -1; 2164 2165 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2166 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2167 if (oepos.bh != epos.bh) { 2168 oepos.block = epos.block; 2169 brelse(oepos.bh); 2170 get_bh(epos.bh); 2171 oepos.bh = epos.bh; 2172 oepos.offset = epos.offset - adsize; 2173 } 2174 } 2175 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2176 elen = 0; 2177 2178 if (epos.bh != oepos.bh) { 2179 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2180 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2181 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2182 if (!oepos.bh) { 2183 iinfo->i_lenAlloc -= (adsize * 2); 2184 mark_inode_dirty(inode); 2185 } else { 2186 aed = (struct allocExtDesc *)oepos.bh->b_data; 2187 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2188 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2189 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2190 udf_update_tag(oepos.bh->b_data, 2191 oepos.offset - (2 * adsize)); 2192 else 2193 udf_update_tag(oepos.bh->b_data, 2194 sizeof(struct allocExtDesc)); 2195 mark_buffer_dirty_inode(oepos.bh, inode); 2196 } 2197 } else { 2198 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2199 if (!oepos.bh) { 2200 iinfo->i_lenAlloc -= adsize; 2201 mark_inode_dirty(inode); 2202 } else { 2203 aed = (struct allocExtDesc *)oepos.bh->b_data; 2204 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2205 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2206 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2207 udf_update_tag(oepos.bh->b_data, 2208 epos.offset - adsize); 2209 else 2210 udf_update_tag(oepos.bh->b_data, 2211 sizeof(struct allocExtDesc)); 2212 mark_buffer_dirty_inode(oepos.bh, inode); 2213 } 2214 } 2215 2216 brelse(epos.bh); 2217 brelse(oepos.bh); 2218 2219 return (elen >> 30); 2220 } 2221 2222 int8_t inode_bmap(struct inode *inode, sector_t block, 2223 struct extent_position *pos, struct kernel_lb_addr *eloc, 2224 uint32_t *elen, sector_t *offset) 2225 { 2226 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2227 loff_t lbcount = 0, bcount = 2228 (loff_t) block << blocksize_bits; 2229 int8_t etype; 2230 struct udf_inode_info *iinfo; 2231 2232 iinfo = UDF_I(inode); 2233 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2234 pos->offset = 0; 2235 pos->block = iinfo->i_location; 2236 pos->bh = NULL; 2237 } 2238 *elen = 0; 2239 do { 2240 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2241 if (etype == -1) { 2242 *offset = (bcount - lbcount) >> blocksize_bits; 2243 iinfo->i_lenExtents = lbcount; 2244 return -1; 2245 } 2246 lbcount += *elen; 2247 } while (lbcount <= bcount); 2248 /* update extent cache */ 2249 udf_update_extent_cache(inode, lbcount - *elen, pos, 1); 2250 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2251 2252 return etype; 2253 } 2254 2255 long udf_block_map(struct inode *inode, sector_t block) 2256 { 2257 struct kernel_lb_addr eloc; 2258 uint32_t elen; 2259 sector_t offset; 2260 struct extent_position epos = {}; 2261 int ret; 2262 2263 down_read(&UDF_I(inode)->i_data_sem); 2264 2265 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2266 (EXT_RECORDED_ALLOCATED >> 30)) 2267 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2268 else 2269 ret = 0; 2270 2271 up_read(&UDF_I(inode)->i_data_sem); 2272 brelse(epos.bh); 2273 2274 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2275 return udf_fixed_to_variable(ret); 2276 else 2277 return ret; 2278 } 2279