1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_readpage(struct page *page) 212 { 213 struct inode *inode = page->mapping->host; 214 char *kaddr; 215 struct udf_inode_info *iinfo = UDF_I(inode); 216 loff_t isize = i_size_read(inode); 217 218 kaddr = kmap_local_page(page); 219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize); 220 memset(kaddr + isize, 0, PAGE_SIZE - isize); 221 flush_dcache_page(page); 222 SetPageUptodate(page); 223 kunmap_local(kaddr); 224 } 225 226 static int udf_read_folio(struct file *file, struct folio *folio) 227 { 228 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 229 230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 231 udf_adinicb_readpage(&folio->page); 232 folio_unlock(folio); 233 return 0; 234 } 235 return mpage_read_folio(folio, udf_get_block); 236 } 237 238 static void udf_readahead(struct readahead_control *rac) 239 { 240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 241 242 /* 243 * No readahead needed for in-ICB files and udf_get_block() would get 244 * confused for such file anyway. 245 */ 246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 247 return; 248 249 mpage_readahead(rac, udf_get_block); 250 } 251 252 static int udf_write_begin(struct file *file, struct address_space *mapping, 253 loff_t pos, unsigned len, 254 struct page **pagep, void **fsdata) 255 { 256 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 257 struct page *page; 258 int ret; 259 260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 261 ret = block_write_begin(mapping, pos, len, pagep, 262 udf_get_block); 263 if (unlikely(ret)) 264 udf_write_failed(mapping, pos + len); 265 return ret; 266 } 267 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 268 return -EIO; 269 page = grab_cache_page_write_begin(mapping, 0); 270 if (!page) 271 return -ENOMEM; 272 *pagep = page; 273 if (!PageUptodate(page)) 274 udf_adinicb_readpage(page); 275 return 0; 276 } 277 278 static int udf_write_end(struct file *file, struct address_space *mapping, 279 loff_t pos, unsigned len, unsigned copied, 280 struct page *page, void *fsdata) 281 { 282 struct inode *inode = file_inode(file); 283 loff_t last_pos; 284 285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 286 return generic_write_end(file, mapping, pos, len, copied, page, 287 fsdata); 288 last_pos = pos + copied; 289 if (last_pos > inode->i_size) 290 i_size_write(inode, last_pos); 291 set_page_dirty(page); 292 unlock_page(page); 293 put_page(page); 294 295 return copied; 296 } 297 298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 299 { 300 struct file *file = iocb->ki_filp; 301 struct address_space *mapping = file->f_mapping; 302 struct inode *inode = mapping->host; 303 size_t count = iov_iter_count(iter); 304 ssize_t ret; 305 306 /* Fallback to buffered IO for in-ICB files */ 307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 308 return 0; 309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 311 udf_write_failed(mapping, iocb->ki_pos + count); 312 return ret; 313 } 314 315 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 316 { 317 struct udf_inode_info *iinfo = UDF_I(mapping->host); 318 319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 320 return -EINVAL; 321 return generic_block_bmap(mapping, block, udf_get_block); 322 } 323 324 const struct address_space_operations udf_aops = { 325 .dirty_folio = block_dirty_folio, 326 .invalidate_folio = block_invalidate_folio, 327 .read_folio = udf_read_folio, 328 .readahead = udf_readahead, 329 .writepages = udf_writepages, 330 .write_begin = udf_write_begin, 331 .write_end = udf_write_end, 332 .direct_IO = udf_direct_IO, 333 .bmap = udf_bmap, 334 .migrate_folio = buffer_migrate_folio, 335 }; 336 337 /* 338 * Expand file stored in ICB to a normal one-block-file 339 * 340 * This function requires i_mutex held 341 */ 342 int udf_expand_file_adinicb(struct inode *inode) 343 { 344 struct page *page; 345 struct udf_inode_info *iinfo = UDF_I(inode); 346 int err; 347 348 WARN_ON_ONCE(!inode_is_locked(inode)); 349 if (!iinfo->i_lenAlloc) { 350 down_write(&iinfo->i_data_sem); 351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 353 else 354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 355 /* from now on we have normal address_space methods */ 356 inode->i_data.a_ops = &udf_aops; 357 up_write(&iinfo->i_data_sem); 358 mark_inode_dirty(inode); 359 return 0; 360 } 361 362 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 363 if (!page) 364 return -ENOMEM; 365 366 if (!PageUptodate(page)) 367 udf_adinicb_readpage(page); 368 down_write(&iinfo->i_data_sem); 369 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 370 iinfo->i_lenAlloc); 371 iinfo->i_lenAlloc = 0; 372 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 373 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 374 else 375 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 376 set_page_dirty(page); 377 unlock_page(page); 378 up_write(&iinfo->i_data_sem); 379 err = filemap_fdatawrite(inode->i_mapping); 380 if (err) { 381 /* Restore everything back so that we don't lose data... */ 382 lock_page(page); 383 down_write(&iinfo->i_data_sem); 384 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr, 385 inode->i_size); 386 unlock_page(page); 387 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 388 iinfo->i_lenAlloc = inode->i_size; 389 up_write(&iinfo->i_data_sem); 390 } 391 put_page(page); 392 mark_inode_dirty(inode); 393 394 return err; 395 } 396 397 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 398 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 399 400 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 401 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 402 403 struct udf_map_rq { 404 sector_t lblk; 405 udf_pblk_t pblk; 406 int iflags; /* UDF_MAP_ flags determining behavior */ 407 int oflags; /* UDF_BLK_ flags reporting results */ 408 }; 409 410 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 411 { 412 int err; 413 struct udf_inode_info *iinfo = UDF_I(inode); 414 415 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 416 return -EFSCORRUPTED; 417 418 map->oflags = 0; 419 if (!(map->iflags & UDF_MAP_CREATE)) { 420 struct kernel_lb_addr eloc; 421 uint32_t elen; 422 sector_t offset; 423 struct extent_position epos = {}; 424 425 down_read(&iinfo->i_data_sem); 426 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 427 == (EXT_RECORDED_ALLOCATED >> 30)) { 428 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 429 offset); 430 map->oflags |= UDF_BLK_MAPPED; 431 } 432 up_read(&iinfo->i_data_sem); 433 brelse(epos.bh); 434 435 return 0; 436 } 437 438 down_write(&iinfo->i_data_sem); 439 /* 440 * Block beyond EOF and prealloc extents? Just discard preallocation 441 * as it is not useful and complicates things. 442 */ 443 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 444 udf_discard_prealloc(inode); 445 udf_clear_extent_cache(inode); 446 err = inode_getblk(inode, map); 447 up_write(&iinfo->i_data_sem); 448 return err; 449 } 450 451 static int __udf_get_block(struct inode *inode, sector_t block, 452 struct buffer_head *bh_result, int flags) 453 { 454 int err; 455 struct udf_map_rq map = { 456 .lblk = block, 457 .iflags = flags, 458 }; 459 460 err = udf_map_block(inode, &map); 461 if (err < 0) 462 return err; 463 if (map.oflags & UDF_BLK_MAPPED) { 464 map_bh(bh_result, inode->i_sb, map.pblk); 465 if (map.oflags & UDF_BLK_NEW) 466 set_buffer_new(bh_result); 467 } 468 return 0; 469 } 470 471 int udf_get_block(struct inode *inode, sector_t block, 472 struct buffer_head *bh_result, int create) 473 { 474 int flags = create ? UDF_MAP_CREATE : 0; 475 476 /* 477 * We preallocate blocks only for regular files. It also makes sense 478 * for directories but there's a problem when to drop the 479 * preallocation. We might use some delayed work for that but I feel 480 * it's overengineering for a filesystem like UDF. 481 */ 482 if (!S_ISREG(inode->i_mode)) 483 flags |= UDF_MAP_NOPREALLOC; 484 return __udf_get_block(inode, block, bh_result, flags); 485 } 486 487 /* 488 * We shouldn't be allocating blocks on page writeback since we allocate them 489 * on page fault. We can spot dirty buffers without allocated blocks though 490 * when truncate expands file. These however don't have valid data so we can 491 * safely ignore them. So never allocate blocks from page writeback. 492 */ 493 static int udf_get_block_wb(struct inode *inode, sector_t block, 494 struct buffer_head *bh_result, int create) 495 { 496 return __udf_get_block(inode, block, bh_result, 0); 497 } 498 499 /* Extend the file with new blocks totaling 'new_block_bytes', 500 * return the number of extents added 501 */ 502 static int udf_do_extend_file(struct inode *inode, 503 struct extent_position *last_pos, 504 struct kernel_long_ad *last_ext, 505 loff_t new_block_bytes) 506 { 507 uint32_t add; 508 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 509 struct super_block *sb = inode->i_sb; 510 struct udf_inode_info *iinfo; 511 int err; 512 513 /* The previous extent is fake and we should not extend by anything 514 * - there's nothing to do... */ 515 if (!new_block_bytes && fake) 516 return 0; 517 518 iinfo = UDF_I(inode); 519 /* Round the last extent up to a multiple of block size */ 520 if (last_ext->extLength & (sb->s_blocksize - 1)) { 521 last_ext->extLength = 522 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 523 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 524 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 525 iinfo->i_lenExtents = 526 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 527 ~(sb->s_blocksize - 1); 528 } 529 530 add = 0; 531 /* Can we merge with the previous extent? */ 532 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 533 EXT_NOT_RECORDED_NOT_ALLOCATED) { 534 add = (1 << 30) - sb->s_blocksize - 535 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 536 if (add > new_block_bytes) 537 add = new_block_bytes; 538 new_block_bytes -= add; 539 last_ext->extLength += add; 540 } 541 542 if (fake) { 543 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 544 last_ext->extLength, 1); 545 if (err < 0) 546 goto out_err; 547 count++; 548 } else { 549 struct kernel_lb_addr tmploc; 550 uint32_t tmplen; 551 552 udf_write_aext(inode, last_pos, &last_ext->extLocation, 553 last_ext->extLength, 1); 554 555 /* 556 * We've rewritten the last extent. If we are going to add 557 * more extents, we may need to enter possible following 558 * empty indirect extent. 559 */ 560 if (new_block_bytes) 561 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 562 } 563 iinfo->i_lenExtents += add; 564 565 /* Managed to do everything necessary? */ 566 if (!new_block_bytes) 567 goto out; 568 569 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 570 last_ext->extLocation.logicalBlockNum = 0; 571 last_ext->extLocation.partitionReferenceNum = 0; 572 add = (1 << 30) - sb->s_blocksize; 573 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 574 575 /* Create enough extents to cover the whole hole */ 576 while (new_block_bytes > add) { 577 new_block_bytes -= add; 578 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 579 last_ext->extLength, 1); 580 if (err) 581 goto out_err; 582 iinfo->i_lenExtents += add; 583 count++; 584 } 585 if (new_block_bytes) { 586 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 587 new_block_bytes; 588 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 589 last_ext->extLength, 1); 590 if (err) 591 goto out_err; 592 iinfo->i_lenExtents += new_block_bytes; 593 count++; 594 } 595 596 out: 597 /* last_pos should point to the last written extent... */ 598 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 599 last_pos->offset -= sizeof(struct short_ad); 600 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 601 last_pos->offset -= sizeof(struct long_ad); 602 else 603 return -EIO; 604 605 return count; 606 out_err: 607 /* Remove extents we've created so far */ 608 udf_clear_extent_cache(inode); 609 udf_truncate_extents(inode); 610 return err; 611 } 612 613 /* Extend the final block of the file to final_block_len bytes */ 614 static void udf_do_extend_final_block(struct inode *inode, 615 struct extent_position *last_pos, 616 struct kernel_long_ad *last_ext, 617 uint32_t new_elen) 618 { 619 uint32_t added_bytes; 620 621 /* 622 * Extent already large enough? It may be already rounded up to block 623 * size... 624 */ 625 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 626 return; 627 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 628 last_ext->extLength += added_bytes; 629 UDF_I(inode)->i_lenExtents += added_bytes; 630 631 udf_write_aext(inode, last_pos, &last_ext->extLocation, 632 last_ext->extLength, 1); 633 } 634 635 static int udf_extend_file(struct inode *inode, loff_t newsize) 636 { 637 638 struct extent_position epos; 639 struct kernel_lb_addr eloc; 640 uint32_t elen; 641 int8_t etype; 642 struct super_block *sb = inode->i_sb; 643 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 644 loff_t new_elen; 645 int adsize; 646 struct udf_inode_info *iinfo = UDF_I(inode); 647 struct kernel_long_ad extent; 648 int err = 0; 649 bool within_last_ext; 650 651 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 652 adsize = sizeof(struct short_ad); 653 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 654 adsize = sizeof(struct long_ad); 655 else 656 BUG(); 657 658 down_write(&iinfo->i_data_sem); 659 /* 660 * When creating hole in file, just don't bother with preserving 661 * preallocation. It likely won't be very useful anyway. 662 */ 663 udf_discard_prealloc(inode); 664 665 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 666 within_last_ext = (etype != -1); 667 /* We don't expect extents past EOF... */ 668 WARN_ON_ONCE(within_last_ext && 669 elen > ((loff_t)offset + 1) << inode->i_blkbits); 670 671 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 672 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 673 /* File has no extents at all or has empty last 674 * indirect extent! Create a fake extent... */ 675 extent.extLocation.logicalBlockNum = 0; 676 extent.extLocation.partitionReferenceNum = 0; 677 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 678 } else { 679 epos.offset -= adsize; 680 etype = udf_next_aext(inode, &epos, &extent.extLocation, 681 &extent.extLength, 0); 682 extent.extLength |= etype << 30; 683 } 684 685 new_elen = ((loff_t)offset << inode->i_blkbits) | 686 (newsize & (sb->s_blocksize - 1)); 687 688 /* File has extent covering the new size (could happen when extending 689 * inside a block)? 690 */ 691 if (within_last_ext) { 692 /* Extending file within the last file block */ 693 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 694 } else { 695 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 696 } 697 698 if (err < 0) 699 goto out; 700 err = 0; 701 out: 702 brelse(epos.bh); 703 up_write(&iinfo->i_data_sem); 704 return err; 705 } 706 707 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 708 { 709 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 710 struct extent_position prev_epos, cur_epos, next_epos; 711 int count = 0, startnum = 0, endnum = 0; 712 uint32_t elen = 0, tmpelen; 713 struct kernel_lb_addr eloc, tmpeloc; 714 int c = 1; 715 loff_t lbcount = 0, b_off = 0; 716 udf_pblk_t newblocknum; 717 sector_t offset = 0; 718 int8_t etype; 719 struct udf_inode_info *iinfo = UDF_I(inode); 720 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 721 int lastblock = 0; 722 bool isBeyondEOF; 723 int ret = 0; 724 725 prev_epos.offset = udf_file_entry_alloc_offset(inode); 726 prev_epos.block = iinfo->i_location; 727 prev_epos.bh = NULL; 728 cur_epos = next_epos = prev_epos; 729 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 730 731 /* find the extent which contains the block we are looking for. 732 alternate between laarr[0] and laarr[1] for locations of the 733 current extent, and the previous extent */ 734 do { 735 if (prev_epos.bh != cur_epos.bh) { 736 brelse(prev_epos.bh); 737 get_bh(cur_epos.bh); 738 prev_epos.bh = cur_epos.bh; 739 } 740 if (cur_epos.bh != next_epos.bh) { 741 brelse(cur_epos.bh); 742 get_bh(next_epos.bh); 743 cur_epos.bh = next_epos.bh; 744 } 745 746 lbcount += elen; 747 748 prev_epos.block = cur_epos.block; 749 cur_epos.block = next_epos.block; 750 751 prev_epos.offset = cur_epos.offset; 752 cur_epos.offset = next_epos.offset; 753 754 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 755 if (etype == -1) 756 break; 757 758 c = !c; 759 760 laarr[c].extLength = (etype << 30) | elen; 761 laarr[c].extLocation = eloc; 762 763 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 764 pgoal = eloc.logicalBlockNum + 765 ((elen + inode->i_sb->s_blocksize - 1) >> 766 inode->i_sb->s_blocksize_bits); 767 768 count++; 769 } while (lbcount + elen <= b_off); 770 771 b_off -= lbcount; 772 offset = b_off >> inode->i_sb->s_blocksize_bits; 773 /* 774 * Move prev_epos and cur_epos into indirect extent if we are at 775 * the pointer to it 776 */ 777 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 778 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 779 780 /* if the extent is allocated and recorded, return the block 781 if the extent is not a multiple of the blocksize, round up */ 782 783 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 784 if (elen & (inode->i_sb->s_blocksize - 1)) { 785 elen = EXT_RECORDED_ALLOCATED | 786 ((elen + inode->i_sb->s_blocksize - 1) & 787 ~(inode->i_sb->s_blocksize - 1)); 788 iinfo->i_lenExtents = 789 ALIGN(iinfo->i_lenExtents, 790 inode->i_sb->s_blocksize); 791 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 792 } 793 map->oflags = UDF_BLK_MAPPED; 794 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 795 goto out_free; 796 } 797 798 /* Are we beyond EOF and preallocated extent? */ 799 if (etype == -1) { 800 loff_t hole_len; 801 802 isBeyondEOF = true; 803 if (count) { 804 if (c) 805 laarr[0] = laarr[1]; 806 startnum = 1; 807 } else { 808 /* Create a fake extent when there's not one */ 809 memset(&laarr[0].extLocation, 0x00, 810 sizeof(struct kernel_lb_addr)); 811 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 812 /* Will udf_do_extend_file() create real extent from 813 a fake one? */ 814 startnum = (offset > 0); 815 } 816 /* Create extents for the hole between EOF and offset */ 817 hole_len = (loff_t)offset << inode->i_blkbits; 818 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 819 if (ret < 0) 820 goto out_free; 821 c = 0; 822 offset = 0; 823 count += ret; 824 /* 825 * Is there any real extent? - otherwise we overwrite the fake 826 * one... 827 */ 828 if (count) 829 c = !c; 830 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 831 inode->i_sb->s_blocksize; 832 memset(&laarr[c].extLocation, 0x00, 833 sizeof(struct kernel_lb_addr)); 834 count++; 835 endnum = c + 1; 836 lastblock = 1; 837 } else { 838 isBeyondEOF = false; 839 endnum = startnum = ((count > 2) ? 2 : count); 840 841 /* if the current extent is in position 0, 842 swap it with the previous */ 843 if (!c && count != 1) { 844 laarr[2] = laarr[0]; 845 laarr[0] = laarr[1]; 846 laarr[1] = laarr[2]; 847 c = 1; 848 } 849 850 /* if the current block is located in an extent, 851 read the next extent */ 852 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 853 if (etype != -1) { 854 laarr[c + 1].extLength = (etype << 30) | elen; 855 laarr[c + 1].extLocation = eloc; 856 count++; 857 startnum++; 858 endnum++; 859 } else 860 lastblock = 1; 861 } 862 863 /* if the current extent is not recorded but allocated, get the 864 * block in the extent corresponding to the requested block */ 865 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 866 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 867 else { /* otherwise, allocate a new block */ 868 if (iinfo->i_next_alloc_block == map->lblk) 869 goal = iinfo->i_next_alloc_goal; 870 871 if (!goal) { 872 if (!(goal = pgoal)) /* XXX: what was intended here? */ 873 goal = iinfo->i_location.logicalBlockNum + 1; 874 } 875 876 newblocknum = udf_new_block(inode->i_sb, inode, 877 iinfo->i_location.partitionReferenceNum, 878 goal, &ret); 879 if (!newblocknum) 880 goto out_free; 881 if (isBeyondEOF) 882 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 883 } 884 885 /* if the extent the requsted block is located in contains multiple 886 * blocks, split the extent into at most three extents. blocks prior 887 * to requested block, requested block, and blocks after requested 888 * block */ 889 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 890 891 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 892 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 893 894 /* merge any continuous blocks in laarr */ 895 udf_merge_extents(inode, laarr, &endnum); 896 897 /* write back the new extents, inserting new extents if the new number 898 * of extents is greater than the old number, and deleting extents if 899 * the new number of extents is less than the old number */ 900 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 901 if (ret < 0) 902 goto out_free; 903 904 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 905 iinfo->i_location.partitionReferenceNum, 0); 906 if (!map->pblk) { 907 ret = -EFSCORRUPTED; 908 goto out_free; 909 } 910 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 911 iinfo->i_next_alloc_block = map->lblk + 1; 912 iinfo->i_next_alloc_goal = newblocknum + 1; 913 inode->i_ctime = current_time(inode); 914 915 if (IS_SYNC(inode)) 916 udf_sync_inode(inode); 917 else 918 mark_inode_dirty(inode); 919 ret = 0; 920 out_free: 921 brelse(prev_epos.bh); 922 brelse(cur_epos.bh); 923 brelse(next_epos.bh); 924 return ret; 925 } 926 927 static void udf_split_extents(struct inode *inode, int *c, int offset, 928 udf_pblk_t newblocknum, 929 struct kernel_long_ad *laarr, int *endnum) 930 { 931 unsigned long blocksize = inode->i_sb->s_blocksize; 932 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 933 934 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 935 (laarr[*c].extLength >> 30) == 936 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 937 int curr = *c; 938 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 939 blocksize - 1) >> blocksize_bits; 940 int8_t etype = (laarr[curr].extLength >> 30); 941 942 if (blen == 1) 943 ; 944 else if (!offset || blen == offset + 1) { 945 laarr[curr + 2] = laarr[curr + 1]; 946 laarr[curr + 1] = laarr[curr]; 947 } else { 948 laarr[curr + 3] = laarr[curr + 1]; 949 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 950 } 951 952 if (offset) { 953 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 954 udf_free_blocks(inode->i_sb, inode, 955 &laarr[curr].extLocation, 956 0, offset); 957 laarr[curr].extLength = 958 EXT_NOT_RECORDED_NOT_ALLOCATED | 959 (offset << blocksize_bits); 960 laarr[curr].extLocation.logicalBlockNum = 0; 961 laarr[curr].extLocation. 962 partitionReferenceNum = 0; 963 } else 964 laarr[curr].extLength = (etype << 30) | 965 (offset << blocksize_bits); 966 curr++; 967 (*c)++; 968 (*endnum)++; 969 } 970 971 laarr[curr].extLocation.logicalBlockNum = newblocknum; 972 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 973 laarr[curr].extLocation.partitionReferenceNum = 974 UDF_I(inode)->i_location.partitionReferenceNum; 975 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 976 blocksize; 977 curr++; 978 979 if (blen != offset + 1) { 980 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 981 laarr[curr].extLocation.logicalBlockNum += 982 offset + 1; 983 laarr[curr].extLength = (etype << 30) | 984 ((blen - (offset + 1)) << blocksize_bits); 985 curr++; 986 (*endnum)++; 987 } 988 } 989 } 990 991 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 992 struct kernel_long_ad *laarr, 993 int *endnum) 994 { 995 int start, length = 0, currlength = 0, i; 996 997 if (*endnum >= (c + 1)) { 998 if (!lastblock) 999 return; 1000 else 1001 start = c; 1002 } else { 1003 if ((laarr[c + 1].extLength >> 30) == 1004 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1005 start = c + 1; 1006 length = currlength = 1007 (((laarr[c + 1].extLength & 1008 UDF_EXTENT_LENGTH_MASK) + 1009 inode->i_sb->s_blocksize - 1) >> 1010 inode->i_sb->s_blocksize_bits); 1011 } else 1012 start = c; 1013 } 1014 1015 for (i = start + 1; i <= *endnum; i++) { 1016 if (i == *endnum) { 1017 if (lastblock) 1018 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1019 } else if ((laarr[i].extLength >> 30) == 1020 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1021 length += (((laarr[i].extLength & 1022 UDF_EXTENT_LENGTH_MASK) + 1023 inode->i_sb->s_blocksize - 1) >> 1024 inode->i_sb->s_blocksize_bits); 1025 } else 1026 break; 1027 } 1028 1029 if (length) { 1030 int next = laarr[start].extLocation.logicalBlockNum + 1031 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1032 inode->i_sb->s_blocksize - 1) >> 1033 inode->i_sb->s_blocksize_bits); 1034 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1035 laarr[start].extLocation.partitionReferenceNum, 1036 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1037 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1038 currlength); 1039 if (numalloc) { 1040 if (start == (c + 1)) 1041 laarr[start].extLength += 1042 (numalloc << 1043 inode->i_sb->s_blocksize_bits); 1044 else { 1045 memmove(&laarr[c + 2], &laarr[c + 1], 1046 sizeof(struct long_ad) * (*endnum - (c + 1))); 1047 (*endnum)++; 1048 laarr[c + 1].extLocation.logicalBlockNum = next; 1049 laarr[c + 1].extLocation.partitionReferenceNum = 1050 laarr[c].extLocation. 1051 partitionReferenceNum; 1052 laarr[c + 1].extLength = 1053 EXT_NOT_RECORDED_ALLOCATED | 1054 (numalloc << 1055 inode->i_sb->s_blocksize_bits); 1056 start = c + 1; 1057 } 1058 1059 for (i = start + 1; numalloc && i < *endnum; i++) { 1060 int elen = ((laarr[i].extLength & 1061 UDF_EXTENT_LENGTH_MASK) + 1062 inode->i_sb->s_blocksize - 1) >> 1063 inode->i_sb->s_blocksize_bits; 1064 1065 if (elen > numalloc) { 1066 laarr[i].extLength -= 1067 (numalloc << 1068 inode->i_sb->s_blocksize_bits); 1069 numalloc = 0; 1070 } else { 1071 numalloc -= elen; 1072 if (*endnum > (i + 1)) 1073 memmove(&laarr[i], 1074 &laarr[i + 1], 1075 sizeof(struct long_ad) * 1076 (*endnum - (i + 1))); 1077 i--; 1078 (*endnum)--; 1079 } 1080 } 1081 UDF_I(inode)->i_lenExtents += 1082 numalloc << inode->i_sb->s_blocksize_bits; 1083 } 1084 } 1085 } 1086 1087 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1088 int *endnum) 1089 { 1090 int i; 1091 unsigned long blocksize = inode->i_sb->s_blocksize; 1092 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1093 1094 for (i = 0; i < (*endnum - 1); i++) { 1095 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1096 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1097 1098 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1099 (((li->extLength >> 30) == 1100 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1101 ((lip1->extLocation.logicalBlockNum - 1102 li->extLocation.logicalBlockNum) == 1103 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1104 blocksize - 1) >> blocksize_bits)))) { 1105 1106 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1107 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1108 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1109 li->extLength = lip1->extLength + 1110 (((li->extLength & 1111 UDF_EXTENT_LENGTH_MASK) + 1112 blocksize - 1) & ~(blocksize - 1)); 1113 if (*endnum > (i + 2)) 1114 memmove(&laarr[i + 1], &laarr[i + 2], 1115 sizeof(struct long_ad) * 1116 (*endnum - (i + 2))); 1117 i--; 1118 (*endnum)--; 1119 } 1120 } else if (((li->extLength >> 30) == 1121 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1122 ((lip1->extLength >> 30) == 1123 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1124 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1125 ((li->extLength & 1126 UDF_EXTENT_LENGTH_MASK) + 1127 blocksize - 1) >> blocksize_bits); 1128 li->extLocation.logicalBlockNum = 0; 1129 li->extLocation.partitionReferenceNum = 0; 1130 1131 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1132 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1133 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1134 lip1->extLength = (lip1->extLength - 1135 (li->extLength & 1136 UDF_EXTENT_LENGTH_MASK) + 1137 UDF_EXTENT_LENGTH_MASK) & 1138 ~(blocksize - 1); 1139 li->extLength = (li->extLength & 1140 UDF_EXTENT_FLAG_MASK) + 1141 (UDF_EXTENT_LENGTH_MASK + 1) - 1142 blocksize; 1143 } else { 1144 li->extLength = lip1->extLength + 1145 (((li->extLength & 1146 UDF_EXTENT_LENGTH_MASK) + 1147 blocksize - 1) & ~(blocksize - 1)); 1148 if (*endnum > (i + 2)) 1149 memmove(&laarr[i + 1], &laarr[i + 2], 1150 sizeof(struct long_ad) * 1151 (*endnum - (i + 2))); 1152 i--; 1153 (*endnum)--; 1154 } 1155 } else if ((li->extLength >> 30) == 1156 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1157 udf_free_blocks(inode->i_sb, inode, 1158 &li->extLocation, 0, 1159 ((li->extLength & 1160 UDF_EXTENT_LENGTH_MASK) + 1161 blocksize - 1) >> blocksize_bits); 1162 li->extLocation.logicalBlockNum = 0; 1163 li->extLocation.partitionReferenceNum = 0; 1164 li->extLength = (li->extLength & 1165 UDF_EXTENT_LENGTH_MASK) | 1166 EXT_NOT_RECORDED_NOT_ALLOCATED; 1167 } 1168 } 1169 } 1170 1171 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1172 int startnum, int endnum, 1173 struct extent_position *epos) 1174 { 1175 int start = 0, i; 1176 struct kernel_lb_addr tmploc; 1177 uint32_t tmplen; 1178 int err; 1179 1180 if (startnum > endnum) { 1181 for (i = 0; i < (startnum - endnum); i++) 1182 udf_delete_aext(inode, *epos); 1183 } else if (startnum < endnum) { 1184 for (i = 0; i < (endnum - startnum); i++) { 1185 err = udf_insert_aext(inode, *epos, 1186 laarr[i].extLocation, 1187 laarr[i].extLength); 1188 /* 1189 * If we fail here, we are likely corrupting the extent 1190 * list and leaking blocks. At least stop early to 1191 * limit the damage. 1192 */ 1193 if (err < 0) 1194 return err; 1195 udf_next_aext(inode, epos, &laarr[i].extLocation, 1196 &laarr[i].extLength, 1); 1197 start++; 1198 } 1199 } 1200 1201 for (i = start; i < endnum; i++) { 1202 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1203 udf_write_aext(inode, epos, &laarr[i].extLocation, 1204 laarr[i].extLength, 1); 1205 } 1206 return 0; 1207 } 1208 1209 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1210 int create, int *err) 1211 { 1212 struct buffer_head *bh = NULL; 1213 struct udf_map_rq map = { 1214 .lblk = block, 1215 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1216 }; 1217 1218 *err = udf_map_block(inode, &map); 1219 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1220 return NULL; 1221 1222 bh = sb_getblk(inode->i_sb, map.pblk); 1223 if (!bh) { 1224 *err = -ENOMEM; 1225 return NULL; 1226 } 1227 if (map.oflags & UDF_BLK_NEW) { 1228 lock_buffer(bh); 1229 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1230 set_buffer_uptodate(bh); 1231 unlock_buffer(bh); 1232 mark_buffer_dirty_inode(bh, inode); 1233 return bh; 1234 } 1235 1236 if (bh_read(bh, 0) >= 0) 1237 return bh; 1238 1239 brelse(bh); 1240 *err = -EIO; 1241 return NULL; 1242 } 1243 1244 int udf_setsize(struct inode *inode, loff_t newsize) 1245 { 1246 int err = 0; 1247 struct udf_inode_info *iinfo; 1248 unsigned int bsize = i_blocksize(inode); 1249 1250 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1251 S_ISLNK(inode->i_mode))) 1252 return -EINVAL; 1253 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1254 return -EPERM; 1255 1256 filemap_invalidate_lock(inode->i_mapping); 1257 iinfo = UDF_I(inode); 1258 if (newsize > inode->i_size) { 1259 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1260 if (bsize >= 1261 (udf_file_entry_alloc_offset(inode) + newsize)) { 1262 down_write(&iinfo->i_data_sem); 1263 iinfo->i_lenAlloc = newsize; 1264 up_write(&iinfo->i_data_sem); 1265 goto set_size; 1266 } 1267 err = udf_expand_file_adinicb(inode); 1268 if (err) 1269 goto out_unlock; 1270 } 1271 err = udf_extend_file(inode, newsize); 1272 if (err) 1273 goto out_unlock; 1274 set_size: 1275 truncate_setsize(inode, newsize); 1276 } else { 1277 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1278 down_write(&iinfo->i_data_sem); 1279 udf_clear_extent_cache(inode); 1280 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1281 0x00, bsize - newsize - 1282 udf_file_entry_alloc_offset(inode)); 1283 iinfo->i_lenAlloc = newsize; 1284 truncate_setsize(inode, newsize); 1285 up_write(&iinfo->i_data_sem); 1286 goto update_time; 1287 } 1288 err = block_truncate_page(inode->i_mapping, newsize, 1289 udf_get_block); 1290 if (err) 1291 goto out_unlock; 1292 truncate_setsize(inode, newsize); 1293 down_write(&iinfo->i_data_sem); 1294 udf_clear_extent_cache(inode); 1295 err = udf_truncate_extents(inode); 1296 up_write(&iinfo->i_data_sem); 1297 if (err) 1298 goto out_unlock; 1299 } 1300 update_time: 1301 inode->i_mtime = inode->i_ctime = current_time(inode); 1302 if (IS_SYNC(inode)) 1303 udf_sync_inode(inode); 1304 else 1305 mark_inode_dirty(inode); 1306 out_unlock: 1307 filemap_invalidate_unlock(inode->i_mapping); 1308 return err; 1309 } 1310 1311 /* 1312 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1313 * arbitrary - just that we hopefully don't limit any real use of rewritten 1314 * inode on write-once media but avoid looping for too long on corrupted media. 1315 */ 1316 #define UDF_MAX_ICB_NESTING 1024 1317 1318 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1319 { 1320 struct buffer_head *bh = NULL; 1321 struct fileEntry *fe; 1322 struct extendedFileEntry *efe; 1323 uint16_t ident; 1324 struct udf_inode_info *iinfo = UDF_I(inode); 1325 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1326 struct kernel_lb_addr *iloc = &iinfo->i_location; 1327 unsigned int link_count; 1328 unsigned int indirections = 0; 1329 int bs = inode->i_sb->s_blocksize; 1330 int ret = -EIO; 1331 uint32_t uid, gid; 1332 1333 reread: 1334 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1335 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1336 iloc->partitionReferenceNum, sbi->s_partitions); 1337 return -EIO; 1338 } 1339 1340 if (iloc->logicalBlockNum >= 1341 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1342 udf_debug("block=%u, partition=%u out of range\n", 1343 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1344 return -EIO; 1345 } 1346 1347 /* 1348 * Set defaults, but the inode is still incomplete! 1349 * Note: get_new_inode() sets the following on a new inode: 1350 * i_sb = sb 1351 * i_no = ino 1352 * i_flags = sb->s_flags 1353 * i_state = 0 1354 * clean_inode(): zero fills and sets 1355 * i_count = 1 1356 * i_nlink = 1 1357 * i_op = NULL; 1358 */ 1359 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1360 if (!bh) { 1361 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1362 return -EIO; 1363 } 1364 1365 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1366 ident != TAG_IDENT_USE) { 1367 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1368 inode->i_ino, ident); 1369 goto out; 1370 } 1371 1372 fe = (struct fileEntry *)bh->b_data; 1373 efe = (struct extendedFileEntry *)bh->b_data; 1374 1375 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1376 struct buffer_head *ibh; 1377 1378 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1379 if (ident == TAG_IDENT_IE && ibh) { 1380 struct kernel_lb_addr loc; 1381 struct indirectEntry *ie; 1382 1383 ie = (struct indirectEntry *)ibh->b_data; 1384 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1385 1386 if (ie->indirectICB.extLength) { 1387 brelse(ibh); 1388 memcpy(&iinfo->i_location, &loc, 1389 sizeof(struct kernel_lb_addr)); 1390 if (++indirections > UDF_MAX_ICB_NESTING) { 1391 udf_err(inode->i_sb, 1392 "too many ICBs in ICB hierarchy" 1393 " (max %d supported)\n", 1394 UDF_MAX_ICB_NESTING); 1395 goto out; 1396 } 1397 brelse(bh); 1398 goto reread; 1399 } 1400 } 1401 brelse(ibh); 1402 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1403 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1404 le16_to_cpu(fe->icbTag.strategyType)); 1405 goto out; 1406 } 1407 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1408 iinfo->i_strat4096 = 0; 1409 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1410 iinfo->i_strat4096 = 1; 1411 1412 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1413 ICBTAG_FLAG_AD_MASK; 1414 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1415 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1416 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1417 ret = -EIO; 1418 goto out; 1419 } 1420 iinfo->i_hidden = hidden_inode; 1421 iinfo->i_unique = 0; 1422 iinfo->i_lenEAttr = 0; 1423 iinfo->i_lenExtents = 0; 1424 iinfo->i_lenAlloc = 0; 1425 iinfo->i_next_alloc_block = 0; 1426 iinfo->i_next_alloc_goal = 0; 1427 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1428 iinfo->i_efe = 1; 1429 iinfo->i_use = 0; 1430 ret = udf_alloc_i_data(inode, bs - 1431 sizeof(struct extendedFileEntry)); 1432 if (ret) 1433 goto out; 1434 memcpy(iinfo->i_data, 1435 bh->b_data + sizeof(struct extendedFileEntry), 1436 bs - sizeof(struct extendedFileEntry)); 1437 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1438 iinfo->i_efe = 0; 1439 iinfo->i_use = 0; 1440 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1441 if (ret) 1442 goto out; 1443 memcpy(iinfo->i_data, 1444 bh->b_data + sizeof(struct fileEntry), 1445 bs - sizeof(struct fileEntry)); 1446 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1447 iinfo->i_efe = 0; 1448 iinfo->i_use = 1; 1449 iinfo->i_lenAlloc = le32_to_cpu( 1450 ((struct unallocSpaceEntry *)bh->b_data)-> 1451 lengthAllocDescs); 1452 ret = udf_alloc_i_data(inode, bs - 1453 sizeof(struct unallocSpaceEntry)); 1454 if (ret) 1455 goto out; 1456 memcpy(iinfo->i_data, 1457 bh->b_data + sizeof(struct unallocSpaceEntry), 1458 bs - sizeof(struct unallocSpaceEntry)); 1459 return 0; 1460 } 1461 1462 ret = -EIO; 1463 read_lock(&sbi->s_cred_lock); 1464 uid = le32_to_cpu(fe->uid); 1465 if (uid == UDF_INVALID_ID || 1466 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1467 inode->i_uid = sbi->s_uid; 1468 else 1469 i_uid_write(inode, uid); 1470 1471 gid = le32_to_cpu(fe->gid); 1472 if (gid == UDF_INVALID_ID || 1473 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1474 inode->i_gid = sbi->s_gid; 1475 else 1476 i_gid_write(inode, gid); 1477 1478 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1479 sbi->s_fmode != UDF_INVALID_MODE) 1480 inode->i_mode = sbi->s_fmode; 1481 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1482 sbi->s_dmode != UDF_INVALID_MODE) 1483 inode->i_mode = sbi->s_dmode; 1484 else 1485 inode->i_mode = udf_convert_permissions(fe); 1486 inode->i_mode &= ~sbi->s_umask; 1487 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1488 1489 read_unlock(&sbi->s_cred_lock); 1490 1491 link_count = le16_to_cpu(fe->fileLinkCount); 1492 if (!link_count) { 1493 if (!hidden_inode) { 1494 ret = -ESTALE; 1495 goto out; 1496 } 1497 link_count = 1; 1498 } 1499 set_nlink(inode, link_count); 1500 1501 inode->i_size = le64_to_cpu(fe->informationLength); 1502 iinfo->i_lenExtents = inode->i_size; 1503 1504 if (iinfo->i_efe == 0) { 1505 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1506 (inode->i_sb->s_blocksize_bits - 9); 1507 1508 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1509 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1510 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1511 1512 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1513 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1514 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1515 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1516 iinfo->i_streamdir = 0; 1517 iinfo->i_lenStreams = 0; 1518 } else { 1519 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1520 (inode->i_sb->s_blocksize_bits - 9); 1521 1522 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1523 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1524 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1525 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1526 1527 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1528 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1529 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1530 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1531 1532 /* Named streams */ 1533 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1534 iinfo->i_locStreamdir = 1535 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1536 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1537 if (iinfo->i_lenStreams >= inode->i_size) 1538 iinfo->i_lenStreams -= inode->i_size; 1539 else 1540 iinfo->i_lenStreams = 0; 1541 } 1542 inode->i_generation = iinfo->i_unique; 1543 1544 /* 1545 * Sanity check length of allocation descriptors and extended attrs to 1546 * avoid integer overflows 1547 */ 1548 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1549 goto out; 1550 /* Now do exact checks */ 1551 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1552 goto out; 1553 /* Sanity checks for files in ICB so that we don't get confused later */ 1554 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1555 /* 1556 * For file in ICB data is stored in allocation descriptor 1557 * so sizes should match 1558 */ 1559 if (iinfo->i_lenAlloc != inode->i_size) 1560 goto out; 1561 /* File in ICB has to fit in there... */ 1562 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1563 goto out; 1564 } 1565 1566 switch (fe->icbTag.fileType) { 1567 case ICBTAG_FILE_TYPE_DIRECTORY: 1568 inode->i_op = &udf_dir_inode_operations; 1569 inode->i_fop = &udf_dir_operations; 1570 inode->i_mode |= S_IFDIR; 1571 inc_nlink(inode); 1572 break; 1573 case ICBTAG_FILE_TYPE_REALTIME: 1574 case ICBTAG_FILE_TYPE_REGULAR: 1575 case ICBTAG_FILE_TYPE_UNDEF: 1576 case ICBTAG_FILE_TYPE_VAT20: 1577 inode->i_data.a_ops = &udf_aops; 1578 inode->i_op = &udf_file_inode_operations; 1579 inode->i_fop = &udf_file_operations; 1580 inode->i_mode |= S_IFREG; 1581 break; 1582 case ICBTAG_FILE_TYPE_BLOCK: 1583 inode->i_mode |= S_IFBLK; 1584 break; 1585 case ICBTAG_FILE_TYPE_CHAR: 1586 inode->i_mode |= S_IFCHR; 1587 break; 1588 case ICBTAG_FILE_TYPE_FIFO: 1589 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1590 break; 1591 case ICBTAG_FILE_TYPE_SOCKET: 1592 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1593 break; 1594 case ICBTAG_FILE_TYPE_SYMLINK: 1595 inode->i_data.a_ops = &udf_symlink_aops; 1596 inode->i_op = &udf_symlink_inode_operations; 1597 inode_nohighmem(inode); 1598 inode->i_mode = S_IFLNK | 0777; 1599 break; 1600 case ICBTAG_FILE_TYPE_MAIN: 1601 udf_debug("METADATA FILE-----\n"); 1602 break; 1603 case ICBTAG_FILE_TYPE_MIRROR: 1604 udf_debug("METADATA MIRROR FILE-----\n"); 1605 break; 1606 case ICBTAG_FILE_TYPE_BITMAP: 1607 udf_debug("METADATA BITMAP FILE-----\n"); 1608 break; 1609 default: 1610 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1611 inode->i_ino, fe->icbTag.fileType); 1612 goto out; 1613 } 1614 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1615 struct deviceSpec *dsea = 1616 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1617 if (dsea) { 1618 init_special_inode(inode, inode->i_mode, 1619 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1620 le32_to_cpu(dsea->minorDeviceIdent))); 1621 /* Developer ID ??? */ 1622 } else 1623 goto out; 1624 } 1625 ret = 0; 1626 out: 1627 brelse(bh); 1628 return ret; 1629 } 1630 1631 static int udf_alloc_i_data(struct inode *inode, size_t size) 1632 { 1633 struct udf_inode_info *iinfo = UDF_I(inode); 1634 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1635 if (!iinfo->i_data) 1636 return -ENOMEM; 1637 return 0; 1638 } 1639 1640 static umode_t udf_convert_permissions(struct fileEntry *fe) 1641 { 1642 umode_t mode; 1643 uint32_t permissions; 1644 uint32_t flags; 1645 1646 permissions = le32_to_cpu(fe->permissions); 1647 flags = le16_to_cpu(fe->icbTag.flags); 1648 1649 mode = ((permissions) & 0007) | 1650 ((permissions >> 2) & 0070) | 1651 ((permissions >> 4) & 0700) | 1652 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1653 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1654 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1655 1656 return mode; 1657 } 1658 1659 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1660 { 1661 struct udf_inode_info *iinfo = UDF_I(inode); 1662 1663 /* 1664 * UDF 2.01 sec. 3.3.3.3 Note 2: 1665 * In Unix, delete permission tracks write 1666 */ 1667 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1668 if (mode & 0200) 1669 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1670 if (mode & 0020) 1671 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1672 if (mode & 0002) 1673 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1674 } 1675 1676 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1677 { 1678 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1679 } 1680 1681 static int udf_sync_inode(struct inode *inode) 1682 { 1683 return udf_update_inode(inode, 1); 1684 } 1685 1686 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1687 { 1688 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1689 (iinfo->i_crtime.tv_sec == time.tv_sec && 1690 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1691 iinfo->i_crtime = time; 1692 } 1693 1694 static int udf_update_inode(struct inode *inode, int do_sync) 1695 { 1696 struct buffer_head *bh = NULL; 1697 struct fileEntry *fe; 1698 struct extendedFileEntry *efe; 1699 uint64_t lb_recorded; 1700 uint32_t udfperms; 1701 uint16_t icbflags; 1702 uint16_t crclen; 1703 int err = 0; 1704 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1705 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1706 struct udf_inode_info *iinfo = UDF_I(inode); 1707 1708 bh = sb_getblk(inode->i_sb, 1709 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1710 if (!bh) { 1711 udf_debug("getblk failure\n"); 1712 return -EIO; 1713 } 1714 1715 lock_buffer(bh); 1716 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1717 fe = (struct fileEntry *)bh->b_data; 1718 efe = (struct extendedFileEntry *)bh->b_data; 1719 1720 if (iinfo->i_use) { 1721 struct unallocSpaceEntry *use = 1722 (struct unallocSpaceEntry *)bh->b_data; 1723 1724 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1725 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1726 iinfo->i_data, inode->i_sb->s_blocksize - 1727 sizeof(struct unallocSpaceEntry)); 1728 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1729 crclen = sizeof(struct unallocSpaceEntry); 1730 1731 goto finish; 1732 } 1733 1734 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1735 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1736 else 1737 fe->uid = cpu_to_le32(i_uid_read(inode)); 1738 1739 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1740 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1741 else 1742 fe->gid = cpu_to_le32(i_gid_read(inode)); 1743 1744 udfperms = ((inode->i_mode & 0007)) | 1745 ((inode->i_mode & 0070) << 2) | 1746 ((inode->i_mode & 0700) << 4); 1747 1748 udfperms |= iinfo->i_extraPerms; 1749 fe->permissions = cpu_to_le32(udfperms); 1750 1751 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1752 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1753 else { 1754 if (iinfo->i_hidden) 1755 fe->fileLinkCount = cpu_to_le16(0); 1756 else 1757 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1758 } 1759 1760 fe->informationLength = cpu_to_le64(inode->i_size); 1761 1762 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1763 struct regid *eid; 1764 struct deviceSpec *dsea = 1765 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1766 if (!dsea) { 1767 dsea = (struct deviceSpec *) 1768 udf_add_extendedattr(inode, 1769 sizeof(struct deviceSpec) + 1770 sizeof(struct regid), 12, 0x3); 1771 dsea->attrType = cpu_to_le32(12); 1772 dsea->attrSubtype = 1; 1773 dsea->attrLength = cpu_to_le32( 1774 sizeof(struct deviceSpec) + 1775 sizeof(struct regid)); 1776 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1777 } 1778 eid = (struct regid *)dsea->impUse; 1779 memset(eid, 0, sizeof(*eid)); 1780 strcpy(eid->ident, UDF_ID_DEVELOPER); 1781 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1782 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1783 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1784 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1785 } 1786 1787 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1788 lb_recorded = 0; /* No extents => no blocks! */ 1789 else 1790 lb_recorded = 1791 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1792 (blocksize_bits - 9); 1793 1794 if (iinfo->i_efe == 0) { 1795 memcpy(bh->b_data + sizeof(struct fileEntry), 1796 iinfo->i_data, 1797 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1798 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1799 1800 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1801 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1802 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1803 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1804 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1805 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1806 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1807 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1808 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1809 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1810 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1811 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1812 crclen = sizeof(struct fileEntry); 1813 } else { 1814 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1815 iinfo->i_data, 1816 inode->i_sb->s_blocksize - 1817 sizeof(struct extendedFileEntry)); 1818 efe->objectSize = 1819 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1820 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1821 1822 if (iinfo->i_streamdir) { 1823 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1824 1825 icb_lad->extLocation = 1826 cpu_to_lelb(iinfo->i_locStreamdir); 1827 icb_lad->extLength = 1828 cpu_to_le32(inode->i_sb->s_blocksize); 1829 } 1830 1831 udf_adjust_time(iinfo, inode->i_atime); 1832 udf_adjust_time(iinfo, inode->i_mtime); 1833 udf_adjust_time(iinfo, inode->i_ctime); 1834 1835 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1836 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1837 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1838 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1839 1840 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1841 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1842 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1843 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1844 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1845 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1846 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1847 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1848 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1849 crclen = sizeof(struct extendedFileEntry); 1850 } 1851 1852 finish: 1853 if (iinfo->i_strat4096) { 1854 fe->icbTag.strategyType = cpu_to_le16(4096); 1855 fe->icbTag.strategyParameter = cpu_to_le16(1); 1856 fe->icbTag.numEntries = cpu_to_le16(2); 1857 } else { 1858 fe->icbTag.strategyType = cpu_to_le16(4); 1859 fe->icbTag.numEntries = cpu_to_le16(1); 1860 } 1861 1862 if (iinfo->i_use) 1863 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1864 else if (S_ISDIR(inode->i_mode)) 1865 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1866 else if (S_ISREG(inode->i_mode)) 1867 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1868 else if (S_ISLNK(inode->i_mode)) 1869 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1870 else if (S_ISBLK(inode->i_mode)) 1871 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1872 else if (S_ISCHR(inode->i_mode)) 1873 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1874 else if (S_ISFIFO(inode->i_mode)) 1875 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1876 else if (S_ISSOCK(inode->i_mode)) 1877 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1878 1879 icbflags = iinfo->i_alloc_type | 1880 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1881 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1882 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1883 (le16_to_cpu(fe->icbTag.flags) & 1884 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1885 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1886 1887 fe->icbTag.flags = cpu_to_le16(icbflags); 1888 if (sbi->s_udfrev >= 0x0200) 1889 fe->descTag.descVersion = cpu_to_le16(3); 1890 else 1891 fe->descTag.descVersion = cpu_to_le16(2); 1892 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1893 fe->descTag.tagLocation = cpu_to_le32( 1894 iinfo->i_location.logicalBlockNum); 1895 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1896 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1897 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1898 crclen)); 1899 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1900 1901 set_buffer_uptodate(bh); 1902 unlock_buffer(bh); 1903 1904 /* write the data blocks */ 1905 mark_buffer_dirty(bh); 1906 if (do_sync) { 1907 sync_dirty_buffer(bh); 1908 if (buffer_write_io_error(bh)) { 1909 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1910 inode->i_ino); 1911 err = -EIO; 1912 } 1913 } 1914 brelse(bh); 1915 1916 return err; 1917 } 1918 1919 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1920 bool hidden_inode) 1921 { 1922 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1923 struct inode *inode = iget_locked(sb, block); 1924 int err; 1925 1926 if (!inode) 1927 return ERR_PTR(-ENOMEM); 1928 1929 if (!(inode->i_state & I_NEW)) { 1930 if (UDF_I(inode)->i_hidden != hidden_inode) { 1931 iput(inode); 1932 return ERR_PTR(-EFSCORRUPTED); 1933 } 1934 return inode; 1935 } 1936 1937 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1938 err = udf_read_inode(inode, hidden_inode); 1939 if (err < 0) { 1940 iget_failed(inode); 1941 return ERR_PTR(err); 1942 } 1943 unlock_new_inode(inode); 1944 1945 return inode; 1946 } 1947 1948 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1949 struct extent_position *epos) 1950 { 1951 struct super_block *sb = inode->i_sb; 1952 struct buffer_head *bh; 1953 struct allocExtDesc *aed; 1954 struct extent_position nepos; 1955 struct kernel_lb_addr neloc; 1956 int ver, adsize; 1957 1958 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1959 adsize = sizeof(struct short_ad); 1960 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1961 adsize = sizeof(struct long_ad); 1962 else 1963 return -EIO; 1964 1965 neloc.logicalBlockNum = block; 1966 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1967 1968 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1969 if (!bh) 1970 return -EIO; 1971 lock_buffer(bh); 1972 memset(bh->b_data, 0x00, sb->s_blocksize); 1973 set_buffer_uptodate(bh); 1974 unlock_buffer(bh); 1975 mark_buffer_dirty_inode(bh, inode); 1976 1977 aed = (struct allocExtDesc *)(bh->b_data); 1978 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1979 aed->previousAllocExtLocation = 1980 cpu_to_le32(epos->block.logicalBlockNum); 1981 } 1982 aed->lengthAllocDescs = cpu_to_le32(0); 1983 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1984 ver = 3; 1985 else 1986 ver = 2; 1987 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1988 sizeof(struct tag)); 1989 1990 nepos.block = neloc; 1991 nepos.offset = sizeof(struct allocExtDesc); 1992 nepos.bh = bh; 1993 1994 /* 1995 * Do we have to copy current last extent to make space for indirect 1996 * one? 1997 */ 1998 if (epos->offset + adsize > sb->s_blocksize) { 1999 struct kernel_lb_addr cp_loc; 2000 uint32_t cp_len; 2001 int cp_type; 2002 2003 epos->offset -= adsize; 2004 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 2005 cp_len |= ((uint32_t)cp_type) << 30; 2006 2007 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2008 udf_write_aext(inode, epos, &nepos.block, 2009 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2010 } else { 2011 __udf_add_aext(inode, epos, &nepos.block, 2012 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2013 } 2014 2015 brelse(epos->bh); 2016 *epos = nepos; 2017 2018 return 0; 2019 } 2020 2021 /* 2022 * Append extent at the given position - should be the first free one in inode 2023 * / indirect extent. This function assumes there is enough space in the inode 2024 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2025 */ 2026 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2027 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2028 { 2029 struct udf_inode_info *iinfo = UDF_I(inode); 2030 struct allocExtDesc *aed; 2031 int adsize; 2032 2033 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2034 adsize = sizeof(struct short_ad); 2035 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2036 adsize = sizeof(struct long_ad); 2037 else 2038 return -EIO; 2039 2040 if (!epos->bh) { 2041 WARN_ON(iinfo->i_lenAlloc != 2042 epos->offset - udf_file_entry_alloc_offset(inode)); 2043 } else { 2044 aed = (struct allocExtDesc *)epos->bh->b_data; 2045 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2046 epos->offset - sizeof(struct allocExtDesc)); 2047 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2048 } 2049 2050 udf_write_aext(inode, epos, eloc, elen, inc); 2051 2052 if (!epos->bh) { 2053 iinfo->i_lenAlloc += adsize; 2054 mark_inode_dirty(inode); 2055 } else { 2056 aed = (struct allocExtDesc *)epos->bh->b_data; 2057 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2058 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2059 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2060 udf_update_tag(epos->bh->b_data, 2061 epos->offset + (inc ? 0 : adsize)); 2062 else 2063 udf_update_tag(epos->bh->b_data, 2064 sizeof(struct allocExtDesc)); 2065 mark_buffer_dirty_inode(epos->bh, inode); 2066 } 2067 2068 return 0; 2069 } 2070 2071 /* 2072 * Append extent at given position - should be the first free one in inode 2073 * / indirect extent. Takes care of allocating and linking indirect blocks. 2074 */ 2075 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2076 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2077 { 2078 int adsize; 2079 struct super_block *sb = inode->i_sb; 2080 2081 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2082 adsize = sizeof(struct short_ad); 2083 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2084 adsize = sizeof(struct long_ad); 2085 else 2086 return -EIO; 2087 2088 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2089 int err; 2090 udf_pblk_t new_block; 2091 2092 new_block = udf_new_block(sb, NULL, 2093 epos->block.partitionReferenceNum, 2094 epos->block.logicalBlockNum, &err); 2095 if (!new_block) 2096 return -ENOSPC; 2097 2098 err = udf_setup_indirect_aext(inode, new_block, epos); 2099 if (err) 2100 return err; 2101 } 2102 2103 return __udf_add_aext(inode, epos, eloc, elen, inc); 2104 } 2105 2106 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2107 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2108 { 2109 int adsize; 2110 uint8_t *ptr; 2111 struct short_ad *sad; 2112 struct long_ad *lad; 2113 struct udf_inode_info *iinfo = UDF_I(inode); 2114 2115 if (!epos->bh) 2116 ptr = iinfo->i_data + epos->offset - 2117 udf_file_entry_alloc_offset(inode) + 2118 iinfo->i_lenEAttr; 2119 else 2120 ptr = epos->bh->b_data + epos->offset; 2121 2122 switch (iinfo->i_alloc_type) { 2123 case ICBTAG_FLAG_AD_SHORT: 2124 sad = (struct short_ad *)ptr; 2125 sad->extLength = cpu_to_le32(elen); 2126 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2127 adsize = sizeof(struct short_ad); 2128 break; 2129 case ICBTAG_FLAG_AD_LONG: 2130 lad = (struct long_ad *)ptr; 2131 lad->extLength = cpu_to_le32(elen); 2132 lad->extLocation = cpu_to_lelb(*eloc); 2133 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2134 adsize = sizeof(struct long_ad); 2135 break; 2136 default: 2137 return; 2138 } 2139 2140 if (epos->bh) { 2141 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2142 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2143 struct allocExtDesc *aed = 2144 (struct allocExtDesc *)epos->bh->b_data; 2145 udf_update_tag(epos->bh->b_data, 2146 le32_to_cpu(aed->lengthAllocDescs) + 2147 sizeof(struct allocExtDesc)); 2148 } 2149 mark_buffer_dirty_inode(epos->bh, inode); 2150 } else { 2151 mark_inode_dirty(inode); 2152 } 2153 2154 if (inc) 2155 epos->offset += adsize; 2156 } 2157 2158 /* 2159 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2160 * someone does some weird stuff. 2161 */ 2162 #define UDF_MAX_INDIR_EXTS 16 2163 2164 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2165 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2166 { 2167 int8_t etype; 2168 unsigned int indirections = 0; 2169 2170 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2171 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2172 udf_pblk_t block; 2173 2174 if (++indirections > UDF_MAX_INDIR_EXTS) { 2175 udf_err(inode->i_sb, 2176 "too many indirect extents in inode %lu\n", 2177 inode->i_ino); 2178 return -1; 2179 } 2180 2181 epos->block = *eloc; 2182 epos->offset = sizeof(struct allocExtDesc); 2183 brelse(epos->bh); 2184 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2185 epos->bh = sb_bread(inode->i_sb, block); 2186 if (!epos->bh) { 2187 udf_debug("reading block %u failed!\n", block); 2188 return -1; 2189 } 2190 } 2191 2192 return etype; 2193 } 2194 2195 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2196 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2197 { 2198 int alen; 2199 int8_t etype; 2200 uint8_t *ptr; 2201 struct short_ad *sad; 2202 struct long_ad *lad; 2203 struct udf_inode_info *iinfo = UDF_I(inode); 2204 2205 if (!epos->bh) { 2206 if (!epos->offset) 2207 epos->offset = udf_file_entry_alloc_offset(inode); 2208 ptr = iinfo->i_data + epos->offset - 2209 udf_file_entry_alloc_offset(inode) + 2210 iinfo->i_lenEAttr; 2211 alen = udf_file_entry_alloc_offset(inode) + 2212 iinfo->i_lenAlloc; 2213 } else { 2214 if (!epos->offset) 2215 epos->offset = sizeof(struct allocExtDesc); 2216 ptr = epos->bh->b_data + epos->offset; 2217 alen = sizeof(struct allocExtDesc) + 2218 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2219 lengthAllocDescs); 2220 } 2221 2222 switch (iinfo->i_alloc_type) { 2223 case ICBTAG_FLAG_AD_SHORT: 2224 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2225 if (!sad) 2226 return -1; 2227 etype = le32_to_cpu(sad->extLength) >> 30; 2228 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2229 eloc->partitionReferenceNum = 2230 iinfo->i_location.partitionReferenceNum; 2231 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2232 break; 2233 case ICBTAG_FLAG_AD_LONG: 2234 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2235 if (!lad) 2236 return -1; 2237 etype = le32_to_cpu(lad->extLength) >> 30; 2238 *eloc = lelb_to_cpu(lad->extLocation); 2239 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2240 break; 2241 default: 2242 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2243 return -1; 2244 } 2245 2246 return etype; 2247 } 2248 2249 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2250 struct kernel_lb_addr neloc, uint32_t nelen) 2251 { 2252 struct kernel_lb_addr oeloc; 2253 uint32_t oelen; 2254 int8_t etype; 2255 int err; 2256 2257 if (epos.bh) 2258 get_bh(epos.bh); 2259 2260 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2261 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2262 neloc = oeloc; 2263 nelen = (etype << 30) | oelen; 2264 } 2265 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2266 brelse(epos.bh); 2267 2268 return err; 2269 } 2270 2271 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2272 { 2273 struct extent_position oepos; 2274 int adsize; 2275 int8_t etype; 2276 struct allocExtDesc *aed; 2277 struct udf_inode_info *iinfo; 2278 struct kernel_lb_addr eloc; 2279 uint32_t elen; 2280 2281 if (epos.bh) { 2282 get_bh(epos.bh); 2283 get_bh(epos.bh); 2284 } 2285 2286 iinfo = UDF_I(inode); 2287 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2288 adsize = sizeof(struct short_ad); 2289 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2290 adsize = sizeof(struct long_ad); 2291 else 2292 adsize = 0; 2293 2294 oepos = epos; 2295 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2296 return -1; 2297 2298 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2299 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2300 if (oepos.bh != epos.bh) { 2301 oepos.block = epos.block; 2302 brelse(oepos.bh); 2303 get_bh(epos.bh); 2304 oepos.bh = epos.bh; 2305 oepos.offset = epos.offset - adsize; 2306 } 2307 } 2308 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2309 elen = 0; 2310 2311 if (epos.bh != oepos.bh) { 2312 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2313 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2314 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2315 if (!oepos.bh) { 2316 iinfo->i_lenAlloc -= (adsize * 2); 2317 mark_inode_dirty(inode); 2318 } else { 2319 aed = (struct allocExtDesc *)oepos.bh->b_data; 2320 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2321 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2322 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2323 udf_update_tag(oepos.bh->b_data, 2324 oepos.offset - (2 * adsize)); 2325 else 2326 udf_update_tag(oepos.bh->b_data, 2327 sizeof(struct allocExtDesc)); 2328 mark_buffer_dirty_inode(oepos.bh, inode); 2329 } 2330 } else { 2331 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2332 if (!oepos.bh) { 2333 iinfo->i_lenAlloc -= adsize; 2334 mark_inode_dirty(inode); 2335 } else { 2336 aed = (struct allocExtDesc *)oepos.bh->b_data; 2337 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2338 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2339 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2340 udf_update_tag(oepos.bh->b_data, 2341 epos.offset - adsize); 2342 else 2343 udf_update_tag(oepos.bh->b_data, 2344 sizeof(struct allocExtDesc)); 2345 mark_buffer_dirty_inode(oepos.bh, inode); 2346 } 2347 } 2348 2349 brelse(epos.bh); 2350 brelse(oepos.bh); 2351 2352 return (elen >> 30); 2353 } 2354 2355 int8_t inode_bmap(struct inode *inode, sector_t block, 2356 struct extent_position *pos, struct kernel_lb_addr *eloc, 2357 uint32_t *elen, sector_t *offset) 2358 { 2359 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2360 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2361 int8_t etype; 2362 struct udf_inode_info *iinfo; 2363 2364 iinfo = UDF_I(inode); 2365 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2366 pos->offset = 0; 2367 pos->block = iinfo->i_location; 2368 pos->bh = NULL; 2369 } 2370 *elen = 0; 2371 do { 2372 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2373 if (etype == -1) { 2374 *offset = (bcount - lbcount) >> blocksize_bits; 2375 iinfo->i_lenExtents = lbcount; 2376 return -1; 2377 } 2378 lbcount += *elen; 2379 } while (lbcount <= bcount); 2380 /* update extent cache */ 2381 udf_update_extent_cache(inode, lbcount - *elen, pos); 2382 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2383 2384 return etype; 2385 } 2386