xref: /openbmc/linux/fs/udf/inode.c (revision a9185b41)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40 #include <linux/crc-itu-t.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static mode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 					sector_t *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
71 void udf_delete_inode(struct inode *inode)
72 {
73 	truncate_inode_pages(&inode->i_data, 0);
74 
75 	if (is_bad_inode(inode))
76 		goto no_delete;
77 
78 	inode->i_size = 0;
79 	udf_truncate(inode);
80 	lock_kernel();
81 
82 	udf_update_inode(inode, IS_SYNC(inode));
83 	udf_free_inode(inode);
84 
85 	unlock_kernel();
86 	return;
87 
88 no_delete:
89 	clear_inode(inode);
90 }
91 
92 /*
93  * If we are going to release inode from memory, we truncate last inode extent
94  * to proper length. We could use drop_inode() but it's called under inode_lock
95  * and thus we cannot mark inode dirty there.  We use clear_inode() but we have
96  * to make sure to write inode as it's not written automatically.
97  */
98 void udf_clear_inode(struct inode *inode)
99 {
100 	struct udf_inode_info *iinfo = UDF_I(inode);
101 
102 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
103 	    inode->i_size != iinfo->i_lenExtents) {
104 		printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
105 			"inode size %llu different from extent lenght %llu. "
106 			"Filesystem need not be standards compliant.\n",
107 			inode->i_sb->s_id, inode->i_ino, inode->i_mode,
108 			(unsigned long long)inode->i_size,
109 			(unsigned long long)iinfo->i_lenExtents);
110 	}
111 	kfree(iinfo->i_ext.i_data);
112 	iinfo->i_ext.i_data = NULL;
113 }
114 
115 static int udf_writepage(struct page *page, struct writeback_control *wbc)
116 {
117 	return block_write_full_page(page, udf_get_block, wbc);
118 }
119 
120 static int udf_readpage(struct file *file, struct page *page)
121 {
122 	return block_read_full_page(page, udf_get_block);
123 }
124 
125 static int udf_write_begin(struct file *file, struct address_space *mapping,
126 			loff_t pos, unsigned len, unsigned flags,
127 			struct page **pagep, void **fsdata)
128 {
129 	*pagep = NULL;
130 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
131 				udf_get_block);
132 }
133 
134 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
135 {
136 	return generic_block_bmap(mapping, block, udf_get_block);
137 }
138 
139 const struct address_space_operations udf_aops = {
140 	.readpage	= udf_readpage,
141 	.writepage	= udf_writepage,
142 	.sync_page	= block_sync_page,
143 	.write_begin		= udf_write_begin,
144 	.write_end		= generic_write_end,
145 	.bmap		= udf_bmap,
146 };
147 
148 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
149 {
150 	struct page *page;
151 	char *kaddr;
152 	struct udf_inode_info *iinfo = UDF_I(inode);
153 	struct writeback_control udf_wbc = {
154 		.sync_mode = WB_SYNC_NONE,
155 		.nr_to_write = 1,
156 	};
157 
158 	/* from now on we have normal address_space methods */
159 	inode->i_data.a_ops = &udf_aops;
160 
161 	if (!iinfo->i_lenAlloc) {
162 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
163 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
164 		else
165 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
166 		mark_inode_dirty(inode);
167 		return;
168 	}
169 
170 	page = grab_cache_page(inode->i_mapping, 0);
171 	BUG_ON(!PageLocked(page));
172 
173 	if (!PageUptodate(page)) {
174 		kaddr = kmap(page);
175 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
176 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
177 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
178 			iinfo->i_lenAlloc);
179 		flush_dcache_page(page);
180 		SetPageUptodate(page);
181 		kunmap(page);
182 	}
183 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
184 	       iinfo->i_lenAlloc);
185 	iinfo->i_lenAlloc = 0;
186 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
187 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
188 	else
189 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
190 
191 	inode->i_data.a_ops->writepage(page, &udf_wbc);
192 	page_cache_release(page);
193 
194 	mark_inode_dirty(inode);
195 }
196 
197 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
198 					   int *err)
199 {
200 	int newblock;
201 	struct buffer_head *dbh = NULL;
202 	struct kernel_lb_addr eloc;
203 	uint8_t alloctype;
204 	struct extent_position epos;
205 
206 	struct udf_fileident_bh sfibh, dfibh;
207 	loff_t f_pos = udf_ext0_offset(inode);
208 	int size = udf_ext0_offset(inode) + inode->i_size;
209 	struct fileIdentDesc cfi, *sfi, *dfi;
210 	struct udf_inode_info *iinfo = UDF_I(inode);
211 
212 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
213 		alloctype = ICBTAG_FLAG_AD_SHORT;
214 	else
215 		alloctype = ICBTAG_FLAG_AD_LONG;
216 
217 	if (!inode->i_size) {
218 		iinfo->i_alloc_type = alloctype;
219 		mark_inode_dirty(inode);
220 		return NULL;
221 	}
222 
223 	/* alloc block, and copy data to it */
224 	*block = udf_new_block(inode->i_sb, inode,
225 			       iinfo->i_location.partitionReferenceNum,
226 			       iinfo->i_location.logicalBlockNum, err);
227 	if (!(*block))
228 		return NULL;
229 	newblock = udf_get_pblock(inode->i_sb, *block,
230 				  iinfo->i_location.partitionReferenceNum,
231 				0);
232 	if (!newblock)
233 		return NULL;
234 	dbh = udf_tgetblk(inode->i_sb, newblock);
235 	if (!dbh)
236 		return NULL;
237 	lock_buffer(dbh);
238 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
239 	set_buffer_uptodate(dbh);
240 	unlock_buffer(dbh);
241 	mark_buffer_dirty_inode(dbh, inode);
242 
243 	sfibh.soffset = sfibh.eoffset =
244 			f_pos & (inode->i_sb->s_blocksize - 1);
245 	sfibh.sbh = sfibh.ebh = NULL;
246 	dfibh.soffset = dfibh.eoffset = 0;
247 	dfibh.sbh = dfibh.ebh = dbh;
248 	while (f_pos < size) {
249 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
250 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
251 					 NULL, NULL, NULL);
252 		if (!sfi) {
253 			brelse(dbh);
254 			return NULL;
255 		}
256 		iinfo->i_alloc_type = alloctype;
257 		sfi->descTag.tagLocation = cpu_to_le32(*block);
258 		dfibh.soffset = dfibh.eoffset;
259 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
260 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
261 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
262 				 sfi->fileIdent +
263 					le16_to_cpu(sfi->lengthOfImpUse))) {
264 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
265 			brelse(dbh);
266 			return NULL;
267 		}
268 	}
269 	mark_buffer_dirty_inode(dbh, inode);
270 
271 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
272 		iinfo->i_lenAlloc);
273 	iinfo->i_lenAlloc = 0;
274 	eloc.logicalBlockNum = *block;
275 	eloc.partitionReferenceNum =
276 				iinfo->i_location.partitionReferenceNum;
277 	iinfo->i_lenExtents = inode->i_size;
278 	epos.bh = NULL;
279 	epos.block = iinfo->i_location;
280 	epos.offset = udf_file_entry_alloc_offset(inode);
281 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
282 	/* UniqueID stuff */
283 
284 	brelse(epos.bh);
285 	mark_inode_dirty(inode);
286 	return dbh;
287 }
288 
289 static int udf_get_block(struct inode *inode, sector_t block,
290 			 struct buffer_head *bh_result, int create)
291 {
292 	int err, new;
293 	struct buffer_head *bh;
294 	sector_t phys = 0;
295 	struct udf_inode_info *iinfo;
296 
297 	if (!create) {
298 		phys = udf_block_map(inode, block);
299 		if (phys)
300 			map_bh(bh_result, inode->i_sb, phys);
301 		return 0;
302 	}
303 
304 	err = -EIO;
305 	new = 0;
306 	bh = NULL;
307 
308 	lock_kernel();
309 
310 	iinfo = UDF_I(inode);
311 	if (block == iinfo->i_next_alloc_block + 1) {
312 		iinfo->i_next_alloc_block++;
313 		iinfo->i_next_alloc_goal++;
314 	}
315 
316 	err = 0;
317 
318 	bh = inode_getblk(inode, block, &err, &phys, &new);
319 	BUG_ON(bh);
320 	if (err)
321 		goto abort;
322 	BUG_ON(!phys);
323 
324 	if (new)
325 		set_buffer_new(bh_result);
326 	map_bh(bh_result, inode->i_sb, phys);
327 
328 abort:
329 	unlock_kernel();
330 	return err;
331 }
332 
333 static struct buffer_head *udf_getblk(struct inode *inode, long block,
334 				      int create, int *err)
335 {
336 	struct buffer_head *bh;
337 	struct buffer_head dummy;
338 
339 	dummy.b_state = 0;
340 	dummy.b_blocknr = -1000;
341 	*err = udf_get_block(inode, block, &dummy, create);
342 	if (!*err && buffer_mapped(&dummy)) {
343 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
344 		if (buffer_new(&dummy)) {
345 			lock_buffer(bh);
346 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
347 			set_buffer_uptodate(bh);
348 			unlock_buffer(bh);
349 			mark_buffer_dirty_inode(bh, inode);
350 		}
351 		return bh;
352 	}
353 
354 	return NULL;
355 }
356 
357 /* Extend the file by 'blocks' blocks, return the number of extents added */
358 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
359 		    struct kernel_long_ad *last_ext, sector_t blocks)
360 {
361 	sector_t add;
362 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
363 	struct super_block *sb = inode->i_sb;
364 	struct kernel_lb_addr prealloc_loc = {};
365 	int prealloc_len = 0;
366 	struct udf_inode_info *iinfo;
367 
368 	/* The previous extent is fake and we should not extend by anything
369 	 * - there's nothing to do... */
370 	if (!blocks && fake)
371 		return 0;
372 
373 	iinfo = UDF_I(inode);
374 	/* Round the last extent up to a multiple of block size */
375 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
376 		last_ext->extLength =
377 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
378 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
379 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
380 		iinfo->i_lenExtents =
381 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
382 			~(sb->s_blocksize - 1);
383 	}
384 
385 	/* Last extent are just preallocated blocks? */
386 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
387 						EXT_NOT_RECORDED_ALLOCATED) {
388 		/* Save the extent so that we can reattach it to the end */
389 		prealloc_loc = last_ext->extLocation;
390 		prealloc_len = last_ext->extLength;
391 		/* Mark the extent as a hole */
392 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
393 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
394 		last_ext->extLocation.logicalBlockNum = 0;
395 		last_ext->extLocation.partitionReferenceNum = 0;
396 	}
397 
398 	/* Can we merge with the previous extent? */
399 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
400 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
401 		add = ((1 << 30) - sb->s_blocksize -
402 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
403 			sb->s_blocksize_bits;
404 		if (add > blocks)
405 			add = blocks;
406 		blocks -= add;
407 		last_ext->extLength += add << sb->s_blocksize_bits;
408 	}
409 
410 	if (fake) {
411 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
412 			     last_ext->extLength, 1);
413 		count++;
414 	} else
415 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
416 				last_ext->extLength, 1);
417 
418 	/* Managed to do everything necessary? */
419 	if (!blocks)
420 		goto out;
421 
422 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
423 	last_ext->extLocation.logicalBlockNum = 0;
424 	last_ext->extLocation.partitionReferenceNum = 0;
425 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
426 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
427 				(add << sb->s_blocksize_bits);
428 
429 	/* Create enough extents to cover the whole hole */
430 	while (blocks > add) {
431 		blocks -= add;
432 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
433 				 last_ext->extLength, 1) == -1)
434 			return -1;
435 		count++;
436 	}
437 	if (blocks) {
438 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
439 			(blocks << sb->s_blocksize_bits);
440 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
441 				 last_ext->extLength, 1) == -1)
442 			return -1;
443 		count++;
444 	}
445 
446 out:
447 	/* Do we have some preallocated blocks saved? */
448 	if (prealloc_len) {
449 		if (udf_add_aext(inode, last_pos, &prealloc_loc,
450 				 prealloc_len, 1) == -1)
451 			return -1;
452 		last_ext->extLocation = prealloc_loc;
453 		last_ext->extLength = prealloc_len;
454 		count++;
455 	}
456 
457 	/* last_pos should point to the last written extent... */
458 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
459 		last_pos->offset -= sizeof(struct short_ad);
460 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
461 		last_pos->offset -= sizeof(struct long_ad);
462 	else
463 		return -1;
464 
465 	return count;
466 }
467 
468 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
469 					int *err, sector_t *phys, int *new)
470 {
471 	static sector_t last_block;
472 	struct buffer_head *result = NULL;
473 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
474 	struct extent_position prev_epos, cur_epos, next_epos;
475 	int count = 0, startnum = 0, endnum = 0;
476 	uint32_t elen = 0, tmpelen;
477 	struct kernel_lb_addr eloc, tmpeloc;
478 	int c = 1;
479 	loff_t lbcount = 0, b_off = 0;
480 	uint32_t newblocknum, newblock;
481 	sector_t offset = 0;
482 	int8_t etype;
483 	struct udf_inode_info *iinfo = UDF_I(inode);
484 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
485 	int lastblock = 0;
486 
487 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
488 	prev_epos.block = iinfo->i_location;
489 	prev_epos.bh = NULL;
490 	cur_epos = next_epos = prev_epos;
491 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
492 
493 	/* find the extent which contains the block we are looking for.
494 	   alternate between laarr[0] and laarr[1] for locations of the
495 	   current extent, and the previous extent */
496 	do {
497 		if (prev_epos.bh != cur_epos.bh) {
498 			brelse(prev_epos.bh);
499 			get_bh(cur_epos.bh);
500 			prev_epos.bh = cur_epos.bh;
501 		}
502 		if (cur_epos.bh != next_epos.bh) {
503 			brelse(cur_epos.bh);
504 			get_bh(next_epos.bh);
505 			cur_epos.bh = next_epos.bh;
506 		}
507 
508 		lbcount += elen;
509 
510 		prev_epos.block = cur_epos.block;
511 		cur_epos.block = next_epos.block;
512 
513 		prev_epos.offset = cur_epos.offset;
514 		cur_epos.offset = next_epos.offset;
515 
516 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
517 		if (etype == -1)
518 			break;
519 
520 		c = !c;
521 
522 		laarr[c].extLength = (etype << 30) | elen;
523 		laarr[c].extLocation = eloc;
524 
525 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
526 			pgoal = eloc.logicalBlockNum +
527 				((elen + inode->i_sb->s_blocksize - 1) >>
528 				 inode->i_sb->s_blocksize_bits);
529 
530 		count++;
531 	} while (lbcount + elen <= b_off);
532 
533 	b_off -= lbcount;
534 	offset = b_off >> inode->i_sb->s_blocksize_bits;
535 	/*
536 	 * Move prev_epos and cur_epos into indirect extent if we are at
537 	 * the pointer to it
538 	 */
539 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
540 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
541 
542 	/* if the extent is allocated and recorded, return the block
543 	   if the extent is not a multiple of the blocksize, round up */
544 
545 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
546 		if (elen & (inode->i_sb->s_blocksize - 1)) {
547 			elen = EXT_RECORDED_ALLOCATED |
548 				((elen + inode->i_sb->s_blocksize - 1) &
549 				 ~(inode->i_sb->s_blocksize - 1));
550 			etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
551 		}
552 		brelse(prev_epos.bh);
553 		brelse(cur_epos.bh);
554 		brelse(next_epos.bh);
555 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
556 		*phys = newblock;
557 		return NULL;
558 	}
559 
560 	last_block = block;
561 	/* Are we beyond EOF? */
562 	if (etype == -1) {
563 		int ret;
564 
565 		if (count) {
566 			if (c)
567 				laarr[0] = laarr[1];
568 			startnum = 1;
569 		} else {
570 			/* Create a fake extent when there's not one */
571 			memset(&laarr[0].extLocation, 0x00,
572 				sizeof(struct kernel_lb_addr));
573 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
574 			/* Will udf_extend_file() create real extent from
575 			   a fake one? */
576 			startnum = (offset > 0);
577 		}
578 		/* Create extents for the hole between EOF and offset */
579 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
580 		if (ret == -1) {
581 			brelse(prev_epos.bh);
582 			brelse(cur_epos.bh);
583 			brelse(next_epos.bh);
584 			/* We don't really know the error here so we just make
585 			 * something up */
586 			*err = -ENOSPC;
587 			return NULL;
588 		}
589 		c = 0;
590 		offset = 0;
591 		count += ret;
592 		/* We are not covered by a preallocated extent? */
593 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
594 						EXT_NOT_RECORDED_ALLOCATED) {
595 			/* Is there any real extent? - otherwise we overwrite
596 			 * the fake one... */
597 			if (count)
598 				c = !c;
599 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
600 				inode->i_sb->s_blocksize;
601 			memset(&laarr[c].extLocation, 0x00,
602 				sizeof(struct kernel_lb_addr));
603 			count++;
604 			endnum++;
605 		}
606 		endnum = c + 1;
607 		lastblock = 1;
608 	} else {
609 		endnum = startnum = ((count > 2) ? 2 : count);
610 
611 		/* if the current extent is in position 0,
612 		   swap it with the previous */
613 		if (!c && count != 1) {
614 			laarr[2] = laarr[0];
615 			laarr[0] = laarr[1];
616 			laarr[1] = laarr[2];
617 			c = 1;
618 		}
619 
620 		/* if the current block is located in an extent,
621 		   read the next extent */
622 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
623 		if (etype != -1) {
624 			laarr[c + 1].extLength = (etype << 30) | elen;
625 			laarr[c + 1].extLocation = eloc;
626 			count++;
627 			startnum++;
628 			endnum++;
629 		} else
630 			lastblock = 1;
631 	}
632 
633 	/* if the current extent is not recorded but allocated, get the
634 	 * block in the extent corresponding to the requested block */
635 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
636 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
637 	else { /* otherwise, allocate a new block */
638 		if (iinfo->i_next_alloc_block == block)
639 			goal = iinfo->i_next_alloc_goal;
640 
641 		if (!goal) {
642 			if (!(goal = pgoal)) /* XXX: what was intended here? */
643 				goal = iinfo->i_location.logicalBlockNum + 1;
644 		}
645 
646 		newblocknum = udf_new_block(inode->i_sb, inode,
647 				iinfo->i_location.partitionReferenceNum,
648 				goal, err);
649 		if (!newblocknum) {
650 			brelse(prev_epos.bh);
651 			*err = -ENOSPC;
652 			return NULL;
653 		}
654 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
655 	}
656 
657 	/* if the extent the requsted block is located in contains multiple
658 	 * blocks, split the extent into at most three extents. blocks prior
659 	 * to requested block, requested block, and blocks after requested
660 	 * block */
661 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
662 
663 #ifdef UDF_PREALLOCATE
664 	/* We preallocate blocks only for regular files. It also makes sense
665 	 * for directories but there's a problem when to drop the
666 	 * preallocation. We might use some delayed work for that but I feel
667 	 * it's overengineering for a filesystem like UDF. */
668 	if (S_ISREG(inode->i_mode))
669 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
670 #endif
671 
672 	/* merge any continuous blocks in laarr */
673 	udf_merge_extents(inode, laarr, &endnum);
674 
675 	/* write back the new extents, inserting new extents if the new number
676 	 * of extents is greater than the old number, and deleting extents if
677 	 * the new number of extents is less than the old number */
678 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
679 
680 	brelse(prev_epos.bh);
681 
682 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
683 				iinfo->i_location.partitionReferenceNum, 0);
684 	if (!newblock)
685 		return NULL;
686 	*phys = newblock;
687 	*err = 0;
688 	*new = 1;
689 	iinfo->i_next_alloc_block = block;
690 	iinfo->i_next_alloc_goal = newblocknum;
691 	inode->i_ctime = current_fs_time(inode->i_sb);
692 
693 	if (IS_SYNC(inode))
694 		udf_sync_inode(inode);
695 	else
696 		mark_inode_dirty(inode);
697 
698 	return result;
699 }
700 
701 static void udf_split_extents(struct inode *inode, int *c, int offset,
702 			      int newblocknum,
703 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
704 			      int *endnum)
705 {
706 	unsigned long blocksize = inode->i_sb->s_blocksize;
707 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
708 
709 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
710 	    (laarr[*c].extLength >> 30) ==
711 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
712 		int curr = *c;
713 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
714 			    blocksize - 1) >> blocksize_bits;
715 		int8_t etype = (laarr[curr].extLength >> 30);
716 
717 		if (blen == 1)
718 			;
719 		else if (!offset || blen == offset + 1) {
720 			laarr[curr + 2] = laarr[curr + 1];
721 			laarr[curr + 1] = laarr[curr];
722 		} else {
723 			laarr[curr + 3] = laarr[curr + 1];
724 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
725 		}
726 
727 		if (offset) {
728 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
729 				udf_free_blocks(inode->i_sb, inode,
730 						&laarr[curr].extLocation,
731 						0, offset);
732 				laarr[curr].extLength =
733 					EXT_NOT_RECORDED_NOT_ALLOCATED |
734 					(offset << blocksize_bits);
735 				laarr[curr].extLocation.logicalBlockNum = 0;
736 				laarr[curr].extLocation.
737 						partitionReferenceNum = 0;
738 			} else
739 				laarr[curr].extLength = (etype << 30) |
740 					(offset << blocksize_bits);
741 			curr++;
742 			(*c)++;
743 			(*endnum)++;
744 		}
745 
746 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
747 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
748 			laarr[curr].extLocation.partitionReferenceNum =
749 				UDF_I(inode)->i_location.partitionReferenceNum;
750 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
751 			blocksize;
752 		curr++;
753 
754 		if (blen != offset + 1) {
755 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
756 				laarr[curr].extLocation.logicalBlockNum +=
757 								offset + 1;
758 			laarr[curr].extLength = (etype << 30) |
759 				((blen - (offset + 1)) << blocksize_bits);
760 			curr++;
761 			(*endnum)++;
762 		}
763 	}
764 }
765 
766 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
767 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
768 				 int *endnum)
769 {
770 	int start, length = 0, currlength = 0, i;
771 
772 	if (*endnum >= (c + 1)) {
773 		if (!lastblock)
774 			return;
775 		else
776 			start = c;
777 	} else {
778 		if ((laarr[c + 1].extLength >> 30) ==
779 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
780 			start = c + 1;
781 			length = currlength =
782 				(((laarr[c + 1].extLength &
783 					UDF_EXTENT_LENGTH_MASK) +
784 				inode->i_sb->s_blocksize - 1) >>
785 				inode->i_sb->s_blocksize_bits);
786 		} else
787 			start = c;
788 	}
789 
790 	for (i = start + 1; i <= *endnum; i++) {
791 		if (i == *endnum) {
792 			if (lastblock)
793 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
794 		} else if ((laarr[i].extLength >> 30) ==
795 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
796 			length += (((laarr[i].extLength &
797 						UDF_EXTENT_LENGTH_MASK) +
798 				    inode->i_sb->s_blocksize - 1) >>
799 				    inode->i_sb->s_blocksize_bits);
800 		} else
801 			break;
802 	}
803 
804 	if (length) {
805 		int next = laarr[start].extLocation.logicalBlockNum +
806 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
807 			  inode->i_sb->s_blocksize - 1) >>
808 			  inode->i_sb->s_blocksize_bits);
809 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
810 				laarr[start].extLocation.partitionReferenceNum,
811 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
812 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
813 				currlength);
814 		if (numalloc) 	{
815 			if (start == (c + 1))
816 				laarr[start].extLength +=
817 					(numalloc <<
818 					 inode->i_sb->s_blocksize_bits);
819 			else {
820 				memmove(&laarr[c + 2], &laarr[c + 1],
821 					sizeof(struct long_ad) * (*endnum - (c + 1)));
822 				(*endnum)++;
823 				laarr[c + 1].extLocation.logicalBlockNum = next;
824 				laarr[c + 1].extLocation.partitionReferenceNum =
825 					laarr[c].extLocation.
826 							partitionReferenceNum;
827 				laarr[c + 1].extLength =
828 					EXT_NOT_RECORDED_ALLOCATED |
829 					(numalloc <<
830 					 inode->i_sb->s_blocksize_bits);
831 				start = c + 1;
832 			}
833 
834 			for (i = start + 1; numalloc && i < *endnum; i++) {
835 				int elen = ((laarr[i].extLength &
836 						UDF_EXTENT_LENGTH_MASK) +
837 					    inode->i_sb->s_blocksize - 1) >>
838 					    inode->i_sb->s_blocksize_bits;
839 
840 				if (elen > numalloc) {
841 					laarr[i].extLength -=
842 						(numalloc <<
843 						 inode->i_sb->s_blocksize_bits);
844 					numalloc = 0;
845 				} else {
846 					numalloc -= elen;
847 					if (*endnum > (i + 1))
848 						memmove(&laarr[i],
849 							&laarr[i + 1],
850 							sizeof(struct long_ad) *
851 							(*endnum - (i + 1)));
852 					i--;
853 					(*endnum)--;
854 				}
855 			}
856 			UDF_I(inode)->i_lenExtents +=
857 				numalloc << inode->i_sb->s_blocksize_bits;
858 		}
859 	}
860 }
861 
862 static void udf_merge_extents(struct inode *inode,
863 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
864 			      int *endnum)
865 {
866 	int i;
867 	unsigned long blocksize = inode->i_sb->s_blocksize;
868 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
869 
870 	for (i = 0; i < (*endnum - 1); i++) {
871 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
872 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
873 
874 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
875 			(((li->extLength >> 30) ==
876 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
877 			((lip1->extLocation.logicalBlockNum -
878 			  li->extLocation.logicalBlockNum) ==
879 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
880 			blocksize - 1) >> blocksize_bits)))) {
881 
882 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
883 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
884 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
885 				lip1->extLength = (lip1->extLength -
886 						  (li->extLength &
887 						   UDF_EXTENT_LENGTH_MASK) +
888 						   UDF_EXTENT_LENGTH_MASK) &
889 							~(blocksize - 1);
890 				li->extLength = (li->extLength &
891 						 UDF_EXTENT_FLAG_MASK) +
892 						(UDF_EXTENT_LENGTH_MASK + 1) -
893 						blocksize;
894 				lip1->extLocation.logicalBlockNum =
895 					li->extLocation.logicalBlockNum +
896 					((li->extLength &
897 						UDF_EXTENT_LENGTH_MASK) >>
898 						blocksize_bits);
899 			} else {
900 				li->extLength = lip1->extLength +
901 					(((li->extLength &
902 						UDF_EXTENT_LENGTH_MASK) +
903 					 blocksize - 1) & ~(blocksize - 1));
904 				if (*endnum > (i + 2))
905 					memmove(&laarr[i + 1], &laarr[i + 2],
906 						sizeof(struct long_ad) *
907 						(*endnum - (i + 2)));
908 				i--;
909 				(*endnum)--;
910 			}
911 		} else if (((li->extLength >> 30) ==
912 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
913 			   ((lip1->extLength >> 30) ==
914 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
915 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
916 					((li->extLength &
917 					  UDF_EXTENT_LENGTH_MASK) +
918 					 blocksize - 1) >> blocksize_bits);
919 			li->extLocation.logicalBlockNum = 0;
920 			li->extLocation.partitionReferenceNum = 0;
921 
922 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
923 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
924 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
925 				lip1->extLength = (lip1->extLength -
926 						   (li->extLength &
927 						   UDF_EXTENT_LENGTH_MASK) +
928 						   UDF_EXTENT_LENGTH_MASK) &
929 						   ~(blocksize - 1);
930 				li->extLength = (li->extLength &
931 						 UDF_EXTENT_FLAG_MASK) +
932 						(UDF_EXTENT_LENGTH_MASK + 1) -
933 						blocksize;
934 			} else {
935 				li->extLength = lip1->extLength +
936 					(((li->extLength &
937 						UDF_EXTENT_LENGTH_MASK) +
938 					  blocksize - 1) & ~(blocksize - 1));
939 				if (*endnum > (i + 2))
940 					memmove(&laarr[i + 1], &laarr[i + 2],
941 						sizeof(struct long_ad) *
942 						(*endnum - (i + 2)));
943 				i--;
944 				(*endnum)--;
945 			}
946 		} else if ((li->extLength >> 30) ==
947 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
948 			udf_free_blocks(inode->i_sb, inode,
949 					&li->extLocation, 0,
950 					((li->extLength &
951 						UDF_EXTENT_LENGTH_MASK) +
952 					 blocksize - 1) >> blocksize_bits);
953 			li->extLocation.logicalBlockNum = 0;
954 			li->extLocation.partitionReferenceNum = 0;
955 			li->extLength = (li->extLength &
956 						UDF_EXTENT_LENGTH_MASK) |
957 						EXT_NOT_RECORDED_NOT_ALLOCATED;
958 		}
959 	}
960 }
961 
962 static void udf_update_extents(struct inode *inode,
963 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
964 			       int startnum, int endnum,
965 			       struct extent_position *epos)
966 {
967 	int start = 0, i;
968 	struct kernel_lb_addr tmploc;
969 	uint32_t tmplen;
970 
971 	if (startnum > endnum) {
972 		for (i = 0; i < (startnum - endnum); i++)
973 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
974 					laarr[i].extLength);
975 	} else if (startnum < endnum) {
976 		for (i = 0; i < (endnum - startnum); i++) {
977 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
978 					laarr[i].extLength);
979 			udf_next_aext(inode, epos, &laarr[i].extLocation,
980 				      &laarr[i].extLength, 1);
981 			start++;
982 		}
983 	}
984 
985 	for (i = start; i < endnum; i++) {
986 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
987 		udf_write_aext(inode, epos, &laarr[i].extLocation,
988 			       laarr[i].extLength, 1);
989 	}
990 }
991 
992 struct buffer_head *udf_bread(struct inode *inode, int block,
993 			      int create, int *err)
994 {
995 	struct buffer_head *bh = NULL;
996 
997 	bh = udf_getblk(inode, block, create, err);
998 	if (!bh)
999 		return NULL;
1000 
1001 	if (buffer_uptodate(bh))
1002 		return bh;
1003 
1004 	ll_rw_block(READ, 1, &bh);
1005 
1006 	wait_on_buffer(bh);
1007 	if (buffer_uptodate(bh))
1008 		return bh;
1009 
1010 	brelse(bh);
1011 	*err = -EIO;
1012 	return NULL;
1013 }
1014 
1015 void udf_truncate(struct inode *inode)
1016 {
1017 	int offset;
1018 	int err;
1019 	struct udf_inode_info *iinfo;
1020 
1021 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1022 	      S_ISLNK(inode->i_mode)))
1023 		return;
1024 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1025 		return;
1026 
1027 	lock_kernel();
1028 	iinfo = UDF_I(inode);
1029 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1030 		if (inode->i_sb->s_blocksize <
1031 				(udf_file_entry_alloc_offset(inode) +
1032 				 inode->i_size)) {
1033 			udf_expand_file_adinicb(inode, inode->i_size, &err);
1034 			if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1035 				inode->i_size = iinfo->i_lenAlloc;
1036 				unlock_kernel();
1037 				return;
1038 			} else
1039 				udf_truncate_extents(inode);
1040 		} else {
1041 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1042 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1043 				0x00, inode->i_sb->s_blocksize -
1044 				offset - udf_file_entry_alloc_offset(inode));
1045 			iinfo->i_lenAlloc = inode->i_size;
1046 		}
1047 	} else {
1048 		block_truncate_page(inode->i_mapping, inode->i_size,
1049 				    udf_get_block);
1050 		udf_truncate_extents(inode);
1051 	}
1052 
1053 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1054 	if (IS_SYNC(inode))
1055 		udf_sync_inode(inode);
1056 	else
1057 		mark_inode_dirty(inode);
1058 	unlock_kernel();
1059 }
1060 
1061 static void __udf_read_inode(struct inode *inode)
1062 {
1063 	struct buffer_head *bh = NULL;
1064 	struct fileEntry *fe;
1065 	uint16_t ident;
1066 	struct udf_inode_info *iinfo = UDF_I(inode);
1067 
1068 	/*
1069 	 * Set defaults, but the inode is still incomplete!
1070 	 * Note: get_new_inode() sets the following on a new inode:
1071 	 *      i_sb = sb
1072 	 *      i_no = ino
1073 	 *      i_flags = sb->s_flags
1074 	 *      i_state = 0
1075 	 * clean_inode(): zero fills and sets
1076 	 *      i_count = 1
1077 	 *      i_nlink = 1
1078 	 *      i_op = NULL;
1079 	 */
1080 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1081 	if (!bh) {
1082 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1083 		       inode->i_ino);
1084 		make_bad_inode(inode);
1085 		return;
1086 	}
1087 
1088 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1089 	    ident != TAG_IDENT_USE) {
1090 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1091 				"failed ident=%d\n", inode->i_ino, ident);
1092 		brelse(bh);
1093 		make_bad_inode(inode);
1094 		return;
1095 	}
1096 
1097 	fe = (struct fileEntry *)bh->b_data;
1098 
1099 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1100 		struct buffer_head *ibh;
1101 
1102 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1103 					&ident);
1104 		if (ident == TAG_IDENT_IE && ibh) {
1105 			struct buffer_head *nbh = NULL;
1106 			struct kernel_lb_addr loc;
1107 			struct indirectEntry *ie;
1108 
1109 			ie = (struct indirectEntry *)ibh->b_data;
1110 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1111 
1112 			if (ie->indirectICB.extLength &&
1113 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1114 							&ident))) {
1115 				if (ident == TAG_IDENT_FE ||
1116 					ident == TAG_IDENT_EFE) {
1117 					memcpy(&iinfo->i_location,
1118 						&loc,
1119 						sizeof(struct kernel_lb_addr));
1120 					brelse(bh);
1121 					brelse(ibh);
1122 					brelse(nbh);
1123 					__udf_read_inode(inode);
1124 					return;
1125 				}
1126 				brelse(nbh);
1127 			}
1128 		}
1129 		brelse(ibh);
1130 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1131 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1132 		       le16_to_cpu(fe->icbTag.strategyType));
1133 		brelse(bh);
1134 		make_bad_inode(inode);
1135 		return;
1136 	}
1137 	udf_fill_inode(inode, bh);
1138 
1139 	brelse(bh);
1140 }
1141 
1142 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1143 {
1144 	struct fileEntry *fe;
1145 	struct extendedFileEntry *efe;
1146 	int offset;
1147 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1148 	struct udf_inode_info *iinfo = UDF_I(inode);
1149 
1150 	fe = (struct fileEntry *)bh->b_data;
1151 	efe = (struct extendedFileEntry *)bh->b_data;
1152 
1153 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1154 		iinfo->i_strat4096 = 0;
1155 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1156 		iinfo->i_strat4096 = 1;
1157 
1158 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1159 							ICBTAG_FLAG_AD_MASK;
1160 	iinfo->i_unique = 0;
1161 	iinfo->i_lenEAttr = 0;
1162 	iinfo->i_lenExtents = 0;
1163 	iinfo->i_lenAlloc = 0;
1164 	iinfo->i_next_alloc_block = 0;
1165 	iinfo->i_next_alloc_goal = 0;
1166 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1167 		iinfo->i_efe = 1;
1168 		iinfo->i_use = 0;
1169 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1170 					sizeof(struct extendedFileEntry))) {
1171 			make_bad_inode(inode);
1172 			return;
1173 		}
1174 		memcpy(iinfo->i_ext.i_data,
1175 		       bh->b_data + sizeof(struct extendedFileEntry),
1176 		       inode->i_sb->s_blocksize -
1177 					sizeof(struct extendedFileEntry));
1178 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1179 		iinfo->i_efe = 0;
1180 		iinfo->i_use = 0;
1181 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1182 						sizeof(struct fileEntry))) {
1183 			make_bad_inode(inode);
1184 			return;
1185 		}
1186 		memcpy(iinfo->i_ext.i_data,
1187 		       bh->b_data + sizeof(struct fileEntry),
1188 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1189 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1190 		iinfo->i_efe = 0;
1191 		iinfo->i_use = 1;
1192 		iinfo->i_lenAlloc = le32_to_cpu(
1193 				((struct unallocSpaceEntry *)bh->b_data)->
1194 				 lengthAllocDescs);
1195 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1196 					sizeof(struct unallocSpaceEntry))) {
1197 			make_bad_inode(inode);
1198 			return;
1199 		}
1200 		memcpy(iinfo->i_ext.i_data,
1201 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1202 		       inode->i_sb->s_blocksize -
1203 					sizeof(struct unallocSpaceEntry));
1204 		return;
1205 	}
1206 
1207 	inode->i_uid = le32_to_cpu(fe->uid);
1208 	if (inode->i_uid == -1 ||
1209 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1210 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1211 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1212 
1213 	inode->i_gid = le32_to_cpu(fe->gid);
1214 	if (inode->i_gid == -1 ||
1215 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1216 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1217 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1218 
1219 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1220 	if (!inode->i_nlink)
1221 		inode->i_nlink = 1;
1222 
1223 	inode->i_size = le64_to_cpu(fe->informationLength);
1224 	iinfo->i_lenExtents = inode->i_size;
1225 
1226 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1227 			sbi->s_fmode != UDF_INVALID_MODE)
1228 		inode->i_mode = sbi->s_fmode;
1229 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1230 			sbi->s_dmode != UDF_INVALID_MODE)
1231 		inode->i_mode = sbi->s_dmode;
1232 	else
1233 		inode->i_mode = udf_convert_permissions(fe);
1234 	inode->i_mode &= ~sbi->s_umask;
1235 
1236 	if (iinfo->i_efe == 0) {
1237 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1238 			(inode->i_sb->s_blocksize_bits - 9);
1239 
1240 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1241 			inode->i_atime = sbi->s_record_time;
1242 
1243 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1244 					    fe->modificationTime))
1245 			inode->i_mtime = sbi->s_record_time;
1246 
1247 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1248 			inode->i_ctime = sbi->s_record_time;
1249 
1250 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1251 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1252 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1253 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1254 	} else {
1255 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1256 		    (inode->i_sb->s_blocksize_bits - 9);
1257 
1258 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1259 			inode->i_atime = sbi->s_record_time;
1260 
1261 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1262 					    efe->modificationTime))
1263 			inode->i_mtime = sbi->s_record_time;
1264 
1265 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1266 			iinfo->i_crtime = sbi->s_record_time;
1267 
1268 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1269 			inode->i_ctime = sbi->s_record_time;
1270 
1271 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1272 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1273 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1274 		offset = sizeof(struct extendedFileEntry) +
1275 							iinfo->i_lenEAttr;
1276 	}
1277 
1278 	switch (fe->icbTag.fileType) {
1279 	case ICBTAG_FILE_TYPE_DIRECTORY:
1280 		inode->i_op = &udf_dir_inode_operations;
1281 		inode->i_fop = &udf_dir_operations;
1282 		inode->i_mode |= S_IFDIR;
1283 		inc_nlink(inode);
1284 		break;
1285 	case ICBTAG_FILE_TYPE_REALTIME:
1286 	case ICBTAG_FILE_TYPE_REGULAR:
1287 	case ICBTAG_FILE_TYPE_UNDEF:
1288 	case ICBTAG_FILE_TYPE_VAT20:
1289 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1290 			inode->i_data.a_ops = &udf_adinicb_aops;
1291 		else
1292 			inode->i_data.a_ops = &udf_aops;
1293 		inode->i_op = &udf_file_inode_operations;
1294 		inode->i_fop = &udf_file_operations;
1295 		inode->i_mode |= S_IFREG;
1296 		break;
1297 	case ICBTAG_FILE_TYPE_BLOCK:
1298 		inode->i_mode |= S_IFBLK;
1299 		break;
1300 	case ICBTAG_FILE_TYPE_CHAR:
1301 		inode->i_mode |= S_IFCHR;
1302 		break;
1303 	case ICBTAG_FILE_TYPE_FIFO:
1304 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1305 		break;
1306 	case ICBTAG_FILE_TYPE_SOCKET:
1307 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1308 		break;
1309 	case ICBTAG_FILE_TYPE_SYMLINK:
1310 		inode->i_data.a_ops = &udf_symlink_aops;
1311 		inode->i_op = &page_symlink_inode_operations;
1312 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1313 		break;
1314 	case ICBTAG_FILE_TYPE_MAIN:
1315 		udf_debug("METADATA FILE-----\n");
1316 		break;
1317 	case ICBTAG_FILE_TYPE_MIRROR:
1318 		udf_debug("METADATA MIRROR FILE-----\n");
1319 		break;
1320 	case ICBTAG_FILE_TYPE_BITMAP:
1321 		udf_debug("METADATA BITMAP FILE-----\n");
1322 		break;
1323 	default:
1324 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1325 				"file type=%d\n", inode->i_ino,
1326 				fe->icbTag.fileType);
1327 		make_bad_inode(inode);
1328 		return;
1329 	}
1330 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1331 		struct deviceSpec *dsea =
1332 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1333 		if (dsea) {
1334 			init_special_inode(inode, inode->i_mode,
1335 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1336 				      le32_to_cpu(dsea->minorDeviceIdent)));
1337 			/* Developer ID ??? */
1338 		} else
1339 			make_bad_inode(inode);
1340 	}
1341 }
1342 
1343 static int udf_alloc_i_data(struct inode *inode, size_t size)
1344 {
1345 	struct udf_inode_info *iinfo = UDF_I(inode);
1346 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1347 
1348 	if (!iinfo->i_ext.i_data) {
1349 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1350 				"no free memory\n", inode->i_ino);
1351 		return -ENOMEM;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static mode_t udf_convert_permissions(struct fileEntry *fe)
1358 {
1359 	mode_t mode;
1360 	uint32_t permissions;
1361 	uint32_t flags;
1362 
1363 	permissions = le32_to_cpu(fe->permissions);
1364 	flags = le16_to_cpu(fe->icbTag.flags);
1365 
1366 	mode =	((permissions) & S_IRWXO) |
1367 		((permissions >> 2) & S_IRWXG) |
1368 		((permissions >> 4) & S_IRWXU) |
1369 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1370 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1371 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1372 
1373 	return mode;
1374 }
1375 
1376 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1377 {
1378 	int ret;
1379 
1380 	lock_kernel();
1381 	ret = udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1382 	unlock_kernel();
1383 
1384 	return ret;
1385 }
1386 
1387 int udf_sync_inode(struct inode *inode)
1388 {
1389 	return udf_update_inode(inode, 1);
1390 }
1391 
1392 static int udf_update_inode(struct inode *inode, int do_sync)
1393 {
1394 	struct buffer_head *bh = NULL;
1395 	struct fileEntry *fe;
1396 	struct extendedFileEntry *efe;
1397 	uint32_t udfperms;
1398 	uint16_t icbflags;
1399 	uint16_t crclen;
1400 	int err = 0;
1401 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1402 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1403 	struct udf_inode_info *iinfo = UDF_I(inode);
1404 
1405 	bh = udf_tread(inode->i_sb,
1406 			udf_get_lb_pblock(inode->i_sb,
1407 					  &iinfo->i_location, 0));
1408 	if (!bh) {
1409 		udf_debug("bread failure\n");
1410 		return -EIO;
1411 	}
1412 
1413 	memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1414 
1415 	fe = (struct fileEntry *)bh->b_data;
1416 	efe = (struct extendedFileEntry *)bh->b_data;
1417 
1418 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1419 		struct unallocSpaceEntry *use =
1420 			(struct unallocSpaceEntry *)bh->b_data;
1421 
1422 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1423 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1424 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1425 					sizeof(struct unallocSpaceEntry));
1426 		crclen = sizeof(struct unallocSpaceEntry) +
1427 				iinfo->i_lenAlloc - sizeof(struct tag);
1428 		use->descTag.tagLocation = cpu_to_le32(
1429 						iinfo->i_location.
1430 							logicalBlockNum);
1431 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1432 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1433 							   sizeof(struct tag),
1434 							   crclen));
1435 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1436 
1437 		mark_buffer_dirty(bh);
1438 		brelse(bh);
1439 		return err;
1440 	}
1441 
1442 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1443 		fe->uid = cpu_to_le32(-1);
1444 	else
1445 		fe->uid = cpu_to_le32(inode->i_uid);
1446 
1447 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1448 		fe->gid = cpu_to_le32(-1);
1449 	else
1450 		fe->gid = cpu_to_le32(inode->i_gid);
1451 
1452 	udfperms = ((inode->i_mode & S_IRWXO)) |
1453 		   ((inode->i_mode & S_IRWXG) << 2) |
1454 		   ((inode->i_mode & S_IRWXU) << 4);
1455 
1456 	udfperms |= (le32_to_cpu(fe->permissions) &
1457 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1458 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1459 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1460 	fe->permissions = cpu_to_le32(udfperms);
1461 
1462 	if (S_ISDIR(inode->i_mode))
1463 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1464 	else
1465 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1466 
1467 	fe->informationLength = cpu_to_le64(inode->i_size);
1468 
1469 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1470 		struct regid *eid;
1471 		struct deviceSpec *dsea =
1472 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1473 		if (!dsea) {
1474 			dsea = (struct deviceSpec *)
1475 				udf_add_extendedattr(inode,
1476 						     sizeof(struct deviceSpec) +
1477 						     sizeof(struct regid), 12, 0x3);
1478 			dsea->attrType = cpu_to_le32(12);
1479 			dsea->attrSubtype = 1;
1480 			dsea->attrLength = cpu_to_le32(
1481 						sizeof(struct deviceSpec) +
1482 						sizeof(struct regid));
1483 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1484 		}
1485 		eid = (struct regid *)dsea->impUse;
1486 		memset(eid, 0, sizeof(struct regid));
1487 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1488 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1489 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1490 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1491 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1492 	}
1493 
1494 	if (iinfo->i_efe == 0) {
1495 		memcpy(bh->b_data + sizeof(struct fileEntry),
1496 		       iinfo->i_ext.i_data,
1497 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1498 		fe->logicalBlocksRecorded = cpu_to_le64(
1499 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1500 			(blocksize_bits - 9));
1501 
1502 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1503 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1504 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1505 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1506 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1507 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1508 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1509 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1510 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1511 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1512 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1513 		crclen = sizeof(struct fileEntry);
1514 	} else {
1515 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1516 		       iinfo->i_ext.i_data,
1517 		       inode->i_sb->s_blocksize -
1518 					sizeof(struct extendedFileEntry));
1519 		efe->objectSize = cpu_to_le64(inode->i_size);
1520 		efe->logicalBlocksRecorded = cpu_to_le64(
1521 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1522 			(blocksize_bits - 9));
1523 
1524 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1525 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1526 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1527 			iinfo->i_crtime = inode->i_atime;
1528 
1529 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1530 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1531 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1532 			iinfo->i_crtime = inode->i_mtime;
1533 
1534 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1535 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1536 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1537 			iinfo->i_crtime = inode->i_ctime;
1538 
1539 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1540 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1541 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1542 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1543 
1544 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1545 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1546 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1547 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1548 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1549 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1550 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1551 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1552 		crclen = sizeof(struct extendedFileEntry);
1553 	}
1554 	if (iinfo->i_strat4096) {
1555 		fe->icbTag.strategyType = cpu_to_le16(4096);
1556 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1557 		fe->icbTag.numEntries = cpu_to_le16(2);
1558 	} else {
1559 		fe->icbTag.strategyType = cpu_to_le16(4);
1560 		fe->icbTag.numEntries = cpu_to_le16(1);
1561 	}
1562 
1563 	if (S_ISDIR(inode->i_mode))
1564 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1565 	else if (S_ISREG(inode->i_mode))
1566 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1567 	else if (S_ISLNK(inode->i_mode))
1568 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1569 	else if (S_ISBLK(inode->i_mode))
1570 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1571 	else if (S_ISCHR(inode->i_mode))
1572 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1573 	else if (S_ISFIFO(inode->i_mode))
1574 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1575 	else if (S_ISSOCK(inode->i_mode))
1576 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1577 
1578 	icbflags =	iinfo->i_alloc_type |
1579 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1580 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1581 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1582 			(le16_to_cpu(fe->icbTag.flags) &
1583 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1584 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1585 
1586 	fe->icbTag.flags = cpu_to_le16(icbflags);
1587 	if (sbi->s_udfrev >= 0x0200)
1588 		fe->descTag.descVersion = cpu_to_le16(3);
1589 	else
1590 		fe->descTag.descVersion = cpu_to_le16(2);
1591 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1592 	fe->descTag.tagLocation = cpu_to_le32(
1593 					iinfo->i_location.logicalBlockNum);
1594 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
1595 								sizeof(struct tag);
1596 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1597 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1598 						  crclen));
1599 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1600 
1601 	/* write the data blocks */
1602 	mark_buffer_dirty(bh);
1603 	if (do_sync) {
1604 		sync_dirty_buffer(bh);
1605 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1606 			printk(KERN_WARNING "IO error syncing udf inode "
1607 				"[%s:%08lx]\n", inode->i_sb->s_id,
1608 				inode->i_ino);
1609 			err = -EIO;
1610 		}
1611 	}
1612 	brelse(bh);
1613 
1614 	return err;
1615 }
1616 
1617 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1618 {
1619 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1620 	struct inode *inode = iget_locked(sb, block);
1621 
1622 	if (!inode)
1623 		return NULL;
1624 
1625 	if (inode->i_state & I_NEW) {
1626 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1627 		__udf_read_inode(inode);
1628 		unlock_new_inode(inode);
1629 	}
1630 
1631 	if (is_bad_inode(inode))
1632 		goto out_iput;
1633 
1634 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1635 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1636 		udf_debug("block=%d, partition=%d out of range\n",
1637 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1638 		make_bad_inode(inode);
1639 		goto out_iput;
1640 	}
1641 
1642 	return inode;
1643 
1644  out_iput:
1645 	iput(inode);
1646 	return NULL;
1647 }
1648 
1649 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1650 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1651 {
1652 	int adsize;
1653 	struct short_ad *sad = NULL;
1654 	struct long_ad *lad = NULL;
1655 	struct allocExtDesc *aed;
1656 	int8_t etype;
1657 	uint8_t *ptr;
1658 	struct udf_inode_info *iinfo = UDF_I(inode);
1659 
1660 	if (!epos->bh)
1661 		ptr = iinfo->i_ext.i_data + epos->offset -
1662 			udf_file_entry_alloc_offset(inode) +
1663 			iinfo->i_lenEAttr;
1664 	else
1665 		ptr = epos->bh->b_data + epos->offset;
1666 
1667 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1668 		adsize = sizeof(struct short_ad);
1669 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1670 		adsize = sizeof(struct long_ad);
1671 	else
1672 		return -1;
1673 
1674 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1675 		unsigned char *sptr, *dptr;
1676 		struct buffer_head *nbh;
1677 		int err, loffset;
1678 		struct kernel_lb_addr obloc = epos->block;
1679 
1680 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1681 						obloc.partitionReferenceNum,
1682 						obloc.logicalBlockNum, &err);
1683 		if (!epos->block.logicalBlockNum)
1684 			return -1;
1685 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1686 								 &epos->block,
1687 								 0));
1688 		if (!nbh)
1689 			return -1;
1690 		lock_buffer(nbh);
1691 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1692 		set_buffer_uptodate(nbh);
1693 		unlock_buffer(nbh);
1694 		mark_buffer_dirty_inode(nbh, inode);
1695 
1696 		aed = (struct allocExtDesc *)(nbh->b_data);
1697 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1698 			aed->previousAllocExtLocation =
1699 					cpu_to_le32(obloc.logicalBlockNum);
1700 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1701 			loffset = epos->offset;
1702 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1703 			sptr = ptr - adsize;
1704 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1705 			memcpy(dptr, sptr, adsize);
1706 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1707 		} else {
1708 			loffset = epos->offset + adsize;
1709 			aed->lengthAllocDescs = cpu_to_le32(0);
1710 			sptr = ptr;
1711 			epos->offset = sizeof(struct allocExtDesc);
1712 
1713 			if (epos->bh) {
1714 				aed = (struct allocExtDesc *)epos->bh->b_data;
1715 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1716 			} else {
1717 				iinfo->i_lenAlloc += adsize;
1718 				mark_inode_dirty(inode);
1719 			}
1720 		}
1721 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1722 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1723 				    epos->block.logicalBlockNum, sizeof(struct tag));
1724 		else
1725 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1726 				    epos->block.logicalBlockNum, sizeof(struct tag));
1727 		switch (iinfo->i_alloc_type) {
1728 		case ICBTAG_FLAG_AD_SHORT:
1729 			sad = (struct short_ad *)sptr;
1730 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1731 						     inode->i_sb->s_blocksize);
1732 			sad->extPosition =
1733 				cpu_to_le32(epos->block.logicalBlockNum);
1734 			break;
1735 		case ICBTAG_FLAG_AD_LONG:
1736 			lad = (struct long_ad *)sptr;
1737 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1738 						     inode->i_sb->s_blocksize);
1739 			lad->extLocation = cpu_to_lelb(epos->block);
1740 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1741 			break;
1742 		}
1743 		if (epos->bh) {
1744 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1745 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1746 				udf_update_tag(epos->bh->b_data, loffset);
1747 			else
1748 				udf_update_tag(epos->bh->b_data,
1749 						sizeof(struct allocExtDesc));
1750 			mark_buffer_dirty_inode(epos->bh, inode);
1751 			brelse(epos->bh);
1752 		} else {
1753 			mark_inode_dirty(inode);
1754 		}
1755 		epos->bh = nbh;
1756 	}
1757 
1758 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1759 
1760 	if (!epos->bh) {
1761 		iinfo->i_lenAlloc += adsize;
1762 		mark_inode_dirty(inode);
1763 	} else {
1764 		aed = (struct allocExtDesc *)epos->bh->b_data;
1765 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1766 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1767 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1768 			udf_update_tag(epos->bh->b_data,
1769 					epos->offset + (inc ? 0 : adsize));
1770 		else
1771 			udf_update_tag(epos->bh->b_data,
1772 					sizeof(struct allocExtDesc));
1773 		mark_buffer_dirty_inode(epos->bh, inode);
1774 	}
1775 
1776 	return etype;
1777 }
1778 
1779 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1780 		      struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1781 {
1782 	int adsize;
1783 	uint8_t *ptr;
1784 	struct short_ad *sad;
1785 	struct long_ad *lad;
1786 	struct udf_inode_info *iinfo = UDF_I(inode);
1787 
1788 	if (!epos->bh)
1789 		ptr = iinfo->i_ext.i_data + epos->offset -
1790 			udf_file_entry_alloc_offset(inode) +
1791 			iinfo->i_lenEAttr;
1792 	else
1793 		ptr = epos->bh->b_data + epos->offset;
1794 
1795 	switch (iinfo->i_alloc_type) {
1796 	case ICBTAG_FLAG_AD_SHORT:
1797 		sad = (struct short_ad *)ptr;
1798 		sad->extLength = cpu_to_le32(elen);
1799 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1800 		adsize = sizeof(struct short_ad);
1801 		break;
1802 	case ICBTAG_FLAG_AD_LONG:
1803 		lad = (struct long_ad *)ptr;
1804 		lad->extLength = cpu_to_le32(elen);
1805 		lad->extLocation = cpu_to_lelb(*eloc);
1806 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1807 		adsize = sizeof(struct long_ad);
1808 		break;
1809 	default:
1810 		return -1;
1811 	}
1812 
1813 	if (epos->bh) {
1814 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1815 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1816 			struct allocExtDesc *aed =
1817 				(struct allocExtDesc *)epos->bh->b_data;
1818 			udf_update_tag(epos->bh->b_data,
1819 				       le32_to_cpu(aed->lengthAllocDescs) +
1820 				       sizeof(struct allocExtDesc));
1821 		}
1822 		mark_buffer_dirty_inode(epos->bh, inode);
1823 	} else {
1824 		mark_inode_dirty(inode);
1825 	}
1826 
1827 	if (inc)
1828 		epos->offset += adsize;
1829 
1830 	return (elen >> 30);
1831 }
1832 
1833 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1834 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1835 {
1836 	int8_t etype;
1837 
1838 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1839 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1840 		int block;
1841 		epos->block = *eloc;
1842 		epos->offset = sizeof(struct allocExtDesc);
1843 		brelse(epos->bh);
1844 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1845 		epos->bh = udf_tread(inode->i_sb, block);
1846 		if (!epos->bh) {
1847 			udf_debug("reading block %d failed!\n", block);
1848 			return -1;
1849 		}
1850 	}
1851 
1852 	return etype;
1853 }
1854 
1855 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1856 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1857 {
1858 	int alen;
1859 	int8_t etype;
1860 	uint8_t *ptr;
1861 	struct short_ad *sad;
1862 	struct long_ad *lad;
1863 	struct udf_inode_info *iinfo = UDF_I(inode);
1864 
1865 	if (!epos->bh) {
1866 		if (!epos->offset)
1867 			epos->offset = udf_file_entry_alloc_offset(inode);
1868 		ptr = iinfo->i_ext.i_data + epos->offset -
1869 			udf_file_entry_alloc_offset(inode) +
1870 			iinfo->i_lenEAttr;
1871 		alen = udf_file_entry_alloc_offset(inode) +
1872 							iinfo->i_lenAlloc;
1873 	} else {
1874 		if (!epos->offset)
1875 			epos->offset = sizeof(struct allocExtDesc);
1876 		ptr = epos->bh->b_data + epos->offset;
1877 		alen = sizeof(struct allocExtDesc) +
1878 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1879 							lengthAllocDescs);
1880 	}
1881 
1882 	switch (iinfo->i_alloc_type) {
1883 	case ICBTAG_FLAG_AD_SHORT:
1884 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1885 		if (!sad)
1886 			return -1;
1887 		etype = le32_to_cpu(sad->extLength) >> 30;
1888 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1889 		eloc->partitionReferenceNum =
1890 				iinfo->i_location.partitionReferenceNum;
1891 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1892 		break;
1893 	case ICBTAG_FLAG_AD_LONG:
1894 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1895 		if (!lad)
1896 			return -1;
1897 		etype = le32_to_cpu(lad->extLength) >> 30;
1898 		*eloc = lelb_to_cpu(lad->extLocation);
1899 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1900 		break;
1901 	default:
1902 		udf_debug("alloc_type = %d unsupported\n",
1903 				iinfo->i_alloc_type);
1904 		return -1;
1905 	}
1906 
1907 	return etype;
1908 }
1909 
1910 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1911 			      struct kernel_lb_addr neloc, uint32_t nelen)
1912 {
1913 	struct kernel_lb_addr oeloc;
1914 	uint32_t oelen;
1915 	int8_t etype;
1916 
1917 	if (epos.bh)
1918 		get_bh(epos.bh);
1919 
1920 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1921 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
1922 		neloc = oeloc;
1923 		nelen = (etype << 30) | oelen;
1924 	}
1925 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
1926 	brelse(epos.bh);
1927 
1928 	return (nelen >> 30);
1929 }
1930 
1931 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1932 		       struct kernel_lb_addr eloc, uint32_t elen)
1933 {
1934 	struct extent_position oepos;
1935 	int adsize;
1936 	int8_t etype;
1937 	struct allocExtDesc *aed;
1938 	struct udf_inode_info *iinfo;
1939 
1940 	if (epos.bh) {
1941 		get_bh(epos.bh);
1942 		get_bh(epos.bh);
1943 	}
1944 
1945 	iinfo = UDF_I(inode);
1946 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1947 		adsize = sizeof(struct short_ad);
1948 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1949 		adsize = sizeof(struct long_ad);
1950 	else
1951 		adsize = 0;
1952 
1953 	oepos = epos;
1954 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1955 		return -1;
1956 
1957 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1958 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1959 		if (oepos.bh != epos.bh) {
1960 			oepos.block = epos.block;
1961 			brelse(oepos.bh);
1962 			get_bh(epos.bh);
1963 			oepos.bh = epos.bh;
1964 			oepos.offset = epos.offset - adsize;
1965 		}
1966 	}
1967 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1968 	elen = 0;
1969 
1970 	if (epos.bh != oepos.bh) {
1971 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1972 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1973 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1974 		if (!oepos.bh) {
1975 			iinfo->i_lenAlloc -= (adsize * 2);
1976 			mark_inode_dirty(inode);
1977 		} else {
1978 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1979 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1980 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1981 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1982 				udf_update_tag(oepos.bh->b_data,
1983 						oepos.offset - (2 * adsize));
1984 			else
1985 				udf_update_tag(oepos.bh->b_data,
1986 						sizeof(struct allocExtDesc));
1987 			mark_buffer_dirty_inode(oepos.bh, inode);
1988 		}
1989 	} else {
1990 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1991 		if (!oepos.bh) {
1992 			iinfo->i_lenAlloc -= adsize;
1993 			mark_inode_dirty(inode);
1994 		} else {
1995 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1996 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1997 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1998 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1999 				udf_update_tag(oepos.bh->b_data,
2000 						epos.offset - adsize);
2001 			else
2002 				udf_update_tag(oepos.bh->b_data,
2003 						sizeof(struct allocExtDesc));
2004 			mark_buffer_dirty_inode(oepos.bh, inode);
2005 		}
2006 	}
2007 
2008 	brelse(epos.bh);
2009 	brelse(oepos.bh);
2010 
2011 	return (elen >> 30);
2012 }
2013 
2014 int8_t inode_bmap(struct inode *inode, sector_t block,
2015 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2016 		  uint32_t *elen, sector_t *offset)
2017 {
2018 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2019 	loff_t lbcount = 0, bcount =
2020 	    (loff_t) block << blocksize_bits;
2021 	int8_t etype;
2022 	struct udf_inode_info *iinfo;
2023 
2024 	iinfo = UDF_I(inode);
2025 	pos->offset = 0;
2026 	pos->block = iinfo->i_location;
2027 	pos->bh = NULL;
2028 	*elen = 0;
2029 
2030 	do {
2031 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2032 		if (etype == -1) {
2033 			*offset = (bcount - lbcount) >> blocksize_bits;
2034 			iinfo->i_lenExtents = lbcount;
2035 			return -1;
2036 		}
2037 		lbcount += *elen;
2038 	} while (lbcount <= bcount);
2039 
2040 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2041 
2042 	return etype;
2043 }
2044 
2045 long udf_block_map(struct inode *inode, sector_t block)
2046 {
2047 	struct kernel_lb_addr eloc;
2048 	uint32_t elen;
2049 	sector_t offset;
2050 	struct extent_position epos = {};
2051 	int ret;
2052 
2053 	lock_kernel();
2054 
2055 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2056 						(EXT_RECORDED_ALLOCATED >> 30))
2057 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2058 	else
2059 		ret = 0;
2060 
2061 	unlock_kernel();
2062 	brelse(epos.bh);
2063 
2064 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2065 		return udf_fixed_to_variable(ret);
2066 	else
2067 		return ret;
2068 }
2069