xref: /openbmc/linux/fs/udf/inode.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 static umode_t udf_convert_permissions(struct fileEntry *);
49 static int udf_update_inode(struct inode *, int);
50 static int udf_sync_inode(struct inode *inode);
51 static int udf_alloc_i_data(struct inode *inode, size_t size);
52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53 static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 			      struct kernel_lb_addr, uint32_t);
55 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
56 			      struct kernel_long_ad *, int *);
57 static void udf_prealloc_extents(struct inode *, int, int,
58 				 struct kernel_long_ad *, int *);
59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 			       int, struct extent_position *);
62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
63 
64 static void __udf_clear_extent_cache(struct inode *inode)
65 {
66 	struct udf_inode_info *iinfo = UDF_I(inode);
67 
68 	if (iinfo->cached_extent.lstart != -1) {
69 		brelse(iinfo->cached_extent.epos.bh);
70 		iinfo->cached_extent.lstart = -1;
71 	}
72 }
73 
74 /* Invalidate extent cache */
75 static void udf_clear_extent_cache(struct inode *inode)
76 {
77 	struct udf_inode_info *iinfo = UDF_I(inode);
78 
79 	spin_lock(&iinfo->i_extent_cache_lock);
80 	__udf_clear_extent_cache(inode);
81 	spin_unlock(&iinfo->i_extent_cache_lock);
82 }
83 
84 /* Return contents of extent cache */
85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 				 loff_t *lbcount, struct extent_position *pos)
87 {
88 	struct udf_inode_info *iinfo = UDF_I(inode);
89 	int ret = 0;
90 
91 	spin_lock(&iinfo->i_extent_cache_lock);
92 	if ((iinfo->cached_extent.lstart <= bcount) &&
93 	    (iinfo->cached_extent.lstart != -1)) {
94 		/* Cache hit */
95 		*lbcount = iinfo->cached_extent.lstart;
96 		memcpy(pos, &iinfo->cached_extent.epos,
97 		       sizeof(struct extent_position));
98 		if (pos->bh)
99 			get_bh(pos->bh);
100 		ret = 1;
101 	}
102 	spin_unlock(&iinfo->i_extent_cache_lock);
103 	return ret;
104 }
105 
106 /* Add extent to extent cache */
107 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 				    struct extent_position *pos)
109 {
110 	struct udf_inode_info *iinfo = UDF_I(inode);
111 
112 	spin_lock(&iinfo->i_extent_cache_lock);
113 	/* Invalidate previously cached extent */
114 	__udf_clear_extent_cache(inode);
115 	if (pos->bh)
116 		get_bh(pos->bh);
117 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 	iinfo->cached_extent.lstart = estart;
119 	switch (iinfo->i_alloc_type) {
120 	case ICBTAG_FLAG_AD_SHORT:
121 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 		break;
123 	case ICBTAG_FLAG_AD_LONG:
124 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 		break;
126 	}
127 	spin_unlock(&iinfo->i_extent_cache_lock);
128 }
129 
130 void udf_evict_inode(struct inode *inode)
131 {
132 	struct udf_inode_info *iinfo = UDF_I(inode);
133 	int want_delete = 0;
134 
135 	if (!inode->i_nlink && !is_bad_inode(inode)) {
136 		want_delete = 1;
137 		udf_setsize(inode, 0);
138 		udf_update_inode(inode, IS_SYNC(inode));
139 	}
140 	truncate_inode_pages_final(&inode->i_data);
141 	invalidate_inode_buffers(inode);
142 	clear_inode(inode);
143 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144 	    inode->i_size != iinfo->i_lenExtents) {
145 		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146 			 inode->i_ino, inode->i_mode,
147 			 (unsigned long long)inode->i_size,
148 			 (unsigned long long)iinfo->i_lenExtents);
149 	}
150 	kfree(iinfo->i_ext.i_data);
151 	iinfo->i_ext.i_data = NULL;
152 	udf_clear_extent_cache(inode);
153 	if (want_delete) {
154 		udf_free_inode(inode);
155 	}
156 }
157 
158 static void udf_write_failed(struct address_space *mapping, loff_t to)
159 {
160 	struct inode *inode = mapping->host;
161 	struct udf_inode_info *iinfo = UDF_I(inode);
162 	loff_t isize = inode->i_size;
163 
164 	if (to > isize) {
165 		truncate_pagecache(inode, isize);
166 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167 			down_write(&iinfo->i_data_sem);
168 			udf_clear_extent_cache(inode);
169 			udf_truncate_extents(inode);
170 			up_write(&iinfo->i_data_sem);
171 		}
172 	}
173 }
174 
175 static int udf_writepage(struct page *page, struct writeback_control *wbc)
176 {
177 	return block_write_full_page(page, udf_get_block, wbc);
178 }
179 
180 static int udf_writepages(struct address_space *mapping,
181 			struct writeback_control *wbc)
182 {
183 	return mpage_writepages(mapping, wbc, udf_get_block);
184 }
185 
186 static int udf_readpage(struct file *file, struct page *page)
187 {
188 	return mpage_readpage(page, udf_get_block);
189 }
190 
191 static int udf_readpages(struct file *file, struct address_space *mapping,
192 			struct list_head *pages, unsigned nr_pages)
193 {
194 	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195 }
196 
197 static int udf_write_begin(struct file *file, struct address_space *mapping,
198 			loff_t pos, unsigned len, unsigned flags,
199 			struct page **pagep, void **fsdata)
200 {
201 	int ret;
202 
203 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204 	if (unlikely(ret))
205 		udf_write_failed(mapping, pos + len);
206 	return ret;
207 }
208 
209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210 {
211 	struct file *file = iocb->ki_filp;
212 	struct address_space *mapping = file->f_mapping;
213 	struct inode *inode = mapping->host;
214 	size_t count = iov_iter_count(iter);
215 	ssize_t ret;
216 
217 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219 		udf_write_failed(mapping, iocb->ki_pos + count);
220 	return ret;
221 }
222 
223 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224 {
225 	return generic_block_bmap(mapping, block, udf_get_block);
226 }
227 
228 const struct address_space_operations udf_aops = {
229 	.readpage	= udf_readpage,
230 	.readpages	= udf_readpages,
231 	.writepage	= udf_writepage,
232 	.writepages	= udf_writepages,
233 	.write_begin	= udf_write_begin,
234 	.write_end	= generic_write_end,
235 	.direct_IO	= udf_direct_IO,
236 	.bmap		= udf_bmap,
237 };
238 
239 /*
240  * Expand file stored in ICB to a normal one-block-file
241  *
242  * This function requires i_data_sem for writing and releases it.
243  * This function requires i_mutex held
244  */
245 int udf_expand_file_adinicb(struct inode *inode)
246 {
247 	struct page *page;
248 	char *kaddr;
249 	struct udf_inode_info *iinfo = UDF_I(inode);
250 	int err;
251 	struct writeback_control udf_wbc = {
252 		.sync_mode = WB_SYNC_NONE,
253 		.nr_to_write = 1,
254 	};
255 
256 	WARN_ON_ONCE(!inode_is_locked(inode));
257 	if (!iinfo->i_lenAlloc) {
258 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260 		else
261 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262 		/* from now on we have normal address_space methods */
263 		inode->i_data.a_ops = &udf_aops;
264 		up_write(&iinfo->i_data_sem);
265 		mark_inode_dirty(inode);
266 		return 0;
267 	}
268 	/*
269 	 * Release i_data_sem so that we can lock a page - page lock ranks
270 	 * above i_data_sem. i_mutex still protects us against file changes.
271 	 */
272 	up_write(&iinfo->i_data_sem);
273 
274 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275 	if (!page)
276 		return -ENOMEM;
277 
278 	if (!PageUptodate(page)) {
279 		kaddr = kmap_atomic(page);
280 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
281 		       PAGE_SIZE - iinfo->i_lenAlloc);
282 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283 			iinfo->i_lenAlloc);
284 		flush_dcache_page(page);
285 		SetPageUptodate(page);
286 		kunmap_atomic(kaddr);
287 	}
288 	down_write(&iinfo->i_data_sem);
289 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290 	       iinfo->i_lenAlloc);
291 	iinfo->i_lenAlloc = 0;
292 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294 	else
295 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296 	/* from now on we have normal address_space methods */
297 	inode->i_data.a_ops = &udf_aops;
298 	up_write(&iinfo->i_data_sem);
299 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300 	if (err) {
301 		/* Restore everything back so that we don't lose data... */
302 		lock_page(page);
303 		down_write(&iinfo->i_data_sem);
304 		kaddr = kmap_atomic(page);
305 		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306 		       inode->i_size);
307 		kunmap_atomic(kaddr);
308 		unlock_page(page);
309 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 		inode->i_data.a_ops = &udf_adinicb_aops;
311 		up_write(&iinfo->i_data_sem);
312 	}
313 	put_page(page);
314 	mark_inode_dirty(inode);
315 
316 	return err;
317 }
318 
319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320 					    udf_pblk_t *block, int *err)
321 {
322 	udf_pblk_t newblock;
323 	struct buffer_head *dbh = NULL;
324 	struct kernel_lb_addr eloc;
325 	uint8_t alloctype;
326 	struct extent_position epos;
327 
328 	struct udf_fileident_bh sfibh, dfibh;
329 	loff_t f_pos = udf_ext0_offset(inode);
330 	int size = udf_ext0_offset(inode) + inode->i_size;
331 	struct fileIdentDesc cfi, *sfi, *dfi;
332 	struct udf_inode_info *iinfo = UDF_I(inode);
333 
334 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335 		alloctype = ICBTAG_FLAG_AD_SHORT;
336 	else
337 		alloctype = ICBTAG_FLAG_AD_LONG;
338 
339 	if (!inode->i_size) {
340 		iinfo->i_alloc_type = alloctype;
341 		mark_inode_dirty(inode);
342 		return NULL;
343 	}
344 
345 	/* alloc block, and copy data to it */
346 	*block = udf_new_block(inode->i_sb, inode,
347 			       iinfo->i_location.partitionReferenceNum,
348 			       iinfo->i_location.logicalBlockNum, err);
349 	if (!(*block))
350 		return NULL;
351 	newblock = udf_get_pblock(inode->i_sb, *block,
352 				  iinfo->i_location.partitionReferenceNum,
353 				0);
354 	if (!newblock)
355 		return NULL;
356 	dbh = udf_tgetblk(inode->i_sb, newblock);
357 	if (!dbh)
358 		return NULL;
359 	lock_buffer(dbh);
360 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361 	set_buffer_uptodate(dbh);
362 	unlock_buffer(dbh);
363 	mark_buffer_dirty_inode(dbh, inode);
364 
365 	sfibh.soffset = sfibh.eoffset =
366 			f_pos & (inode->i_sb->s_blocksize - 1);
367 	sfibh.sbh = sfibh.ebh = NULL;
368 	dfibh.soffset = dfibh.eoffset = 0;
369 	dfibh.sbh = dfibh.ebh = dbh;
370 	while (f_pos < size) {
371 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373 					 NULL, NULL, NULL);
374 		if (!sfi) {
375 			brelse(dbh);
376 			return NULL;
377 		}
378 		iinfo->i_alloc_type = alloctype;
379 		sfi->descTag.tagLocation = cpu_to_le32(*block);
380 		dfibh.soffset = dfibh.eoffset;
381 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384 				 sfi->fileIdent +
385 					le16_to_cpu(sfi->lengthOfImpUse))) {
386 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 			brelse(dbh);
388 			return NULL;
389 		}
390 	}
391 	mark_buffer_dirty_inode(dbh, inode);
392 
393 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394 		iinfo->i_lenAlloc);
395 	iinfo->i_lenAlloc = 0;
396 	eloc.logicalBlockNum = *block;
397 	eloc.partitionReferenceNum =
398 				iinfo->i_location.partitionReferenceNum;
399 	iinfo->i_lenExtents = inode->i_size;
400 	epos.bh = NULL;
401 	epos.block = iinfo->i_location;
402 	epos.offset = udf_file_entry_alloc_offset(inode);
403 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404 	/* UniqueID stuff */
405 
406 	brelse(epos.bh);
407 	mark_inode_dirty(inode);
408 	return dbh;
409 }
410 
411 static int udf_get_block(struct inode *inode, sector_t block,
412 			 struct buffer_head *bh_result, int create)
413 {
414 	int err, new;
415 	sector_t phys = 0;
416 	struct udf_inode_info *iinfo;
417 
418 	if (!create) {
419 		phys = udf_block_map(inode, block);
420 		if (phys)
421 			map_bh(bh_result, inode->i_sb, phys);
422 		return 0;
423 	}
424 
425 	err = -EIO;
426 	new = 0;
427 	iinfo = UDF_I(inode);
428 
429 	down_write(&iinfo->i_data_sem);
430 	if (block == iinfo->i_next_alloc_block + 1) {
431 		iinfo->i_next_alloc_block++;
432 		iinfo->i_next_alloc_goal++;
433 	}
434 
435 	udf_clear_extent_cache(inode);
436 	phys = inode_getblk(inode, block, &err, &new);
437 	if (!phys)
438 		goto abort;
439 
440 	if (new)
441 		set_buffer_new(bh_result);
442 	map_bh(bh_result, inode->i_sb, phys);
443 
444 abort:
445 	up_write(&iinfo->i_data_sem);
446 	return err;
447 }
448 
449 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450 				      int create, int *err)
451 {
452 	struct buffer_head *bh;
453 	struct buffer_head dummy;
454 
455 	dummy.b_state = 0;
456 	dummy.b_blocknr = -1000;
457 	*err = udf_get_block(inode, block, &dummy, create);
458 	if (!*err && buffer_mapped(&dummy)) {
459 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460 		if (buffer_new(&dummy)) {
461 			lock_buffer(bh);
462 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463 			set_buffer_uptodate(bh);
464 			unlock_buffer(bh);
465 			mark_buffer_dirty_inode(bh, inode);
466 		}
467 		return bh;
468 	}
469 
470 	return NULL;
471 }
472 
473 /* Extend the file with new blocks totaling 'new_block_bytes',
474  * return the number of extents added
475  */
476 static int udf_do_extend_file(struct inode *inode,
477 			      struct extent_position *last_pos,
478 			      struct kernel_long_ad *last_ext,
479 			      loff_t new_block_bytes)
480 {
481 	uint32_t add;
482 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
483 	struct super_block *sb = inode->i_sb;
484 	struct kernel_lb_addr prealloc_loc = {};
485 	uint32_t prealloc_len = 0;
486 	struct udf_inode_info *iinfo;
487 	int err;
488 
489 	/* The previous extent is fake and we should not extend by anything
490 	 * - there's nothing to do... */
491 	if (!new_block_bytes && fake)
492 		return 0;
493 
494 	iinfo = UDF_I(inode);
495 	/* Round the last extent up to a multiple of block size */
496 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
497 		last_ext->extLength =
498 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
499 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
500 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
501 		iinfo->i_lenExtents =
502 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
503 			~(sb->s_blocksize - 1);
504 	}
505 
506 	/* Last extent are just preallocated blocks? */
507 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
508 						EXT_NOT_RECORDED_ALLOCATED) {
509 		/* Save the extent so that we can reattach it to the end */
510 		prealloc_loc = last_ext->extLocation;
511 		prealloc_len = last_ext->extLength;
512 		/* Mark the extent as a hole */
513 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
514 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
515 		last_ext->extLocation.logicalBlockNum = 0;
516 		last_ext->extLocation.partitionReferenceNum = 0;
517 	}
518 
519 	/* Can we merge with the previous extent? */
520 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
521 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
522 		add = (1 << 30) - sb->s_blocksize -
523 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
524 		if (add > new_block_bytes)
525 			add = new_block_bytes;
526 		new_block_bytes -= add;
527 		last_ext->extLength += add;
528 	}
529 
530 	if (fake) {
531 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
532 			     last_ext->extLength, 1);
533 		count++;
534 	} else {
535 		struct kernel_lb_addr tmploc;
536 		uint32_t tmplen;
537 
538 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
539 				last_ext->extLength, 1);
540 		/*
541 		 * We've rewritten the last extent but there may be empty
542 		 * indirect extent after it - enter it.
543 		 */
544 		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
545 	}
546 
547 	/* Managed to do everything necessary? */
548 	if (!new_block_bytes)
549 		goto out;
550 
551 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
552 	last_ext->extLocation.logicalBlockNum = 0;
553 	last_ext->extLocation.partitionReferenceNum = 0;
554 	add = (1 << 30) - sb->s_blocksize;
555 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
556 
557 	/* Create enough extents to cover the whole hole */
558 	while (new_block_bytes > add) {
559 		new_block_bytes -= add;
560 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 				   last_ext->extLength, 1);
562 		if (err)
563 			return err;
564 		count++;
565 	}
566 	if (new_block_bytes) {
567 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 			new_block_bytes;
569 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 				   last_ext->extLength, 1);
571 		if (err)
572 			return err;
573 		count++;
574 	}
575 
576 out:
577 	/* Do we have some preallocated blocks saved? */
578 	if (prealloc_len) {
579 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
580 				   prealloc_len, 1);
581 		if (err)
582 			return err;
583 		last_ext->extLocation = prealloc_loc;
584 		last_ext->extLength = prealloc_len;
585 		count++;
586 	}
587 
588 	/* last_pos should point to the last written extent... */
589 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 		last_pos->offset -= sizeof(struct short_ad);
591 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 		last_pos->offset -= sizeof(struct long_ad);
593 	else
594 		return -EIO;
595 
596 	return count;
597 }
598 
599 /* Extend the final block of the file to final_block_len bytes */
600 static void udf_do_extend_final_block(struct inode *inode,
601 				      struct extent_position *last_pos,
602 				      struct kernel_long_ad *last_ext,
603 				      uint32_t final_block_len)
604 {
605 	struct super_block *sb = inode->i_sb;
606 	uint32_t added_bytes;
607 
608 	added_bytes = final_block_len -
609 		      (last_ext->extLength & (sb->s_blocksize - 1));
610 	last_ext->extLength += added_bytes;
611 	UDF_I(inode)->i_lenExtents += added_bytes;
612 
613 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
614 			last_ext->extLength, 1);
615 }
616 
617 static int udf_extend_file(struct inode *inode, loff_t newsize)
618 {
619 
620 	struct extent_position epos;
621 	struct kernel_lb_addr eloc;
622 	uint32_t elen;
623 	int8_t etype;
624 	struct super_block *sb = inode->i_sb;
625 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
626 	unsigned long partial_final_block;
627 	int adsize;
628 	struct udf_inode_info *iinfo = UDF_I(inode);
629 	struct kernel_long_ad extent;
630 	int err = 0;
631 	int within_final_block;
632 
633 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
634 		adsize = sizeof(struct short_ad);
635 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
636 		adsize = sizeof(struct long_ad);
637 	else
638 		BUG();
639 
640 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
641 	within_final_block = (etype != -1);
642 
643 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
644 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
645 		/* File has no extents at all or has empty last
646 		 * indirect extent! Create a fake extent... */
647 		extent.extLocation.logicalBlockNum = 0;
648 		extent.extLocation.partitionReferenceNum = 0;
649 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
650 	} else {
651 		epos.offset -= adsize;
652 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
653 				      &extent.extLength, 0);
654 		extent.extLength |= etype << 30;
655 	}
656 
657 	partial_final_block = newsize & (sb->s_blocksize - 1);
658 
659 	/* File has extent covering the new size (could happen when extending
660 	 * inside a block)?
661 	 */
662 	if (within_final_block) {
663 		/* Extending file within the last file block */
664 		udf_do_extend_final_block(inode, &epos, &extent,
665 					  partial_final_block);
666 	} else {
667 		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
668 			     partial_final_block;
669 		err = udf_do_extend_file(inode, &epos, &extent, add);
670 	}
671 
672 	if (err < 0)
673 		goto out;
674 	err = 0;
675 	iinfo->i_lenExtents = newsize;
676 out:
677 	brelse(epos.bh);
678 	return err;
679 }
680 
681 static sector_t inode_getblk(struct inode *inode, sector_t block,
682 			     int *err, int *new)
683 {
684 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
685 	struct extent_position prev_epos, cur_epos, next_epos;
686 	int count = 0, startnum = 0, endnum = 0;
687 	uint32_t elen = 0, tmpelen;
688 	struct kernel_lb_addr eloc, tmpeloc;
689 	int c = 1;
690 	loff_t lbcount = 0, b_off = 0;
691 	udf_pblk_t newblocknum, newblock;
692 	sector_t offset = 0;
693 	int8_t etype;
694 	struct udf_inode_info *iinfo = UDF_I(inode);
695 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
696 	int lastblock = 0;
697 	bool isBeyondEOF;
698 
699 	*err = 0;
700 	*new = 0;
701 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
702 	prev_epos.block = iinfo->i_location;
703 	prev_epos.bh = NULL;
704 	cur_epos = next_epos = prev_epos;
705 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
706 
707 	/* find the extent which contains the block we are looking for.
708 	   alternate between laarr[0] and laarr[1] for locations of the
709 	   current extent, and the previous extent */
710 	do {
711 		if (prev_epos.bh != cur_epos.bh) {
712 			brelse(prev_epos.bh);
713 			get_bh(cur_epos.bh);
714 			prev_epos.bh = cur_epos.bh;
715 		}
716 		if (cur_epos.bh != next_epos.bh) {
717 			brelse(cur_epos.bh);
718 			get_bh(next_epos.bh);
719 			cur_epos.bh = next_epos.bh;
720 		}
721 
722 		lbcount += elen;
723 
724 		prev_epos.block = cur_epos.block;
725 		cur_epos.block = next_epos.block;
726 
727 		prev_epos.offset = cur_epos.offset;
728 		cur_epos.offset = next_epos.offset;
729 
730 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
731 		if (etype == -1)
732 			break;
733 
734 		c = !c;
735 
736 		laarr[c].extLength = (etype << 30) | elen;
737 		laarr[c].extLocation = eloc;
738 
739 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
740 			pgoal = eloc.logicalBlockNum +
741 				((elen + inode->i_sb->s_blocksize - 1) >>
742 				 inode->i_sb->s_blocksize_bits);
743 
744 		count++;
745 	} while (lbcount + elen <= b_off);
746 
747 	b_off -= lbcount;
748 	offset = b_off >> inode->i_sb->s_blocksize_bits;
749 	/*
750 	 * Move prev_epos and cur_epos into indirect extent if we are at
751 	 * the pointer to it
752 	 */
753 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
754 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
755 
756 	/* if the extent is allocated and recorded, return the block
757 	   if the extent is not a multiple of the blocksize, round up */
758 
759 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
760 		if (elen & (inode->i_sb->s_blocksize - 1)) {
761 			elen = EXT_RECORDED_ALLOCATED |
762 				((elen + inode->i_sb->s_blocksize - 1) &
763 				 ~(inode->i_sb->s_blocksize - 1));
764 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
765 		}
766 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
767 		goto out_free;
768 	}
769 
770 	/* Are we beyond EOF? */
771 	if (etype == -1) {
772 		int ret;
773 		loff_t hole_len;
774 		isBeyondEOF = true;
775 		if (count) {
776 			if (c)
777 				laarr[0] = laarr[1];
778 			startnum = 1;
779 		} else {
780 			/* Create a fake extent when there's not one */
781 			memset(&laarr[0].extLocation, 0x00,
782 				sizeof(struct kernel_lb_addr));
783 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
784 			/* Will udf_do_extend_file() create real extent from
785 			   a fake one? */
786 			startnum = (offset > 0);
787 		}
788 		/* Create extents for the hole between EOF and offset */
789 		hole_len = (loff_t)offset << inode->i_blkbits;
790 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
791 		if (ret < 0) {
792 			*err = ret;
793 			newblock = 0;
794 			goto out_free;
795 		}
796 		c = 0;
797 		offset = 0;
798 		count += ret;
799 		/* We are not covered by a preallocated extent? */
800 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
801 						EXT_NOT_RECORDED_ALLOCATED) {
802 			/* Is there any real extent? - otherwise we overwrite
803 			 * the fake one... */
804 			if (count)
805 				c = !c;
806 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
807 				inode->i_sb->s_blocksize;
808 			memset(&laarr[c].extLocation, 0x00,
809 				sizeof(struct kernel_lb_addr));
810 			count++;
811 		}
812 		endnum = c + 1;
813 		lastblock = 1;
814 	} else {
815 		isBeyondEOF = false;
816 		endnum = startnum = ((count > 2) ? 2 : count);
817 
818 		/* if the current extent is in position 0,
819 		   swap it with the previous */
820 		if (!c && count != 1) {
821 			laarr[2] = laarr[0];
822 			laarr[0] = laarr[1];
823 			laarr[1] = laarr[2];
824 			c = 1;
825 		}
826 
827 		/* if the current block is located in an extent,
828 		   read the next extent */
829 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
830 		if (etype != -1) {
831 			laarr[c + 1].extLength = (etype << 30) | elen;
832 			laarr[c + 1].extLocation = eloc;
833 			count++;
834 			startnum++;
835 			endnum++;
836 		} else
837 			lastblock = 1;
838 	}
839 
840 	/* if the current extent is not recorded but allocated, get the
841 	 * block in the extent corresponding to the requested block */
842 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
843 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
844 	else { /* otherwise, allocate a new block */
845 		if (iinfo->i_next_alloc_block == block)
846 			goal = iinfo->i_next_alloc_goal;
847 
848 		if (!goal) {
849 			if (!(goal = pgoal)) /* XXX: what was intended here? */
850 				goal = iinfo->i_location.logicalBlockNum + 1;
851 		}
852 
853 		newblocknum = udf_new_block(inode->i_sb, inode,
854 				iinfo->i_location.partitionReferenceNum,
855 				goal, err);
856 		if (!newblocknum) {
857 			*err = -ENOSPC;
858 			newblock = 0;
859 			goto out_free;
860 		}
861 		if (isBeyondEOF)
862 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
863 	}
864 
865 	/* if the extent the requsted block is located in contains multiple
866 	 * blocks, split the extent into at most three extents. blocks prior
867 	 * to requested block, requested block, and blocks after requested
868 	 * block */
869 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
870 
871 	/* We preallocate blocks only for regular files. It also makes sense
872 	 * for directories but there's a problem when to drop the
873 	 * preallocation. We might use some delayed work for that but I feel
874 	 * it's overengineering for a filesystem like UDF. */
875 	if (S_ISREG(inode->i_mode))
876 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
877 
878 	/* merge any continuous blocks in laarr */
879 	udf_merge_extents(inode, laarr, &endnum);
880 
881 	/* write back the new extents, inserting new extents if the new number
882 	 * of extents is greater than the old number, and deleting extents if
883 	 * the new number of extents is less than the old number */
884 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
885 
886 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
887 				iinfo->i_location.partitionReferenceNum, 0);
888 	if (!newblock) {
889 		*err = -EIO;
890 		goto out_free;
891 	}
892 	*new = 1;
893 	iinfo->i_next_alloc_block = block;
894 	iinfo->i_next_alloc_goal = newblocknum;
895 	inode->i_ctime = current_time(inode);
896 
897 	if (IS_SYNC(inode))
898 		udf_sync_inode(inode);
899 	else
900 		mark_inode_dirty(inode);
901 out_free:
902 	brelse(prev_epos.bh);
903 	brelse(cur_epos.bh);
904 	brelse(next_epos.bh);
905 	return newblock;
906 }
907 
908 static void udf_split_extents(struct inode *inode, int *c, int offset,
909 			       udf_pblk_t newblocknum,
910 			       struct kernel_long_ad *laarr, int *endnum)
911 {
912 	unsigned long blocksize = inode->i_sb->s_blocksize;
913 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
914 
915 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
916 	    (laarr[*c].extLength >> 30) ==
917 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
918 		int curr = *c;
919 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
920 			    blocksize - 1) >> blocksize_bits;
921 		int8_t etype = (laarr[curr].extLength >> 30);
922 
923 		if (blen == 1)
924 			;
925 		else if (!offset || blen == offset + 1) {
926 			laarr[curr + 2] = laarr[curr + 1];
927 			laarr[curr + 1] = laarr[curr];
928 		} else {
929 			laarr[curr + 3] = laarr[curr + 1];
930 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
931 		}
932 
933 		if (offset) {
934 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
935 				udf_free_blocks(inode->i_sb, inode,
936 						&laarr[curr].extLocation,
937 						0, offset);
938 				laarr[curr].extLength =
939 					EXT_NOT_RECORDED_NOT_ALLOCATED |
940 					(offset << blocksize_bits);
941 				laarr[curr].extLocation.logicalBlockNum = 0;
942 				laarr[curr].extLocation.
943 						partitionReferenceNum = 0;
944 			} else
945 				laarr[curr].extLength = (etype << 30) |
946 					(offset << blocksize_bits);
947 			curr++;
948 			(*c)++;
949 			(*endnum)++;
950 		}
951 
952 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
953 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
954 			laarr[curr].extLocation.partitionReferenceNum =
955 				UDF_I(inode)->i_location.partitionReferenceNum;
956 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
957 			blocksize;
958 		curr++;
959 
960 		if (blen != offset + 1) {
961 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
962 				laarr[curr].extLocation.logicalBlockNum +=
963 								offset + 1;
964 			laarr[curr].extLength = (etype << 30) |
965 				((blen - (offset + 1)) << blocksize_bits);
966 			curr++;
967 			(*endnum)++;
968 		}
969 	}
970 }
971 
972 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
973 				 struct kernel_long_ad *laarr,
974 				 int *endnum)
975 {
976 	int start, length = 0, currlength = 0, i;
977 
978 	if (*endnum >= (c + 1)) {
979 		if (!lastblock)
980 			return;
981 		else
982 			start = c;
983 	} else {
984 		if ((laarr[c + 1].extLength >> 30) ==
985 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
986 			start = c + 1;
987 			length = currlength =
988 				(((laarr[c + 1].extLength &
989 					UDF_EXTENT_LENGTH_MASK) +
990 				inode->i_sb->s_blocksize - 1) >>
991 				inode->i_sb->s_blocksize_bits);
992 		} else
993 			start = c;
994 	}
995 
996 	for (i = start + 1; i <= *endnum; i++) {
997 		if (i == *endnum) {
998 			if (lastblock)
999 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1000 		} else if ((laarr[i].extLength >> 30) ==
1001 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1002 			length += (((laarr[i].extLength &
1003 						UDF_EXTENT_LENGTH_MASK) +
1004 				    inode->i_sb->s_blocksize - 1) >>
1005 				    inode->i_sb->s_blocksize_bits);
1006 		} else
1007 			break;
1008 	}
1009 
1010 	if (length) {
1011 		int next = laarr[start].extLocation.logicalBlockNum +
1012 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1013 			  inode->i_sb->s_blocksize - 1) >>
1014 			  inode->i_sb->s_blocksize_bits);
1015 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1016 				laarr[start].extLocation.partitionReferenceNum,
1017 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1018 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1019 				currlength);
1020 		if (numalloc) 	{
1021 			if (start == (c + 1))
1022 				laarr[start].extLength +=
1023 					(numalloc <<
1024 					 inode->i_sb->s_blocksize_bits);
1025 			else {
1026 				memmove(&laarr[c + 2], &laarr[c + 1],
1027 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1028 				(*endnum)++;
1029 				laarr[c + 1].extLocation.logicalBlockNum = next;
1030 				laarr[c + 1].extLocation.partitionReferenceNum =
1031 					laarr[c].extLocation.
1032 							partitionReferenceNum;
1033 				laarr[c + 1].extLength =
1034 					EXT_NOT_RECORDED_ALLOCATED |
1035 					(numalloc <<
1036 					 inode->i_sb->s_blocksize_bits);
1037 				start = c + 1;
1038 			}
1039 
1040 			for (i = start + 1; numalloc && i < *endnum; i++) {
1041 				int elen = ((laarr[i].extLength &
1042 						UDF_EXTENT_LENGTH_MASK) +
1043 					    inode->i_sb->s_blocksize - 1) >>
1044 					    inode->i_sb->s_blocksize_bits;
1045 
1046 				if (elen > numalloc) {
1047 					laarr[i].extLength -=
1048 						(numalloc <<
1049 						 inode->i_sb->s_blocksize_bits);
1050 					numalloc = 0;
1051 				} else {
1052 					numalloc -= elen;
1053 					if (*endnum > (i + 1))
1054 						memmove(&laarr[i],
1055 							&laarr[i + 1],
1056 							sizeof(struct long_ad) *
1057 							(*endnum - (i + 1)));
1058 					i--;
1059 					(*endnum)--;
1060 				}
1061 			}
1062 			UDF_I(inode)->i_lenExtents +=
1063 				numalloc << inode->i_sb->s_blocksize_bits;
1064 		}
1065 	}
1066 }
1067 
1068 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1069 			      int *endnum)
1070 {
1071 	int i;
1072 	unsigned long blocksize = inode->i_sb->s_blocksize;
1073 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1074 
1075 	for (i = 0; i < (*endnum - 1); i++) {
1076 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1077 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1078 
1079 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1080 			(((li->extLength >> 30) ==
1081 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1082 			((lip1->extLocation.logicalBlockNum -
1083 			  li->extLocation.logicalBlockNum) ==
1084 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1085 			blocksize - 1) >> blocksize_bits)))) {
1086 
1087 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1088 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1089 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1090 				lip1->extLength = (lip1->extLength -
1091 						  (li->extLength &
1092 						   UDF_EXTENT_LENGTH_MASK) +
1093 						   UDF_EXTENT_LENGTH_MASK) &
1094 							~(blocksize - 1);
1095 				li->extLength = (li->extLength &
1096 						 UDF_EXTENT_FLAG_MASK) +
1097 						(UDF_EXTENT_LENGTH_MASK + 1) -
1098 						blocksize;
1099 				lip1->extLocation.logicalBlockNum =
1100 					li->extLocation.logicalBlockNum +
1101 					((li->extLength &
1102 						UDF_EXTENT_LENGTH_MASK) >>
1103 						blocksize_bits);
1104 			} else {
1105 				li->extLength = lip1->extLength +
1106 					(((li->extLength &
1107 						UDF_EXTENT_LENGTH_MASK) +
1108 					 blocksize - 1) & ~(blocksize - 1));
1109 				if (*endnum > (i + 2))
1110 					memmove(&laarr[i + 1], &laarr[i + 2],
1111 						sizeof(struct long_ad) *
1112 						(*endnum - (i + 2)));
1113 				i--;
1114 				(*endnum)--;
1115 			}
1116 		} else if (((li->extLength >> 30) ==
1117 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1118 			   ((lip1->extLength >> 30) ==
1119 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1120 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1121 					((li->extLength &
1122 					  UDF_EXTENT_LENGTH_MASK) +
1123 					 blocksize - 1) >> blocksize_bits);
1124 			li->extLocation.logicalBlockNum = 0;
1125 			li->extLocation.partitionReferenceNum = 0;
1126 
1127 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1128 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1129 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1130 				lip1->extLength = (lip1->extLength -
1131 						   (li->extLength &
1132 						   UDF_EXTENT_LENGTH_MASK) +
1133 						   UDF_EXTENT_LENGTH_MASK) &
1134 						   ~(blocksize - 1);
1135 				li->extLength = (li->extLength &
1136 						 UDF_EXTENT_FLAG_MASK) +
1137 						(UDF_EXTENT_LENGTH_MASK + 1) -
1138 						blocksize;
1139 			} else {
1140 				li->extLength = lip1->extLength +
1141 					(((li->extLength &
1142 						UDF_EXTENT_LENGTH_MASK) +
1143 					  blocksize - 1) & ~(blocksize - 1));
1144 				if (*endnum > (i + 2))
1145 					memmove(&laarr[i + 1], &laarr[i + 2],
1146 						sizeof(struct long_ad) *
1147 						(*endnum - (i + 2)));
1148 				i--;
1149 				(*endnum)--;
1150 			}
1151 		} else if ((li->extLength >> 30) ==
1152 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1153 			udf_free_blocks(inode->i_sb, inode,
1154 					&li->extLocation, 0,
1155 					((li->extLength &
1156 						UDF_EXTENT_LENGTH_MASK) +
1157 					 blocksize - 1) >> blocksize_bits);
1158 			li->extLocation.logicalBlockNum = 0;
1159 			li->extLocation.partitionReferenceNum = 0;
1160 			li->extLength = (li->extLength &
1161 						UDF_EXTENT_LENGTH_MASK) |
1162 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1163 		}
1164 	}
1165 }
1166 
1167 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1168 			       int startnum, int endnum,
1169 			       struct extent_position *epos)
1170 {
1171 	int start = 0, i;
1172 	struct kernel_lb_addr tmploc;
1173 	uint32_t tmplen;
1174 
1175 	if (startnum > endnum) {
1176 		for (i = 0; i < (startnum - endnum); i++)
1177 			udf_delete_aext(inode, *epos);
1178 	} else if (startnum < endnum) {
1179 		for (i = 0; i < (endnum - startnum); i++) {
1180 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1181 					laarr[i].extLength);
1182 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1183 				      &laarr[i].extLength, 1);
1184 			start++;
1185 		}
1186 	}
1187 
1188 	for (i = start; i < endnum; i++) {
1189 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1190 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1191 			       laarr[i].extLength, 1);
1192 	}
1193 }
1194 
1195 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1196 			      int create, int *err)
1197 {
1198 	struct buffer_head *bh = NULL;
1199 
1200 	bh = udf_getblk(inode, block, create, err);
1201 	if (!bh)
1202 		return NULL;
1203 
1204 	if (buffer_uptodate(bh))
1205 		return bh;
1206 
1207 	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1208 
1209 	wait_on_buffer(bh);
1210 	if (buffer_uptodate(bh))
1211 		return bh;
1212 
1213 	brelse(bh);
1214 	*err = -EIO;
1215 	return NULL;
1216 }
1217 
1218 int udf_setsize(struct inode *inode, loff_t newsize)
1219 {
1220 	int err;
1221 	struct udf_inode_info *iinfo;
1222 	unsigned int bsize = i_blocksize(inode);
1223 
1224 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1225 	      S_ISLNK(inode->i_mode)))
1226 		return -EINVAL;
1227 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1228 		return -EPERM;
1229 
1230 	iinfo = UDF_I(inode);
1231 	if (newsize > inode->i_size) {
1232 		down_write(&iinfo->i_data_sem);
1233 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1234 			if (bsize <
1235 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1236 				err = udf_expand_file_adinicb(inode);
1237 				if (err)
1238 					return err;
1239 				down_write(&iinfo->i_data_sem);
1240 			} else {
1241 				iinfo->i_lenAlloc = newsize;
1242 				goto set_size;
1243 			}
1244 		}
1245 		err = udf_extend_file(inode, newsize);
1246 		if (err) {
1247 			up_write(&iinfo->i_data_sem);
1248 			return err;
1249 		}
1250 set_size:
1251 		up_write(&iinfo->i_data_sem);
1252 		truncate_setsize(inode, newsize);
1253 	} else {
1254 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1255 			down_write(&iinfo->i_data_sem);
1256 			udf_clear_extent_cache(inode);
1257 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1258 			       0x00, bsize - newsize -
1259 			       udf_file_entry_alloc_offset(inode));
1260 			iinfo->i_lenAlloc = newsize;
1261 			truncate_setsize(inode, newsize);
1262 			up_write(&iinfo->i_data_sem);
1263 			goto update_time;
1264 		}
1265 		err = block_truncate_page(inode->i_mapping, newsize,
1266 					  udf_get_block);
1267 		if (err)
1268 			return err;
1269 		truncate_setsize(inode, newsize);
1270 		down_write(&iinfo->i_data_sem);
1271 		udf_clear_extent_cache(inode);
1272 		err = udf_truncate_extents(inode);
1273 		up_write(&iinfo->i_data_sem);
1274 		if (err)
1275 			return err;
1276 	}
1277 update_time:
1278 	inode->i_mtime = inode->i_ctime = current_time(inode);
1279 	if (IS_SYNC(inode))
1280 		udf_sync_inode(inode);
1281 	else
1282 		mark_inode_dirty(inode);
1283 	return 0;
1284 }
1285 
1286 /*
1287  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1288  * arbitrary - just that we hopefully don't limit any real use of rewritten
1289  * inode on write-once media but avoid looping for too long on corrupted media.
1290  */
1291 #define UDF_MAX_ICB_NESTING 1024
1292 
1293 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1294 {
1295 	struct buffer_head *bh = NULL;
1296 	struct fileEntry *fe;
1297 	struct extendedFileEntry *efe;
1298 	uint16_t ident;
1299 	struct udf_inode_info *iinfo = UDF_I(inode);
1300 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1301 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1302 	unsigned int link_count;
1303 	unsigned int indirections = 0;
1304 	int bs = inode->i_sb->s_blocksize;
1305 	int ret = -EIO;
1306 	uint32_t uid, gid;
1307 
1308 reread:
1309 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1310 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1311 			  iloc->partitionReferenceNum, sbi->s_partitions);
1312 		return -EIO;
1313 	}
1314 
1315 	if (iloc->logicalBlockNum >=
1316 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1317 		udf_debug("block=%u, partition=%u out of range\n",
1318 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1319 		return -EIO;
1320 	}
1321 
1322 	/*
1323 	 * Set defaults, but the inode is still incomplete!
1324 	 * Note: get_new_inode() sets the following on a new inode:
1325 	 *      i_sb = sb
1326 	 *      i_no = ino
1327 	 *      i_flags = sb->s_flags
1328 	 *      i_state = 0
1329 	 * clean_inode(): zero fills and sets
1330 	 *      i_count = 1
1331 	 *      i_nlink = 1
1332 	 *      i_op = NULL;
1333 	 */
1334 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1335 	if (!bh) {
1336 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1337 		return -EIO;
1338 	}
1339 
1340 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1341 	    ident != TAG_IDENT_USE) {
1342 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1343 			inode->i_ino, ident);
1344 		goto out;
1345 	}
1346 
1347 	fe = (struct fileEntry *)bh->b_data;
1348 	efe = (struct extendedFileEntry *)bh->b_data;
1349 
1350 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1351 		struct buffer_head *ibh;
1352 
1353 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1354 		if (ident == TAG_IDENT_IE && ibh) {
1355 			struct kernel_lb_addr loc;
1356 			struct indirectEntry *ie;
1357 
1358 			ie = (struct indirectEntry *)ibh->b_data;
1359 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1360 
1361 			if (ie->indirectICB.extLength) {
1362 				brelse(ibh);
1363 				memcpy(&iinfo->i_location, &loc,
1364 				       sizeof(struct kernel_lb_addr));
1365 				if (++indirections > UDF_MAX_ICB_NESTING) {
1366 					udf_err(inode->i_sb,
1367 						"too many ICBs in ICB hierarchy"
1368 						" (max %d supported)\n",
1369 						UDF_MAX_ICB_NESTING);
1370 					goto out;
1371 				}
1372 				brelse(bh);
1373 				goto reread;
1374 			}
1375 		}
1376 		brelse(ibh);
1377 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1378 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1379 			le16_to_cpu(fe->icbTag.strategyType));
1380 		goto out;
1381 	}
1382 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1383 		iinfo->i_strat4096 = 0;
1384 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1385 		iinfo->i_strat4096 = 1;
1386 
1387 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1388 							ICBTAG_FLAG_AD_MASK;
1389 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1390 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1391 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1392 		ret = -EIO;
1393 		goto out;
1394 	}
1395 	iinfo->i_unique = 0;
1396 	iinfo->i_lenEAttr = 0;
1397 	iinfo->i_lenExtents = 0;
1398 	iinfo->i_lenAlloc = 0;
1399 	iinfo->i_next_alloc_block = 0;
1400 	iinfo->i_next_alloc_goal = 0;
1401 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1402 		iinfo->i_efe = 1;
1403 		iinfo->i_use = 0;
1404 		ret = udf_alloc_i_data(inode, bs -
1405 					sizeof(struct extendedFileEntry));
1406 		if (ret)
1407 			goto out;
1408 		memcpy(iinfo->i_ext.i_data,
1409 		       bh->b_data + sizeof(struct extendedFileEntry),
1410 		       bs - sizeof(struct extendedFileEntry));
1411 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1412 		iinfo->i_efe = 0;
1413 		iinfo->i_use = 0;
1414 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1415 		if (ret)
1416 			goto out;
1417 		memcpy(iinfo->i_ext.i_data,
1418 		       bh->b_data + sizeof(struct fileEntry),
1419 		       bs - sizeof(struct fileEntry));
1420 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1421 		iinfo->i_efe = 0;
1422 		iinfo->i_use = 1;
1423 		iinfo->i_lenAlloc = le32_to_cpu(
1424 				((struct unallocSpaceEntry *)bh->b_data)->
1425 				 lengthAllocDescs);
1426 		ret = udf_alloc_i_data(inode, bs -
1427 					sizeof(struct unallocSpaceEntry));
1428 		if (ret)
1429 			goto out;
1430 		memcpy(iinfo->i_ext.i_data,
1431 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1432 		       bs - sizeof(struct unallocSpaceEntry));
1433 		return 0;
1434 	}
1435 
1436 	ret = -EIO;
1437 	read_lock(&sbi->s_cred_lock);
1438 	uid = le32_to_cpu(fe->uid);
1439 	if (uid == UDF_INVALID_ID ||
1440 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1441 		inode->i_uid = sbi->s_uid;
1442 	else
1443 		i_uid_write(inode, uid);
1444 
1445 	gid = le32_to_cpu(fe->gid);
1446 	if (gid == UDF_INVALID_ID ||
1447 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1448 		inode->i_gid = sbi->s_gid;
1449 	else
1450 		i_gid_write(inode, gid);
1451 
1452 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1453 			sbi->s_fmode != UDF_INVALID_MODE)
1454 		inode->i_mode = sbi->s_fmode;
1455 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1456 			sbi->s_dmode != UDF_INVALID_MODE)
1457 		inode->i_mode = sbi->s_dmode;
1458 	else
1459 		inode->i_mode = udf_convert_permissions(fe);
1460 	inode->i_mode &= ~sbi->s_umask;
1461 	read_unlock(&sbi->s_cred_lock);
1462 
1463 	link_count = le16_to_cpu(fe->fileLinkCount);
1464 	if (!link_count) {
1465 		if (!hidden_inode) {
1466 			ret = -ESTALE;
1467 			goto out;
1468 		}
1469 		link_count = 1;
1470 	}
1471 	set_nlink(inode, link_count);
1472 
1473 	inode->i_size = le64_to_cpu(fe->informationLength);
1474 	iinfo->i_lenExtents = inode->i_size;
1475 
1476 	if (iinfo->i_efe == 0) {
1477 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1478 			(inode->i_sb->s_blocksize_bits - 9);
1479 
1480 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1481 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1482 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1483 
1484 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1485 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1486 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1487 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1488 	} else {
1489 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1490 		    (inode->i_sb->s_blocksize_bits - 9);
1491 
1492 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1493 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1494 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1495 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1496 
1497 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1498 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1499 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1500 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1501 	}
1502 	inode->i_generation = iinfo->i_unique;
1503 
1504 	/*
1505 	 * Sanity check length of allocation descriptors and extended attrs to
1506 	 * avoid integer overflows
1507 	 */
1508 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1509 		goto out;
1510 	/* Now do exact checks */
1511 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1512 		goto out;
1513 	/* Sanity checks for files in ICB so that we don't get confused later */
1514 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1515 		/*
1516 		 * For file in ICB data is stored in allocation descriptor
1517 		 * so sizes should match
1518 		 */
1519 		if (iinfo->i_lenAlloc != inode->i_size)
1520 			goto out;
1521 		/* File in ICB has to fit in there... */
1522 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1523 			goto out;
1524 	}
1525 
1526 	switch (fe->icbTag.fileType) {
1527 	case ICBTAG_FILE_TYPE_DIRECTORY:
1528 		inode->i_op = &udf_dir_inode_operations;
1529 		inode->i_fop = &udf_dir_operations;
1530 		inode->i_mode |= S_IFDIR;
1531 		inc_nlink(inode);
1532 		break;
1533 	case ICBTAG_FILE_TYPE_REALTIME:
1534 	case ICBTAG_FILE_TYPE_REGULAR:
1535 	case ICBTAG_FILE_TYPE_UNDEF:
1536 	case ICBTAG_FILE_TYPE_VAT20:
1537 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1538 			inode->i_data.a_ops = &udf_adinicb_aops;
1539 		else
1540 			inode->i_data.a_ops = &udf_aops;
1541 		inode->i_op = &udf_file_inode_operations;
1542 		inode->i_fop = &udf_file_operations;
1543 		inode->i_mode |= S_IFREG;
1544 		break;
1545 	case ICBTAG_FILE_TYPE_BLOCK:
1546 		inode->i_mode |= S_IFBLK;
1547 		break;
1548 	case ICBTAG_FILE_TYPE_CHAR:
1549 		inode->i_mode |= S_IFCHR;
1550 		break;
1551 	case ICBTAG_FILE_TYPE_FIFO:
1552 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1553 		break;
1554 	case ICBTAG_FILE_TYPE_SOCKET:
1555 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1556 		break;
1557 	case ICBTAG_FILE_TYPE_SYMLINK:
1558 		inode->i_data.a_ops = &udf_symlink_aops;
1559 		inode->i_op = &udf_symlink_inode_operations;
1560 		inode_nohighmem(inode);
1561 		inode->i_mode = S_IFLNK | 0777;
1562 		break;
1563 	case ICBTAG_FILE_TYPE_MAIN:
1564 		udf_debug("METADATA FILE-----\n");
1565 		break;
1566 	case ICBTAG_FILE_TYPE_MIRROR:
1567 		udf_debug("METADATA MIRROR FILE-----\n");
1568 		break;
1569 	case ICBTAG_FILE_TYPE_BITMAP:
1570 		udf_debug("METADATA BITMAP FILE-----\n");
1571 		break;
1572 	default:
1573 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1574 			inode->i_ino, fe->icbTag.fileType);
1575 		goto out;
1576 	}
1577 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1578 		struct deviceSpec *dsea =
1579 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1580 		if (dsea) {
1581 			init_special_inode(inode, inode->i_mode,
1582 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1583 				      le32_to_cpu(dsea->minorDeviceIdent)));
1584 			/* Developer ID ??? */
1585 		} else
1586 			goto out;
1587 	}
1588 	ret = 0;
1589 out:
1590 	brelse(bh);
1591 	return ret;
1592 }
1593 
1594 static int udf_alloc_i_data(struct inode *inode, size_t size)
1595 {
1596 	struct udf_inode_info *iinfo = UDF_I(inode);
1597 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1598 	if (!iinfo->i_ext.i_data)
1599 		return -ENOMEM;
1600 	return 0;
1601 }
1602 
1603 static umode_t udf_convert_permissions(struct fileEntry *fe)
1604 {
1605 	umode_t mode;
1606 	uint32_t permissions;
1607 	uint32_t flags;
1608 
1609 	permissions = le32_to_cpu(fe->permissions);
1610 	flags = le16_to_cpu(fe->icbTag.flags);
1611 
1612 	mode =	((permissions) & 0007) |
1613 		((permissions >> 2) & 0070) |
1614 		((permissions >> 4) & 0700) |
1615 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1616 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1617 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1618 
1619 	return mode;
1620 }
1621 
1622 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1623 {
1624 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1625 }
1626 
1627 static int udf_sync_inode(struct inode *inode)
1628 {
1629 	return udf_update_inode(inode, 1);
1630 }
1631 
1632 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1633 {
1634 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1635 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1636 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1637 		iinfo->i_crtime = time;
1638 }
1639 
1640 static int udf_update_inode(struct inode *inode, int do_sync)
1641 {
1642 	struct buffer_head *bh = NULL;
1643 	struct fileEntry *fe;
1644 	struct extendedFileEntry *efe;
1645 	uint64_t lb_recorded;
1646 	uint32_t udfperms;
1647 	uint16_t icbflags;
1648 	uint16_t crclen;
1649 	int err = 0;
1650 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1651 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1652 	struct udf_inode_info *iinfo = UDF_I(inode);
1653 
1654 	bh = udf_tgetblk(inode->i_sb,
1655 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1656 	if (!bh) {
1657 		udf_debug("getblk failure\n");
1658 		return -EIO;
1659 	}
1660 
1661 	lock_buffer(bh);
1662 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1663 	fe = (struct fileEntry *)bh->b_data;
1664 	efe = (struct extendedFileEntry *)bh->b_data;
1665 
1666 	if (iinfo->i_use) {
1667 		struct unallocSpaceEntry *use =
1668 			(struct unallocSpaceEntry *)bh->b_data;
1669 
1670 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1671 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1672 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1673 					sizeof(struct unallocSpaceEntry));
1674 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1675 		crclen = sizeof(struct unallocSpaceEntry);
1676 
1677 		goto finish;
1678 	}
1679 
1680 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1681 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1682 	else
1683 		fe->uid = cpu_to_le32(i_uid_read(inode));
1684 
1685 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1686 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1687 	else
1688 		fe->gid = cpu_to_le32(i_gid_read(inode));
1689 
1690 	udfperms = ((inode->i_mode & 0007)) |
1691 		   ((inode->i_mode & 0070) << 2) |
1692 		   ((inode->i_mode & 0700) << 4);
1693 
1694 	udfperms |= (le32_to_cpu(fe->permissions) &
1695 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1696 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1697 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1698 	fe->permissions = cpu_to_le32(udfperms);
1699 
1700 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1701 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1702 	else
1703 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1704 
1705 	fe->informationLength = cpu_to_le64(inode->i_size);
1706 
1707 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1708 		struct regid *eid;
1709 		struct deviceSpec *dsea =
1710 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1711 		if (!dsea) {
1712 			dsea = (struct deviceSpec *)
1713 				udf_add_extendedattr(inode,
1714 						     sizeof(struct deviceSpec) +
1715 						     sizeof(struct regid), 12, 0x3);
1716 			dsea->attrType = cpu_to_le32(12);
1717 			dsea->attrSubtype = 1;
1718 			dsea->attrLength = cpu_to_le32(
1719 						sizeof(struct deviceSpec) +
1720 						sizeof(struct regid));
1721 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1722 		}
1723 		eid = (struct regid *)dsea->impUse;
1724 		memset(eid, 0, sizeof(*eid));
1725 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1726 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1727 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1728 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1729 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1730 	}
1731 
1732 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1733 		lb_recorded = 0; /* No extents => no blocks! */
1734 	else
1735 		lb_recorded =
1736 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1737 			(blocksize_bits - 9);
1738 
1739 	if (iinfo->i_efe == 0) {
1740 		memcpy(bh->b_data + sizeof(struct fileEntry),
1741 		       iinfo->i_ext.i_data,
1742 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1743 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1744 
1745 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1746 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1747 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1748 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1749 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1750 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1751 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1752 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1753 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1754 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1755 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1756 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1757 		crclen = sizeof(struct fileEntry);
1758 	} else {
1759 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1760 		       iinfo->i_ext.i_data,
1761 		       inode->i_sb->s_blocksize -
1762 					sizeof(struct extendedFileEntry));
1763 		efe->objectSize = cpu_to_le64(inode->i_size);
1764 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1765 
1766 		udf_adjust_time(iinfo, inode->i_atime);
1767 		udf_adjust_time(iinfo, inode->i_mtime);
1768 		udf_adjust_time(iinfo, inode->i_ctime);
1769 
1770 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1771 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1772 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1773 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1774 
1775 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1776 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1777 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1778 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1779 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1780 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1781 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1782 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1783 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1784 		crclen = sizeof(struct extendedFileEntry);
1785 	}
1786 
1787 finish:
1788 	if (iinfo->i_strat4096) {
1789 		fe->icbTag.strategyType = cpu_to_le16(4096);
1790 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1791 		fe->icbTag.numEntries = cpu_to_le16(2);
1792 	} else {
1793 		fe->icbTag.strategyType = cpu_to_le16(4);
1794 		fe->icbTag.numEntries = cpu_to_le16(1);
1795 	}
1796 
1797 	if (iinfo->i_use)
1798 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1799 	else if (S_ISDIR(inode->i_mode))
1800 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1801 	else if (S_ISREG(inode->i_mode))
1802 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1803 	else if (S_ISLNK(inode->i_mode))
1804 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1805 	else if (S_ISBLK(inode->i_mode))
1806 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1807 	else if (S_ISCHR(inode->i_mode))
1808 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1809 	else if (S_ISFIFO(inode->i_mode))
1810 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1811 	else if (S_ISSOCK(inode->i_mode))
1812 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1813 
1814 	icbflags =	iinfo->i_alloc_type |
1815 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1816 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1817 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1818 			(le16_to_cpu(fe->icbTag.flags) &
1819 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1820 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1821 
1822 	fe->icbTag.flags = cpu_to_le16(icbflags);
1823 	if (sbi->s_udfrev >= 0x0200)
1824 		fe->descTag.descVersion = cpu_to_le16(3);
1825 	else
1826 		fe->descTag.descVersion = cpu_to_le16(2);
1827 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1828 	fe->descTag.tagLocation = cpu_to_le32(
1829 					iinfo->i_location.logicalBlockNum);
1830 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1831 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1832 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1833 						  crclen));
1834 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1835 
1836 	set_buffer_uptodate(bh);
1837 	unlock_buffer(bh);
1838 
1839 	/* write the data blocks */
1840 	mark_buffer_dirty(bh);
1841 	if (do_sync) {
1842 		sync_dirty_buffer(bh);
1843 		if (buffer_write_io_error(bh)) {
1844 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1845 				 inode->i_ino);
1846 			err = -EIO;
1847 		}
1848 	}
1849 	brelse(bh);
1850 
1851 	return err;
1852 }
1853 
1854 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1855 			 bool hidden_inode)
1856 {
1857 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1858 	struct inode *inode = iget_locked(sb, block);
1859 	int err;
1860 
1861 	if (!inode)
1862 		return ERR_PTR(-ENOMEM);
1863 
1864 	if (!(inode->i_state & I_NEW))
1865 		return inode;
1866 
1867 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1868 	err = udf_read_inode(inode, hidden_inode);
1869 	if (err < 0) {
1870 		iget_failed(inode);
1871 		return ERR_PTR(err);
1872 	}
1873 	unlock_new_inode(inode);
1874 
1875 	return inode;
1876 }
1877 
1878 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1879 			    struct extent_position *epos)
1880 {
1881 	struct super_block *sb = inode->i_sb;
1882 	struct buffer_head *bh;
1883 	struct allocExtDesc *aed;
1884 	struct extent_position nepos;
1885 	struct kernel_lb_addr neloc;
1886 	int ver, adsize;
1887 
1888 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1889 		adsize = sizeof(struct short_ad);
1890 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1891 		adsize = sizeof(struct long_ad);
1892 	else
1893 		return -EIO;
1894 
1895 	neloc.logicalBlockNum = block;
1896 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1897 
1898 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1899 	if (!bh)
1900 		return -EIO;
1901 	lock_buffer(bh);
1902 	memset(bh->b_data, 0x00, sb->s_blocksize);
1903 	set_buffer_uptodate(bh);
1904 	unlock_buffer(bh);
1905 	mark_buffer_dirty_inode(bh, inode);
1906 
1907 	aed = (struct allocExtDesc *)(bh->b_data);
1908 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1909 		aed->previousAllocExtLocation =
1910 				cpu_to_le32(epos->block.logicalBlockNum);
1911 	}
1912 	aed->lengthAllocDescs = cpu_to_le32(0);
1913 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1914 		ver = 3;
1915 	else
1916 		ver = 2;
1917 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1918 		    sizeof(struct tag));
1919 
1920 	nepos.block = neloc;
1921 	nepos.offset = sizeof(struct allocExtDesc);
1922 	nepos.bh = bh;
1923 
1924 	/*
1925 	 * Do we have to copy current last extent to make space for indirect
1926 	 * one?
1927 	 */
1928 	if (epos->offset + adsize > sb->s_blocksize) {
1929 		struct kernel_lb_addr cp_loc;
1930 		uint32_t cp_len;
1931 		int cp_type;
1932 
1933 		epos->offset -= adsize;
1934 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1935 		cp_len |= ((uint32_t)cp_type) << 30;
1936 
1937 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1938 		udf_write_aext(inode, epos, &nepos.block,
1939 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1940 	} else {
1941 		__udf_add_aext(inode, epos, &nepos.block,
1942 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1943 	}
1944 
1945 	brelse(epos->bh);
1946 	*epos = nepos;
1947 
1948 	return 0;
1949 }
1950 
1951 /*
1952  * Append extent at the given position - should be the first free one in inode
1953  * / indirect extent. This function assumes there is enough space in the inode
1954  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1955  */
1956 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1957 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1958 {
1959 	struct udf_inode_info *iinfo = UDF_I(inode);
1960 	struct allocExtDesc *aed;
1961 	int adsize;
1962 
1963 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1964 		adsize = sizeof(struct short_ad);
1965 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1966 		adsize = sizeof(struct long_ad);
1967 	else
1968 		return -EIO;
1969 
1970 	if (!epos->bh) {
1971 		WARN_ON(iinfo->i_lenAlloc !=
1972 			epos->offset - udf_file_entry_alloc_offset(inode));
1973 	} else {
1974 		aed = (struct allocExtDesc *)epos->bh->b_data;
1975 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1976 			epos->offset - sizeof(struct allocExtDesc));
1977 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1978 	}
1979 
1980 	udf_write_aext(inode, epos, eloc, elen, inc);
1981 
1982 	if (!epos->bh) {
1983 		iinfo->i_lenAlloc += adsize;
1984 		mark_inode_dirty(inode);
1985 	} else {
1986 		aed = (struct allocExtDesc *)epos->bh->b_data;
1987 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1988 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1989 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1990 			udf_update_tag(epos->bh->b_data,
1991 					epos->offset + (inc ? 0 : adsize));
1992 		else
1993 			udf_update_tag(epos->bh->b_data,
1994 					sizeof(struct allocExtDesc));
1995 		mark_buffer_dirty_inode(epos->bh, inode);
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 /*
2002  * Append extent at given position - should be the first free one in inode
2003  * / indirect extent. Takes care of allocating and linking indirect blocks.
2004  */
2005 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2006 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007 {
2008 	int adsize;
2009 	struct super_block *sb = inode->i_sb;
2010 
2011 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2012 		adsize = sizeof(struct short_ad);
2013 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2014 		adsize = sizeof(struct long_ad);
2015 	else
2016 		return -EIO;
2017 
2018 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2019 		int err;
2020 		udf_pblk_t new_block;
2021 
2022 		new_block = udf_new_block(sb, NULL,
2023 					  epos->block.partitionReferenceNum,
2024 					  epos->block.logicalBlockNum, &err);
2025 		if (!new_block)
2026 			return -ENOSPC;
2027 
2028 		err = udf_setup_indirect_aext(inode, new_block, epos);
2029 		if (err)
2030 			return err;
2031 	}
2032 
2033 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2034 }
2035 
2036 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2037 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2038 {
2039 	int adsize;
2040 	uint8_t *ptr;
2041 	struct short_ad *sad;
2042 	struct long_ad *lad;
2043 	struct udf_inode_info *iinfo = UDF_I(inode);
2044 
2045 	if (!epos->bh)
2046 		ptr = iinfo->i_ext.i_data + epos->offset -
2047 			udf_file_entry_alloc_offset(inode) +
2048 			iinfo->i_lenEAttr;
2049 	else
2050 		ptr = epos->bh->b_data + epos->offset;
2051 
2052 	switch (iinfo->i_alloc_type) {
2053 	case ICBTAG_FLAG_AD_SHORT:
2054 		sad = (struct short_ad *)ptr;
2055 		sad->extLength = cpu_to_le32(elen);
2056 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2057 		adsize = sizeof(struct short_ad);
2058 		break;
2059 	case ICBTAG_FLAG_AD_LONG:
2060 		lad = (struct long_ad *)ptr;
2061 		lad->extLength = cpu_to_le32(elen);
2062 		lad->extLocation = cpu_to_lelb(*eloc);
2063 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2064 		adsize = sizeof(struct long_ad);
2065 		break;
2066 	default:
2067 		return;
2068 	}
2069 
2070 	if (epos->bh) {
2071 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2072 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2073 			struct allocExtDesc *aed =
2074 				(struct allocExtDesc *)epos->bh->b_data;
2075 			udf_update_tag(epos->bh->b_data,
2076 				       le32_to_cpu(aed->lengthAllocDescs) +
2077 				       sizeof(struct allocExtDesc));
2078 		}
2079 		mark_buffer_dirty_inode(epos->bh, inode);
2080 	} else {
2081 		mark_inode_dirty(inode);
2082 	}
2083 
2084 	if (inc)
2085 		epos->offset += adsize;
2086 }
2087 
2088 /*
2089  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2090  * someone does some weird stuff.
2091  */
2092 #define UDF_MAX_INDIR_EXTS 16
2093 
2094 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2095 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2096 {
2097 	int8_t etype;
2098 	unsigned int indirections = 0;
2099 
2100 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2101 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2102 		udf_pblk_t block;
2103 
2104 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2105 			udf_err(inode->i_sb,
2106 				"too many indirect extents in inode %lu\n",
2107 				inode->i_ino);
2108 			return -1;
2109 		}
2110 
2111 		epos->block = *eloc;
2112 		epos->offset = sizeof(struct allocExtDesc);
2113 		brelse(epos->bh);
2114 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2115 		epos->bh = udf_tread(inode->i_sb, block);
2116 		if (!epos->bh) {
2117 			udf_debug("reading block %u failed!\n", block);
2118 			return -1;
2119 		}
2120 	}
2121 
2122 	return etype;
2123 }
2124 
2125 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2126 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2127 {
2128 	int alen;
2129 	int8_t etype;
2130 	uint8_t *ptr;
2131 	struct short_ad *sad;
2132 	struct long_ad *lad;
2133 	struct udf_inode_info *iinfo = UDF_I(inode);
2134 
2135 	if (!epos->bh) {
2136 		if (!epos->offset)
2137 			epos->offset = udf_file_entry_alloc_offset(inode);
2138 		ptr = iinfo->i_ext.i_data + epos->offset -
2139 			udf_file_entry_alloc_offset(inode) +
2140 			iinfo->i_lenEAttr;
2141 		alen = udf_file_entry_alloc_offset(inode) +
2142 							iinfo->i_lenAlloc;
2143 	} else {
2144 		if (!epos->offset)
2145 			epos->offset = sizeof(struct allocExtDesc);
2146 		ptr = epos->bh->b_data + epos->offset;
2147 		alen = sizeof(struct allocExtDesc) +
2148 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2149 							lengthAllocDescs);
2150 	}
2151 
2152 	switch (iinfo->i_alloc_type) {
2153 	case ICBTAG_FLAG_AD_SHORT:
2154 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2155 		if (!sad)
2156 			return -1;
2157 		etype = le32_to_cpu(sad->extLength) >> 30;
2158 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2159 		eloc->partitionReferenceNum =
2160 				iinfo->i_location.partitionReferenceNum;
2161 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2162 		break;
2163 	case ICBTAG_FLAG_AD_LONG:
2164 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2165 		if (!lad)
2166 			return -1;
2167 		etype = le32_to_cpu(lad->extLength) >> 30;
2168 		*eloc = lelb_to_cpu(lad->extLocation);
2169 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2170 		break;
2171 	default:
2172 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2173 		return -1;
2174 	}
2175 
2176 	return etype;
2177 }
2178 
2179 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2180 			      struct kernel_lb_addr neloc, uint32_t nelen)
2181 {
2182 	struct kernel_lb_addr oeloc;
2183 	uint32_t oelen;
2184 	int8_t etype;
2185 
2186 	if (epos.bh)
2187 		get_bh(epos.bh);
2188 
2189 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2190 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2191 		neloc = oeloc;
2192 		nelen = (etype << 30) | oelen;
2193 	}
2194 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2195 	brelse(epos.bh);
2196 
2197 	return (nelen >> 30);
2198 }
2199 
2200 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2201 {
2202 	struct extent_position oepos;
2203 	int adsize;
2204 	int8_t etype;
2205 	struct allocExtDesc *aed;
2206 	struct udf_inode_info *iinfo;
2207 	struct kernel_lb_addr eloc;
2208 	uint32_t elen;
2209 
2210 	if (epos.bh) {
2211 		get_bh(epos.bh);
2212 		get_bh(epos.bh);
2213 	}
2214 
2215 	iinfo = UDF_I(inode);
2216 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2217 		adsize = sizeof(struct short_ad);
2218 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2219 		adsize = sizeof(struct long_ad);
2220 	else
2221 		adsize = 0;
2222 
2223 	oepos = epos;
2224 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2225 		return -1;
2226 
2227 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2228 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2229 		if (oepos.bh != epos.bh) {
2230 			oepos.block = epos.block;
2231 			brelse(oepos.bh);
2232 			get_bh(epos.bh);
2233 			oepos.bh = epos.bh;
2234 			oepos.offset = epos.offset - adsize;
2235 		}
2236 	}
2237 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2238 	elen = 0;
2239 
2240 	if (epos.bh != oepos.bh) {
2241 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2242 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2243 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2244 		if (!oepos.bh) {
2245 			iinfo->i_lenAlloc -= (adsize * 2);
2246 			mark_inode_dirty(inode);
2247 		} else {
2248 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2249 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2250 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2251 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2252 				udf_update_tag(oepos.bh->b_data,
2253 						oepos.offset - (2 * adsize));
2254 			else
2255 				udf_update_tag(oepos.bh->b_data,
2256 						sizeof(struct allocExtDesc));
2257 			mark_buffer_dirty_inode(oepos.bh, inode);
2258 		}
2259 	} else {
2260 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2261 		if (!oepos.bh) {
2262 			iinfo->i_lenAlloc -= adsize;
2263 			mark_inode_dirty(inode);
2264 		} else {
2265 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2266 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2267 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2268 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2269 				udf_update_tag(oepos.bh->b_data,
2270 						epos.offset - adsize);
2271 			else
2272 				udf_update_tag(oepos.bh->b_data,
2273 						sizeof(struct allocExtDesc));
2274 			mark_buffer_dirty_inode(oepos.bh, inode);
2275 		}
2276 	}
2277 
2278 	brelse(epos.bh);
2279 	brelse(oepos.bh);
2280 
2281 	return (elen >> 30);
2282 }
2283 
2284 int8_t inode_bmap(struct inode *inode, sector_t block,
2285 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2286 		  uint32_t *elen, sector_t *offset)
2287 {
2288 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2289 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2290 	int8_t etype;
2291 	struct udf_inode_info *iinfo;
2292 
2293 	iinfo = UDF_I(inode);
2294 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2295 		pos->offset = 0;
2296 		pos->block = iinfo->i_location;
2297 		pos->bh = NULL;
2298 	}
2299 	*elen = 0;
2300 	do {
2301 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2302 		if (etype == -1) {
2303 			*offset = (bcount - lbcount) >> blocksize_bits;
2304 			iinfo->i_lenExtents = lbcount;
2305 			return -1;
2306 		}
2307 		lbcount += *elen;
2308 	} while (lbcount <= bcount);
2309 	/* update extent cache */
2310 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2311 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2312 
2313 	return etype;
2314 }
2315 
2316 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2317 {
2318 	struct kernel_lb_addr eloc;
2319 	uint32_t elen;
2320 	sector_t offset;
2321 	struct extent_position epos = {};
2322 	udf_pblk_t ret;
2323 
2324 	down_read(&UDF_I(inode)->i_data_sem);
2325 
2326 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2327 						(EXT_RECORDED_ALLOCATED >> 30))
2328 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2329 	else
2330 		ret = 0;
2331 
2332 	up_read(&UDF_I(inode)->i_data_sem);
2333 	brelse(epos.bh);
2334 
2335 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2336 		return udf_fixed_to_variable(ret);
2337 	else
2338 		return ret;
2339 }
2340