1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static umode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static int udf_sync_inode(struct inode *inode); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 56 static int8_t udf_insert_aext(struct inode *, struct extent_position, 57 struct kernel_lb_addr, uint32_t); 58 static void udf_split_extents(struct inode *, int *, int, int, 59 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 60 static void udf_prealloc_extents(struct inode *, int, int, 61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 62 static void udf_merge_extents(struct inode *, 63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 64 static void udf_update_extents(struct inode *, 65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 66 struct extent_position *); 67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 68 69 static void __udf_clear_extent_cache(struct inode *inode) 70 { 71 struct udf_inode_info *iinfo = UDF_I(inode); 72 73 if (iinfo->cached_extent.lstart != -1) { 74 brelse(iinfo->cached_extent.epos.bh); 75 iinfo->cached_extent.lstart = -1; 76 } 77 } 78 79 /* Invalidate extent cache */ 80 static void udf_clear_extent_cache(struct inode *inode) 81 { 82 struct udf_inode_info *iinfo = UDF_I(inode); 83 84 spin_lock(&iinfo->i_extent_cache_lock); 85 __udf_clear_extent_cache(inode); 86 spin_unlock(&iinfo->i_extent_cache_lock); 87 } 88 89 /* Return contents of extent cache */ 90 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 91 loff_t *lbcount, struct extent_position *pos) 92 { 93 struct udf_inode_info *iinfo = UDF_I(inode); 94 int ret = 0; 95 96 spin_lock(&iinfo->i_extent_cache_lock); 97 if ((iinfo->cached_extent.lstart <= bcount) && 98 (iinfo->cached_extent.lstart != -1)) { 99 /* Cache hit */ 100 *lbcount = iinfo->cached_extent.lstart; 101 memcpy(pos, &iinfo->cached_extent.epos, 102 sizeof(struct extent_position)); 103 if (pos->bh) 104 get_bh(pos->bh); 105 ret = 1; 106 } 107 spin_unlock(&iinfo->i_extent_cache_lock); 108 return ret; 109 } 110 111 /* Add extent to extent cache */ 112 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 113 struct extent_position *pos, int next_epos) 114 { 115 struct udf_inode_info *iinfo = UDF_I(inode); 116 117 spin_lock(&iinfo->i_extent_cache_lock); 118 /* Invalidate previously cached extent */ 119 __udf_clear_extent_cache(inode); 120 if (pos->bh) 121 get_bh(pos->bh); 122 memcpy(&iinfo->cached_extent.epos, pos, 123 sizeof(struct extent_position)); 124 iinfo->cached_extent.lstart = estart; 125 if (next_epos) 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= 129 sizeof(struct short_ad); 130 break; 131 case ICBTAG_FLAG_AD_LONG: 132 iinfo->cached_extent.epos.offset -= 133 sizeof(struct long_ad); 134 } 135 spin_unlock(&iinfo->i_extent_cache_lock); 136 } 137 138 void udf_evict_inode(struct inode *inode) 139 { 140 struct udf_inode_info *iinfo = UDF_I(inode); 141 int want_delete = 0; 142 143 if (!inode->i_nlink && !is_bad_inode(inode)) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 truncate_inode_pages_final(&inode->i_data); 149 invalidate_inode_buffers(inode); 150 clear_inode(inode); 151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 152 inode->i_size != iinfo->i_lenExtents) { 153 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 154 inode->i_ino, inode->i_mode, 155 (unsigned long long)inode->i_size, 156 (unsigned long long)iinfo->i_lenExtents); 157 } 158 kfree(iinfo->i_ext.i_data); 159 iinfo->i_ext.i_data = NULL; 160 udf_clear_extent_cache(inode); 161 if (want_delete) { 162 udf_free_inode(inode); 163 } 164 } 165 166 static void udf_write_failed(struct address_space *mapping, loff_t to) 167 { 168 struct inode *inode = mapping->host; 169 struct udf_inode_info *iinfo = UDF_I(inode); 170 loff_t isize = inode->i_size; 171 172 if (to > isize) { 173 truncate_pagecache(inode, isize); 174 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 175 down_write(&iinfo->i_data_sem); 176 udf_clear_extent_cache(inode); 177 udf_truncate_extents(inode); 178 up_write(&iinfo->i_data_sem); 179 } 180 } 181 } 182 183 static int udf_writepage(struct page *page, struct writeback_control *wbc) 184 { 185 return block_write_full_page(page, udf_get_block, wbc); 186 } 187 188 static int udf_writepages(struct address_space *mapping, 189 struct writeback_control *wbc) 190 { 191 return mpage_writepages(mapping, wbc, udf_get_block); 192 } 193 194 static int udf_readpage(struct file *file, struct page *page) 195 { 196 return mpage_readpage(page, udf_get_block); 197 } 198 199 static int udf_readpages(struct file *file, struct address_space *mapping, 200 struct list_head *pages, unsigned nr_pages) 201 { 202 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 203 } 204 205 static int udf_write_begin(struct file *file, struct address_space *mapping, 206 loff_t pos, unsigned len, unsigned flags, 207 struct page **pagep, void **fsdata) 208 { 209 int ret; 210 211 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 212 if (unlikely(ret)) 213 udf_write_failed(mapping, pos + len); 214 return ret; 215 } 216 217 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 218 loff_t offset) 219 { 220 struct file *file = iocb->ki_filp; 221 struct address_space *mapping = file->f_mapping; 222 struct inode *inode = mapping->host; 223 size_t count = iov_iter_count(iter); 224 ssize_t ret; 225 226 ret = blockdev_direct_IO(iocb, inode, iter, offset, udf_get_block); 227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 228 udf_write_failed(mapping, offset + count); 229 return ret; 230 } 231 232 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 233 { 234 return generic_block_bmap(mapping, block, udf_get_block); 235 } 236 237 const struct address_space_operations udf_aops = { 238 .readpage = udf_readpage, 239 .readpages = udf_readpages, 240 .writepage = udf_writepage, 241 .writepages = udf_writepages, 242 .write_begin = udf_write_begin, 243 .write_end = generic_write_end, 244 .direct_IO = udf_direct_IO, 245 .bmap = udf_bmap, 246 }; 247 248 /* 249 * Expand file stored in ICB to a normal one-block-file 250 * 251 * This function requires i_data_sem for writing and releases it. 252 * This function requires i_mutex held 253 */ 254 int udf_expand_file_adinicb(struct inode *inode) 255 { 256 struct page *page; 257 char *kaddr; 258 struct udf_inode_info *iinfo = UDF_I(inode); 259 int err; 260 struct writeback_control udf_wbc = { 261 .sync_mode = WB_SYNC_NONE, 262 .nr_to_write = 1, 263 }; 264 265 WARN_ON_ONCE(!inode_is_locked(inode)); 266 if (!iinfo->i_lenAlloc) { 267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 269 else 270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 271 /* from now on we have normal address_space methods */ 272 inode->i_data.a_ops = &udf_aops; 273 up_write(&iinfo->i_data_sem); 274 mark_inode_dirty(inode); 275 return 0; 276 } 277 /* 278 * Release i_data_sem so that we can lock a page - page lock ranks 279 * above i_data_sem. i_mutex still protects us against file changes. 280 */ 281 up_write(&iinfo->i_data_sem); 282 283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 284 if (!page) 285 return -ENOMEM; 286 287 if (!PageUptodate(page)) { 288 kaddr = kmap(page); 289 memset(kaddr + iinfo->i_lenAlloc, 0x00, 290 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 291 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 292 iinfo->i_lenAlloc); 293 flush_dcache_page(page); 294 SetPageUptodate(page); 295 kunmap(page); 296 } 297 down_write(&iinfo->i_data_sem); 298 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 299 iinfo->i_lenAlloc); 300 iinfo->i_lenAlloc = 0; 301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 303 else 304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 305 /* from now on we have normal address_space methods */ 306 inode->i_data.a_ops = &udf_aops; 307 up_write(&iinfo->i_data_sem); 308 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 309 if (err) { 310 /* Restore everything back so that we don't lose data... */ 311 lock_page(page); 312 kaddr = kmap(page); 313 down_write(&iinfo->i_data_sem); 314 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 315 inode->i_size); 316 kunmap(page); 317 unlock_page(page); 318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 319 inode->i_data.a_ops = &udf_adinicb_aops; 320 up_write(&iinfo->i_data_sem); 321 } 322 page_cache_release(page); 323 mark_inode_dirty(inode); 324 325 return err; 326 } 327 328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 329 int *err) 330 { 331 int newblock; 332 struct buffer_head *dbh = NULL; 333 struct kernel_lb_addr eloc; 334 uint8_t alloctype; 335 struct extent_position epos; 336 337 struct udf_fileident_bh sfibh, dfibh; 338 loff_t f_pos = udf_ext0_offset(inode); 339 int size = udf_ext0_offset(inode) + inode->i_size; 340 struct fileIdentDesc cfi, *sfi, *dfi; 341 struct udf_inode_info *iinfo = UDF_I(inode); 342 343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 344 alloctype = ICBTAG_FLAG_AD_SHORT; 345 else 346 alloctype = ICBTAG_FLAG_AD_LONG; 347 348 if (!inode->i_size) { 349 iinfo->i_alloc_type = alloctype; 350 mark_inode_dirty(inode); 351 return NULL; 352 } 353 354 /* alloc block, and copy data to it */ 355 *block = udf_new_block(inode->i_sb, inode, 356 iinfo->i_location.partitionReferenceNum, 357 iinfo->i_location.logicalBlockNum, err); 358 if (!(*block)) 359 return NULL; 360 newblock = udf_get_pblock(inode->i_sb, *block, 361 iinfo->i_location.partitionReferenceNum, 362 0); 363 if (!newblock) 364 return NULL; 365 dbh = udf_tgetblk(inode->i_sb, newblock); 366 if (!dbh) 367 return NULL; 368 lock_buffer(dbh); 369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 370 set_buffer_uptodate(dbh); 371 unlock_buffer(dbh); 372 mark_buffer_dirty_inode(dbh, inode); 373 374 sfibh.soffset = sfibh.eoffset = 375 f_pos & (inode->i_sb->s_blocksize - 1); 376 sfibh.sbh = sfibh.ebh = NULL; 377 dfibh.soffset = dfibh.eoffset = 0; 378 dfibh.sbh = dfibh.ebh = dbh; 379 while (f_pos < size) { 380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 382 NULL, NULL, NULL); 383 if (!sfi) { 384 brelse(dbh); 385 return NULL; 386 } 387 iinfo->i_alloc_type = alloctype; 388 sfi->descTag.tagLocation = cpu_to_le32(*block); 389 dfibh.soffset = dfibh.eoffset; 390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 393 sfi->fileIdent + 394 le16_to_cpu(sfi->lengthOfImpUse))) { 395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 396 brelse(dbh); 397 return NULL; 398 } 399 } 400 mark_buffer_dirty_inode(dbh, inode); 401 402 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 403 iinfo->i_lenAlloc); 404 iinfo->i_lenAlloc = 0; 405 eloc.logicalBlockNum = *block; 406 eloc.partitionReferenceNum = 407 iinfo->i_location.partitionReferenceNum; 408 iinfo->i_lenExtents = inode->i_size; 409 epos.bh = NULL; 410 epos.block = iinfo->i_location; 411 epos.offset = udf_file_entry_alloc_offset(inode); 412 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 413 /* UniqueID stuff */ 414 415 brelse(epos.bh); 416 mark_inode_dirty(inode); 417 return dbh; 418 } 419 420 static int udf_get_block(struct inode *inode, sector_t block, 421 struct buffer_head *bh_result, int create) 422 { 423 int err, new; 424 sector_t phys = 0; 425 struct udf_inode_info *iinfo; 426 427 if (!create) { 428 phys = udf_block_map(inode, block); 429 if (phys) 430 map_bh(bh_result, inode->i_sb, phys); 431 return 0; 432 } 433 434 err = -EIO; 435 new = 0; 436 iinfo = UDF_I(inode); 437 438 down_write(&iinfo->i_data_sem); 439 if (block == iinfo->i_next_alloc_block + 1) { 440 iinfo->i_next_alloc_block++; 441 iinfo->i_next_alloc_goal++; 442 } 443 444 udf_clear_extent_cache(inode); 445 phys = inode_getblk(inode, block, &err, &new); 446 if (!phys) 447 goto abort; 448 449 if (new) 450 set_buffer_new(bh_result); 451 map_bh(bh_result, inode->i_sb, phys); 452 453 abort: 454 up_write(&iinfo->i_data_sem); 455 return err; 456 } 457 458 static struct buffer_head *udf_getblk(struct inode *inode, long block, 459 int create, int *err) 460 { 461 struct buffer_head *bh; 462 struct buffer_head dummy; 463 464 dummy.b_state = 0; 465 dummy.b_blocknr = -1000; 466 *err = udf_get_block(inode, block, &dummy, create); 467 if (!*err && buffer_mapped(&dummy)) { 468 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 469 if (buffer_new(&dummy)) { 470 lock_buffer(bh); 471 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 472 set_buffer_uptodate(bh); 473 unlock_buffer(bh); 474 mark_buffer_dirty_inode(bh, inode); 475 } 476 return bh; 477 } 478 479 return NULL; 480 } 481 482 /* Extend the file by 'blocks' blocks, return the number of extents added */ 483 static int udf_do_extend_file(struct inode *inode, 484 struct extent_position *last_pos, 485 struct kernel_long_ad *last_ext, 486 sector_t blocks) 487 { 488 sector_t add; 489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 490 struct super_block *sb = inode->i_sb; 491 struct kernel_lb_addr prealloc_loc = {}; 492 int prealloc_len = 0; 493 struct udf_inode_info *iinfo; 494 int err; 495 496 /* The previous extent is fake and we should not extend by anything 497 * - there's nothing to do... */ 498 if (!blocks && fake) 499 return 0; 500 501 iinfo = UDF_I(inode); 502 /* Round the last extent up to a multiple of block size */ 503 if (last_ext->extLength & (sb->s_blocksize - 1)) { 504 last_ext->extLength = 505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 508 iinfo->i_lenExtents = 509 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 510 ~(sb->s_blocksize - 1); 511 } 512 513 /* Last extent are just preallocated blocks? */ 514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 515 EXT_NOT_RECORDED_ALLOCATED) { 516 /* Save the extent so that we can reattach it to the end */ 517 prealloc_loc = last_ext->extLocation; 518 prealloc_len = last_ext->extLength; 519 /* Mark the extent as a hole */ 520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 522 last_ext->extLocation.logicalBlockNum = 0; 523 last_ext->extLocation.partitionReferenceNum = 0; 524 } 525 526 /* Can we merge with the previous extent? */ 527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 528 EXT_NOT_RECORDED_NOT_ALLOCATED) { 529 add = ((1 << 30) - sb->s_blocksize - 530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 531 sb->s_blocksize_bits; 532 if (add > blocks) 533 add = blocks; 534 blocks -= add; 535 last_ext->extLength += add << sb->s_blocksize_bits; 536 } 537 538 if (fake) { 539 udf_add_aext(inode, last_pos, &last_ext->extLocation, 540 last_ext->extLength, 1); 541 count++; 542 } else { 543 struct kernel_lb_addr tmploc; 544 uint32_t tmplen; 545 546 udf_write_aext(inode, last_pos, &last_ext->extLocation, 547 last_ext->extLength, 1); 548 /* 549 * We've rewritten the last extent but there may be empty 550 * indirect extent after it - enter it. 551 */ 552 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 553 } 554 555 /* Managed to do everything necessary? */ 556 if (!blocks) 557 goto out; 558 559 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 560 last_ext->extLocation.logicalBlockNum = 0; 561 last_ext->extLocation.partitionReferenceNum = 0; 562 add = (1 << (30-sb->s_blocksize_bits)) - 1; 563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 564 (add << sb->s_blocksize_bits); 565 566 /* Create enough extents to cover the whole hole */ 567 while (blocks > add) { 568 blocks -= add; 569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 570 last_ext->extLength, 1); 571 if (err) 572 return err; 573 count++; 574 } 575 if (blocks) { 576 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 577 (blocks << sb->s_blocksize_bits); 578 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 579 last_ext->extLength, 1); 580 if (err) 581 return err; 582 count++; 583 } 584 585 out: 586 /* Do we have some preallocated blocks saved? */ 587 if (prealloc_len) { 588 err = udf_add_aext(inode, last_pos, &prealloc_loc, 589 prealloc_len, 1); 590 if (err) 591 return err; 592 last_ext->extLocation = prealloc_loc; 593 last_ext->extLength = prealloc_len; 594 count++; 595 } 596 597 /* last_pos should point to the last written extent... */ 598 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 599 last_pos->offset -= sizeof(struct short_ad); 600 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 601 last_pos->offset -= sizeof(struct long_ad); 602 else 603 return -EIO; 604 605 return count; 606 } 607 608 static int udf_extend_file(struct inode *inode, loff_t newsize) 609 { 610 611 struct extent_position epos; 612 struct kernel_lb_addr eloc; 613 uint32_t elen; 614 int8_t etype; 615 struct super_block *sb = inode->i_sb; 616 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 617 int adsize; 618 struct udf_inode_info *iinfo = UDF_I(inode); 619 struct kernel_long_ad extent; 620 int err; 621 622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 623 adsize = sizeof(struct short_ad); 624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 625 adsize = sizeof(struct long_ad); 626 else 627 BUG(); 628 629 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 630 631 /* File has extent covering the new size (could happen when extending 632 * inside a block)? */ 633 if (etype != -1) 634 return 0; 635 if (newsize & (sb->s_blocksize - 1)) 636 offset++; 637 /* Extended file just to the boundary of the last file block? */ 638 if (offset == 0) 639 return 0; 640 641 /* Truncate is extending the file by 'offset' blocks */ 642 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 643 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 644 /* File has no extents at all or has empty last 645 * indirect extent! Create a fake extent... */ 646 extent.extLocation.logicalBlockNum = 0; 647 extent.extLocation.partitionReferenceNum = 0; 648 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 649 } else { 650 epos.offset -= adsize; 651 etype = udf_next_aext(inode, &epos, &extent.extLocation, 652 &extent.extLength, 0); 653 extent.extLength |= etype << 30; 654 } 655 err = udf_do_extend_file(inode, &epos, &extent, offset); 656 if (err < 0) 657 goto out; 658 err = 0; 659 iinfo->i_lenExtents = newsize; 660 out: 661 brelse(epos.bh); 662 return err; 663 } 664 665 static sector_t inode_getblk(struct inode *inode, sector_t block, 666 int *err, int *new) 667 { 668 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 669 struct extent_position prev_epos, cur_epos, next_epos; 670 int count = 0, startnum = 0, endnum = 0; 671 uint32_t elen = 0, tmpelen; 672 struct kernel_lb_addr eloc, tmpeloc; 673 int c = 1; 674 loff_t lbcount = 0, b_off = 0; 675 uint32_t newblocknum, newblock; 676 sector_t offset = 0; 677 int8_t etype; 678 struct udf_inode_info *iinfo = UDF_I(inode); 679 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 680 int lastblock = 0; 681 bool isBeyondEOF; 682 683 *err = 0; 684 *new = 0; 685 prev_epos.offset = udf_file_entry_alloc_offset(inode); 686 prev_epos.block = iinfo->i_location; 687 prev_epos.bh = NULL; 688 cur_epos = next_epos = prev_epos; 689 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 690 691 /* find the extent which contains the block we are looking for. 692 alternate between laarr[0] and laarr[1] for locations of the 693 current extent, and the previous extent */ 694 do { 695 if (prev_epos.bh != cur_epos.bh) { 696 brelse(prev_epos.bh); 697 get_bh(cur_epos.bh); 698 prev_epos.bh = cur_epos.bh; 699 } 700 if (cur_epos.bh != next_epos.bh) { 701 brelse(cur_epos.bh); 702 get_bh(next_epos.bh); 703 cur_epos.bh = next_epos.bh; 704 } 705 706 lbcount += elen; 707 708 prev_epos.block = cur_epos.block; 709 cur_epos.block = next_epos.block; 710 711 prev_epos.offset = cur_epos.offset; 712 cur_epos.offset = next_epos.offset; 713 714 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 715 if (etype == -1) 716 break; 717 718 c = !c; 719 720 laarr[c].extLength = (etype << 30) | elen; 721 laarr[c].extLocation = eloc; 722 723 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 724 pgoal = eloc.logicalBlockNum + 725 ((elen + inode->i_sb->s_blocksize - 1) >> 726 inode->i_sb->s_blocksize_bits); 727 728 count++; 729 } while (lbcount + elen <= b_off); 730 731 b_off -= lbcount; 732 offset = b_off >> inode->i_sb->s_blocksize_bits; 733 /* 734 * Move prev_epos and cur_epos into indirect extent if we are at 735 * the pointer to it 736 */ 737 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 738 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 739 740 /* if the extent is allocated and recorded, return the block 741 if the extent is not a multiple of the blocksize, round up */ 742 743 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 744 if (elen & (inode->i_sb->s_blocksize - 1)) { 745 elen = EXT_RECORDED_ALLOCATED | 746 ((elen + inode->i_sb->s_blocksize - 1) & 747 ~(inode->i_sb->s_blocksize - 1)); 748 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 749 } 750 brelse(prev_epos.bh); 751 brelse(cur_epos.bh); 752 brelse(next_epos.bh); 753 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 754 return newblock; 755 } 756 757 /* Are we beyond EOF? */ 758 if (etype == -1) { 759 int ret; 760 isBeyondEOF = true; 761 if (count) { 762 if (c) 763 laarr[0] = laarr[1]; 764 startnum = 1; 765 } else { 766 /* Create a fake extent when there's not one */ 767 memset(&laarr[0].extLocation, 0x00, 768 sizeof(struct kernel_lb_addr)); 769 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 770 /* Will udf_do_extend_file() create real extent from 771 a fake one? */ 772 startnum = (offset > 0); 773 } 774 /* Create extents for the hole between EOF and offset */ 775 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 776 if (ret < 0) { 777 brelse(prev_epos.bh); 778 brelse(cur_epos.bh); 779 brelse(next_epos.bh); 780 *err = ret; 781 return 0; 782 } 783 c = 0; 784 offset = 0; 785 count += ret; 786 /* We are not covered by a preallocated extent? */ 787 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 788 EXT_NOT_RECORDED_ALLOCATED) { 789 /* Is there any real extent? - otherwise we overwrite 790 * the fake one... */ 791 if (count) 792 c = !c; 793 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 794 inode->i_sb->s_blocksize; 795 memset(&laarr[c].extLocation, 0x00, 796 sizeof(struct kernel_lb_addr)); 797 count++; 798 } 799 endnum = c + 1; 800 lastblock = 1; 801 } else { 802 isBeyondEOF = false; 803 endnum = startnum = ((count > 2) ? 2 : count); 804 805 /* if the current extent is in position 0, 806 swap it with the previous */ 807 if (!c && count != 1) { 808 laarr[2] = laarr[0]; 809 laarr[0] = laarr[1]; 810 laarr[1] = laarr[2]; 811 c = 1; 812 } 813 814 /* if the current block is located in an extent, 815 read the next extent */ 816 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 817 if (etype != -1) { 818 laarr[c + 1].extLength = (etype << 30) | elen; 819 laarr[c + 1].extLocation = eloc; 820 count++; 821 startnum++; 822 endnum++; 823 } else 824 lastblock = 1; 825 } 826 827 /* if the current extent is not recorded but allocated, get the 828 * block in the extent corresponding to the requested block */ 829 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 830 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 831 else { /* otherwise, allocate a new block */ 832 if (iinfo->i_next_alloc_block == block) 833 goal = iinfo->i_next_alloc_goal; 834 835 if (!goal) { 836 if (!(goal = pgoal)) /* XXX: what was intended here? */ 837 goal = iinfo->i_location.logicalBlockNum + 1; 838 } 839 840 newblocknum = udf_new_block(inode->i_sb, inode, 841 iinfo->i_location.partitionReferenceNum, 842 goal, err); 843 if (!newblocknum) { 844 brelse(prev_epos.bh); 845 brelse(cur_epos.bh); 846 brelse(next_epos.bh); 847 *err = -ENOSPC; 848 return 0; 849 } 850 if (isBeyondEOF) 851 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 852 } 853 854 /* if the extent the requsted block is located in contains multiple 855 * blocks, split the extent into at most three extents. blocks prior 856 * to requested block, requested block, and blocks after requested 857 * block */ 858 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 859 860 #ifdef UDF_PREALLOCATE 861 /* We preallocate blocks only for regular files. It also makes sense 862 * for directories but there's a problem when to drop the 863 * preallocation. We might use some delayed work for that but I feel 864 * it's overengineering for a filesystem like UDF. */ 865 if (S_ISREG(inode->i_mode)) 866 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 867 #endif 868 869 /* merge any continuous blocks in laarr */ 870 udf_merge_extents(inode, laarr, &endnum); 871 872 /* write back the new extents, inserting new extents if the new number 873 * of extents is greater than the old number, and deleting extents if 874 * the new number of extents is less than the old number */ 875 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 876 877 brelse(prev_epos.bh); 878 brelse(cur_epos.bh); 879 brelse(next_epos.bh); 880 881 newblock = udf_get_pblock(inode->i_sb, newblocknum, 882 iinfo->i_location.partitionReferenceNum, 0); 883 if (!newblock) { 884 *err = -EIO; 885 return 0; 886 } 887 *new = 1; 888 iinfo->i_next_alloc_block = block; 889 iinfo->i_next_alloc_goal = newblocknum; 890 inode->i_ctime = current_fs_time(inode->i_sb); 891 892 if (IS_SYNC(inode)) 893 udf_sync_inode(inode); 894 else 895 mark_inode_dirty(inode); 896 897 return newblock; 898 } 899 900 static void udf_split_extents(struct inode *inode, int *c, int offset, 901 int newblocknum, 902 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 903 int *endnum) 904 { 905 unsigned long blocksize = inode->i_sb->s_blocksize; 906 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 907 908 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 909 (laarr[*c].extLength >> 30) == 910 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 911 int curr = *c; 912 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 913 blocksize - 1) >> blocksize_bits; 914 int8_t etype = (laarr[curr].extLength >> 30); 915 916 if (blen == 1) 917 ; 918 else if (!offset || blen == offset + 1) { 919 laarr[curr + 2] = laarr[curr + 1]; 920 laarr[curr + 1] = laarr[curr]; 921 } else { 922 laarr[curr + 3] = laarr[curr + 1]; 923 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 924 } 925 926 if (offset) { 927 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 928 udf_free_blocks(inode->i_sb, inode, 929 &laarr[curr].extLocation, 930 0, offset); 931 laarr[curr].extLength = 932 EXT_NOT_RECORDED_NOT_ALLOCATED | 933 (offset << blocksize_bits); 934 laarr[curr].extLocation.logicalBlockNum = 0; 935 laarr[curr].extLocation. 936 partitionReferenceNum = 0; 937 } else 938 laarr[curr].extLength = (etype << 30) | 939 (offset << blocksize_bits); 940 curr++; 941 (*c)++; 942 (*endnum)++; 943 } 944 945 laarr[curr].extLocation.logicalBlockNum = newblocknum; 946 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 947 laarr[curr].extLocation.partitionReferenceNum = 948 UDF_I(inode)->i_location.partitionReferenceNum; 949 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 950 blocksize; 951 curr++; 952 953 if (blen != offset + 1) { 954 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 955 laarr[curr].extLocation.logicalBlockNum += 956 offset + 1; 957 laarr[curr].extLength = (etype << 30) | 958 ((blen - (offset + 1)) << blocksize_bits); 959 curr++; 960 (*endnum)++; 961 } 962 } 963 } 964 965 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 966 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 967 int *endnum) 968 { 969 int start, length = 0, currlength = 0, i; 970 971 if (*endnum >= (c + 1)) { 972 if (!lastblock) 973 return; 974 else 975 start = c; 976 } else { 977 if ((laarr[c + 1].extLength >> 30) == 978 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 979 start = c + 1; 980 length = currlength = 981 (((laarr[c + 1].extLength & 982 UDF_EXTENT_LENGTH_MASK) + 983 inode->i_sb->s_blocksize - 1) >> 984 inode->i_sb->s_blocksize_bits); 985 } else 986 start = c; 987 } 988 989 for (i = start + 1; i <= *endnum; i++) { 990 if (i == *endnum) { 991 if (lastblock) 992 length += UDF_DEFAULT_PREALLOC_BLOCKS; 993 } else if ((laarr[i].extLength >> 30) == 994 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 995 length += (((laarr[i].extLength & 996 UDF_EXTENT_LENGTH_MASK) + 997 inode->i_sb->s_blocksize - 1) >> 998 inode->i_sb->s_blocksize_bits); 999 } else 1000 break; 1001 } 1002 1003 if (length) { 1004 int next = laarr[start].extLocation.logicalBlockNum + 1005 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1006 inode->i_sb->s_blocksize - 1) >> 1007 inode->i_sb->s_blocksize_bits); 1008 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1009 laarr[start].extLocation.partitionReferenceNum, 1010 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1011 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1012 currlength); 1013 if (numalloc) { 1014 if (start == (c + 1)) 1015 laarr[start].extLength += 1016 (numalloc << 1017 inode->i_sb->s_blocksize_bits); 1018 else { 1019 memmove(&laarr[c + 2], &laarr[c + 1], 1020 sizeof(struct long_ad) * (*endnum - (c + 1))); 1021 (*endnum)++; 1022 laarr[c + 1].extLocation.logicalBlockNum = next; 1023 laarr[c + 1].extLocation.partitionReferenceNum = 1024 laarr[c].extLocation. 1025 partitionReferenceNum; 1026 laarr[c + 1].extLength = 1027 EXT_NOT_RECORDED_ALLOCATED | 1028 (numalloc << 1029 inode->i_sb->s_blocksize_bits); 1030 start = c + 1; 1031 } 1032 1033 for (i = start + 1; numalloc && i < *endnum; i++) { 1034 int elen = ((laarr[i].extLength & 1035 UDF_EXTENT_LENGTH_MASK) + 1036 inode->i_sb->s_blocksize - 1) >> 1037 inode->i_sb->s_blocksize_bits; 1038 1039 if (elen > numalloc) { 1040 laarr[i].extLength -= 1041 (numalloc << 1042 inode->i_sb->s_blocksize_bits); 1043 numalloc = 0; 1044 } else { 1045 numalloc -= elen; 1046 if (*endnum > (i + 1)) 1047 memmove(&laarr[i], 1048 &laarr[i + 1], 1049 sizeof(struct long_ad) * 1050 (*endnum - (i + 1))); 1051 i--; 1052 (*endnum)--; 1053 } 1054 } 1055 UDF_I(inode)->i_lenExtents += 1056 numalloc << inode->i_sb->s_blocksize_bits; 1057 } 1058 } 1059 } 1060 1061 static void udf_merge_extents(struct inode *inode, 1062 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1063 int *endnum) 1064 { 1065 int i; 1066 unsigned long blocksize = inode->i_sb->s_blocksize; 1067 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1068 1069 for (i = 0; i < (*endnum - 1); i++) { 1070 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1071 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1072 1073 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1074 (((li->extLength >> 30) == 1075 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1076 ((lip1->extLocation.logicalBlockNum - 1077 li->extLocation.logicalBlockNum) == 1078 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1079 blocksize - 1) >> blocksize_bits)))) { 1080 1081 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1082 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1083 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1084 lip1->extLength = (lip1->extLength - 1085 (li->extLength & 1086 UDF_EXTENT_LENGTH_MASK) + 1087 UDF_EXTENT_LENGTH_MASK) & 1088 ~(blocksize - 1); 1089 li->extLength = (li->extLength & 1090 UDF_EXTENT_FLAG_MASK) + 1091 (UDF_EXTENT_LENGTH_MASK + 1) - 1092 blocksize; 1093 lip1->extLocation.logicalBlockNum = 1094 li->extLocation.logicalBlockNum + 1095 ((li->extLength & 1096 UDF_EXTENT_LENGTH_MASK) >> 1097 blocksize_bits); 1098 } else { 1099 li->extLength = lip1->extLength + 1100 (((li->extLength & 1101 UDF_EXTENT_LENGTH_MASK) + 1102 blocksize - 1) & ~(blocksize - 1)); 1103 if (*endnum > (i + 2)) 1104 memmove(&laarr[i + 1], &laarr[i + 2], 1105 sizeof(struct long_ad) * 1106 (*endnum - (i + 2))); 1107 i--; 1108 (*endnum)--; 1109 } 1110 } else if (((li->extLength >> 30) == 1111 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1112 ((lip1->extLength >> 30) == 1113 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1114 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1115 ((li->extLength & 1116 UDF_EXTENT_LENGTH_MASK) + 1117 blocksize - 1) >> blocksize_bits); 1118 li->extLocation.logicalBlockNum = 0; 1119 li->extLocation.partitionReferenceNum = 0; 1120 1121 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1122 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1123 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1124 lip1->extLength = (lip1->extLength - 1125 (li->extLength & 1126 UDF_EXTENT_LENGTH_MASK) + 1127 UDF_EXTENT_LENGTH_MASK) & 1128 ~(blocksize - 1); 1129 li->extLength = (li->extLength & 1130 UDF_EXTENT_FLAG_MASK) + 1131 (UDF_EXTENT_LENGTH_MASK + 1) - 1132 blocksize; 1133 } else { 1134 li->extLength = lip1->extLength + 1135 (((li->extLength & 1136 UDF_EXTENT_LENGTH_MASK) + 1137 blocksize - 1) & ~(blocksize - 1)); 1138 if (*endnum > (i + 2)) 1139 memmove(&laarr[i + 1], &laarr[i + 2], 1140 sizeof(struct long_ad) * 1141 (*endnum - (i + 2))); 1142 i--; 1143 (*endnum)--; 1144 } 1145 } else if ((li->extLength >> 30) == 1146 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1147 udf_free_blocks(inode->i_sb, inode, 1148 &li->extLocation, 0, 1149 ((li->extLength & 1150 UDF_EXTENT_LENGTH_MASK) + 1151 blocksize - 1) >> blocksize_bits); 1152 li->extLocation.logicalBlockNum = 0; 1153 li->extLocation.partitionReferenceNum = 0; 1154 li->extLength = (li->extLength & 1155 UDF_EXTENT_LENGTH_MASK) | 1156 EXT_NOT_RECORDED_NOT_ALLOCATED; 1157 } 1158 } 1159 } 1160 1161 static void udf_update_extents(struct inode *inode, 1162 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1163 int startnum, int endnum, 1164 struct extent_position *epos) 1165 { 1166 int start = 0, i; 1167 struct kernel_lb_addr tmploc; 1168 uint32_t tmplen; 1169 1170 if (startnum > endnum) { 1171 for (i = 0; i < (startnum - endnum); i++) 1172 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1173 laarr[i].extLength); 1174 } else if (startnum < endnum) { 1175 for (i = 0; i < (endnum - startnum); i++) { 1176 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1177 laarr[i].extLength); 1178 udf_next_aext(inode, epos, &laarr[i].extLocation, 1179 &laarr[i].extLength, 1); 1180 start++; 1181 } 1182 } 1183 1184 for (i = start; i < endnum; i++) { 1185 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1186 udf_write_aext(inode, epos, &laarr[i].extLocation, 1187 laarr[i].extLength, 1); 1188 } 1189 } 1190 1191 struct buffer_head *udf_bread(struct inode *inode, int block, 1192 int create, int *err) 1193 { 1194 struct buffer_head *bh = NULL; 1195 1196 bh = udf_getblk(inode, block, create, err); 1197 if (!bh) 1198 return NULL; 1199 1200 if (buffer_uptodate(bh)) 1201 return bh; 1202 1203 ll_rw_block(READ, 1, &bh); 1204 1205 wait_on_buffer(bh); 1206 if (buffer_uptodate(bh)) 1207 return bh; 1208 1209 brelse(bh); 1210 *err = -EIO; 1211 return NULL; 1212 } 1213 1214 int udf_setsize(struct inode *inode, loff_t newsize) 1215 { 1216 int err; 1217 struct udf_inode_info *iinfo; 1218 int bsize = 1 << inode->i_blkbits; 1219 1220 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1221 S_ISLNK(inode->i_mode))) 1222 return -EINVAL; 1223 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1224 return -EPERM; 1225 1226 iinfo = UDF_I(inode); 1227 if (newsize > inode->i_size) { 1228 down_write(&iinfo->i_data_sem); 1229 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1230 if (bsize < 1231 (udf_file_entry_alloc_offset(inode) + newsize)) { 1232 err = udf_expand_file_adinicb(inode); 1233 if (err) 1234 return err; 1235 down_write(&iinfo->i_data_sem); 1236 } else { 1237 iinfo->i_lenAlloc = newsize; 1238 goto set_size; 1239 } 1240 } 1241 err = udf_extend_file(inode, newsize); 1242 if (err) { 1243 up_write(&iinfo->i_data_sem); 1244 return err; 1245 } 1246 set_size: 1247 truncate_setsize(inode, newsize); 1248 up_write(&iinfo->i_data_sem); 1249 } else { 1250 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1251 down_write(&iinfo->i_data_sem); 1252 udf_clear_extent_cache(inode); 1253 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1254 0x00, bsize - newsize - 1255 udf_file_entry_alloc_offset(inode)); 1256 iinfo->i_lenAlloc = newsize; 1257 truncate_setsize(inode, newsize); 1258 up_write(&iinfo->i_data_sem); 1259 goto update_time; 1260 } 1261 err = block_truncate_page(inode->i_mapping, newsize, 1262 udf_get_block); 1263 if (err) 1264 return err; 1265 down_write(&iinfo->i_data_sem); 1266 udf_clear_extent_cache(inode); 1267 truncate_setsize(inode, newsize); 1268 udf_truncate_extents(inode); 1269 up_write(&iinfo->i_data_sem); 1270 } 1271 update_time: 1272 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1273 if (IS_SYNC(inode)) 1274 udf_sync_inode(inode); 1275 else 1276 mark_inode_dirty(inode); 1277 return 0; 1278 } 1279 1280 /* 1281 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1282 * arbitrary - just that we hopefully don't limit any real use of rewritten 1283 * inode on write-once media but avoid looping for too long on corrupted media. 1284 */ 1285 #define UDF_MAX_ICB_NESTING 1024 1286 1287 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1288 { 1289 struct buffer_head *bh = NULL; 1290 struct fileEntry *fe; 1291 struct extendedFileEntry *efe; 1292 uint16_t ident; 1293 struct udf_inode_info *iinfo = UDF_I(inode); 1294 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1295 struct kernel_lb_addr *iloc = &iinfo->i_location; 1296 unsigned int link_count; 1297 unsigned int indirections = 0; 1298 int bs = inode->i_sb->s_blocksize; 1299 int ret = -EIO; 1300 1301 reread: 1302 if (iloc->logicalBlockNum >= 1303 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1304 udf_debug("block=%d, partition=%d out of range\n", 1305 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1306 return -EIO; 1307 } 1308 1309 /* 1310 * Set defaults, but the inode is still incomplete! 1311 * Note: get_new_inode() sets the following on a new inode: 1312 * i_sb = sb 1313 * i_no = ino 1314 * i_flags = sb->s_flags 1315 * i_state = 0 1316 * clean_inode(): zero fills and sets 1317 * i_count = 1 1318 * i_nlink = 1 1319 * i_op = NULL; 1320 */ 1321 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1322 if (!bh) { 1323 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1324 return -EIO; 1325 } 1326 1327 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1328 ident != TAG_IDENT_USE) { 1329 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1330 inode->i_ino, ident); 1331 goto out; 1332 } 1333 1334 fe = (struct fileEntry *)bh->b_data; 1335 efe = (struct extendedFileEntry *)bh->b_data; 1336 1337 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1338 struct buffer_head *ibh; 1339 1340 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1341 if (ident == TAG_IDENT_IE && ibh) { 1342 struct kernel_lb_addr loc; 1343 struct indirectEntry *ie; 1344 1345 ie = (struct indirectEntry *)ibh->b_data; 1346 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1347 1348 if (ie->indirectICB.extLength) { 1349 brelse(ibh); 1350 memcpy(&iinfo->i_location, &loc, 1351 sizeof(struct kernel_lb_addr)); 1352 if (++indirections > UDF_MAX_ICB_NESTING) { 1353 udf_err(inode->i_sb, 1354 "too many ICBs in ICB hierarchy" 1355 " (max %d supported)\n", 1356 UDF_MAX_ICB_NESTING); 1357 goto out; 1358 } 1359 brelse(bh); 1360 goto reread; 1361 } 1362 } 1363 brelse(ibh); 1364 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1365 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1366 le16_to_cpu(fe->icbTag.strategyType)); 1367 goto out; 1368 } 1369 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1370 iinfo->i_strat4096 = 0; 1371 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1372 iinfo->i_strat4096 = 1; 1373 1374 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1375 ICBTAG_FLAG_AD_MASK; 1376 iinfo->i_unique = 0; 1377 iinfo->i_lenEAttr = 0; 1378 iinfo->i_lenExtents = 0; 1379 iinfo->i_lenAlloc = 0; 1380 iinfo->i_next_alloc_block = 0; 1381 iinfo->i_next_alloc_goal = 0; 1382 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1383 iinfo->i_efe = 1; 1384 iinfo->i_use = 0; 1385 ret = udf_alloc_i_data(inode, bs - 1386 sizeof(struct extendedFileEntry)); 1387 if (ret) 1388 goto out; 1389 memcpy(iinfo->i_ext.i_data, 1390 bh->b_data + sizeof(struct extendedFileEntry), 1391 bs - sizeof(struct extendedFileEntry)); 1392 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1393 iinfo->i_efe = 0; 1394 iinfo->i_use = 0; 1395 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1396 if (ret) 1397 goto out; 1398 memcpy(iinfo->i_ext.i_data, 1399 bh->b_data + sizeof(struct fileEntry), 1400 bs - sizeof(struct fileEntry)); 1401 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1402 iinfo->i_efe = 0; 1403 iinfo->i_use = 1; 1404 iinfo->i_lenAlloc = le32_to_cpu( 1405 ((struct unallocSpaceEntry *)bh->b_data)-> 1406 lengthAllocDescs); 1407 ret = udf_alloc_i_data(inode, bs - 1408 sizeof(struct unallocSpaceEntry)); 1409 if (ret) 1410 goto out; 1411 memcpy(iinfo->i_ext.i_data, 1412 bh->b_data + sizeof(struct unallocSpaceEntry), 1413 bs - sizeof(struct unallocSpaceEntry)); 1414 return 0; 1415 } 1416 1417 ret = -EIO; 1418 read_lock(&sbi->s_cred_lock); 1419 i_uid_write(inode, le32_to_cpu(fe->uid)); 1420 if (!uid_valid(inode->i_uid) || 1421 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1422 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1423 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1424 1425 i_gid_write(inode, le32_to_cpu(fe->gid)); 1426 if (!gid_valid(inode->i_gid) || 1427 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1428 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1429 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1430 1431 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1432 sbi->s_fmode != UDF_INVALID_MODE) 1433 inode->i_mode = sbi->s_fmode; 1434 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1435 sbi->s_dmode != UDF_INVALID_MODE) 1436 inode->i_mode = sbi->s_dmode; 1437 else 1438 inode->i_mode = udf_convert_permissions(fe); 1439 inode->i_mode &= ~sbi->s_umask; 1440 read_unlock(&sbi->s_cred_lock); 1441 1442 link_count = le16_to_cpu(fe->fileLinkCount); 1443 if (!link_count) { 1444 if (!hidden_inode) { 1445 ret = -ESTALE; 1446 goto out; 1447 } 1448 link_count = 1; 1449 } 1450 set_nlink(inode, link_count); 1451 1452 inode->i_size = le64_to_cpu(fe->informationLength); 1453 iinfo->i_lenExtents = inode->i_size; 1454 1455 if (iinfo->i_efe == 0) { 1456 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1457 (inode->i_sb->s_blocksize_bits - 9); 1458 1459 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1460 inode->i_atime = sbi->s_record_time; 1461 1462 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1463 fe->modificationTime)) 1464 inode->i_mtime = sbi->s_record_time; 1465 1466 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1467 inode->i_ctime = sbi->s_record_time; 1468 1469 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1470 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1471 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1472 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1473 } else { 1474 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1475 (inode->i_sb->s_blocksize_bits - 9); 1476 1477 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1478 inode->i_atime = sbi->s_record_time; 1479 1480 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1481 efe->modificationTime)) 1482 inode->i_mtime = sbi->s_record_time; 1483 1484 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1485 iinfo->i_crtime = sbi->s_record_time; 1486 1487 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1488 inode->i_ctime = sbi->s_record_time; 1489 1490 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1491 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1492 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1493 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1494 } 1495 inode->i_generation = iinfo->i_unique; 1496 1497 /* 1498 * Sanity check length of allocation descriptors and extended attrs to 1499 * avoid integer overflows 1500 */ 1501 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1502 goto out; 1503 /* Now do exact checks */ 1504 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1505 goto out; 1506 /* Sanity checks for files in ICB so that we don't get confused later */ 1507 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1508 /* 1509 * For file in ICB data is stored in allocation descriptor 1510 * so sizes should match 1511 */ 1512 if (iinfo->i_lenAlloc != inode->i_size) 1513 goto out; 1514 /* File in ICB has to fit in there... */ 1515 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1516 goto out; 1517 } 1518 1519 switch (fe->icbTag.fileType) { 1520 case ICBTAG_FILE_TYPE_DIRECTORY: 1521 inode->i_op = &udf_dir_inode_operations; 1522 inode->i_fop = &udf_dir_operations; 1523 inode->i_mode |= S_IFDIR; 1524 inc_nlink(inode); 1525 break; 1526 case ICBTAG_FILE_TYPE_REALTIME: 1527 case ICBTAG_FILE_TYPE_REGULAR: 1528 case ICBTAG_FILE_TYPE_UNDEF: 1529 case ICBTAG_FILE_TYPE_VAT20: 1530 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1531 inode->i_data.a_ops = &udf_adinicb_aops; 1532 else 1533 inode->i_data.a_ops = &udf_aops; 1534 inode->i_op = &udf_file_inode_operations; 1535 inode->i_fop = &udf_file_operations; 1536 inode->i_mode |= S_IFREG; 1537 break; 1538 case ICBTAG_FILE_TYPE_BLOCK: 1539 inode->i_mode |= S_IFBLK; 1540 break; 1541 case ICBTAG_FILE_TYPE_CHAR: 1542 inode->i_mode |= S_IFCHR; 1543 break; 1544 case ICBTAG_FILE_TYPE_FIFO: 1545 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1546 break; 1547 case ICBTAG_FILE_TYPE_SOCKET: 1548 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1549 break; 1550 case ICBTAG_FILE_TYPE_SYMLINK: 1551 inode->i_data.a_ops = &udf_symlink_aops; 1552 inode->i_op = &page_symlink_inode_operations; 1553 inode_nohighmem(inode); 1554 inode->i_mode = S_IFLNK | S_IRWXUGO; 1555 break; 1556 case ICBTAG_FILE_TYPE_MAIN: 1557 udf_debug("METADATA FILE-----\n"); 1558 break; 1559 case ICBTAG_FILE_TYPE_MIRROR: 1560 udf_debug("METADATA MIRROR FILE-----\n"); 1561 break; 1562 case ICBTAG_FILE_TYPE_BITMAP: 1563 udf_debug("METADATA BITMAP FILE-----\n"); 1564 break; 1565 default: 1566 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1567 inode->i_ino, fe->icbTag.fileType); 1568 goto out; 1569 } 1570 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1571 struct deviceSpec *dsea = 1572 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1573 if (dsea) { 1574 init_special_inode(inode, inode->i_mode, 1575 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1576 le32_to_cpu(dsea->minorDeviceIdent))); 1577 /* Developer ID ??? */ 1578 } else 1579 goto out; 1580 } 1581 ret = 0; 1582 out: 1583 brelse(bh); 1584 return ret; 1585 } 1586 1587 static int udf_alloc_i_data(struct inode *inode, size_t size) 1588 { 1589 struct udf_inode_info *iinfo = UDF_I(inode); 1590 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1591 1592 if (!iinfo->i_ext.i_data) { 1593 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1594 inode->i_ino); 1595 return -ENOMEM; 1596 } 1597 1598 return 0; 1599 } 1600 1601 static umode_t udf_convert_permissions(struct fileEntry *fe) 1602 { 1603 umode_t mode; 1604 uint32_t permissions; 1605 uint32_t flags; 1606 1607 permissions = le32_to_cpu(fe->permissions); 1608 flags = le16_to_cpu(fe->icbTag.flags); 1609 1610 mode = ((permissions) & S_IRWXO) | 1611 ((permissions >> 2) & S_IRWXG) | 1612 ((permissions >> 4) & S_IRWXU) | 1613 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1614 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1615 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1616 1617 return mode; 1618 } 1619 1620 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1621 { 1622 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1623 } 1624 1625 static int udf_sync_inode(struct inode *inode) 1626 { 1627 return udf_update_inode(inode, 1); 1628 } 1629 1630 static int udf_update_inode(struct inode *inode, int do_sync) 1631 { 1632 struct buffer_head *bh = NULL; 1633 struct fileEntry *fe; 1634 struct extendedFileEntry *efe; 1635 uint64_t lb_recorded; 1636 uint32_t udfperms; 1637 uint16_t icbflags; 1638 uint16_t crclen; 1639 int err = 0; 1640 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1641 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1642 struct udf_inode_info *iinfo = UDF_I(inode); 1643 1644 bh = udf_tgetblk(inode->i_sb, 1645 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1646 if (!bh) { 1647 udf_debug("getblk failure\n"); 1648 return -EIO; 1649 } 1650 1651 lock_buffer(bh); 1652 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1653 fe = (struct fileEntry *)bh->b_data; 1654 efe = (struct extendedFileEntry *)bh->b_data; 1655 1656 if (iinfo->i_use) { 1657 struct unallocSpaceEntry *use = 1658 (struct unallocSpaceEntry *)bh->b_data; 1659 1660 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1661 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1662 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1663 sizeof(struct unallocSpaceEntry)); 1664 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1665 crclen = sizeof(struct unallocSpaceEntry); 1666 1667 goto finish; 1668 } 1669 1670 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1671 fe->uid = cpu_to_le32(-1); 1672 else 1673 fe->uid = cpu_to_le32(i_uid_read(inode)); 1674 1675 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1676 fe->gid = cpu_to_le32(-1); 1677 else 1678 fe->gid = cpu_to_le32(i_gid_read(inode)); 1679 1680 udfperms = ((inode->i_mode & S_IRWXO)) | 1681 ((inode->i_mode & S_IRWXG) << 2) | 1682 ((inode->i_mode & S_IRWXU) << 4); 1683 1684 udfperms |= (le32_to_cpu(fe->permissions) & 1685 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1686 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1687 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1688 fe->permissions = cpu_to_le32(udfperms); 1689 1690 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1691 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1692 else 1693 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1694 1695 fe->informationLength = cpu_to_le64(inode->i_size); 1696 1697 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1698 struct regid *eid; 1699 struct deviceSpec *dsea = 1700 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1701 if (!dsea) { 1702 dsea = (struct deviceSpec *) 1703 udf_add_extendedattr(inode, 1704 sizeof(struct deviceSpec) + 1705 sizeof(struct regid), 12, 0x3); 1706 dsea->attrType = cpu_to_le32(12); 1707 dsea->attrSubtype = 1; 1708 dsea->attrLength = cpu_to_le32( 1709 sizeof(struct deviceSpec) + 1710 sizeof(struct regid)); 1711 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1712 } 1713 eid = (struct regid *)dsea->impUse; 1714 memset(eid, 0, sizeof(struct regid)); 1715 strcpy(eid->ident, UDF_ID_DEVELOPER); 1716 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1717 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1718 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1719 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1720 } 1721 1722 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1723 lb_recorded = 0; /* No extents => no blocks! */ 1724 else 1725 lb_recorded = 1726 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1727 (blocksize_bits - 9); 1728 1729 if (iinfo->i_efe == 0) { 1730 memcpy(bh->b_data + sizeof(struct fileEntry), 1731 iinfo->i_ext.i_data, 1732 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1733 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1734 1735 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1736 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1737 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1738 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1739 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1740 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1741 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1742 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1743 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1744 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1745 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1746 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1747 crclen = sizeof(struct fileEntry); 1748 } else { 1749 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1750 iinfo->i_ext.i_data, 1751 inode->i_sb->s_blocksize - 1752 sizeof(struct extendedFileEntry)); 1753 efe->objectSize = cpu_to_le64(inode->i_size); 1754 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1755 1756 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1757 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1758 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1759 iinfo->i_crtime = inode->i_atime; 1760 1761 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1762 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1763 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1764 iinfo->i_crtime = inode->i_mtime; 1765 1766 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1767 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1768 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1769 iinfo->i_crtime = inode->i_ctime; 1770 1771 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1772 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1773 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1774 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1775 1776 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1777 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1778 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1779 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1780 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1781 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1782 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1783 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1784 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1785 crclen = sizeof(struct extendedFileEntry); 1786 } 1787 1788 finish: 1789 if (iinfo->i_strat4096) { 1790 fe->icbTag.strategyType = cpu_to_le16(4096); 1791 fe->icbTag.strategyParameter = cpu_to_le16(1); 1792 fe->icbTag.numEntries = cpu_to_le16(2); 1793 } else { 1794 fe->icbTag.strategyType = cpu_to_le16(4); 1795 fe->icbTag.numEntries = cpu_to_le16(1); 1796 } 1797 1798 if (iinfo->i_use) 1799 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1800 else if (S_ISDIR(inode->i_mode)) 1801 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1802 else if (S_ISREG(inode->i_mode)) 1803 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1804 else if (S_ISLNK(inode->i_mode)) 1805 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1806 else if (S_ISBLK(inode->i_mode)) 1807 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1808 else if (S_ISCHR(inode->i_mode)) 1809 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1810 else if (S_ISFIFO(inode->i_mode)) 1811 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1812 else if (S_ISSOCK(inode->i_mode)) 1813 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1814 1815 icbflags = iinfo->i_alloc_type | 1816 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1817 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1818 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1819 (le16_to_cpu(fe->icbTag.flags) & 1820 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1821 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1822 1823 fe->icbTag.flags = cpu_to_le16(icbflags); 1824 if (sbi->s_udfrev >= 0x0200) 1825 fe->descTag.descVersion = cpu_to_le16(3); 1826 else 1827 fe->descTag.descVersion = cpu_to_le16(2); 1828 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1829 fe->descTag.tagLocation = cpu_to_le32( 1830 iinfo->i_location.logicalBlockNum); 1831 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1832 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1833 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1834 crclen)); 1835 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1836 1837 set_buffer_uptodate(bh); 1838 unlock_buffer(bh); 1839 1840 /* write the data blocks */ 1841 mark_buffer_dirty(bh); 1842 if (do_sync) { 1843 sync_dirty_buffer(bh); 1844 if (buffer_write_io_error(bh)) { 1845 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1846 inode->i_ino); 1847 err = -EIO; 1848 } 1849 } 1850 brelse(bh); 1851 1852 return err; 1853 } 1854 1855 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1856 bool hidden_inode) 1857 { 1858 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1859 struct inode *inode = iget_locked(sb, block); 1860 int err; 1861 1862 if (!inode) 1863 return ERR_PTR(-ENOMEM); 1864 1865 if (!(inode->i_state & I_NEW)) 1866 return inode; 1867 1868 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1869 err = udf_read_inode(inode, hidden_inode); 1870 if (err < 0) { 1871 iget_failed(inode); 1872 return ERR_PTR(err); 1873 } 1874 unlock_new_inode(inode); 1875 1876 return inode; 1877 } 1878 1879 int udf_setup_indirect_aext(struct inode *inode, int block, 1880 struct extent_position *epos) 1881 { 1882 struct super_block *sb = inode->i_sb; 1883 struct buffer_head *bh; 1884 struct allocExtDesc *aed; 1885 struct extent_position nepos; 1886 struct kernel_lb_addr neloc; 1887 int ver, adsize; 1888 1889 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1890 adsize = sizeof(struct short_ad); 1891 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1892 adsize = sizeof(struct long_ad); 1893 else 1894 return -EIO; 1895 1896 neloc.logicalBlockNum = block; 1897 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1898 1899 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1900 if (!bh) 1901 return -EIO; 1902 lock_buffer(bh); 1903 memset(bh->b_data, 0x00, sb->s_blocksize); 1904 set_buffer_uptodate(bh); 1905 unlock_buffer(bh); 1906 mark_buffer_dirty_inode(bh, inode); 1907 1908 aed = (struct allocExtDesc *)(bh->b_data); 1909 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1910 aed->previousAllocExtLocation = 1911 cpu_to_le32(epos->block.logicalBlockNum); 1912 } 1913 aed->lengthAllocDescs = cpu_to_le32(0); 1914 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1915 ver = 3; 1916 else 1917 ver = 2; 1918 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1919 sizeof(struct tag)); 1920 1921 nepos.block = neloc; 1922 nepos.offset = sizeof(struct allocExtDesc); 1923 nepos.bh = bh; 1924 1925 /* 1926 * Do we have to copy current last extent to make space for indirect 1927 * one? 1928 */ 1929 if (epos->offset + adsize > sb->s_blocksize) { 1930 struct kernel_lb_addr cp_loc; 1931 uint32_t cp_len; 1932 int cp_type; 1933 1934 epos->offset -= adsize; 1935 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1936 cp_len |= ((uint32_t)cp_type) << 30; 1937 1938 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1939 udf_write_aext(inode, epos, &nepos.block, 1940 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1941 } else { 1942 __udf_add_aext(inode, epos, &nepos.block, 1943 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1944 } 1945 1946 brelse(epos->bh); 1947 *epos = nepos; 1948 1949 return 0; 1950 } 1951 1952 /* 1953 * Append extent at the given position - should be the first free one in inode 1954 * / indirect extent. This function assumes there is enough space in the inode 1955 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1956 */ 1957 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1958 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1959 { 1960 struct udf_inode_info *iinfo = UDF_I(inode); 1961 struct allocExtDesc *aed; 1962 int adsize; 1963 1964 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1965 adsize = sizeof(struct short_ad); 1966 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1967 adsize = sizeof(struct long_ad); 1968 else 1969 return -EIO; 1970 1971 if (!epos->bh) { 1972 WARN_ON(iinfo->i_lenAlloc != 1973 epos->offset - udf_file_entry_alloc_offset(inode)); 1974 } else { 1975 aed = (struct allocExtDesc *)epos->bh->b_data; 1976 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 1977 epos->offset - sizeof(struct allocExtDesc)); 1978 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 1979 } 1980 1981 udf_write_aext(inode, epos, eloc, elen, inc); 1982 1983 if (!epos->bh) { 1984 iinfo->i_lenAlloc += adsize; 1985 mark_inode_dirty(inode); 1986 } else { 1987 aed = (struct allocExtDesc *)epos->bh->b_data; 1988 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1989 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1990 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1991 udf_update_tag(epos->bh->b_data, 1992 epos->offset + (inc ? 0 : adsize)); 1993 else 1994 udf_update_tag(epos->bh->b_data, 1995 sizeof(struct allocExtDesc)); 1996 mark_buffer_dirty_inode(epos->bh, inode); 1997 } 1998 1999 return 0; 2000 } 2001 2002 /* 2003 * Append extent at given position - should be the first free one in inode 2004 * / indirect extent. Takes care of allocating and linking indirect blocks. 2005 */ 2006 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2007 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2008 { 2009 int adsize; 2010 struct super_block *sb = inode->i_sb; 2011 2012 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2013 adsize = sizeof(struct short_ad); 2014 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2015 adsize = sizeof(struct long_ad); 2016 else 2017 return -EIO; 2018 2019 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2020 int err; 2021 int new_block; 2022 2023 new_block = udf_new_block(sb, NULL, 2024 epos->block.partitionReferenceNum, 2025 epos->block.logicalBlockNum, &err); 2026 if (!new_block) 2027 return -ENOSPC; 2028 2029 err = udf_setup_indirect_aext(inode, new_block, epos); 2030 if (err) 2031 return err; 2032 } 2033 2034 return __udf_add_aext(inode, epos, eloc, elen, inc); 2035 } 2036 2037 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2038 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2039 { 2040 int adsize; 2041 uint8_t *ptr; 2042 struct short_ad *sad; 2043 struct long_ad *lad; 2044 struct udf_inode_info *iinfo = UDF_I(inode); 2045 2046 if (!epos->bh) 2047 ptr = iinfo->i_ext.i_data + epos->offset - 2048 udf_file_entry_alloc_offset(inode) + 2049 iinfo->i_lenEAttr; 2050 else 2051 ptr = epos->bh->b_data + epos->offset; 2052 2053 switch (iinfo->i_alloc_type) { 2054 case ICBTAG_FLAG_AD_SHORT: 2055 sad = (struct short_ad *)ptr; 2056 sad->extLength = cpu_to_le32(elen); 2057 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2058 adsize = sizeof(struct short_ad); 2059 break; 2060 case ICBTAG_FLAG_AD_LONG: 2061 lad = (struct long_ad *)ptr; 2062 lad->extLength = cpu_to_le32(elen); 2063 lad->extLocation = cpu_to_lelb(*eloc); 2064 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2065 adsize = sizeof(struct long_ad); 2066 break; 2067 default: 2068 return; 2069 } 2070 2071 if (epos->bh) { 2072 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2073 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2074 struct allocExtDesc *aed = 2075 (struct allocExtDesc *)epos->bh->b_data; 2076 udf_update_tag(epos->bh->b_data, 2077 le32_to_cpu(aed->lengthAllocDescs) + 2078 sizeof(struct allocExtDesc)); 2079 } 2080 mark_buffer_dirty_inode(epos->bh, inode); 2081 } else { 2082 mark_inode_dirty(inode); 2083 } 2084 2085 if (inc) 2086 epos->offset += adsize; 2087 } 2088 2089 /* 2090 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2091 * someone does some weird stuff. 2092 */ 2093 #define UDF_MAX_INDIR_EXTS 16 2094 2095 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2096 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2097 { 2098 int8_t etype; 2099 unsigned int indirections = 0; 2100 2101 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2102 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2103 int block; 2104 2105 if (++indirections > UDF_MAX_INDIR_EXTS) { 2106 udf_err(inode->i_sb, 2107 "too many indirect extents in inode %lu\n", 2108 inode->i_ino); 2109 return -1; 2110 } 2111 2112 epos->block = *eloc; 2113 epos->offset = sizeof(struct allocExtDesc); 2114 brelse(epos->bh); 2115 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2116 epos->bh = udf_tread(inode->i_sb, block); 2117 if (!epos->bh) { 2118 udf_debug("reading block %d failed!\n", block); 2119 return -1; 2120 } 2121 } 2122 2123 return etype; 2124 } 2125 2126 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2127 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2128 { 2129 int alen; 2130 int8_t etype; 2131 uint8_t *ptr; 2132 struct short_ad *sad; 2133 struct long_ad *lad; 2134 struct udf_inode_info *iinfo = UDF_I(inode); 2135 2136 if (!epos->bh) { 2137 if (!epos->offset) 2138 epos->offset = udf_file_entry_alloc_offset(inode); 2139 ptr = iinfo->i_ext.i_data + epos->offset - 2140 udf_file_entry_alloc_offset(inode) + 2141 iinfo->i_lenEAttr; 2142 alen = udf_file_entry_alloc_offset(inode) + 2143 iinfo->i_lenAlloc; 2144 } else { 2145 if (!epos->offset) 2146 epos->offset = sizeof(struct allocExtDesc); 2147 ptr = epos->bh->b_data + epos->offset; 2148 alen = sizeof(struct allocExtDesc) + 2149 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2150 lengthAllocDescs); 2151 } 2152 2153 switch (iinfo->i_alloc_type) { 2154 case ICBTAG_FLAG_AD_SHORT: 2155 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2156 if (!sad) 2157 return -1; 2158 etype = le32_to_cpu(sad->extLength) >> 30; 2159 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2160 eloc->partitionReferenceNum = 2161 iinfo->i_location.partitionReferenceNum; 2162 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2163 break; 2164 case ICBTAG_FLAG_AD_LONG: 2165 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2166 if (!lad) 2167 return -1; 2168 etype = le32_to_cpu(lad->extLength) >> 30; 2169 *eloc = lelb_to_cpu(lad->extLocation); 2170 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2171 break; 2172 default: 2173 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2174 return -1; 2175 } 2176 2177 return etype; 2178 } 2179 2180 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2181 struct kernel_lb_addr neloc, uint32_t nelen) 2182 { 2183 struct kernel_lb_addr oeloc; 2184 uint32_t oelen; 2185 int8_t etype; 2186 2187 if (epos.bh) 2188 get_bh(epos.bh); 2189 2190 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2191 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2192 neloc = oeloc; 2193 nelen = (etype << 30) | oelen; 2194 } 2195 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2196 brelse(epos.bh); 2197 2198 return (nelen >> 30); 2199 } 2200 2201 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2202 struct kernel_lb_addr eloc, uint32_t elen) 2203 { 2204 struct extent_position oepos; 2205 int adsize; 2206 int8_t etype; 2207 struct allocExtDesc *aed; 2208 struct udf_inode_info *iinfo; 2209 2210 if (epos.bh) { 2211 get_bh(epos.bh); 2212 get_bh(epos.bh); 2213 } 2214 2215 iinfo = UDF_I(inode); 2216 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2217 adsize = sizeof(struct short_ad); 2218 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2219 adsize = sizeof(struct long_ad); 2220 else 2221 adsize = 0; 2222 2223 oepos = epos; 2224 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2225 return -1; 2226 2227 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2228 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2229 if (oepos.bh != epos.bh) { 2230 oepos.block = epos.block; 2231 brelse(oepos.bh); 2232 get_bh(epos.bh); 2233 oepos.bh = epos.bh; 2234 oepos.offset = epos.offset - adsize; 2235 } 2236 } 2237 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2238 elen = 0; 2239 2240 if (epos.bh != oepos.bh) { 2241 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2242 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2243 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2244 if (!oepos.bh) { 2245 iinfo->i_lenAlloc -= (adsize * 2); 2246 mark_inode_dirty(inode); 2247 } else { 2248 aed = (struct allocExtDesc *)oepos.bh->b_data; 2249 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2250 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2251 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2252 udf_update_tag(oepos.bh->b_data, 2253 oepos.offset - (2 * adsize)); 2254 else 2255 udf_update_tag(oepos.bh->b_data, 2256 sizeof(struct allocExtDesc)); 2257 mark_buffer_dirty_inode(oepos.bh, inode); 2258 } 2259 } else { 2260 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2261 if (!oepos.bh) { 2262 iinfo->i_lenAlloc -= adsize; 2263 mark_inode_dirty(inode); 2264 } else { 2265 aed = (struct allocExtDesc *)oepos.bh->b_data; 2266 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2267 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2268 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2269 udf_update_tag(oepos.bh->b_data, 2270 epos.offset - adsize); 2271 else 2272 udf_update_tag(oepos.bh->b_data, 2273 sizeof(struct allocExtDesc)); 2274 mark_buffer_dirty_inode(oepos.bh, inode); 2275 } 2276 } 2277 2278 brelse(epos.bh); 2279 brelse(oepos.bh); 2280 2281 return (elen >> 30); 2282 } 2283 2284 int8_t inode_bmap(struct inode *inode, sector_t block, 2285 struct extent_position *pos, struct kernel_lb_addr *eloc, 2286 uint32_t *elen, sector_t *offset) 2287 { 2288 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2289 loff_t lbcount = 0, bcount = 2290 (loff_t) block << blocksize_bits; 2291 int8_t etype; 2292 struct udf_inode_info *iinfo; 2293 2294 iinfo = UDF_I(inode); 2295 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2296 pos->offset = 0; 2297 pos->block = iinfo->i_location; 2298 pos->bh = NULL; 2299 } 2300 *elen = 0; 2301 do { 2302 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2303 if (etype == -1) { 2304 *offset = (bcount - lbcount) >> blocksize_bits; 2305 iinfo->i_lenExtents = lbcount; 2306 return -1; 2307 } 2308 lbcount += *elen; 2309 } while (lbcount <= bcount); 2310 /* update extent cache */ 2311 udf_update_extent_cache(inode, lbcount - *elen, pos, 1); 2312 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2313 2314 return etype; 2315 } 2316 2317 long udf_block_map(struct inode *inode, sector_t block) 2318 { 2319 struct kernel_lb_addr eloc; 2320 uint32_t elen; 2321 sector_t offset; 2322 struct extent_position epos = {}; 2323 int ret; 2324 2325 down_read(&UDF_I(inode)->i_data_sem); 2326 2327 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2328 (EXT_RECORDED_ALLOCATED >> 30)) 2329 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2330 else 2331 ret = 0; 2332 2333 up_read(&UDF_I(inode)->i_data_sem); 2334 brelse(epos.bh); 2335 2336 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2337 return udf_fixed_to_variable(ret); 2338 else 2339 return ret; 2340 } 2341