xref: /openbmc/linux/fs/udf/inode.c (revision 9db9f9e3)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 
41 #include "udf_i.h"
42 #include "udf_sb.h"
43 
44 MODULE_AUTHOR("Ben Fennema");
45 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46 MODULE_LICENSE("GPL");
47 
48 #define EXTENT_MERGE_SIZE 5
49 
50 static mode_t udf_convert_permissions(struct fileEntry *);
51 static int udf_update_inode(struct inode *, int);
52 static void udf_fill_inode(struct inode *, struct buffer_head *);
53 static int udf_sync_inode(struct inode *inode);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 					sector_t *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
71 void udf_evict_inode(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 	int want_delete = 0;
75 
76 	truncate_inode_pages(&inode->i_data, 0);
77 
78 	if (!inode->i_nlink && !is_bad_inode(inode)) {
79 		want_delete = 1;
80 		inode->i_size = 0;
81 		udf_truncate(inode);
82 		udf_update_inode(inode, IS_SYNC(inode));
83 	}
84 	invalidate_inode_buffers(inode);
85 	end_writeback(inode);
86 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
87 	    inode->i_size != iinfo->i_lenExtents) {
88 		printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
89 			"inode size %llu different from extent length %llu. "
90 			"Filesystem need not be standards compliant.\n",
91 			inode->i_sb->s_id, inode->i_ino, inode->i_mode,
92 			(unsigned long long)inode->i_size,
93 			(unsigned long long)iinfo->i_lenExtents);
94 	}
95 	kfree(iinfo->i_ext.i_data);
96 	iinfo->i_ext.i_data = NULL;
97 	if (want_delete) {
98 		udf_free_inode(inode);
99 	}
100 }
101 
102 static int udf_writepage(struct page *page, struct writeback_control *wbc)
103 {
104 	return block_write_full_page(page, udf_get_block, wbc);
105 }
106 
107 static int udf_readpage(struct file *file, struct page *page)
108 {
109 	return block_read_full_page(page, udf_get_block);
110 }
111 
112 static int udf_write_begin(struct file *file, struct address_space *mapping,
113 			loff_t pos, unsigned len, unsigned flags,
114 			struct page **pagep, void **fsdata)
115 {
116 	int ret;
117 
118 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
119 	if (unlikely(ret)) {
120 		loff_t isize = mapping->host->i_size;
121 		if (pos + len > isize)
122 			vmtruncate(mapping->host, isize);
123 	}
124 
125 	return ret;
126 }
127 
128 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
129 {
130 	return generic_block_bmap(mapping, block, udf_get_block);
131 }
132 
133 const struct address_space_operations udf_aops = {
134 	.readpage	= udf_readpage,
135 	.writepage	= udf_writepage,
136 	.sync_page	= block_sync_page,
137 	.write_begin		= udf_write_begin,
138 	.write_end		= generic_write_end,
139 	.bmap		= udf_bmap,
140 };
141 
142 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
143 {
144 	struct page *page;
145 	char *kaddr;
146 	struct udf_inode_info *iinfo = UDF_I(inode);
147 	struct writeback_control udf_wbc = {
148 		.sync_mode = WB_SYNC_NONE,
149 		.nr_to_write = 1,
150 	};
151 
152 	/* from now on we have normal address_space methods */
153 	inode->i_data.a_ops = &udf_aops;
154 
155 	if (!iinfo->i_lenAlloc) {
156 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
157 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
158 		else
159 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
160 		mark_inode_dirty(inode);
161 		return;
162 	}
163 
164 	page = grab_cache_page(inode->i_mapping, 0);
165 	BUG_ON(!PageLocked(page));
166 
167 	if (!PageUptodate(page)) {
168 		kaddr = kmap(page);
169 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
170 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
171 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
172 			iinfo->i_lenAlloc);
173 		flush_dcache_page(page);
174 		SetPageUptodate(page);
175 		kunmap(page);
176 	}
177 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
178 	       iinfo->i_lenAlloc);
179 	iinfo->i_lenAlloc = 0;
180 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
181 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
182 	else
183 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
184 
185 	inode->i_data.a_ops->writepage(page, &udf_wbc);
186 	page_cache_release(page);
187 
188 	mark_inode_dirty(inode);
189 }
190 
191 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
192 					   int *err)
193 {
194 	int newblock;
195 	struct buffer_head *dbh = NULL;
196 	struct kernel_lb_addr eloc;
197 	uint8_t alloctype;
198 	struct extent_position epos;
199 
200 	struct udf_fileident_bh sfibh, dfibh;
201 	loff_t f_pos = udf_ext0_offset(inode);
202 	int size = udf_ext0_offset(inode) + inode->i_size;
203 	struct fileIdentDesc cfi, *sfi, *dfi;
204 	struct udf_inode_info *iinfo = UDF_I(inode);
205 
206 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
207 		alloctype = ICBTAG_FLAG_AD_SHORT;
208 	else
209 		alloctype = ICBTAG_FLAG_AD_LONG;
210 
211 	if (!inode->i_size) {
212 		iinfo->i_alloc_type = alloctype;
213 		mark_inode_dirty(inode);
214 		return NULL;
215 	}
216 
217 	/* alloc block, and copy data to it */
218 	*block = udf_new_block(inode->i_sb, inode,
219 			       iinfo->i_location.partitionReferenceNum,
220 			       iinfo->i_location.logicalBlockNum, err);
221 	if (!(*block))
222 		return NULL;
223 	newblock = udf_get_pblock(inode->i_sb, *block,
224 				  iinfo->i_location.partitionReferenceNum,
225 				0);
226 	if (!newblock)
227 		return NULL;
228 	dbh = udf_tgetblk(inode->i_sb, newblock);
229 	if (!dbh)
230 		return NULL;
231 	lock_buffer(dbh);
232 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
233 	set_buffer_uptodate(dbh);
234 	unlock_buffer(dbh);
235 	mark_buffer_dirty_inode(dbh, inode);
236 
237 	sfibh.soffset = sfibh.eoffset =
238 			f_pos & (inode->i_sb->s_blocksize - 1);
239 	sfibh.sbh = sfibh.ebh = NULL;
240 	dfibh.soffset = dfibh.eoffset = 0;
241 	dfibh.sbh = dfibh.ebh = dbh;
242 	while (f_pos < size) {
243 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
244 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
245 					 NULL, NULL, NULL);
246 		if (!sfi) {
247 			brelse(dbh);
248 			return NULL;
249 		}
250 		iinfo->i_alloc_type = alloctype;
251 		sfi->descTag.tagLocation = cpu_to_le32(*block);
252 		dfibh.soffset = dfibh.eoffset;
253 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
254 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
255 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
256 				 sfi->fileIdent +
257 					le16_to_cpu(sfi->lengthOfImpUse))) {
258 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
259 			brelse(dbh);
260 			return NULL;
261 		}
262 	}
263 	mark_buffer_dirty_inode(dbh, inode);
264 
265 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
266 		iinfo->i_lenAlloc);
267 	iinfo->i_lenAlloc = 0;
268 	eloc.logicalBlockNum = *block;
269 	eloc.partitionReferenceNum =
270 				iinfo->i_location.partitionReferenceNum;
271 	iinfo->i_lenExtents = inode->i_size;
272 	epos.bh = NULL;
273 	epos.block = iinfo->i_location;
274 	epos.offset = udf_file_entry_alloc_offset(inode);
275 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
276 	/* UniqueID stuff */
277 
278 	brelse(epos.bh);
279 	mark_inode_dirty(inode);
280 	return dbh;
281 }
282 
283 static int udf_get_block(struct inode *inode, sector_t block,
284 			 struct buffer_head *bh_result, int create)
285 {
286 	int err, new;
287 	struct buffer_head *bh;
288 	sector_t phys = 0;
289 	struct udf_inode_info *iinfo;
290 
291 	if (!create) {
292 		phys = udf_block_map(inode, block);
293 		if (phys)
294 			map_bh(bh_result, inode->i_sb, phys);
295 		return 0;
296 	}
297 
298 	err = -EIO;
299 	new = 0;
300 	bh = NULL;
301 	iinfo = UDF_I(inode);
302 
303 	down_write(&iinfo->i_data_sem);
304 	if (block == iinfo->i_next_alloc_block + 1) {
305 		iinfo->i_next_alloc_block++;
306 		iinfo->i_next_alloc_goal++;
307 	}
308 
309 	err = 0;
310 
311 	bh = inode_getblk(inode, block, &err, &phys, &new);
312 	BUG_ON(bh);
313 	if (err)
314 		goto abort;
315 	BUG_ON(!phys);
316 
317 	if (new)
318 		set_buffer_new(bh_result);
319 	map_bh(bh_result, inode->i_sb, phys);
320 
321 abort:
322 	up_write(&iinfo->i_data_sem);
323 	return err;
324 }
325 
326 static struct buffer_head *udf_getblk(struct inode *inode, long block,
327 				      int create, int *err)
328 {
329 	struct buffer_head *bh;
330 	struct buffer_head dummy;
331 
332 	dummy.b_state = 0;
333 	dummy.b_blocknr = -1000;
334 	*err = udf_get_block(inode, block, &dummy, create);
335 	if (!*err && buffer_mapped(&dummy)) {
336 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
337 		if (buffer_new(&dummy)) {
338 			lock_buffer(bh);
339 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
340 			set_buffer_uptodate(bh);
341 			unlock_buffer(bh);
342 			mark_buffer_dirty_inode(bh, inode);
343 		}
344 		return bh;
345 	}
346 
347 	return NULL;
348 }
349 
350 /* Extend the file by 'blocks' blocks, return the number of extents added */
351 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
352 		    struct kernel_long_ad *last_ext, sector_t blocks)
353 {
354 	sector_t add;
355 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
356 	struct super_block *sb = inode->i_sb;
357 	struct kernel_lb_addr prealloc_loc = {};
358 	int prealloc_len = 0;
359 	struct udf_inode_info *iinfo;
360 
361 	/* The previous extent is fake and we should not extend by anything
362 	 * - there's nothing to do... */
363 	if (!blocks && fake)
364 		return 0;
365 
366 	iinfo = UDF_I(inode);
367 	/* Round the last extent up to a multiple of block size */
368 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
369 		last_ext->extLength =
370 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
371 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
372 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
373 		iinfo->i_lenExtents =
374 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
375 			~(sb->s_blocksize - 1);
376 	}
377 
378 	/* Last extent are just preallocated blocks? */
379 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
380 						EXT_NOT_RECORDED_ALLOCATED) {
381 		/* Save the extent so that we can reattach it to the end */
382 		prealloc_loc = last_ext->extLocation;
383 		prealloc_len = last_ext->extLength;
384 		/* Mark the extent as a hole */
385 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
386 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
387 		last_ext->extLocation.logicalBlockNum = 0;
388 		last_ext->extLocation.partitionReferenceNum = 0;
389 	}
390 
391 	/* Can we merge with the previous extent? */
392 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
393 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
394 		add = ((1 << 30) - sb->s_blocksize -
395 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
396 			sb->s_blocksize_bits;
397 		if (add > blocks)
398 			add = blocks;
399 		blocks -= add;
400 		last_ext->extLength += add << sb->s_blocksize_bits;
401 	}
402 
403 	if (fake) {
404 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
405 			     last_ext->extLength, 1);
406 		count++;
407 	} else
408 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
409 				last_ext->extLength, 1);
410 
411 	/* Managed to do everything necessary? */
412 	if (!blocks)
413 		goto out;
414 
415 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
416 	last_ext->extLocation.logicalBlockNum = 0;
417 	last_ext->extLocation.partitionReferenceNum = 0;
418 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
419 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
420 				(add << sb->s_blocksize_bits);
421 
422 	/* Create enough extents to cover the whole hole */
423 	while (blocks > add) {
424 		blocks -= add;
425 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
426 				 last_ext->extLength, 1) == -1)
427 			return -1;
428 		count++;
429 	}
430 	if (blocks) {
431 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
432 			(blocks << sb->s_blocksize_bits);
433 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
434 				 last_ext->extLength, 1) == -1)
435 			return -1;
436 		count++;
437 	}
438 
439 out:
440 	/* Do we have some preallocated blocks saved? */
441 	if (prealloc_len) {
442 		if (udf_add_aext(inode, last_pos, &prealloc_loc,
443 				 prealloc_len, 1) == -1)
444 			return -1;
445 		last_ext->extLocation = prealloc_loc;
446 		last_ext->extLength = prealloc_len;
447 		count++;
448 	}
449 
450 	/* last_pos should point to the last written extent... */
451 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
452 		last_pos->offset -= sizeof(struct short_ad);
453 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
454 		last_pos->offset -= sizeof(struct long_ad);
455 	else
456 		return -1;
457 
458 	return count;
459 }
460 
461 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
462 					int *err, sector_t *phys, int *new)
463 {
464 	static sector_t last_block;
465 	struct buffer_head *result = NULL;
466 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
467 	struct extent_position prev_epos, cur_epos, next_epos;
468 	int count = 0, startnum = 0, endnum = 0;
469 	uint32_t elen = 0, tmpelen;
470 	struct kernel_lb_addr eloc, tmpeloc;
471 	int c = 1;
472 	loff_t lbcount = 0, b_off = 0;
473 	uint32_t newblocknum, newblock;
474 	sector_t offset = 0;
475 	int8_t etype;
476 	struct udf_inode_info *iinfo = UDF_I(inode);
477 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
478 	int lastblock = 0;
479 
480 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
481 	prev_epos.block = iinfo->i_location;
482 	prev_epos.bh = NULL;
483 	cur_epos = next_epos = prev_epos;
484 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
485 
486 	/* find the extent which contains the block we are looking for.
487 	   alternate between laarr[0] and laarr[1] for locations of the
488 	   current extent, and the previous extent */
489 	do {
490 		if (prev_epos.bh != cur_epos.bh) {
491 			brelse(prev_epos.bh);
492 			get_bh(cur_epos.bh);
493 			prev_epos.bh = cur_epos.bh;
494 		}
495 		if (cur_epos.bh != next_epos.bh) {
496 			brelse(cur_epos.bh);
497 			get_bh(next_epos.bh);
498 			cur_epos.bh = next_epos.bh;
499 		}
500 
501 		lbcount += elen;
502 
503 		prev_epos.block = cur_epos.block;
504 		cur_epos.block = next_epos.block;
505 
506 		prev_epos.offset = cur_epos.offset;
507 		cur_epos.offset = next_epos.offset;
508 
509 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
510 		if (etype == -1)
511 			break;
512 
513 		c = !c;
514 
515 		laarr[c].extLength = (etype << 30) | elen;
516 		laarr[c].extLocation = eloc;
517 
518 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
519 			pgoal = eloc.logicalBlockNum +
520 				((elen + inode->i_sb->s_blocksize - 1) >>
521 				 inode->i_sb->s_blocksize_bits);
522 
523 		count++;
524 	} while (lbcount + elen <= b_off);
525 
526 	b_off -= lbcount;
527 	offset = b_off >> inode->i_sb->s_blocksize_bits;
528 	/*
529 	 * Move prev_epos and cur_epos into indirect extent if we are at
530 	 * the pointer to it
531 	 */
532 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
533 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
534 
535 	/* if the extent is allocated and recorded, return the block
536 	   if the extent is not a multiple of the blocksize, round up */
537 
538 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
539 		if (elen & (inode->i_sb->s_blocksize - 1)) {
540 			elen = EXT_RECORDED_ALLOCATED |
541 				((elen + inode->i_sb->s_blocksize - 1) &
542 				 ~(inode->i_sb->s_blocksize - 1));
543 			etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
544 		}
545 		brelse(prev_epos.bh);
546 		brelse(cur_epos.bh);
547 		brelse(next_epos.bh);
548 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
549 		*phys = newblock;
550 		return NULL;
551 	}
552 
553 	last_block = block;
554 	/* Are we beyond EOF? */
555 	if (etype == -1) {
556 		int ret;
557 
558 		if (count) {
559 			if (c)
560 				laarr[0] = laarr[1];
561 			startnum = 1;
562 		} else {
563 			/* Create a fake extent when there's not one */
564 			memset(&laarr[0].extLocation, 0x00,
565 				sizeof(struct kernel_lb_addr));
566 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
567 			/* Will udf_extend_file() create real extent from
568 			   a fake one? */
569 			startnum = (offset > 0);
570 		}
571 		/* Create extents for the hole between EOF and offset */
572 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
573 		if (ret == -1) {
574 			brelse(prev_epos.bh);
575 			brelse(cur_epos.bh);
576 			brelse(next_epos.bh);
577 			/* We don't really know the error here so we just make
578 			 * something up */
579 			*err = -ENOSPC;
580 			return NULL;
581 		}
582 		c = 0;
583 		offset = 0;
584 		count += ret;
585 		/* We are not covered by a preallocated extent? */
586 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
587 						EXT_NOT_RECORDED_ALLOCATED) {
588 			/* Is there any real extent? - otherwise we overwrite
589 			 * the fake one... */
590 			if (count)
591 				c = !c;
592 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
593 				inode->i_sb->s_blocksize;
594 			memset(&laarr[c].extLocation, 0x00,
595 				sizeof(struct kernel_lb_addr));
596 			count++;
597 			endnum++;
598 		}
599 		endnum = c + 1;
600 		lastblock = 1;
601 	} else {
602 		endnum = startnum = ((count > 2) ? 2 : count);
603 
604 		/* if the current extent is in position 0,
605 		   swap it with the previous */
606 		if (!c && count != 1) {
607 			laarr[2] = laarr[0];
608 			laarr[0] = laarr[1];
609 			laarr[1] = laarr[2];
610 			c = 1;
611 		}
612 
613 		/* if the current block is located in an extent,
614 		   read the next extent */
615 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
616 		if (etype != -1) {
617 			laarr[c + 1].extLength = (etype << 30) | elen;
618 			laarr[c + 1].extLocation = eloc;
619 			count++;
620 			startnum++;
621 			endnum++;
622 		} else
623 			lastblock = 1;
624 	}
625 
626 	/* if the current extent is not recorded but allocated, get the
627 	 * block in the extent corresponding to the requested block */
628 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
629 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
630 	else { /* otherwise, allocate a new block */
631 		if (iinfo->i_next_alloc_block == block)
632 			goal = iinfo->i_next_alloc_goal;
633 
634 		if (!goal) {
635 			if (!(goal = pgoal)) /* XXX: what was intended here? */
636 				goal = iinfo->i_location.logicalBlockNum + 1;
637 		}
638 
639 		newblocknum = udf_new_block(inode->i_sb, inode,
640 				iinfo->i_location.partitionReferenceNum,
641 				goal, err);
642 		if (!newblocknum) {
643 			brelse(prev_epos.bh);
644 			*err = -ENOSPC;
645 			return NULL;
646 		}
647 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
648 	}
649 
650 	/* if the extent the requsted block is located in contains multiple
651 	 * blocks, split the extent into at most three extents. blocks prior
652 	 * to requested block, requested block, and blocks after requested
653 	 * block */
654 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
655 
656 #ifdef UDF_PREALLOCATE
657 	/* We preallocate blocks only for regular files. It also makes sense
658 	 * for directories but there's a problem when to drop the
659 	 * preallocation. We might use some delayed work for that but I feel
660 	 * it's overengineering for a filesystem like UDF. */
661 	if (S_ISREG(inode->i_mode))
662 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
663 #endif
664 
665 	/* merge any continuous blocks in laarr */
666 	udf_merge_extents(inode, laarr, &endnum);
667 
668 	/* write back the new extents, inserting new extents if the new number
669 	 * of extents is greater than the old number, and deleting extents if
670 	 * the new number of extents is less than the old number */
671 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
672 
673 	brelse(prev_epos.bh);
674 
675 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
676 				iinfo->i_location.partitionReferenceNum, 0);
677 	if (!newblock)
678 		return NULL;
679 	*phys = newblock;
680 	*err = 0;
681 	*new = 1;
682 	iinfo->i_next_alloc_block = block;
683 	iinfo->i_next_alloc_goal = newblocknum;
684 	inode->i_ctime = current_fs_time(inode->i_sb);
685 
686 	if (IS_SYNC(inode))
687 		udf_sync_inode(inode);
688 	else
689 		mark_inode_dirty(inode);
690 
691 	return result;
692 }
693 
694 static void udf_split_extents(struct inode *inode, int *c, int offset,
695 			      int newblocknum,
696 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
697 			      int *endnum)
698 {
699 	unsigned long blocksize = inode->i_sb->s_blocksize;
700 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
701 
702 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
703 	    (laarr[*c].extLength >> 30) ==
704 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
705 		int curr = *c;
706 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
707 			    blocksize - 1) >> blocksize_bits;
708 		int8_t etype = (laarr[curr].extLength >> 30);
709 
710 		if (blen == 1)
711 			;
712 		else if (!offset || blen == offset + 1) {
713 			laarr[curr + 2] = laarr[curr + 1];
714 			laarr[curr + 1] = laarr[curr];
715 		} else {
716 			laarr[curr + 3] = laarr[curr + 1];
717 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
718 		}
719 
720 		if (offset) {
721 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
722 				udf_free_blocks(inode->i_sb, inode,
723 						&laarr[curr].extLocation,
724 						0, offset);
725 				laarr[curr].extLength =
726 					EXT_NOT_RECORDED_NOT_ALLOCATED |
727 					(offset << blocksize_bits);
728 				laarr[curr].extLocation.logicalBlockNum = 0;
729 				laarr[curr].extLocation.
730 						partitionReferenceNum = 0;
731 			} else
732 				laarr[curr].extLength = (etype << 30) |
733 					(offset << blocksize_bits);
734 			curr++;
735 			(*c)++;
736 			(*endnum)++;
737 		}
738 
739 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
740 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
741 			laarr[curr].extLocation.partitionReferenceNum =
742 				UDF_I(inode)->i_location.partitionReferenceNum;
743 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
744 			blocksize;
745 		curr++;
746 
747 		if (blen != offset + 1) {
748 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
749 				laarr[curr].extLocation.logicalBlockNum +=
750 								offset + 1;
751 			laarr[curr].extLength = (etype << 30) |
752 				((blen - (offset + 1)) << blocksize_bits);
753 			curr++;
754 			(*endnum)++;
755 		}
756 	}
757 }
758 
759 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
760 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
761 				 int *endnum)
762 {
763 	int start, length = 0, currlength = 0, i;
764 
765 	if (*endnum >= (c + 1)) {
766 		if (!lastblock)
767 			return;
768 		else
769 			start = c;
770 	} else {
771 		if ((laarr[c + 1].extLength >> 30) ==
772 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
773 			start = c + 1;
774 			length = currlength =
775 				(((laarr[c + 1].extLength &
776 					UDF_EXTENT_LENGTH_MASK) +
777 				inode->i_sb->s_blocksize - 1) >>
778 				inode->i_sb->s_blocksize_bits);
779 		} else
780 			start = c;
781 	}
782 
783 	for (i = start + 1; i <= *endnum; i++) {
784 		if (i == *endnum) {
785 			if (lastblock)
786 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
787 		} else if ((laarr[i].extLength >> 30) ==
788 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
789 			length += (((laarr[i].extLength &
790 						UDF_EXTENT_LENGTH_MASK) +
791 				    inode->i_sb->s_blocksize - 1) >>
792 				    inode->i_sb->s_blocksize_bits);
793 		} else
794 			break;
795 	}
796 
797 	if (length) {
798 		int next = laarr[start].extLocation.logicalBlockNum +
799 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
800 			  inode->i_sb->s_blocksize - 1) >>
801 			  inode->i_sb->s_blocksize_bits);
802 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
803 				laarr[start].extLocation.partitionReferenceNum,
804 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
805 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
806 				currlength);
807 		if (numalloc) 	{
808 			if (start == (c + 1))
809 				laarr[start].extLength +=
810 					(numalloc <<
811 					 inode->i_sb->s_blocksize_bits);
812 			else {
813 				memmove(&laarr[c + 2], &laarr[c + 1],
814 					sizeof(struct long_ad) * (*endnum - (c + 1)));
815 				(*endnum)++;
816 				laarr[c + 1].extLocation.logicalBlockNum = next;
817 				laarr[c + 1].extLocation.partitionReferenceNum =
818 					laarr[c].extLocation.
819 							partitionReferenceNum;
820 				laarr[c + 1].extLength =
821 					EXT_NOT_RECORDED_ALLOCATED |
822 					(numalloc <<
823 					 inode->i_sb->s_blocksize_bits);
824 				start = c + 1;
825 			}
826 
827 			for (i = start + 1; numalloc && i < *endnum; i++) {
828 				int elen = ((laarr[i].extLength &
829 						UDF_EXTENT_LENGTH_MASK) +
830 					    inode->i_sb->s_blocksize - 1) >>
831 					    inode->i_sb->s_blocksize_bits;
832 
833 				if (elen > numalloc) {
834 					laarr[i].extLength -=
835 						(numalloc <<
836 						 inode->i_sb->s_blocksize_bits);
837 					numalloc = 0;
838 				} else {
839 					numalloc -= elen;
840 					if (*endnum > (i + 1))
841 						memmove(&laarr[i],
842 							&laarr[i + 1],
843 							sizeof(struct long_ad) *
844 							(*endnum - (i + 1)));
845 					i--;
846 					(*endnum)--;
847 				}
848 			}
849 			UDF_I(inode)->i_lenExtents +=
850 				numalloc << inode->i_sb->s_blocksize_bits;
851 		}
852 	}
853 }
854 
855 static void udf_merge_extents(struct inode *inode,
856 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
857 			      int *endnum)
858 {
859 	int i;
860 	unsigned long blocksize = inode->i_sb->s_blocksize;
861 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
862 
863 	for (i = 0; i < (*endnum - 1); i++) {
864 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
865 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
866 
867 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
868 			(((li->extLength >> 30) ==
869 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
870 			((lip1->extLocation.logicalBlockNum -
871 			  li->extLocation.logicalBlockNum) ==
872 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
873 			blocksize - 1) >> blocksize_bits)))) {
874 
875 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
876 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
877 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
878 				lip1->extLength = (lip1->extLength -
879 						  (li->extLength &
880 						   UDF_EXTENT_LENGTH_MASK) +
881 						   UDF_EXTENT_LENGTH_MASK) &
882 							~(blocksize - 1);
883 				li->extLength = (li->extLength &
884 						 UDF_EXTENT_FLAG_MASK) +
885 						(UDF_EXTENT_LENGTH_MASK + 1) -
886 						blocksize;
887 				lip1->extLocation.logicalBlockNum =
888 					li->extLocation.logicalBlockNum +
889 					((li->extLength &
890 						UDF_EXTENT_LENGTH_MASK) >>
891 						blocksize_bits);
892 			} else {
893 				li->extLength = lip1->extLength +
894 					(((li->extLength &
895 						UDF_EXTENT_LENGTH_MASK) +
896 					 blocksize - 1) & ~(blocksize - 1));
897 				if (*endnum > (i + 2))
898 					memmove(&laarr[i + 1], &laarr[i + 2],
899 						sizeof(struct long_ad) *
900 						(*endnum - (i + 2)));
901 				i--;
902 				(*endnum)--;
903 			}
904 		} else if (((li->extLength >> 30) ==
905 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
906 			   ((lip1->extLength >> 30) ==
907 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
908 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
909 					((li->extLength &
910 					  UDF_EXTENT_LENGTH_MASK) +
911 					 blocksize - 1) >> blocksize_bits);
912 			li->extLocation.logicalBlockNum = 0;
913 			li->extLocation.partitionReferenceNum = 0;
914 
915 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
916 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
917 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
918 				lip1->extLength = (lip1->extLength -
919 						   (li->extLength &
920 						   UDF_EXTENT_LENGTH_MASK) +
921 						   UDF_EXTENT_LENGTH_MASK) &
922 						   ~(blocksize - 1);
923 				li->extLength = (li->extLength &
924 						 UDF_EXTENT_FLAG_MASK) +
925 						(UDF_EXTENT_LENGTH_MASK + 1) -
926 						blocksize;
927 			} else {
928 				li->extLength = lip1->extLength +
929 					(((li->extLength &
930 						UDF_EXTENT_LENGTH_MASK) +
931 					  blocksize - 1) & ~(blocksize - 1));
932 				if (*endnum > (i + 2))
933 					memmove(&laarr[i + 1], &laarr[i + 2],
934 						sizeof(struct long_ad) *
935 						(*endnum - (i + 2)));
936 				i--;
937 				(*endnum)--;
938 			}
939 		} else if ((li->extLength >> 30) ==
940 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
941 			udf_free_blocks(inode->i_sb, inode,
942 					&li->extLocation, 0,
943 					((li->extLength &
944 						UDF_EXTENT_LENGTH_MASK) +
945 					 blocksize - 1) >> blocksize_bits);
946 			li->extLocation.logicalBlockNum = 0;
947 			li->extLocation.partitionReferenceNum = 0;
948 			li->extLength = (li->extLength &
949 						UDF_EXTENT_LENGTH_MASK) |
950 						EXT_NOT_RECORDED_NOT_ALLOCATED;
951 		}
952 	}
953 }
954 
955 static void udf_update_extents(struct inode *inode,
956 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
957 			       int startnum, int endnum,
958 			       struct extent_position *epos)
959 {
960 	int start = 0, i;
961 	struct kernel_lb_addr tmploc;
962 	uint32_t tmplen;
963 
964 	if (startnum > endnum) {
965 		for (i = 0; i < (startnum - endnum); i++)
966 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
967 					laarr[i].extLength);
968 	} else if (startnum < endnum) {
969 		for (i = 0; i < (endnum - startnum); i++) {
970 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
971 					laarr[i].extLength);
972 			udf_next_aext(inode, epos, &laarr[i].extLocation,
973 				      &laarr[i].extLength, 1);
974 			start++;
975 		}
976 	}
977 
978 	for (i = start; i < endnum; i++) {
979 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
980 		udf_write_aext(inode, epos, &laarr[i].extLocation,
981 			       laarr[i].extLength, 1);
982 	}
983 }
984 
985 struct buffer_head *udf_bread(struct inode *inode, int block,
986 			      int create, int *err)
987 {
988 	struct buffer_head *bh = NULL;
989 
990 	bh = udf_getblk(inode, block, create, err);
991 	if (!bh)
992 		return NULL;
993 
994 	if (buffer_uptodate(bh))
995 		return bh;
996 
997 	ll_rw_block(READ, 1, &bh);
998 
999 	wait_on_buffer(bh);
1000 	if (buffer_uptodate(bh))
1001 		return bh;
1002 
1003 	brelse(bh);
1004 	*err = -EIO;
1005 	return NULL;
1006 }
1007 
1008 void udf_truncate(struct inode *inode)
1009 {
1010 	int offset;
1011 	int err;
1012 	struct udf_inode_info *iinfo;
1013 
1014 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1015 	      S_ISLNK(inode->i_mode)))
1016 		return;
1017 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1018 		return;
1019 
1020 	iinfo = UDF_I(inode);
1021 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1022 		down_write(&iinfo->i_data_sem);
1023 		if (inode->i_sb->s_blocksize <
1024 				(udf_file_entry_alloc_offset(inode) +
1025 				 inode->i_size)) {
1026 			udf_expand_file_adinicb(inode, inode->i_size, &err);
1027 			if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1028 				inode->i_size = iinfo->i_lenAlloc;
1029 				up_write(&iinfo->i_data_sem);
1030 				return;
1031 			} else
1032 				udf_truncate_extents(inode);
1033 		} else {
1034 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1035 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1036 				0x00, inode->i_sb->s_blocksize -
1037 				offset - udf_file_entry_alloc_offset(inode));
1038 			iinfo->i_lenAlloc = inode->i_size;
1039 		}
1040 		up_write(&iinfo->i_data_sem);
1041 	} else {
1042 		block_truncate_page(inode->i_mapping, inode->i_size,
1043 				    udf_get_block);
1044 		down_write(&iinfo->i_data_sem);
1045 		udf_truncate_extents(inode);
1046 		up_write(&iinfo->i_data_sem);
1047 	}
1048 
1049 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1050 	if (IS_SYNC(inode))
1051 		udf_sync_inode(inode);
1052 	else
1053 		mark_inode_dirty(inode);
1054 }
1055 
1056 static void __udf_read_inode(struct inode *inode)
1057 {
1058 	struct buffer_head *bh = NULL;
1059 	struct fileEntry *fe;
1060 	uint16_t ident;
1061 	struct udf_inode_info *iinfo = UDF_I(inode);
1062 
1063 	/*
1064 	 * Set defaults, but the inode is still incomplete!
1065 	 * Note: get_new_inode() sets the following on a new inode:
1066 	 *      i_sb = sb
1067 	 *      i_no = ino
1068 	 *      i_flags = sb->s_flags
1069 	 *      i_state = 0
1070 	 * clean_inode(): zero fills and sets
1071 	 *      i_count = 1
1072 	 *      i_nlink = 1
1073 	 *      i_op = NULL;
1074 	 */
1075 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1076 	if (!bh) {
1077 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1078 		       inode->i_ino);
1079 		make_bad_inode(inode);
1080 		return;
1081 	}
1082 
1083 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1084 	    ident != TAG_IDENT_USE) {
1085 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1086 				"failed ident=%d\n", inode->i_ino, ident);
1087 		brelse(bh);
1088 		make_bad_inode(inode);
1089 		return;
1090 	}
1091 
1092 	fe = (struct fileEntry *)bh->b_data;
1093 
1094 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1095 		struct buffer_head *ibh;
1096 
1097 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1098 					&ident);
1099 		if (ident == TAG_IDENT_IE && ibh) {
1100 			struct buffer_head *nbh = NULL;
1101 			struct kernel_lb_addr loc;
1102 			struct indirectEntry *ie;
1103 
1104 			ie = (struct indirectEntry *)ibh->b_data;
1105 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1106 
1107 			if (ie->indirectICB.extLength &&
1108 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1109 							&ident))) {
1110 				if (ident == TAG_IDENT_FE ||
1111 					ident == TAG_IDENT_EFE) {
1112 					memcpy(&iinfo->i_location,
1113 						&loc,
1114 						sizeof(struct kernel_lb_addr));
1115 					brelse(bh);
1116 					brelse(ibh);
1117 					brelse(nbh);
1118 					__udf_read_inode(inode);
1119 					return;
1120 				}
1121 				brelse(nbh);
1122 			}
1123 		}
1124 		brelse(ibh);
1125 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1126 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1127 		       le16_to_cpu(fe->icbTag.strategyType));
1128 		brelse(bh);
1129 		make_bad_inode(inode);
1130 		return;
1131 	}
1132 	udf_fill_inode(inode, bh);
1133 
1134 	brelse(bh);
1135 }
1136 
1137 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1138 {
1139 	struct fileEntry *fe;
1140 	struct extendedFileEntry *efe;
1141 	int offset;
1142 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1143 	struct udf_inode_info *iinfo = UDF_I(inode);
1144 
1145 	fe = (struct fileEntry *)bh->b_data;
1146 	efe = (struct extendedFileEntry *)bh->b_data;
1147 
1148 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1149 		iinfo->i_strat4096 = 0;
1150 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1151 		iinfo->i_strat4096 = 1;
1152 
1153 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1154 							ICBTAG_FLAG_AD_MASK;
1155 	iinfo->i_unique = 0;
1156 	iinfo->i_lenEAttr = 0;
1157 	iinfo->i_lenExtents = 0;
1158 	iinfo->i_lenAlloc = 0;
1159 	iinfo->i_next_alloc_block = 0;
1160 	iinfo->i_next_alloc_goal = 0;
1161 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1162 		iinfo->i_efe = 1;
1163 		iinfo->i_use = 0;
1164 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1165 					sizeof(struct extendedFileEntry))) {
1166 			make_bad_inode(inode);
1167 			return;
1168 		}
1169 		memcpy(iinfo->i_ext.i_data,
1170 		       bh->b_data + sizeof(struct extendedFileEntry),
1171 		       inode->i_sb->s_blocksize -
1172 					sizeof(struct extendedFileEntry));
1173 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1174 		iinfo->i_efe = 0;
1175 		iinfo->i_use = 0;
1176 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1177 						sizeof(struct fileEntry))) {
1178 			make_bad_inode(inode);
1179 			return;
1180 		}
1181 		memcpy(iinfo->i_ext.i_data,
1182 		       bh->b_data + sizeof(struct fileEntry),
1183 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1184 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1185 		iinfo->i_efe = 0;
1186 		iinfo->i_use = 1;
1187 		iinfo->i_lenAlloc = le32_to_cpu(
1188 				((struct unallocSpaceEntry *)bh->b_data)->
1189 				 lengthAllocDescs);
1190 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1191 					sizeof(struct unallocSpaceEntry))) {
1192 			make_bad_inode(inode);
1193 			return;
1194 		}
1195 		memcpy(iinfo->i_ext.i_data,
1196 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1197 		       inode->i_sb->s_blocksize -
1198 					sizeof(struct unallocSpaceEntry));
1199 		return;
1200 	}
1201 
1202 	read_lock(&sbi->s_cred_lock);
1203 	inode->i_uid = le32_to_cpu(fe->uid);
1204 	if (inode->i_uid == -1 ||
1205 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1206 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1207 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1208 
1209 	inode->i_gid = le32_to_cpu(fe->gid);
1210 	if (inode->i_gid == -1 ||
1211 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1212 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1213 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1214 
1215 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1216 			sbi->s_fmode != UDF_INVALID_MODE)
1217 		inode->i_mode = sbi->s_fmode;
1218 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1219 			sbi->s_dmode != UDF_INVALID_MODE)
1220 		inode->i_mode = sbi->s_dmode;
1221 	else
1222 		inode->i_mode = udf_convert_permissions(fe);
1223 	inode->i_mode &= ~sbi->s_umask;
1224 	read_unlock(&sbi->s_cred_lock);
1225 
1226 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1227 	if (!inode->i_nlink)
1228 		inode->i_nlink = 1;
1229 
1230 	inode->i_size = le64_to_cpu(fe->informationLength);
1231 	iinfo->i_lenExtents = inode->i_size;
1232 
1233 	if (iinfo->i_efe == 0) {
1234 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1235 			(inode->i_sb->s_blocksize_bits - 9);
1236 
1237 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1238 			inode->i_atime = sbi->s_record_time;
1239 
1240 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1241 					    fe->modificationTime))
1242 			inode->i_mtime = sbi->s_record_time;
1243 
1244 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1245 			inode->i_ctime = sbi->s_record_time;
1246 
1247 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1248 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1249 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1250 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1251 	} else {
1252 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1253 		    (inode->i_sb->s_blocksize_bits - 9);
1254 
1255 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1256 			inode->i_atime = sbi->s_record_time;
1257 
1258 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1259 					    efe->modificationTime))
1260 			inode->i_mtime = sbi->s_record_time;
1261 
1262 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1263 			iinfo->i_crtime = sbi->s_record_time;
1264 
1265 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1266 			inode->i_ctime = sbi->s_record_time;
1267 
1268 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1269 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1270 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1271 		offset = sizeof(struct extendedFileEntry) +
1272 							iinfo->i_lenEAttr;
1273 	}
1274 
1275 	switch (fe->icbTag.fileType) {
1276 	case ICBTAG_FILE_TYPE_DIRECTORY:
1277 		inode->i_op = &udf_dir_inode_operations;
1278 		inode->i_fop = &udf_dir_operations;
1279 		inode->i_mode |= S_IFDIR;
1280 		inc_nlink(inode);
1281 		break;
1282 	case ICBTAG_FILE_TYPE_REALTIME:
1283 	case ICBTAG_FILE_TYPE_REGULAR:
1284 	case ICBTAG_FILE_TYPE_UNDEF:
1285 	case ICBTAG_FILE_TYPE_VAT20:
1286 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1287 			inode->i_data.a_ops = &udf_adinicb_aops;
1288 		else
1289 			inode->i_data.a_ops = &udf_aops;
1290 		inode->i_op = &udf_file_inode_operations;
1291 		inode->i_fop = &udf_file_operations;
1292 		inode->i_mode |= S_IFREG;
1293 		break;
1294 	case ICBTAG_FILE_TYPE_BLOCK:
1295 		inode->i_mode |= S_IFBLK;
1296 		break;
1297 	case ICBTAG_FILE_TYPE_CHAR:
1298 		inode->i_mode |= S_IFCHR;
1299 		break;
1300 	case ICBTAG_FILE_TYPE_FIFO:
1301 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1302 		break;
1303 	case ICBTAG_FILE_TYPE_SOCKET:
1304 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1305 		break;
1306 	case ICBTAG_FILE_TYPE_SYMLINK:
1307 		inode->i_data.a_ops = &udf_symlink_aops;
1308 		inode->i_op = &udf_symlink_inode_operations;
1309 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1310 		break;
1311 	case ICBTAG_FILE_TYPE_MAIN:
1312 		udf_debug("METADATA FILE-----\n");
1313 		break;
1314 	case ICBTAG_FILE_TYPE_MIRROR:
1315 		udf_debug("METADATA MIRROR FILE-----\n");
1316 		break;
1317 	case ICBTAG_FILE_TYPE_BITMAP:
1318 		udf_debug("METADATA BITMAP FILE-----\n");
1319 		break;
1320 	default:
1321 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1322 				"file type=%d\n", inode->i_ino,
1323 				fe->icbTag.fileType);
1324 		make_bad_inode(inode);
1325 		return;
1326 	}
1327 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1328 		struct deviceSpec *dsea =
1329 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1330 		if (dsea) {
1331 			init_special_inode(inode, inode->i_mode,
1332 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1333 				      le32_to_cpu(dsea->minorDeviceIdent)));
1334 			/* Developer ID ??? */
1335 		} else
1336 			make_bad_inode(inode);
1337 	}
1338 }
1339 
1340 static int udf_alloc_i_data(struct inode *inode, size_t size)
1341 {
1342 	struct udf_inode_info *iinfo = UDF_I(inode);
1343 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1344 
1345 	if (!iinfo->i_ext.i_data) {
1346 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1347 				"no free memory\n", inode->i_ino);
1348 		return -ENOMEM;
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 static mode_t udf_convert_permissions(struct fileEntry *fe)
1355 {
1356 	mode_t mode;
1357 	uint32_t permissions;
1358 	uint32_t flags;
1359 
1360 	permissions = le32_to_cpu(fe->permissions);
1361 	flags = le16_to_cpu(fe->icbTag.flags);
1362 
1363 	mode =	((permissions) & S_IRWXO) |
1364 		((permissions >> 2) & S_IRWXG) |
1365 		((permissions >> 4) & S_IRWXU) |
1366 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1367 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1368 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1369 
1370 	return mode;
1371 }
1372 
1373 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1374 {
1375 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1376 }
1377 
1378 static int udf_sync_inode(struct inode *inode)
1379 {
1380 	return udf_update_inode(inode, 1);
1381 }
1382 
1383 static int udf_update_inode(struct inode *inode, int do_sync)
1384 {
1385 	struct buffer_head *bh = NULL;
1386 	struct fileEntry *fe;
1387 	struct extendedFileEntry *efe;
1388 	uint32_t udfperms;
1389 	uint16_t icbflags;
1390 	uint16_t crclen;
1391 	int err = 0;
1392 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1393 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1394 	struct udf_inode_info *iinfo = UDF_I(inode);
1395 
1396 	bh = udf_tgetblk(inode->i_sb,
1397 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1398 	if (!bh) {
1399 		udf_debug("getblk failure\n");
1400 		return -ENOMEM;
1401 	}
1402 
1403 	lock_buffer(bh);
1404 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1405 	fe = (struct fileEntry *)bh->b_data;
1406 	efe = (struct extendedFileEntry *)bh->b_data;
1407 
1408 	if (iinfo->i_use) {
1409 		struct unallocSpaceEntry *use =
1410 			(struct unallocSpaceEntry *)bh->b_data;
1411 
1412 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1413 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1414 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1415 					sizeof(struct unallocSpaceEntry));
1416 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1417 		use->descTag.tagLocation =
1418 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1419 		crclen = sizeof(struct unallocSpaceEntry) +
1420 				iinfo->i_lenAlloc - sizeof(struct tag);
1421 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1422 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1423 							   sizeof(struct tag),
1424 							   crclen));
1425 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1426 
1427 		goto out;
1428 	}
1429 
1430 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1431 		fe->uid = cpu_to_le32(-1);
1432 	else
1433 		fe->uid = cpu_to_le32(inode->i_uid);
1434 
1435 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1436 		fe->gid = cpu_to_le32(-1);
1437 	else
1438 		fe->gid = cpu_to_le32(inode->i_gid);
1439 
1440 	udfperms = ((inode->i_mode & S_IRWXO)) |
1441 		   ((inode->i_mode & S_IRWXG) << 2) |
1442 		   ((inode->i_mode & S_IRWXU) << 4);
1443 
1444 	udfperms |= (le32_to_cpu(fe->permissions) &
1445 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1446 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1447 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1448 	fe->permissions = cpu_to_le32(udfperms);
1449 
1450 	if (S_ISDIR(inode->i_mode))
1451 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1452 	else
1453 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1454 
1455 	fe->informationLength = cpu_to_le64(inode->i_size);
1456 
1457 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1458 		struct regid *eid;
1459 		struct deviceSpec *dsea =
1460 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1461 		if (!dsea) {
1462 			dsea = (struct deviceSpec *)
1463 				udf_add_extendedattr(inode,
1464 						     sizeof(struct deviceSpec) +
1465 						     sizeof(struct regid), 12, 0x3);
1466 			dsea->attrType = cpu_to_le32(12);
1467 			dsea->attrSubtype = 1;
1468 			dsea->attrLength = cpu_to_le32(
1469 						sizeof(struct deviceSpec) +
1470 						sizeof(struct regid));
1471 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1472 		}
1473 		eid = (struct regid *)dsea->impUse;
1474 		memset(eid, 0, sizeof(struct regid));
1475 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1476 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1477 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1478 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1479 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1480 	}
1481 
1482 	if (iinfo->i_efe == 0) {
1483 		memcpy(bh->b_data + sizeof(struct fileEntry),
1484 		       iinfo->i_ext.i_data,
1485 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1486 		fe->logicalBlocksRecorded = cpu_to_le64(
1487 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1488 			(blocksize_bits - 9));
1489 
1490 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1491 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1492 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1493 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1494 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1495 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1496 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1497 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1498 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1499 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1500 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1501 		crclen = sizeof(struct fileEntry);
1502 	} else {
1503 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1504 		       iinfo->i_ext.i_data,
1505 		       inode->i_sb->s_blocksize -
1506 					sizeof(struct extendedFileEntry));
1507 		efe->objectSize = cpu_to_le64(inode->i_size);
1508 		efe->logicalBlocksRecorded = cpu_to_le64(
1509 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1510 			(blocksize_bits - 9));
1511 
1512 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1513 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1514 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1515 			iinfo->i_crtime = inode->i_atime;
1516 
1517 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1518 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1519 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1520 			iinfo->i_crtime = inode->i_mtime;
1521 
1522 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1523 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1524 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1525 			iinfo->i_crtime = inode->i_ctime;
1526 
1527 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1528 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1529 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1530 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1531 
1532 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1533 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1534 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1535 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1536 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1537 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1538 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1539 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1540 		crclen = sizeof(struct extendedFileEntry);
1541 	}
1542 	if (iinfo->i_strat4096) {
1543 		fe->icbTag.strategyType = cpu_to_le16(4096);
1544 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1545 		fe->icbTag.numEntries = cpu_to_le16(2);
1546 	} else {
1547 		fe->icbTag.strategyType = cpu_to_le16(4);
1548 		fe->icbTag.numEntries = cpu_to_le16(1);
1549 	}
1550 
1551 	if (S_ISDIR(inode->i_mode))
1552 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1553 	else if (S_ISREG(inode->i_mode))
1554 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1555 	else if (S_ISLNK(inode->i_mode))
1556 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1557 	else if (S_ISBLK(inode->i_mode))
1558 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1559 	else if (S_ISCHR(inode->i_mode))
1560 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1561 	else if (S_ISFIFO(inode->i_mode))
1562 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1563 	else if (S_ISSOCK(inode->i_mode))
1564 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1565 
1566 	icbflags =	iinfo->i_alloc_type |
1567 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1568 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1569 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1570 			(le16_to_cpu(fe->icbTag.flags) &
1571 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1572 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1573 
1574 	fe->icbTag.flags = cpu_to_le16(icbflags);
1575 	if (sbi->s_udfrev >= 0x0200)
1576 		fe->descTag.descVersion = cpu_to_le16(3);
1577 	else
1578 		fe->descTag.descVersion = cpu_to_le16(2);
1579 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1580 	fe->descTag.tagLocation = cpu_to_le32(
1581 					iinfo->i_location.logicalBlockNum);
1582 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1583 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1584 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1585 						  crclen));
1586 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1587 
1588 out:
1589 	set_buffer_uptodate(bh);
1590 	unlock_buffer(bh);
1591 
1592 	/* write the data blocks */
1593 	mark_buffer_dirty(bh);
1594 	if (do_sync) {
1595 		sync_dirty_buffer(bh);
1596 		if (buffer_write_io_error(bh)) {
1597 			printk(KERN_WARNING "IO error syncing udf inode "
1598 				"[%s:%08lx]\n", inode->i_sb->s_id,
1599 				inode->i_ino);
1600 			err = -EIO;
1601 		}
1602 	}
1603 	brelse(bh);
1604 
1605 	return err;
1606 }
1607 
1608 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1609 {
1610 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1611 	struct inode *inode = iget_locked(sb, block);
1612 
1613 	if (!inode)
1614 		return NULL;
1615 
1616 	if (inode->i_state & I_NEW) {
1617 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1618 		__udf_read_inode(inode);
1619 		unlock_new_inode(inode);
1620 	}
1621 
1622 	if (is_bad_inode(inode))
1623 		goto out_iput;
1624 
1625 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1626 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1627 		udf_debug("block=%d, partition=%d out of range\n",
1628 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1629 		make_bad_inode(inode);
1630 		goto out_iput;
1631 	}
1632 
1633 	return inode;
1634 
1635  out_iput:
1636 	iput(inode);
1637 	return NULL;
1638 }
1639 
1640 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1641 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1642 {
1643 	int adsize;
1644 	struct short_ad *sad = NULL;
1645 	struct long_ad *lad = NULL;
1646 	struct allocExtDesc *aed;
1647 	int8_t etype;
1648 	uint8_t *ptr;
1649 	struct udf_inode_info *iinfo = UDF_I(inode);
1650 
1651 	if (!epos->bh)
1652 		ptr = iinfo->i_ext.i_data + epos->offset -
1653 			udf_file_entry_alloc_offset(inode) +
1654 			iinfo->i_lenEAttr;
1655 	else
1656 		ptr = epos->bh->b_data + epos->offset;
1657 
1658 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1659 		adsize = sizeof(struct short_ad);
1660 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1661 		adsize = sizeof(struct long_ad);
1662 	else
1663 		return -1;
1664 
1665 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1666 		unsigned char *sptr, *dptr;
1667 		struct buffer_head *nbh;
1668 		int err, loffset;
1669 		struct kernel_lb_addr obloc = epos->block;
1670 
1671 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1672 						obloc.partitionReferenceNum,
1673 						obloc.logicalBlockNum, &err);
1674 		if (!epos->block.logicalBlockNum)
1675 			return -1;
1676 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1677 								 &epos->block,
1678 								 0));
1679 		if (!nbh)
1680 			return -1;
1681 		lock_buffer(nbh);
1682 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1683 		set_buffer_uptodate(nbh);
1684 		unlock_buffer(nbh);
1685 		mark_buffer_dirty_inode(nbh, inode);
1686 
1687 		aed = (struct allocExtDesc *)(nbh->b_data);
1688 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1689 			aed->previousAllocExtLocation =
1690 					cpu_to_le32(obloc.logicalBlockNum);
1691 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1692 			loffset = epos->offset;
1693 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1694 			sptr = ptr - adsize;
1695 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1696 			memcpy(dptr, sptr, adsize);
1697 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1698 		} else {
1699 			loffset = epos->offset + adsize;
1700 			aed->lengthAllocDescs = cpu_to_le32(0);
1701 			sptr = ptr;
1702 			epos->offset = sizeof(struct allocExtDesc);
1703 
1704 			if (epos->bh) {
1705 				aed = (struct allocExtDesc *)epos->bh->b_data;
1706 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1707 			} else {
1708 				iinfo->i_lenAlloc += adsize;
1709 				mark_inode_dirty(inode);
1710 			}
1711 		}
1712 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1713 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1714 				    epos->block.logicalBlockNum, sizeof(struct tag));
1715 		else
1716 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1717 				    epos->block.logicalBlockNum, sizeof(struct tag));
1718 		switch (iinfo->i_alloc_type) {
1719 		case ICBTAG_FLAG_AD_SHORT:
1720 			sad = (struct short_ad *)sptr;
1721 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1722 						     inode->i_sb->s_blocksize);
1723 			sad->extPosition =
1724 				cpu_to_le32(epos->block.logicalBlockNum);
1725 			break;
1726 		case ICBTAG_FLAG_AD_LONG:
1727 			lad = (struct long_ad *)sptr;
1728 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1729 						     inode->i_sb->s_blocksize);
1730 			lad->extLocation = cpu_to_lelb(epos->block);
1731 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1732 			break;
1733 		}
1734 		if (epos->bh) {
1735 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1736 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1737 				udf_update_tag(epos->bh->b_data, loffset);
1738 			else
1739 				udf_update_tag(epos->bh->b_data,
1740 						sizeof(struct allocExtDesc));
1741 			mark_buffer_dirty_inode(epos->bh, inode);
1742 			brelse(epos->bh);
1743 		} else {
1744 			mark_inode_dirty(inode);
1745 		}
1746 		epos->bh = nbh;
1747 	}
1748 
1749 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1750 
1751 	if (!epos->bh) {
1752 		iinfo->i_lenAlloc += adsize;
1753 		mark_inode_dirty(inode);
1754 	} else {
1755 		aed = (struct allocExtDesc *)epos->bh->b_data;
1756 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1757 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1758 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1759 			udf_update_tag(epos->bh->b_data,
1760 					epos->offset + (inc ? 0 : adsize));
1761 		else
1762 			udf_update_tag(epos->bh->b_data,
1763 					sizeof(struct allocExtDesc));
1764 		mark_buffer_dirty_inode(epos->bh, inode);
1765 	}
1766 
1767 	return etype;
1768 }
1769 
1770 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1771 		      struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1772 {
1773 	int adsize;
1774 	uint8_t *ptr;
1775 	struct short_ad *sad;
1776 	struct long_ad *lad;
1777 	struct udf_inode_info *iinfo = UDF_I(inode);
1778 
1779 	if (!epos->bh)
1780 		ptr = iinfo->i_ext.i_data + epos->offset -
1781 			udf_file_entry_alloc_offset(inode) +
1782 			iinfo->i_lenEAttr;
1783 	else
1784 		ptr = epos->bh->b_data + epos->offset;
1785 
1786 	switch (iinfo->i_alloc_type) {
1787 	case ICBTAG_FLAG_AD_SHORT:
1788 		sad = (struct short_ad *)ptr;
1789 		sad->extLength = cpu_to_le32(elen);
1790 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1791 		adsize = sizeof(struct short_ad);
1792 		break;
1793 	case ICBTAG_FLAG_AD_LONG:
1794 		lad = (struct long_ad *)ptr;
1795 		lad->extLength = cpu_to_le32(elen);
1796 		lad->extLocation = cpu_to_lelb(*eloc);
1797 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1798 		adsize = sizeof(struct long_ad);
1799 		break;
1800 	default:
1801 		return -1;
1802 	}
1803 
1804 	if (epos->bh) {
1805 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1806 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1807 			struct allocExtDesc *aed =
1808 				(struct allocExtDesc *)epos->bh->b_data;
1809 			udf_update_tag(epos->bh->b_data,
1810 				       le32_to_cpu(aed->lengthAllocDescs) +
1811 				       sizeof(struct allocExtDesc));
1812 		}
1813 		mark_buffer_dirty_inode(epos->bh, inode);
1814 	} else {
1815 		mark_inode_dirty(inode);
1816 	}
1817 
1818 	if (inc)
1819 		epos->offset += adsize;
1820 
1821 	return (elen >> 30);
1822 }
1823 
1824 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1825 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1826 {
1827 	int8_t etype;
1828 
1829 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1830 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1831 		int block;
1832 		epos->block = *eloc;
1833 		epos->offset = sizeof(struct allocExtDesc);
1834 		brelse(epos->bh);
1835 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1836 		epos->bh = udf_tread(inode->i_sb, block);
1837 		if (!epos->bh) {
1838 			udf_debug("reading block %d failed!\n", block);
1839 			return -1;
1840 		}
1841 	}
1842 
1843 	return etype;
1844 }
1845 
1846 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1847 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1848 {
1849 	int alen;
1850 	int8_t etype;
1851 	uint8_t *ptr;
1852 	struct short_ad *sad;
1853 	struct long_ad *lad;
1854 	struct udf_inode_info *iinfo = UDF_I(inode);
1855 
1856 	if (!epos->bh) {
1857 		if (!epos->offset)
1858 			epos->offset = udf_file_entry_alloc_offset(inode);
1859 		ptr = iinfo->i_ext.i_data + epos->offset -
1860 			udf_file_entry_alloc_offset(inode) +
1861 			iinfo->i_lenEAttr;
1862 		alen = udf_file_entry_alloc_offset(inode) +
1863 							iinfo->i_lenAlloc;
1864 	} else {
1865 		if (!epos->offset)
1866 			epos->offset = sizeof(struct allocExtDesc);
1867 		ptr = epos->bh->b_data + epos->offset;
1868 		alen = sizeof(struct allocExtDesc) +
1869 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1870 							lengthAllocDescs);
1871 	}
1872 
1873 	switch (iinfo->i_alloc_type) {
1874 	case ICBTAG_FLAG_AD_SHORT:
1875 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1876 		if (!sad)
1877 			return -1;
1878 		etype = le32_to_cpu(sad->extLength) >> 30;
1879 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1880 		eloc->partitionReferenceNum =
1881 				iinfo->i_location.partitionReferenceNum;
1882 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1883 		break;
1884 	case ICBTAG_FLAG_AD_LONG:
1885 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1886 		if (!lad)
1887 			return -1;
1888 		etype = le32_to_cpu(lad->extLength) >> 30;
1889 		*eloc = lelb_to_cpu(lad->extLocation);
1890 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1891 		break;
1892 	default:
1893 		udf_debug("alloc_type = %d unsupported\n",
1894 				iinfo->i_alloc_type);
1895 		return -1;
1896 	}
1897 
1898 	return etype;
1899 }
1900 
1901 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1902 			      struct kernel_lb_addr neloc, uint32_t nelen)
1903 {
1904 	struct kernel_lb_addr oeloc;
1905 	uint32_t oelen;
1906 	int8_t etype;
1907 
1908 	if (epos.bh)
1909 		get_bh(epos.bh);
1910 
1911 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1912 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
1913 		neloc = oeloc;
1914 		nelen = (etype << 30) | oelen;
1915 	}
1916 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
1917 	brelse(epos.bh);
1918 
1919 	return (nelen >> 30);
1920 }
1921 
1922 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1923 		       struct kernel_lb_addr eloc, uint32_t elen)
1924 {
1925 	struct extent_position oepos;
1926 	int adsize;
1927 	int8_t etype;
1928 	struct allocExtDesc *aed;
1929 	struct udf_inode_info *iinfo;
1930 
1931 	if (epos.bh) {
1932 		get_bh(epos.bh);
1933 		get_bh(epos.bh);
1934 	}
1935 
1936 	iinfo = UDF_I(inode);
1937 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 		adsize = sizeof(struct short_ad);
1939 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 		adsize = sizeof(struct long_ad);
1941 	else
1942 		adsize = 0;
1943 
1944 	oepos = epos;
1945 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1946 		return -1;
1947 
1948 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1949 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1950 		if (oepos.bh != epos.bh) {
1951 			oepos.block = epos.block;
1952 			brelse(oepos.bh);
1953 			get_bh(epos.bh);
1954 			oepos.bh = epos.bh;
1955 			oepos.offset = epos.offset - adsize;
1956 		}
1957 	}
1958 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1959 	elen = 0;
1960 
1961 	if (epos.bh != oepos.bh) {
1962 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1963 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1964 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1965 		if (!oepos.bh) {
1966 			iinfo->i_lenAlloc -= (adsize * 2);
1967 			mark_inode_dirty(inode);
1968 		} else {
1969 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1970 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1971 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1972 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1973 				udf_update_tag(oepos.bh->b_data,
1974 						oepos.offset - (2 * adsize));
1975 			else
1976 				udf_update_tag(oepos.bh->b_data,
1977 						sizeof(struct allocExtDesc));
1978 			mark_buffer_dirty_inode(oepos.bh, inode);
1979 		}
1980 	} else {
1981 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1982 		if (!oepos.bh) {
1983 			iinfo->i_lenAlloc -= adsize;
1984 			mark_inode_dirty(inode);
1985 		} else {
1986 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1987 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1988 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1989 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1990 				udf_update_tag(oepos.bh->b_data,
1991 						epos.offset - adsize);
1992 			else
1993 				udf_update_tag(oepos.bh->b_data,
1994 						sizeof(struct allocExtDesc));
1995 			mark_buffer_dirty_inode(oepos.bh, inode);
1996 		}
1997 	}
1998 
1999 	brelse(epos.bh);
2000 	brelse(oepos.bh);
2001 
2002 	return (elen >> 30);
2003 }
2004 
2005 int8_t inode_bmap(struct inode *inode, sector_t block,
2006 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2007 		  uint32_t *elen, sector_t *offset)
2008 {
2009 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2010 	loff_t lbcount = 0, bcount =
2011 	    (loff_t) block << blocksize_bits;
2012 	int8_t etype;
2013 	struct udf_inode_info *iinfo;
2014 
2015 	iinfo = UDF_I(inode);
2016 	pos->offset = 0;
2017 	pos->block = iinfo->i_location;
2018 	pos->bh = NULL;
2019 	*elen = 0;
2020 
2021 	do {
2022 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2023 		if (etype == -1) {
2024 			*offset = (bcount - lbcount) >> blocksize_bits;
2025 			iinfo->i_lenExtents = lbcount;
2026 			return -1;
2027 		}
2028 		lbcount += *elen;
2029 	} while (lbcount <= bcount);
2030 
2031 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2032 
2033 	return etype;
2034 }
2035 
2036 long udf_block_map(struct inode *inode, sector_t block)
2037 {
2038 	struct kernel_lb_addr eloc;
2039 	uint32_t elen;
2040 	sector_t offset;
2041 	struct extent_position epos = {};
2042 	int ret;
2043 
2044 	down_read(&UDF_I(inode)->i_data_sem);
2045 
2046 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2047 						(EXT_RECORDED_ALLOCATED >> 30))
2048 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2049 	else
2050 		ret = 0;
2051 
2052 	up_read(&UDF_I(inode)->i_data_sem);
2053 	brelse(epos.bh);
2054 
2055 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2056 		return udf_fixed_to_variable(ret);
2057 	else
2058 		return ret;
2059 }
2060