1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 #include <linux/crc-itu-t.h> 40 #include <linux/mpage.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static umode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_sync_inode(struct inode *inode); 55 static int udf_alloc_i_data(struct inode *inode, size_t size); 56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos, int next_epos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, 124 sizeof(struct extent_position)); 125 iinfo->cached_extent.lstart = estart; 126 if (next_epos) 127 switch (iinfo->i_alloc_type) { 128 case ICBTAG_FLAG_AD_SHORT: 129 iinfo->cached_extent.epos.offset -= 130 sizeof(struct short_ad); 131 break; 132 case ICBTAG_FLAG_AD_LONG: 133 iinfo->cached_extent.epos.offset -= 134 sizeof(struct long_ad); 135 } 136 spin_unlock(&iinfo->i_extent_cache_lock); 137 } 138 139 void udf_evict_inode(struct inode *inode) 140 { 141 struct udf_inode_info *iinfo = UDF_I(inode); 142 int want_delete = 0; 143 144 if (!inode->i_nlink && !is_bad_inode(inode)) { 145 want_delete = 1; 146 udf_setsize(inode, 0); 147 udf_update_inode(inode, IS_SYNC(inode)); 148 } else 149 truncate_inode_pages(&inode->i_data, 0); 150 invalidate_inode_buffers(inode); 151 clear_inode(inode); 152 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 153 inode->i_size != iinfo->i_lenExtents) { 154 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 155 inode->i_ino, inode->i_mode, 156 (unsigned long long)inode->i_size, 157 (unsigned long long)iinfo->i_lenExtents); 158 } 159 kfree(iinfo->i_ext.i_data); 160 iinfo->i_ext.i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, to, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_writepage(struct page *page, struct writeback_control *wbc) 185 { 186 return block_write_full_page(page, udf_get_block, wbc); 187 } 188 189 static int udf_writepages(struct address_space *mapping, 190 struct writeback_control *wbc) 191 { 192 return mpage_writepages(mapping, wbc, udf_get_block); 193 } 194 195 static int udf_readpage(struct file *file, struct page *page) 196 { 197 return mpage_readpage(page, udf_get_block); 198 } 199 200 static int udf_readpages(struct file *file, struct address_space *mapping, 201 struct list_head *pages, unsigned nr_pages) 202 { 203 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 204 } 205 206 static int udf_write_begin(struct file *file, struct address_space *mapping, 207 loff_t pos, unsigned len, unsigned flags, 208 struct page **pagep, void **fsdata) 209 { 210 int ret; 211 212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 213 if (unlikely(ret)) 214 udf_write_failed(mapping, pos + len); 215 return ret; 216 } 217 218 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb, 219 const struct iovec *iov, 220 loff_t offset, unsigned long nr_segs) 221 { 222 struct file *file = iocb->ki_filp; 223 struct address_space *mapping = file->f_mapping; 224 struct inode *inode = mapping->host; 225 ssize_t ret; 226 227 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 228 udf_get_block); 229 if (unlikely(ret < 0 && (rw & WRITE))) 230 udf_write_failed(mapping, offset + iov_length(iov, nr_segs)); 231 return ret; 232 } 233 234 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 235 { 236 return generic_block_bmap(mapping, block, udf_get_block); 237 } 238 239 const struct address_space_operations udf_aops = { 240 .readpage = udf_readpage, 241 .readpages = udf_readpages, 242 .writepage = udf_writepage, 243 .writepages = udf_writepages, 244 .write_begin = udf_write_begin, 245 .write_end = generic_write_end, 246 .direct_IO = udf_direct_IO, 247 .bmap = udf_bmap, 248 }; 249 250 /* 251 * Expand file stored in ICB to a normal one-block-file 252 * 253 * This function requires i_data_sem for writing and releases it. 254 * This function requires i_mutex held 255 */ 256 int udf_expand_file_adinicb(struct inode *inode) 257 { 258 struct page *page; 259 char *kaddr; 260 struct udf_inode_info *iinfo = UDF_I(inode); 261 int err; 262 struct writeback_control udf_wbc = { 263 .sync_mode = WB_SYNC_NONE, 264 .nr_to_write = 1, 265 }; 266 267 if (!iinfo->i_lenAlloc) { 268 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 269 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 270 else 271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 272 /* from now on we have normal address_space methods */ 273 inode->i_data.a_ops = &udf_aops; 274 up_write(&iinfo->i_data_sem); 275 mark_inode_dirty(inode); 276 return 0; 277 } 278 /* 279 * Release i_data_sem so that we can lock a page - page lock ranks 280 * above i_data_sem. i_mutex still protects us against file changes. 281 */ 282 up_write(&iinfo->i_data_sem); 283 284 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 285 if (!page) 286 return -ENOMEM; 287 288 if (!PageUptodate(page)) { 289 kaddr = kmap(page); 290 memset(kaddr + iinfo->i_lenAlloc, 0x00, 291 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 292 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 293 iinfo->i_lenAlloc); 294 flush_dcache_page(page); 295 SetPageUptodate(page); 296 kunmap(page); 297 } 298 down_write(&iinfo->i_data_sem); 299 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 300 iinfo->i_lenAlloc); 301 iinfo->i_lenAlloc = 0; 302 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 303 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 304 else 305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 306 /* from now on we have normal address_space methods */ 307 inode->i_data.a_ops = &udf_aops; 308 up_write(&iinfo->i_data_sem); 309 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 310 if (err) { 311 /* Restore everything back so that we don't lose data... */ 312 lock_page(page); 313 kaddr = kmap(page); 314 down_write(&iinfo->i_data_sem); 315 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 316 inode->i_size); 317 kunmap(page); 318 unlock_page(page); 319 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 320 inode->i_data.a_ops = &udf_adinicb_aops; 321 up_write(&iinfo->i_data_sem); 322 } 323 page_cache_release(page); 324 mark_inode_dirty(inode); 325 326 return err; 327 } 328 329 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 330 int *err) 331 { 332 int newblock; 333 struct buffer_head *dbh = NULL; 334 struct kernel_lb_addr eloc; 335 uint8_t alloctype; 336 struct extent_position epos; 337 338 struct udf_fileident_bh sfibh, dfibh; 339 loff_t f_pos = udf_ext0_offset(inode); 340 int size = udf_ext0_offset(inode) + inode->i_size; 341 struct fileIdentDesc cfi, *sfi, *dfi; 342 struct udf_inode_info *iinfo = UDF_I(inode); 343 344 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 345 alloctype = ICBTAG_FLAG_AD_SHORT; 346 else 347 alloctype = ICBTAG_FLAG_AD_LONG; 348 349 if (!inode->i_size) { 350 iinfo->i_alloc_type = alloctype; 351 mark_inode_dirty(inode); 352 return NULL; 353 } 354 355 /* alloc block, and copy data to it */ 356 *block = udf_new_block(inode->i_sb, inode, 357 iinfo->i_location.partitionReferenceNum, 358 iinfo->i_location.logicalBlockNum, err); 359 if (!(*block)) 360 return NULL; 361 newblock = udf_get_pblock(inode->i_sb, *block, 362 iinfo->i_location.partitionReferenceNum, 363 0); 364 if (!newblock) 365 return NULL; 366 dbh = udf_tgetblk(inode->i_sb, newblock); 367 if (!dbh) 368 return NULL; 369 lock_buffer(dbh); 370 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 371 set_buffer_uptodate(dbh); 372 unlock_buffer(dbh); 373 mark_buffer_dirty_inode(dbh, inode); 374 375 sfibh.soffset = sfibh.eoffset = 376 f_pos & (inode->i_sb->s_blocksize - 1); 377 sfibh.sbh = sfibh.ebh = NULL; 378 dfibh.soffset = dfibh.eoffset = 0; 379 dfibh.sbh = dfibh.ebh = dbh; 380 while (f_pos < size) { 381 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 382 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 383 NULL, NULL, NULL); 384 if (!sfi) { 385 brelse(dbh); 386 return NULL; 387 } 388 iinfo->i_alloc_type = alloctype; 389 sfi->descTag.tagLocation = cpu_to_le32(*block); 390 dfibh.soffset = dfibh.eoffset; 391 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 392 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 393 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 394 sfi->fileIdent + 395 le16_to_cpu(sfi->lengthOfImpUse))) { 396 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 397 brelse(dbh); 398 return NULL; 399 } 400 } 401 mark_buffer_dirty_inode(dbh, inode); 402 403 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 404 iinfo->i_lenAlloc); 405 iinfo->i_lenAlloc = 0; 406 eloc.logicalBlockNum = *block; 407 eloc.partitionReferenceNum = 408 iinfo->i_location.partitionReferenceNum; 409 iinfo->i_lenExtents = inode->i_size; 410 epos.bh = NULL; 411 epos.block = iinfo->i_location; 412 epos.offset = udf_file_entry_alloc_offset(inode); 413 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 414 /* UniqueID stuff */ 415 416 brelse(epos.bh); 417 mark_inode_dirty(inode); 418 return dbh; 419 } 420 421 static int udf_get_block(struct inode *inode, sector_t block, 422 struct buffer_head *bh_result, int create) 423 { 424 int err, new; 425 sector_t phys = 0; 426 struct udf_inode_info *iinfo; 427 428 if (!create) { 429 phys = udf_block_map(inode, block); 430 if (phys) 431 map_bh(bh_result, inode->i_sb, phys); 432 return 0; 433 } 434 435 err = -EIO; 436 new = 0; 437 iinfo = UDF_I(inode); 438 439 down_write(&iinfo->i_data_sem); 440 if (block == iinfo->i_next_alloc_block + 1) { 441 iinfo->i_next_alloc_block++; 442 iinfo->i_next_alloc_goal++; 443 } 444 445 udf_clear_extent_cache(inode); 446 phys = inode_getblk(inode, block, &err, &new); 447 if (!phys) 448 goto abort; 449 450 if (new) 451 set_buffer_new(bh_result); 452 map_bh(bh_result, inode->i_sb, phys); 453 454 abort: 455 up_write(&iinfo->i_data_sem); 456 return err; 457 } 458 459 static struct buffer_head *udf_getblk(struct inode *inode, long block, 460 int create, int *err) 461 { 462 struct buffer_head *bh; 463 struct buffer_head dummy; 464 465 dummy.b_state = 0; 466 dummy.b_blocknr = -1000; 467 *err = udf_get_block(inode, block, &dummy, create); 468 if (!*err && buffer_mapped(&dummy)) { 469 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 470 if (buffer_new(&dummy)) { 471 lock_buffer(bh); 472 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 473 set_buffer_uptodate(bh); 474 unlock_buffer(bh); 475 mark_buffer_dirty_inode(bh, inode); 476 } 477 return bh; 478 } 479 480 return NULL; 481 } 482 483 /* Extend the file by 'blocks' blocks, return the number of extents added */ 484 static int udf_do_extend_file(struct inode *inode, 485 struct extent_position *last_pos, 486 struct kernel_long_ad *last_ext, 487 sector_t blocks) 488 { 489 sector_t add; 490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 491 struct super_block *sb = inode->i_sb; 492 struct kernel_lb_addr prealloc_loc = {}; 493 int prealloc_len = 0; 494 struct udf_inode_info *iinfo; 495 int err; 496 497 /* The previous extent is fake and we should not extend by anything 498 * - there's nothing to do... */ 499 if (!blocks && fake) 500 return 0; 501 502 iinfo = UDF_I(inode); 503 /* Round the last extent up to a multiple of block size */ 504 if (last_ext->extLength & (sb->s_blocksize - 1)) { 505 last_ext->extLength = 506 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 507 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 508 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 509 iinfo->i_lenExtents = 510 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 511 ~(sb->s_blocksize - 1); 512 } 513 514 /* Last extent are just preallocated blocks? */ 515 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 516 EXT_NOT_RECORDED_ALLOCATED) { 517 /* Save the extent so that we can reattach it to the end */ 518 prealloc_loc = last_ext->extLocation; 519 prealloc_len = last_ext->extLength; 520 /* Mark the extent as a hole */ 521 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 522 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 523 last_ext->extLocation.logicalBlockNum = 0; 524 last_ext->extLocation.partitionReferenceNum = 0; 525 } 526 527 /* Can we merge with the previous extent? */ 528 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 529 EXT_NOT_RECORDED_NOT_ALLOCATED) { 530 add = ((1 << 30) - sb->s_blocksize - 531 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 532 sb->s_blocksize_bits; 533 if (add > blocks) 534 add = blocks; 535 blocks -= add; 536 last_ext->extLength += add << sb->s_blocksize_bits; 537 } 538 539 if (fake) { 540 udf_add_aext(inode, last_pos, &last_ext->extLocation, 541 last_ext->extLength, 1); 542 count++; 543 } else 544 udf_write_aext(inode, last_pos, &last_ext->extLocation, 545 last_ext->extLength, 1); 546 547 /* Managed to do everything necessary? */ 548 if (!blocks) 549 goto out; 550 551 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 552 last_ext->extLocation.logicalBlockNum = 0; 553 last_ext->extLocation.partitionReferenceNum = 0; 554 add = (1 << (30-sb->s_blocksize_bits)) - 1; 555 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 556 (add << sb->s_blocksize_bits); 557 558 /* Create enough extents to cover the whole hole */ 559 while (blocks > add) { 560 blocks -= add; 561 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 562 last_ext->extLength, 1); 563 if (err) 564 return err; 565 count++; 566 } 567 if (blocks) { 568 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 569 (blocks << sb->s_blocksize_bits); 570 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 571 last_ext->extLength, 1); 572 if (err) 573 return err; 574 count++; 575 } 576 577 out: 578 /* Do we have some preallocated blocks saved? */ 579 if (prealloc_len) { 580 err = udf_add_aext(inode, last_pos, &prealloc_loc, 581 prealloc_len, 1); 582 if (err) 583 return err; 584 last_ext->extLocation = prealloc_loc; 585 last_ext->extLength = prealloc_len; 586 count++; 587 } 588 589 /* last_pos should point to the last written extent... */ 590 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 591 last_pos->offset -= sizeof(struct short_ad); 592 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 593 last_pos->offset -= sizeof(struct long_ad); 594 else 595 return -EIO; 596 597 return count; 598 } 599 600 static int udf_extend_file(struct inode *inode, loff_t newsize) 601 { 602 603 struct extent_position epos; 604 struct kernel_lb_addr eloc; 605 uint32_t elen; 606 int8_t etype; 607 struct super_block *sb = inode->i_sb; 608 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 609 int adsize; 610 struct udf_inode_info *iinfo = UDF_I(inode); 611 struct kernel_long_ad extent; 612 int err; 613 614 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 615 adsize = sizeof(struct short_ad); 616 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 617 adsize = sizeof(struct long_ad); 618 else 619 BUG(); 620 621 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 622 623 /* File has extent covering the new size (could happen when extending 624 * inside a block)? */ 625 if (etype != -1) 626 return 0; 627 if (newsize & (sb->s_blocksize - 1)) 628 offset++; 629 /* Extended file just to the boundary of the last file block? */ 630 if (offset == 0) 631 return 0; 632 633 /* Truncate is extending the file by 'offset' blocks */ 634 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 635 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 636 /* File has no extents at all or has empty last 637 * indirect extent! Create a fake extent... */ 638 extent.extLocation.logicalBlockNum = 0; 639 extent.extLocation.partitionReferenceNum = 0; 640 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 641 } else { 642 epos.offset -= adsize; 643 etype = udf_next_aext(inode, &epos, &extent.extLocation, 644 &extent.extLength, 0); 645 extent.extLength |= etype << 30; 646 } 647 err = udf_do_extend_file(inode, &epos, &extent, offset); 648 if (err < 0) 649 goto out; 650 err = 0; 651 iinfo->i_lenExtents = newsize; 652 out: 653 brelse(epos.bh); 654 return err; 655 } 656 657 static sector_t inode_getblk(struct inode *inode, sector_t block, 658 int *err, int *new) 659 { 660 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 661 struct extent_position prev_epos, cur_epos, next_epos; 662 int count = 0, startnum = 0, endnum = 0; 663 uint32_t elen = 0, tmpelen; 664 struct kernel_lb_addr eloc, tmpeloc; 665 int c = 1; 666 loff_t lbcount = 0, b_off = 0; 667 uint32_t newblocknum, newblock; 668 sector_t offset = 0; 669 int8_t etype; 670 struct udf_inode_info *iinfo = UDF_I(inode); 671 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 672 int lastblock = 0; 673 bool isBeyondEOF; 674 675 *err = 0; 676 *new = 0; 677 prev_epos.offset = udf_file_entry_alloc_offset(inode); 678 prev_epos.block = iinfo->i_location; 679 prev_epos.bh = NULL; 680 cur_epos = next_epos = prev_epos; 681 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 682 683 /* find the extent which contains the block we are looking for. 684 alternate between laarr[0] and laarr[1] for locations of the 685 current extent, and the previous extent */ 686 do { 687 if (prev_epos.bh != cur_epos.bh) { 688 brelse(prev_epos.bh); 689 get_bh(cur_epos.bh); 690 prev_epos.bh = cur_epos.bh; 691 } 692 if (cur_epos.bh != next_epos.bh) { 693 brelse(cur_epos.bh); 694 get_bh(next_epos.bh); 695 cur_epos.bh = next_epos.bh; 696 } 697 698 lbcount += elen; 699 700 prev_epos.block = cur_epos.block; 701 cur_epos.block = next_epos.block; 702 703 prev_epos.offset = cur_epos.offset; 704 cur_epos.offset = next_epos.offset; 705 706 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 707 if (etype == -1) 708 break; 709 710 c = !c; 711 712 laarr[c].extLength = (etype << 30) | elen; 713 laarr[c].extLocation = eloc; 714 715 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 716 pgoal = eloc.logicalBlockNum + 717 ((elen + inode->i_sb->s_blocksize - 1) >> 718 inode->i_sb->s_blocksize_bits); 719 720 count++; 721 } while (lbcount + elen <= b_off); 722 723 b_off -= lbcount; 724 offset = b_off >> inode->i_sb->s_blocksize_bits; 725 /* 726 * Move prev_epos and cur_epos into indirect extent if we are at 727 * the pointer to it 728 */ 729 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 730 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 731 732 /* if the extent is allocated and recorded, return the block 733 if the extent is not a multiple of the blocksize, round up */ 734 735 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 736 if (elen & (inode->i_sb->s_blocksize - 1)) { 737 elen = EXT_RECORDED_ALLOCATED | 738 ((elen + inode->i_sb->s_blocksize - 1) & 739 ~(inode->i_sb->s_blocksize - 1)); 740 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 741 } 742 brelse(prev_epos.bh); 743 brelse(cur_epos.bh); 744 brelse(next_epos.bh); 745 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 746 return newblock; 747 } 748 749 /* Are we beyond EOF? */ 750 if (etype == -1) { 751 int ret; 752 isBeyondEOF = 1; 753 if (count) { 754 if (c) 755 laarr[0] = laarr[1]; 756 startnum = 1; 757 } else { 758 /* Create a fake extent when there's not one */ 759 memset(&laarr[0].extLocation, 0x00, 760 sizeof(struct kernel_lb_addr)); 761 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 762 /* Will udf_do_extend_file() create real extent from 763 a fake one? */ 764 startnum = (offset > 0); 765 } 766 /* Create extents for the hole between EOF and offset */ 767 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 768 if (ret < 0) { 769 brelse(prev_epos.bh); 770 brelse(cur_epos.bh); 771 brelse(next_epos.bh); 772 *err = ret; 773 return 0; 774 } 775 c = 0; 776 offset = 0; 777 count += ret; 778 /* We are not covered by a preallocated extent? */ 779 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 780 EXT_NOT_RECORDED_ALLOCATED) { 781 /* Is there any real extent? - otherwise we overwrite 782 * the fake one... */ 783 if (count) 784 c = !c; 785 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 786 inode->i_sb->s_blocksize; 787 memset(&laarr[c].extLocation, 0x00, 788 sizeof(struct kernel_lb_addr)); 789 count++; 790 } 791 endnum = c + 1; 792 lastblock = 1; 793 } else { 794 isBeyondEOF = 0; 795 endnum = startnum = ((count > 2) ? 2 : count); 796 797 /* if the current extent is in position 0, 798 swap it with the previous */ 799 if (!c && count != 1) { 800 laarr[2] = laarr[0]; 801 laarr[0] = laarr[1]; 802 laarr[1] = laarr[2]; 803 c = 1; 804 } 805 806 /* if the current block is located in an extent, 807 read the next extent */ 808 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 809 if (etype != -1) { 810 laarr[c + 1].extLength = (etype << 30) | elen; 811 laarr[c + 1].extLocation = eloc; 812 count++; 813 startnum++; 814 endnum++; 815 } else 816 lastblock = 1; 817 } 818 819 /* if the current extent is not recorded but allocated, get the 820 * block in the extent corresponding to the requested block */ 821 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 822 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 823 else { /* otherwise, allocate a new block */ 824 if (iinfo->i_next_alloc_block == block) 825 goal = iinfo->i_next_alloc_goal; 826 827 if (!goal) { 828 if (!(goal = pgoal)) /* XXX: what was intended here? */ 829 goal = iinfo->i_location.logicalBlockNum + 1; 830 } 831 832 newblocknum = udf_new_block(inode->i_sb, inode, 833 iinfo->i_location.partitionReferenceNum, 834 goal, err); 835 if (!newblocknum) { 836 brelse(prev_epos.bh); 837 brelse(cur_epos.bh); 838 brelse(next_epos.bh); 839 *err = -ENOSPC; 840 return 0; 841 } 842 if (isBeyondEOF) 843 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 844 } 845 846 /* if the extent the requsted block is located in contains multiple 847 * blocks, split the extent into at most three extents. blocks prior 848 * to requested block, requested block, and blocks after requested 849 * block */ 850 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 851 852 #ifdef UDF_PREALLOCATE 853 /* We preallocate blocks only for regular files. It also makes sense 854 * for directories but there's a problem when to drop the 855 * preallocation. We might use some delayed work for that but I feel 856 * it's overengineering for a filesystem like UDF. */ 857 if (S_ISREG(inode->i_mode)) 858 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 859 #endif 860 861 /* merge any continuous blocks in laarr */ 862 udf_merge_extents(inode, laarr, &endnum); 863 864 /* write back the new extents, inserting new extents if the new number 865 * of extents is greater than the old number, and deleting extents if 866 * the new number of extents is less than the old number */ 867 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 868 869 brelse(prev_epos.bh); 870 brelse(cur_epos.bh); 871 brelse(next_epos.bh); 872 873 newblock = udf_get_pblock(inode->i_sb, newblocknum, 874 iinfo->i_location.partitionReferenceNum, 0); 875 if (!newblock) { 876 *err = -EIO; 877 return 0; 878 } 879 *new = 1; 880 iinfo->i_next_alloc_block = block; 881 iinfo->i_next_alloc_goal = newblocknum; 882 inode->i_ctime = current_fs_time(inode->i_sb); 883 884 if (IS_SYNC(inode)) 885 udf_sync_inode(inode); 886 else 887 mark_inode_dirty(inode); 888 889 return newblock; 890 } 891 892 static void udf_split_extents(struct inode *inode, int *c, int offset, 893 int newblocknum, 894 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 895 int *endnum) 896 { 897 unsigned long blocksize = inode->i_sb->s_blocksize; 898 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 899 900 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 901 (laarr[*c].extLength >> 30) == 902 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 903 int curr = *c; 904 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 905 blocksize - 1) >> blocksize_bits; 906 int8_t etype = (laarr[curr].extLength >> 30); 907 908 if (blen == 1) 909 ; 910 else if (!offset || blen == offset + 1) { 911 laarr[curr + 2] = laarr[curr + 1]; 912 laarr[curr + 1] = laarr[curr]; 913 } else { 914 laarr[curr + 3] = laarr[curr + 1]; 915 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 916 } 917 918 if (offset) { 919 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 920 udf_free_blocks(inode->i_sb, inode, 921 &laarr[curr].extLocation, 922 0, offset); 923 laarr[curr].extLength = 924 EXT_NOT_RECORDED_NOT_ALLOCATED | 925 (offset << blocksize_bits); 926 laarr[curr].extLocation.logicalBlockNum = 0; 927 laarr[curr].extLocation. 928 partitionReferenceNum = 0; 929 } else 930 laarr[curr].extLength = (etype << 30) | 931 (offset << blocksize_bits); 932 curr++; 933 (*c)++; 934 (*endnum)++; 935 } 936 937 laarr[curr].extLocation.logicalBlockNum = newblocknum; 938 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 939 laarr[curr].extLocation.partitionReferenceNum = 940 UDF_I(inode)->i_location.partitionReferenceNum; 941 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 942 blocksize; 943 curr++; 944 945 if (blen != offset + 1) { 946 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 947 laarr[curr].extLocation.logicalBlockNum += 948 offset + 1; 949 laarr[curr].extLength = (etype << 30) | 950 ((blen - (offset + 1)) << blocksize_bits); 951 curr++; 952 (*endnum)++; 953 } 954 } 955 } 956 957 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 958 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 959 int *endnum) 960 { 961 int start, length = 0, currlength = 0, i; 962 963 if (*endnum >= (c + 1)) { 964 if (!lastblock) 965 return; 966 else 967 start = c; 968 } else { 969 if ((laarr[c + 1].extLength >> 30) == 970 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 971 start = c + 1; 972 length = currlength = 973 (((laarr[c + 1].extLength & 974 UDF_EXTENT_LENGTH_MASK) + 975 inode->i_sb->s_blocksize - 1) >> 976 inode->i_sb->s_blocksize_bits); 977 } else 978 start = c; 979 } 980 981 for (i = start + 1; i <= *endnum; i++) { 982 if (i == *endnum) { 983 if (lastblock) 984 length += UDF_DEFAULT_PREALLOC_BLOCKS; 985 } else if ((laarr[i].extLength >> 30) == 986 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 987 length += (((laarr[i].extLength & 988 UDF_EXTENT_LENGTH_MASK) + 989 inode->i_sb->s_blocksize - 1) >> 990 inode->i_sb->s_blocksize_bits); 991 } else 992 break; 993 } 994 995 if (length) { 996 int next = laarr[start].extLocation.logicalBlockNum + 997 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 998 inode->i_sb->s_blocksize - 1) >> 999 inode->i_sb->s_blocksize_bits); 1000 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1001 laarr[start].extLocation.partitionReferenceNum, 1002 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1003 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1004 currlength); 1005 if (numalloc) { 1006 if (start == (c + 1)) 1007 laarr[start].extLength += 1008 (numalloc << 1009 inode->i_sb->s_blocksize_bits); 1010 else { 1011 memmove(&laarr[c + 2], &laarr[c + 1], 1012 sizeof(struct long_ad) * (*endnum - (c + 1))); 1013 (*endnum)++; 1014 laarr[c + 1].extLocation.logicalBlockNum = next; 1015 laarr[c + 1].extLocation.partitionReferenceNum = 1016 laarr[c].extLocation. 1017 partitionReferenceNum; 1018 laarr[c + 1].extLength = 1019 EXT_NOT_RECORDED_ALLOCATED | 1020 (numalloc << 1021 inode->i_sb->s_blocksize_bits); 1022 start = c + 1; 1023 } 1024 1025 for (i = start + 1; numalloc && i < *endnum; i++) { 1026 int elen = ((laarr[i].extLength & 1027 UDF_EXTENT_LENGTH_MASK) + 1028 inode->i_sb->s_blocksize - 1) >> 1029 inode->i_sb->s_blocksize_bits; 1030 1031 if (elen > numalloc) { 1032 laarr[i].extLength -= 1033 (numalloc << 1034 inode->i_sb->s_blocksize_bits); 1035 numalloc = 0; 1036 } else { 1037 numalloc -= elen; 1038 if (*endnum > (i + 1)) 1039 memmove(&laarr[i], 1040 &laarr[i + 1], 1041 sizeof(struct long_ad) * 1042 (*endnum - (i + 1))); 1043 i--; 1044 (*endnum)--; 1045 } 1046 } 1047 UDF_I(inode)->i_lenExtents += 1048 numalloc << inode->i_sb->s_blocksize_bits; 1049 } 1050 } 1051 } 1052 1053 static void udf_merge_extents(struct inode *inode, 1054 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1055 int *endnum) 1056 { 1057 int i; 1058 unsigned long blocksize = inode->i_sb->s_blocksize; 1059 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1060 1061 for (i = 0; i < (*endnum - 1); i++) { 1062 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1063 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1064 1065 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1066 (((li->extLength >> 30) == 1067 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1068 ((lip1->extLocation.logicalBlockNum - 1069 li->extLocation.logicalBlockNum) == 1070 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1071 blocksize - 1) >> blocksize_bits)))) { 1072 1073 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1074 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1075 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1076 lip1->extLength = (lip1->extLength - 1077 (li->extLength & 1078 UDF_EXTENT_LENGTH_MASK) + 1079 UDF_EXTENT_LENGTH_MASK) & 1080 ~(blocksize - 1); 1081 li->extLength = (li->extLength & 1082 UDF_EXTENT_FLAG_MASK) + 1083 (UDF_EXTENT_LENGTH_MASK + 1) - 1084 blocksize; 1085 lip1->extLocation.logicalBlockNum = 1086 li->extLocation.logicalBlockNum + 1087 ((li->extLength & 1088 UDF_EXTENT_LENGTH_MASK) >> 1089 blocksize_bits); 1090 } else { 1091 li->extLength = lip1->extLength + 1092 (((li->extLength & 1093 UDF_EXTENT_LENGTH_MASK) + 1094 blocksize - 1) & ~(blocksize - 1)); 1095 if (*endnum > (i + 2)) 1096 memmove(&laarr[i + 1], &laarr[i + 2], 1097 sizeof(struct long_ad) * 1098 (*endnum - (i + 2))); 1099 i--; 1100 (*endnum)--; 1101 } 1102 } else if (((li->extLength >> 30) == 1103 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1104 ((lip1->extLength >> 30) == 1105 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1106 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1107 ((li->extLength & 1108 UDF_EXTENT_LENGTH_MASK) + 1109 blocksize - 1) >> blocksize_bits); 1110 li->extLocation.logicalBlockNum = 0; 1111 li->extLocation.partitionReferenceNum = 0; 1112 1113 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1114 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1115 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1116 lip1->extLength = (lip1->extLength - 1117 (li->extLength & 1118 UDF_EXTENT_LENGTH_MASK) + 1119 UDF_EXTENT_LENGTH_MASK) & 1120 ~(blocksize - 1); 1121 li->extLength = (li->extLength & 1122 UDF_EXTENT_FLAG_MASK) + 1123 (UDF_EXTENT_LENGTH_MASK + 1) - 1124 blocksize; 1125 } else { 1126 li->extLength = lip1->extLength + 1127 (((li->extLength & 1128 UDF_EXTENT_LENGTH_MASK) + 1129 blocksize - 1) & ~(blocksize - 1)); 1130 if (*endnum > (i + 2)) 1131 memmove(&laarr[i + 1], &laarr[i + 2], 1132 sizeof(struct long_ad) * 1133 (*endnum - (i + 2))); 1134 i--; 1135 (*endnum)--; 1136 } 1137 } else if ((li->extLength >> 30) == 1138 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1139 udf_free_blocks(inode->i_sb, inode, 1140 &li->extLocation, 0, 1141 ((li->extLength & 1142 UDF_EXTENT_LENGTH_MASK) + 1143 blocksize - 1) >> blocksize_bits); 1144 li->extLocation.logicalBlockNum = 0; 1145 li->extLocation.partitionReferenceNum = 0; 1146 li->extLength = (li->extLength & 1147 UDF_EXTENT_LENGTH_MASK) | 1148 EXT_NOT_RECORDED_NOT_ALLOCATED; 1149 } 1150 } 1151 } 1152 1153 static void udf_update_extents(struct inode *inode, 1154 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1155 int startnum, int endnum, 1156 struct extent_position *epos) 1157 { 1158 int start = 0, i; 1159 struct kernel_lb_addr tmploc; 1160 uint32_t tmplen; 1161 1162 if (startnum > endnum) { 1163 for (i = 0; i < (startnum - endnum); i++) 1164 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1165 laarr[i].extLength); 1166 } else if (startnum < endnum) { 1167 for (i = 0; i < (endnum - startnum); i++) { 1168 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1169 laarr[i].extLength); 1170 udf_next_aext(inode, epos, &laarr[i].extLocation, 1171 &laarr[i].extLength, 1); 1172 start++; 1173 } 1174 } 1175 1176 for (i = start; i < endnum; i++) { 1177 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1178 udf_write_aext(inode, epos, &laarr[i].extLocation, 1179 laarr[i].extLength, 1); 1180 } 1181 } 1182 1183 struct buffer_head *udf_bread(struct inode *inode, int block, 1184 int create, int *err) 1185 { 1186 struct buffer_head *bh = NULL; 1187 1188 bh = udf_getblk(inode, block, create, err); 1189 if (!bh) 1190 return NULL; 1191 1192 if (buffer_uptodate(bh)) 1193 return bh; 1194 1195 ll_rw_block(READ, 1, &bh); 1196 1197 wait_on_buffer(bh); 1198 if (buffer_uptodate(bh)) 1199 return bh; 1200 1201 brelse(bh); 1202 *err = -EIO; 1203 return NULL; 1204 } 1205 1206 int udf_setsize(struct inode *inode, loff_t newsize) 1207 { 1208 int err; 1209 struct udf_inode_info *iinfo; 1210 int bsize = 1 << inode->i_blkbits; 1211 1212 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1213 S_ISLNK(inode->i_mode))) 1214 return -EINVAL; 1215 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1216 return -EPERM; 1217 1218 iinfo = UDF_I(inode); 1219 if (newsize > inode->i_size) { 1220 down_write(&iinfo->i_data_sem); 1221 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1222 if (bsize < 1223 (udf_file_entry_alloc_offset(inode) + newsize)) { 1224 err = udf_expand_file_adinicb(inode); 1225 if (err) 1226 return err; 1227 down_write(&iinfo->i_data_sem); 1228 } else { 1229 iinfo->i_lenAlloc = newsize; 1230 goto set_size; 1231 } 1232 } 1233 err = udf_extend_file(inode, newsize); 1234 if (err) { 1235 up_write(&iinfo->i_data_sem); 1236 return err; 1237 } 1238 set_size: 1239 truncate_setsize(inode, newsize); 1240 up_write(&iinfo->i_data_sem); 1241 } else { 1242 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1243 down_write(&iinfo->i_data_sem); 1244 udf_clear_extent_cache(inode); 1245 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1246 0x00, bsize - newsize - 1247 udf_file_entry_alloc_offset(inode)); 1248 iinfo->i_lenAlloc = newsize; 1249 truncate_setsize(inode, newsize); 1250 up_write(&iinfo->i_data_sem); 1251 goto update_time; 1252 } 1253 err = block_truncate_page(inode->i_mapping, newsize, 1254 udf_get_block); 1255 if (err) 1256 return err; 1257 down_write(&iinfo->i_data_sem); 1258 udf_clear_extent_cache(inode); 1259 truncate_setsize(inode, newsize); 1260 udf_truncate_extents(inode); 1261 up_write(&iinfo->i_data_sem); 1262 } 1263 update_time: 1264 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1265 if (IS_SYNC(inode)) 1266 udf_sync_inode(inode); 1267 else 1268 mark_inode_dirty(inode); 1269 return 0; 1270 } 1271 1272 static void __udf_read_inode(struct inode *inode) 1273 { 1274 struct buffer_head *bh = NULL; 1275 struct fileEntry *fe; 1276 uint16_t ident; 1277 struct udf_inode_info *iinfo = UDF_I(inode); 1278 1279 /* 1280 * Set defaults, but the inode is still incomplete! 1281 * Note: get_new_inode() sets the following on a new inode: 1282 * i_sb = sb 1283 * i_no = ino 1284 * i_flags = sb->s_flags 1285 * i_state = 0 1286 * clean_inode(): zero fills and sets 1287 * i_count = 1 1288 * i_nlink = 1 1289 * i_op = NULL; 1290 */ 1291 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1292 if (!bh) { 1293 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1294 make_bad_inode(inode); 1295 return; 1296 } 1297 1298 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1299 ident != TAG_IDENT_USE) { 1300 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1301 inode->i_ino, ident); 1302 brelse(bh); 1303 make_bad_inode(inode); 1304 return; 1305 } 1306 1307 fe = (struct fileEntry *)bh->b_data; 1308 1309 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1310 struct buffer_head *ibh; 1311 1312 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1313 &ident); 1314 if (ident == TAG_IDENT_IE && ibh) { 1315 struct buffer_head *nbh = NULL; 1316 struct kernel_lb_addr loc; 1317 struct indirectEntry *ie; 1318 1319 ie = (struct indirectEntry *)ibh->b_data; 1320 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1321 1322 if (ie->indirectICB.extLength && 1323 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1324 &ident))) { 1325 if (ident == TAG_IDENT_FE || 1326 ident == TAG_IDENT_EFE) { 1327 memcpy(&iinfo->i_location, 1328 &loc, 1329 sizeof(struct kernel_lb_addr)); 1330 brelse(bh); 1331 brelse(ibh); 1332 brelse(nbh); 1333 __udf_read_inode(inode); 1334 return; 1335 } 1336 brelse(nbh); 1337 } 1338 } 1339 brelse(ibh); 1340 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1341 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1342 le16_to_cpu(fe->icbTag.strategyType)); 1343 brelse(bh); 1344 make_bad_inode(inode); 1345 return; 1346 } 1347 udf_fill_inode(inode, bh); 1348 1349 brelse(bh); 1350 } 1351 1352 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1353 { 1354 struct fileEntry *fe; 1355 struct extendedFileEntry *efe; 1356 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1357 struct udf_inode_info *iinfo = UDF_I(inode); 1358 unsigned int link_count; 1359 1360 fe = (struct fileEntry *)bh->b_data; 1361 efe = (struct extendedFileEntry *)bh->b_data; 1362 1363 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1364 iinfo->i_strat4096 = 0; 1365 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1366 iinfo->i_strat4096 = 1; 1367 1368 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1369 ICBTAG_FLAG_AD_MASK; 1370 iinfo->i_unique = 0; 1371 iinfo->i_lenEAttr = 0; 1372 iinfo->i_lenExtents = 0; 1373 iinfo->i_lenAlloc = 0; 1374 iinfo->i_next_alloc_block = 0; 1375 iinfo->i_next_alloc_goal = 0; 1376 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1377 iinfo->i_efe = 1; 1378 iinfo->i_use = 0; 1379 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1380 sizeof(struct extendedFileEntry))) { 1381 make_bad_inode(inode); 1382 return; 1383 } 1384 memcpy(iinfo->i_ext.i_data, 1385 bh->b_data + sizeof(struct extendedFileEntry), 1386 inode->i_sb->s_blocksize - 1387 sizeof(struct extendedFileEntry)); 1388 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1389 iinfo->i_efe = 0; 1390 iinfo->i_use = 0; 1391 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1392 sizeof(struct fileEntry))) { 1393 make_bad_inode(inode); 1394 return; 1395 } 1396 memcpy(iinfo->i_ext.i_data, 1397 bh->b_data + sizeof(struct fileEntry), 1398 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1399 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1400 iinfo->i_efe = 0; 1401 iinfo->i_use = 1; 1402 iinfo->i_lenAlloc = le32_to_cpu( 1403 ((struct unallocSpaceEntry *)bh->b_data)-> 1404 lengthAllocDescs); 1405 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1406 sizeof(struct unallocSpaceEntry))) { 1407 make_bad_inode(inode); 1408 return; 1409 } 1410 memcpy(iinfo->i_ext.i_data, 1411 bh->b_data + sizeof(struct unallocSpaceEntry), 1412 inode->i_sb->s_blocksize - 1413 sizeof(struct unallocSpaceEntry)); 1414 return; 1415 } 1416 1417 read_lock(&sbi->s_cred_lock); 1418 i_uid_write(inode, le32_to_cpu(fe->uid)); 1419 if (!uid_valid(inode->i_uid) || 1420 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1421 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1422 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1423 1424 i_gid_write(inode, le32_to_cpu(fe->gid)); 1425 if (!gid_valid(inode->i_gid) || 1426 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1427 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1428 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1429 1430 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1431 sbi->s_fmode != UDF_INVALID_MODE) 1432 inode->i_mode = sbi->s_fmode; 1433 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1434 sbi->s_dmode != UDF_INVALID_MODE) 1435 inode->i_mode = sbi->s_dmode; 1436 else 1437 inode->i_mode = udf_convert_permissions(fe); 1438 inode->i_mode &= ~sbi->s_umask; 1439 read_unlock(&sbi->s_cred_lock); 1440 1441 link_count = le16_to_cpu(fe->fileLinkCount); 1442 if (!link_count) 1443 link_count = 1; 1444 set_nlink(inode, link_count); 1445 1446 inode->i_size = le64_to_cpu(fe->informationLength); 1447 iinfo->i_lenExtents = inode->i_size; 1448 1449 if (iinfo->i_efe == 0) { 1450 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1451 (inode->i_sb->s_blocksize_bits - 9); 1452 1453 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1454 inode->i_atime = sbi->s_record_time; 1455 1456 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1457 fe->modificationTime)) 1458 inode->i_mtime = sbi->s_record_time; 1459 1460 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1461 inode->i_ctime = sbi->s_record_time; 1462 1463 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1464 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1465 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1466 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1467 } else { 1468 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1469 (inode->i_sb->s_blocksize_bits - 9); 1470 1471 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1472 inode->i_atime = sbi->s_record_time; 1473 1474 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1475 efe->modificationTime)) 1476 inode->i_mtime = sbi->s_record_time; 1477 1478 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1479 iinfo->i_crtime = sbi->s_record_time; 1480 1481 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1482 inode->i_ctime = sbi->s_record_time; 1483 1484 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1485 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1486 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1487 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1488 } 1489 1490 switch (fe->icbTag.fileType) { 1491 case ICBTAG_FILE_TYPE_DIRECTORY: 1492 inode->i_op = &udf_dir_inode_operations; 1493 inode->i_fop = &udf_dir_operations; 1494 inode->i_mode |= S_IFDIR; 1495 inc_nlink(inode); 1496 break; 1497 case ICBTAG_FILE_TYPE_REALTIME: 1498 case ICBTAG_FILE_TYPE_REGULAR: 1499 case ICBTAG_FILE_TYPE_UNDEF: 1500 case ICBTAG_FILE_TYPE_VAT20: 1501 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1502 inode->i_data.a_ops = &udf_adinicb_aops; 1503 else 1504 inode->i_data.a_ops = &udf_aops; 1505 inode->i_op = &udf_file_inode_operations; 1506 inode->i_fop = &udf_file_operations; 1507 inode->i_mode |= S_IFREG; 1508 break; 1509 case ICBTAG_FILE_TYPE_BLOCK: 1510 inode->i_mode |= S_IFBLK; 1511 break; 1512 case ICBTAG_FILE_TYPE_CHAR: 1513 inode->i_mode |= S_IFCHR; 1514 break; 1515 case ICBTAG_FILE_TYPE_FIFO: 1516 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1517 break; 1518 case ICBTAG_FILE_TYPE_SOCKET: 1519 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1520 break; 1521 case ICBTAG_FILE_TYPE_SYMLINK: 1522 inode->i_data.a_ops = &udf_symlink_aops; 1523 inode->i_op = &udf_symlink_inode_operations; 1524 inode->i_mode = S_IFLNK | S_IRWXUGO; 1525 break; 1526 case ICBTAG_FILE_TYPE_MAIN: 1527 udf_debug("METADATA FILE-----\n"); 1528 break; 1529 case ICBTAG_FILE_TYPE_MIRROR: 1530 udf_debug("METADATA MIRROR FILE-----\n"); 1531 break; 1532 case ICBTAG_FILE_TYPE_BITMAP: 1533 udf_debug("METADATA BITMAP FILE-----\n"); 1534 break; 1535 default: 1536 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1537 inode->i_ino, fe->icbTag.fileType); 1538 make_bad_inode(inode); 1539 return; 1540 } 1541 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1542 struct deviceSpec *dsea = 1543 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1544 if (dsea) { 1545 init_special_inode(inode, inode->i_mode, 1546 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1547 le32_to_cpu(dsea->minorDeviceIdent))); 1548 /* Developer ID ??? */ 1549 } else 1550 make_bad_inode(inode); 1551 } 1552 } 1553 1554 static int udf_alloc_i_data(struct inode *inode, size_t size) 1555 { 1556 struct udf_inode_info *iinfo = UDF_I(inode); 1557 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1558 1559 if (!iinfo->i_ext.i_data) { 1560 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1561 inode->i_ino); 1562 return -ENOMEM; 1563 } 1564 1565 return 0; 1566 } 1567 1568 static umode_t udf_convert_permissions(struct fileEntry *fe) 1569 { 1570 umode_t mode; 1571 uint32_t permissions; 1572 uint32_t flags; 1573 1574 permissions = le32_to_cpu(fe->permissions); 1575 flags = le16_to_cpu(fe->icbTag.flags); 1576 1577 mode = ((permissions) & S_IRWXO) | 1578 ((permissions >> 2) & S_IRWXG) | 1579 ((permissions >> 4) & S_IRWXU) | 1580 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1581 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1582 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1583 1584 return mode; 1585 } 1586 1587 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1588 { 1589 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1590 } 1591 1592 static int udf_sync_inode(struct inode *inode) 1593 { 1594 return udf_update_inode(inode, 1); 1595 } 1596 1597 static int udf_update_inode(struct inode *inode, int do_sync) 1598 { 1599 struct buffer_head *bh = NULL; 1600 struct fileEntry *fe; 1601 struct extendedFileEntry *efe; 1602 uint64_t lb_recorded; 1603 uint32_t udfperms; 1604 uint16_t icbflags; 1605 uint16_t crclen; 1606 int err = 0; 1607 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1608 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1609 struct udf_inode_info *iinfo = UDF_I(inode); 1610 1611 bh = udf_tgetblk(inode->i_sb, 1612 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1613 if (!bh) { 1614 udf_debug("getblk failure\n"); 1615 return -ENOMEM; 1616 } 1617 1618 lock_buffer(bh); 1619 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1620 fe = (struct fileEntry *)bh->b_data; 1621 efe = (struct extendedFileEntry *)bh->b_data; 1622 1623 if (iinfo->i_use) { 1624 struct unallocSpaceEntry *use = 1625 (struct unallocSpaceEntry *)bh->b_data; 1626 1627 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1628 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1629 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1630 sizeof(struct unallocSpaceEntry)); 1631 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1632 use->descTag.tagLocation = 1633 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1634 crclen = sizeof(struct unallocSpaceEntry) + 1635 iinfo->i_lenAlloc - sizeof(struct tag); 1636 use->descTag.descCRCLength = cpu_to_le16(crclen); 1637 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1638 sizeof(struct tag), 1639 crclen)); 1640 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1641 1642 goto out; 1643 } 1644 1645 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1646 fe->uid = cpu_to_le32(-1); 1647 else 1648 fe->uid = cpu_to_le32(i_uid_read(inode)); 1649 1650 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1651 fe->gid = cpu_to_le32(-1); 1652 else 1653 fe->gid = cpu_to_le32(i_gid_read(inode)); 1654 1655 udfperms = ((inode->i_mode & S_IRWXO)) | 1656 ((inode->i_mode & S_IRWXG) << 2) | 1657 ((inode->i_mode & S_IRWXU) << 4); 1658 1659 udfperms |= (le32_to_cpu(fe->permissions) & 1660 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1661 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1662 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1663 fe->permissions = cpu_to_le32(udfperms); 1664 1665 if (S_ISDIR(inode->i_mode)) 1666 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1667 else 1668 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1669 1670 fe->informationLength = cpu_to_le64(inode->i_size); 1671 1672 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1673 struct regid *eid; 1674 struct deviceSpec *dsea = 1675 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1676 if (!dsea) { 1677 dsea = (struct deviceSpec *) 1678 udf_add_extendedattr(inode, 1679 sizeof(struct deviceSpec) + 1680 sizeof(struct regid), 12, 0x3); 1681 dsea->attrType = cpu_to_le32(12); 1682 dsea->attrSubtype = 1; 1683 dsea->attrLength = cpu_to_le32( 1684 sizeof(struct deviceSpec) + 1685 sizeof(struct regid)); 1686 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1687 } 1688 eid = (struct regid *)dsea->impUse; 1689 memset(eid, 0, sizeof(struct regid)); 1690 strcpy(eid->ident, UDF_ID_DEVELOPER); 1691 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1692 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1693 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1694 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1695 } 1696 1697 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1698 lb_recorded = 0; /* No extents => no blocks! */ 1699 else 1700 lb_recorded = 1701 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1702 (blocksize_bits - 9); 1703 1704 if (iinfo->i_efe == 0) { 1705 memcpy(bh->b_data + sizeof(struct fileEntry), 1706 iinfo->i_ext.i_data, 1707 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1708 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1709 1710 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1711 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1712 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1713 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1714 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1715 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1716 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1717 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1718 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1719 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1720 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1721 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1722 crclen = sizeof(struct fileEntry); 1723 } else { 1724 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1725 iinfo->i_ext.i_data, 1726 inode->i_sb->s_blocksize - 1727 sizeof(struct extendedFileEntry)); 1728 efe->objectSize = cpu_to_le64(inode->i_size); 1729 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1730 1731 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1732 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1733 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1734 iinfo->i_crtime = inode->i_atime; 1735 1736 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1737 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1738 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1739 iinfo->i_crtime = inode->i_mtime; 1740 1741 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1742 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1743 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1744 iinfo->i_crtime = inode->i_ctime; 1745 1746 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1747 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1748 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1749 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1750 1751 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1752 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1753 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1754 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1755 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1756 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1757 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1758 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1759 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1760 crclen = sizeof(struct extendedFileEntry); 1761 } 1762 if (iinfo->i_strat4096) { 1763 fe->icbTag.strategyType = cpu_to_le16(4096); 1764 fe->icbTag.strategyParameter = cpu_to_le16(1); 1765 fe->icbTag.numEntries = cpu_to_le16(2); 1766 } else { 1767 fe->icbTag.strategyType = cpu_to_le16(4); 1768 fe->icbTag.numEntries = cpu_to_le16(1); 1769 } 1770 1771 if (S_ISDIR(inode->i_mode)) 1772 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1773 else if (S_ISREG(inode->i_mode)) 1774 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1775 else if (S_ISLNK(inode->i_mode)) 1776 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1777 else if (S_ISBLK(inode->i_mode)) 1778 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1779 else if (S_ISCHR(inode->i_mode)) 1780 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1781 else if (S_ISFIFO(inode->i_mode)) 1782 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1783 else if (S_ISSOCK(inode->i_mode)) 1784 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1785 1786 icbflags = iinfo->i_alloc_type | 1787 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1788 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1789 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1790 (le16_to_cpu(fe->icbTag.flags) & 1791 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1792 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1793 1794 fe->icbTag.flags = cpu_to_le16(icbflags); 1795 if (sbi->s_udfrev >= 0x0200) 1796 fe->descTag.descVersion = cpu_to_le16(3); 1797 else 1798 fe->descTag.descVersion = cpu_to_le16(2); 1799 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1800 fe->descTag.tagLocation = cpu_to_le32( 1801 iinfo->i_location.logicalBlockNum); 1802 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1803 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1804 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1805 crclen)); 1806 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1807 1808 out: 1809 set_buffer_uptodate(bh); 1810 unlock_buffer(bh); 1811 1812 /* write the data blocks */ 1813 mark_buffer_dirty(bh); 1814 if (do_sync) { 1815 sync_dirty_buffer(bh); 1816 if (buffer_write_io_error(bh)) { 1817 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1818 inode->i_ino); 1819 err = -EIO; 1820 } 1821 } 1822 brelse(bh); 1823 1824 return err; 1825 } 1826 1827 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1828 { 1829 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1830 struct inode *inode = iget_locked(sb, block); 1831 1832 if (!inode) 1833 return NULL; 1834 1835 if (inode->i_state & I_NEW) { 1836 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1837 __udf_read_inode(inode); 1838 unlock_new_inode(inode); 1839 } 1840 1841 if (is_bad_inode(inode)) 1842 goto out_iput; 1843 1844 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1845 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1846 udf_debug("block=%d, partition=%d out of range\n", 1847 ino->logicalBlockNum, ino->partitionReferenceNum); 1848 make_bad_inode(inode); 1849 goto out_iput; 1850 } 1851 1852 return inode; 1853 1854 out_iput: 1855 iput(inode); 1856 return NULL; 1857 } 1858 1859 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1860 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1861 { 1862 int adsize; 1863 struct short_ad *sad = NULL; 1864 struct long_ad *lad = NULL; 1865 struct allocExtDesc *aed; 1866 uint8_t *ptr; 1867 struct udf_inode_info *iinfo = UDF_I(inode); 1868 1869 if (!epos->bh) 1870 ptr = iinfo->i_ext.i_data + epos->offset - 1871 udf_file_entry_alloc_offset(inode) + 1872 iinfo->i_lenEAttr; 1873 else 1874 ptr = epos->bh->b_data + epos->offset; 1875 1876 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1877 adsize = sizeof(struct short_ad); 1878 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1879 adsize = sizeof(struct long_ad); 1880 else 1881 return -EIO; 1882 1883 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1884 unsigned char *sptr, *dptr; 1885 struct buffer_head *nbh; 1886 int err, loffset; 1887 struct kernel_lb_addr obloc = epos->block; 1888 1889 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1890 obloc.partitionReferenceNum, 1891 obloc.logicalBlockNum, &err); 1892 if (!epos->block.logicalBlockNum) 1893 return -ENOSPC; 1894 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1895 &epos->block, 1896 0)); 1897 if (!nbh) 1898 return -EIO; 1899 lock_buffer(nbh); 1900 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1901 set_buffer_uptodate(nbh); 1902 unlock_buffer(nbh); 1903 mark_buffer_dirty_inode(nbh, inode); 1904 1905 aed = (struct allocExtDesc *)(nbh->b_data); 1906 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1907 aed->previousAllocExtLocation = 1908 cpu_to_le32(obloc.logicalBlockNum); 1909 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1910 loffset = epos->offset; 1911 aed->lengthAllocDescs = cpu_to_le32(adsize); 1912 sptr = ptr - adsize; 1913 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1914 memcpy(dptr, sptr, adsize); 1915 epos->offset = sizeof(struct allocExtDesc) + adsize; 1916 } else { 1917 loffset = epos->offset + adsize; 1918 aed->lengthAllocDescs = cpu_to_le32(0); 1919 sptr = ptr; 1920 epos->offset = sizeof(struct allocExtDesc); 1921 1922 if (epos->bh) { 1923 aed = (struct allocExtDesc *)epos->bh->b_data; 1924 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1925 } else { 1926 iinfo->i_lenAlloc += adsize; 1927 mark_inode_dirty(inode); 1928 } 1929 } 1930 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1931 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1932 epos->block.logicalBlockNum, sizeof(struct tag)); 1933 else 1934 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1935 epos->block.logicalBlockNum, sizeof(struct tag)); 1936 switch (iinfo->i_alloc_type) { 1937 case ICBTAG_FLAG_AD_SHORT: 1938 sad = (struct short_ad *)sptr; 1939 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1940 inode->i_sb->s_blocksize); 1941 sad->extPosition = 1942 cpu_to_le32(epos->block.logicalBlockNum); 1943 break; 1944 case ICBTAG_FLAG_AD_LONG: 1945 lad = (struct long_ad *)sptr; 1946 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1947 inode->i_sb->s_blocksize); 1948 lad->extLocation = cpu_to_lelb(epos->block); 1949 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1950 break; 1951 } 1952 if (epos->bh) { 1953 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1954 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1955 udf_update_tag(epos->bh->b_data, loffset); 1956 else 1957 udf_update_tag(epos->bh->b_data, 1958 sizeof(struct allocExtDesc)); 1959 mark_buffer_dirty_inode(epos->bh, inode); 1960 brelse(epos->bh); 1961 } else { 1962 mark_inode_dirty(inode); 1963 } 1964 epos->bh = nbh; 1965 } 1966 1967 udf_write_aext(inode, epos, eloc, elen, inc); 1968 1969 if (!epos->bh) { 1970 iinfo->i_lenAlloc += adsize; 1971 mark_inode_dirty(inode); 1972 } else { 1973 aed = (struct allocExtDesc *)epos->bh->b_data; 1974 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1975 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1976 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1977 udf_update_tag(epos->bh->b_data, 1978 epos->offset + (inc ? 0 : adsize)); 1979 else 1980 udf_update_tag(epos->bh->b_data, 1981 sizeof(struct allocExtDesc)); 1982 mark_buffer_dirty_inode(epos->bh, inode); 1983 } 1984 1985 return 0; 1986 } 1987 1988 void udf_write_aext(struct inode *inode, struct extent_position *epos, 1989 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1990 { 1991 int adsize; 1992 uint8_t *ptr; 1993 struct short_ad *sad; 1994 struct long_ad *lad; 1995 struct udf_inode_info *iinfo = UDF_I(inode); 1996 1997 if (!epos->bh) 1998 ptr = iinfo->i_ext.i_data + epos->offset - 1999 udf_file_entry_alloc_offset(inode) + 2000 iinfo->i_lenEAttr; 2001 else 2002 ptr = epos->bh->b_data + epos->offset; 2003 2004 switch (iinfo->i_alloc_type) { 2005 case ICBTAG_FLAG_AD_SHORT: 2006 sad = (struct short_ad *)ptr; 2007 sad->extLength = cpu_to_le32(elen); 2008 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2009 adsize = sizeof(struct short_ad); 2010 break; 2011 case ICBTAG_FLAG_AD_LONG: 2012 lad = (struct long_ad *)ptr; 2013 lad->extLength = cpu_to_le32(elen); 2014 lad->extLocation = cpu_to_lelb(*eloc); 2015 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2016 adsize = sizeof(struct long_ad); 2017 break; 2018 default: 2019 return; 2020 } 2021 2022 if (epos->bh) { 2023 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2024 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2025 struct allocExtDesc *aed = 2026 (struct allocExtDesc *)epos->bh->b_data; 2027 udf_update_tag(epos->bh->b_data, 2028 le32_to_cpu(aed->lengthAllocDescs) + 2029 sizeof(struct allocExtDesc)); 2030 } 2031 mark_buffer_dirty_inode(epos->bh, inode); 2032 } else { 2033 mark_inode_dirty(inode); 2034 } 2035 2036 if (inc) 2037 epos->offset += adsize; 2038 } 2039 2040 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2041 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2042 { 2043 int8_t etype; 2044 2045 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2046 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2047 int block; 2048 epos->block = *eloc; 2049 epos->offset = sizeof(struct allocExtDesc); 2050 brelse(epos->bh); 2051 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2052 epos->bh = udf_tread(inode->i_sb, block); 2053 if (!epos->bh) { 2054 udf_debug("reading block %d failed!\n", block); 2055 return -1; 2056 } 2057 } 2058 2059 return etype; 2060 } 2061 2062 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2063 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2064 { 2065 int alen; 2066 int8_t etype; 2067 uint8_t *ptr; 2068 struct short_ad *sad; 2069 struct long_ad *lad; 2070 struct udf_inode_info *iinfo = UDF_I(inode); 2071 2072 if (!epos->bh) { 2073 if (!epos->offset) 2074 epos->offset = udf_file_entry_alloc_offset(inode); 2075 ptr = iinfo->i_ext.i_data + epos->offset - 2076 udf_file_entry_alloc_offset(inode) + 2077 iinfo->i_lenEAttr; 2078 alen = udf_file_entry_alloc_offset(inode) + 2079 iinfo->i_lenAlloc; 2080 } else { 2081 if (!epos->offset) 2082 epos->offset = sizeof(struct allocExtDesc); 2083 ptr = epos->bh->b_data + epos->offset; 2084 alen = sizeof(struct allocExtDesc) + 2085 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2086 lengthAllocDescs); 2087 } 2088 2089 switch (iinfo->i_alloc_type) { 2090 case ICBTAG_FLAG_AD_SHORT: 2091 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2092 if (!sad) 2093 return -1; 2094 etype = le32_to_cpu(sad->extLength) >> 30; 2095 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2096 eloc->partitionReferenceNum = 2097 iinfo->i_location.partitionReferenceNum; 2098 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2099 break; 2100 case ICBTAG_FLAG_AD_LONG: 2101 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2102 if (!lad) 2103 return -1; 2104 etype = le32_to_cpu(lad->extLength) >> 30; 2105 *eloc = lelb_to_cpu(lad->extLocation); 2106 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2107 break; 2108 default: 2109 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2110 return -1; 2111 } 2112 2113 return etype; 2114 } 2115 2116 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2117 struct kernel_lb_addr neloc, uint32_t nelen) 2118 { 2119 struct kernel_lb_addr oeloc; 2120 uint32_t oelen; 2121 int8_t etype; 2122 2123 if (epos.bh) 2124 get_bh(epos.bh); 2125 2126 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2127 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2128 neloc = oeloc; 2129 nelen = (etype << 30) | oelen; 2130 } 2131 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2132 brelse(epos.bh); 2133 2134 return (nelen >> 30); 2135 } 2136 2137 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2138 struct kernel_lb_addr eloc, uint32_t elen) 2139 { 2140 struct extent_position oepos; 2141 int adsize; 2142 int8_t etype; 2143 struct allocExtDesc *aed; 2144 struct udf_inode_info *iinfo; 2145 2146 if (epos.bh) { 2147 get_bh(epos.bh); 2148 get_bh(epos.bh); 2149 } 2150 2151 iinfo = UDF_I(inode); 2152 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2153 adsize = sizeof(struct short_ad); 2154 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2155 adsize = sizeof(struct long_ad); 2156 else 2157 adsize = 0; 2158 2159 oepos = epos; 2160 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2161 return -1; 2162 2163 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2164 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2165 if (oepos.bh != epos.bh) { 2166 oepos.block = epos.block; 2167 brelse(oepos.bh); 2168 get_bh(epos.bh); 2169 oepos.bh = epos.bh; 2170 oepos.offset = epos.offset - adsize; 2171 } 2172 } 2173 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2174 elen = 0; 2175 2176 if (epos.bh != oepos.bh) { 2177 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2178 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2179 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2180 if (!oepos.bh) { 2181 iinfo->i_lenAlloc -= (adsize * 2); 2182 mark_inode_dirty(inode); 2183 } else { 2184 aed = (struct allocExtDesc *)oepos.bh->b_data; 2185 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2186 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2187 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2188 udf_update_tag(oepos.bh->b_data, 2189 oepos.offset - (2 * adsize)); 2190 else 2191 udf_update_tag(oepos.bh->b_data, 2192 sizeof(struct allocExtDesc)); 2193 mark_buffer_dirty_inode(oepos.bh, inode); 2194 } 2195 } else { 2196 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2197 if (!oepos.bh) { 2198 iinfo->i_lenAlloc -= adsize; 2199 mark_inode_dirty(inode); 2200 } else { 2201 aed = (struct allocExtDesc *)oepos.bh->b_data; 2202 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2203 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2204 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2205 udf_update_tag(oepos.bh->b_data, 2206 epos.offset - adsize); 2207 else 2208 udf_update_tag(oepos.bh->b_data, 2209 sizeof(struct allocExtDesc)); 2210 mark_buffer_dirty_inode(oepos.bh, inode); 2211 } 2212 } 2213 2214 brelse(epos.bh); 2215 brelse(oepos.bh); 2216 2217 return (elen >> 30); 2218 } 2219 2220 int8_t inode_bmap(struct inode *inode, sector_t block, 2221 struct extent_position *pos, struct kernel_lb_addr *eloc, 2222 uint32_t *elen, sector_t *offset) 2223 { 2224 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2225 loff_t lbcount = 0, bcount = 2226 (loff_t) block << blocksize_bits; 2227 int8_t etype; 2228 struct udf_inode_info *iinfo; 2229 2230 iinfo = UDF_I(inode); 2231 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2232 pos->offset = 0; 2233 pos->block = iinfo->i_location; 2234 pos->bh = NULL; 2235 } 2236 *elen = 0; 2237 do { 2238 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2239 if (etype == -1) { 2240 *offset = (bcount - lbcount) >> blocksize_bits; 2241 iinfo->i_lenExtents = lbcount; 2242 return -1; 2243 } 2244 lbcount += *elen; 2245 } while (lbcount <= bcount); 2246 /* update extent cache */ 2247 udf_update_extent_cache(inode, lbcount - *elen, pos, 1); 2248 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2249 2250 return etype; 2251 } 2252 2253 long udf_block_map(struct inode *inode, sector_t block) 2254 { 2255 struct kernel_lb_addr eloc; 2256 uint32_t elen; 2257 sector_t offset; 2258 struct extent_position epos = {}; 2259 int ret; 2260 2261 down_read(&UDF_I(inode)->i_data_sem); 2262 2263 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2264 (EXT_RECORDED_ALLOCATED >> 30)) 2265 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2266 else 2267 ret = 0; 2268 2269 up_read(&UDF_I(inode)->i_data_sem); 2270 brelse(epos.bh); 2271 2272 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2273 return udf_fixed_to_variable(ret); 2274 else 2275 return ret; 2276 } 2277