xref: /openbmc/linux/fs/udf/inode.c (revision 97da55fc)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 	struct udf_inode_info *iinfo = UDF_I(inode);
73 
74 	if (iinfo->cached_extent.lstart != -1) {
75 		brelse(iinfo->cached_extent.epos.bh);
76 		iinfo->cached_extent.lstart = -1;
77 	}
78 }
79 
80 /* Invalidate extent cache */
81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 	struct udf_inode_info *iinfo = UDF_I(inode);
84 
85 	spin_lock(&iinfo->i_extent_cache_lock);
86 	__udf_clear_extent_cache(inode);
87 	spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89 
90 /* Return contents of extent cache */
91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 				 loff_t *lbcount, struct extent_position *pos)
93 {
94 	struct udf_inode_info *iinfo = UDF_I(inode);
95 	int ret = 0;
96 
97 	spin_lock(&iinfo->i_extent_cache_lock);
98 	if ((iinfo->cached_extent.lstart <= bcount) &&
99 	    (iinfo->cached_extent.lstart != -1)) {
100 		/* Cache hit */
101 		*lbcount = iinfo->cached_extent.lstart;
102 		memcpy(pos, &iinfo->cached_extent.epos,
103 		       sizeof(struct extent_position));
104 		if (pos->bh)
105 			get_bh(pos->bh);
106 		ret = 1;
107 	}
108 	spin_unlock(&iinfo->i_extent_cache_lock);
109 	return ret;
110 }
111 
112 /* Add extent to extent cache */
113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 				    struct extent_position *pos, int next_epos)
115 {
116 	struct udf_inode_info *iinfo = UDF_I(inode);
117 
118 	spin_lock(&iinfo->i_extent_cache_lock);
119 	/* Invalidate previously cached extent */
120 	__udf_clear_extent_cache(inode);
121 	if (pos->bh)
122 		get_bh(pos->bh);
123 	memcpy(&iinfo->cached_extent.epos, pos,
124 	       sizeof(struct extent_position));
125 	iinfo->cached_extent.lstart = estart;
126 	if (next_epos)
127 		switch (iinfo->i_alloc_type) {
128 		case ICBTAG_FLAG_AD_SHORT:
129 			iinfo->cached_extent.epos.offset -=
130 			sizeof(struct short_ad);
131 			break;
132 		case ICBTAG_FLAG_AD_LONG:
133 			iinfo->cached_extent.epos.offset -=
134 			sizeof(struct long_ad);
135 		}
136 	spin_unlock(&iinfo->i_extent_cache_lock);
137 }
138 
139 void udf_evict_inode(struct inode *inode)
140 {
141 	struct udf_inode_info *iinfo = UDF_I(inode);
142 	int want_delete = 0;
143 
144 	if (!inode->i_nlink && !is_bad_inode(inode)) {
145 		want_delete = 1;
146 		udf_setsize(inode, 0);
147 		udf_update_inode(inode, IS_SYNC(inode));
148 	} else
149 		truncate_inode_pages(&inode->i_data, 0);
150 	invalidate_inode_buffers(inode);
151 	clear_inode(inode);
152 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
153 	    inode->i_size != iinfo->i_lenExtents) {
154 		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155 			 inode->i_ino, inode->i_mode,
156 			 (unsigned long long)inode->i_size,
157 			 (unsigned long long)iinfo->i_lenExtents);
158 	}
159 	kfree(iinfo->i_ext.i_data);
160 	iinfo->i_ext.i_data = NULL;
161 	udf_clear_extent_cache(inode);
162 	if (want_delete) {
163 		udf_free_inode(inode);
164 	}
165 }
166 
167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 	struct inode *inode = mapping->host;
170 	struct udf_inode_info *iinfo = UDF_I(inode);
171 	loff_t isize = inode->i_size;
172 
173 	if (to > isize) {
174 		truncate_pagecache(inode, to, isize);
175 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 			down_write(&iinfo->i_data_sem);
177 			udf_clear_extent_cache(inode);
178 			udf_truncate_extents(inode);
179 			up_write(&iinfo->i_data_sem);
180 		}
181 	}
182 }
183 
184 static int udf_writepage(struct page *page, struct writeback_control *wbc)
185 {
186 	return block_write_full_page(page, udf_get_block, wbc);
187 }
188 
189 static int udf_writepages(struct address_space *mapping,
190 			struct writeback_control *wbc)
191 {
192 	return mpage_writepages(mapping, wbc, udf_get_block);
193 }
194 
195 static int udf_readpage(struct file *file, struct page *page)
196 {
197 	return mpage_readpage(page, udf_get_block);
198 }
199 
200 static int udf_readpages(struct file *file, struct address_space *mapping,
201 			struct list_head *pages, unsigned nr_pages)
202 {
203 	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
204 }
205 
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 			loff_t pos, unsigned len, unsigned flags,
208 			struct page **pagep, void **fsdata)
209 {
210 	int ret;
211 
212 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 	if (unlikely(ret))
214 		udf_write_failed(mapping, pos + len);
215 	return ret;
216 }
217 
218 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
219 			     const struct iovec *iov,
220 			     loff_t offset, unsigned long nr_segs)
221 {
222 	struct file *file = iocb->ki_filp;
223 	struct address_space *mapping = file->f_mapping;
224 	struct inode *inode = mapping->host;
225 	ssize_t ret;
226 
227 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
228 				  udf_get_block);
229 	if (unlikely(ret < 0 && (rw & WRITE)))
230 		udf_write_failed(mapping, offset + iov_length(iov, nr_segs));
231 	return ret;
232 }
233 
234 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
235 {
236 	return generic_block_bmap(mapping, block, udf_get_block);
237 }
238 
239 const struct address_space_operations udf_aops = {
240 	.readpage	= udf_readpage,
241 	.readpages	= udf_readpages,
242 	.writepage	= udf_writepage,
243 	.writepages	= udf_writepages,
244 	.write_begin	= udf_write_begin,
245 	.write_end	= generic_write_end,
246 	.direct_IO	= udf_direct_IO,
247 	.bmap		= udf_bmap,
248 };
249 
250 /*
251  * Expand file stored in ICB to a normal one-block-file
252  *
253  * This function requires i_data_sem for writing and releases it.
254  * This function requires i_mutex held
255  */
256 int udf_expand_file_adinicb(struct inode *inode)
257 {
258 	struct page *page;
259 	char *kaddr;
260 	struct udf_inode_info *iinfo = UDF_I(inode);
261 	int err;
262 	struct writeback_control udf_wbc = {
263 		.sync_mode = WB_SYNC_NONE,
264 		.nr_to_write = 1,
265 	};
266 
267 	if (!iinfo->i_lenAlloc) {
268 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270 		else
271 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272 		/* from now on we have normal address_space methods */
273 		inode->i_data.a_ops = &udf_aops;
274 		up_write(&iinfo->i_data_sem);
275 		mark_inode_dirty(inode);
276 		return 0;
277 	}
278 	/*
279 	 * Release i_data_sem so that we can lock a page - page lock ranks
280 	 * above i_data_sem. i_mutex still protects us against file changes.
281 	 */
282 	up_write(&iinfo->i_data_sem);
283 
284 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285 	if (!page)
286 		return -ENOMEM;
287 
288 	if (!PageUptodate(page)) {
289 		kaddr = kmap(page);
290 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
291 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
292 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
293 			iinfo->i_lenAlloc);
294 		flush_dcache_page(page);
295 		SetPageUptodate(page);
296 		kunmap(page);
297 	}
298 	down_write(&iinfo->i_data_sem);
299 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
300 	       iinfo->i_lenAlloc);
301 	iinfo->i_lenAlloc = 0;
302 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304 	else
305 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306 	/* from now on we have normal address_space methods */
307 	inode->i_data.a_ops = &udf_aops;
308 	up_write(&iinfo->i_data_sem);
309 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310 	if (err) {
311 		/* Restore everything back so that we don't lose data... */
312 		lock_page(page);
313 		kaddr = kmap(page);
314 		down_write(&iinfo->i_data_sem);
315 		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
316 		       inode->i_size);
317 		kunmap(page);
318 		unlock_page(page);
319 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
320 		inode->i_data.a_ops = &udf_adinicb_aops;
321 		up_write(&iinfo->i_data_sem);
322 	}
323 	page_cache_release(page);
324 	mark_inode_dirty(inode);
325 
326 	return err;
327 }
328 
329 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
330 					   int *err)
331 {
332 	int newblock;
333 	struct buffer_head *dbh = NULL;
334 	struct kernel_lb_addr eloc;
335 	uint8_t alloctype;
336 	struct extent_position epos;
337 
338 	struct udf_fileident_bh sfibh, dfibh;
339 	loff_t f_pos = udf_ext0_offset(inode);
340 	int size = udf_ext0_offset(inode) + inode->i_size;
341 	struct fileIdentDesc cfi, *sfi, *dfi;
342 	struct udf_inode_info *iinfo = UDF_I(inode);
343 
344 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
345 		alloctype = ICBTAG_FLAG_AD_SHORT;
346 	else
347 		alloctype = ICBTAG_FLAG_AD_LONG;
348 
349 	if (!inode->i_size) {
350 		iinfo->i_alloc_type = alloctype;
351 		mark_inode_dirty(inode);
352 		return NULL;
353 	}
354 
355 	/* alloc block, and copy data to it */
356 	*block = udf_new_block(inode->i_sb, inode,
357 			       iinfo->i_location.partitionReferenceNum,
358 			       iinfo->i_location.logicalBlockNum, err);
359 	if (!(*block))
360 		return NULL;
361 	newblock = udf_get_pblock(inode->i_sb, *block,
362 				  iinfo->i_location.partitionReferenceNum,
363 				0);
364 	if (!newblock)
365 		return NULL;
366 	dbh = udf_tgetblk(inode->i_sb, newblock);
367 	if (!dbh)
368 		return NULL;
369 	lock_buffer(dbh);
370 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
371 	set_buffer_uptodate(dbh);
372 	unlock_buffer(dbh);
373 	mark_buffer_dirty_inode(dbh, inode);
374 
375 	sfibh.soffset = sfibh.eoffset =
376 			f_pos & (inode->i_sb->s_blocksize - 1);
377 	sfibh.sbh = sfibh.ebh = NULL;
378 	dfibh.soffset = dfibh.eoffset = 0;
379 	dfibh.sbh = dfibh.ebh = dbh;
380 	while (f_pos < size) {
381 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
382 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
383 					 NULL, NULL, NULL);
384 		if (!sfi) {
385 			brelse(dbh);
386 			return NULL;
387 		}
388 		iinfo->i_alloc_type = alloctype;
389 		sfi->descTag.tagLocation = cpu_to_le32(*block);
390 		dfibh.soffset = dfibh.eoffset;
391 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
392 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
393 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
394 				 sfi->fileIdent +
395 					le16_to_cpu(sfi->lengthOfImpUse))) {
396 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
397 			brelse(dbh);
398 			return NULL;
399 		}
400 	}
401 	mark_buffer_dirty_inode(dbh, inode);
402 
403 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
404 		iinfo->i_lenAlloc);
405 	iinfo->i_lenAlloc = 0;
406 	eloc.logicalBlockNum = *block;
407 	eloc.partitionReferenceNum =
408 				iinfo->i_location.partitionReferenceNum;
409 	iinfo->i_lenExtents = inode->i_size;
410 	epos.bh = NULL;
411 	epos.block = iinfo->i_location;
412 	epos.offset = udf_file_entry_alloc_offset(inode);
413 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
414 	/* UniqueID stuff */
415 
416 	brelse(epos.bh);
417 	mark_inode_dirty(inode);
418 	return dbh;
419 }
420 
421 static int udf_get_block(struct inode *inode, sector_t block,
422 			 struct buffer_head *bh_result, int create)
423 {
424 	int err, new;
425 	sector_t phys = 0;
426 	struct udf_inode_info *iinfo;
427 
428 	if (!create) {
429 		phys = udf_block_map(inode, block);
430 		if (phys)
431 			map_bh(bh_result, inode->i_sb, phys);
432 		return 0;
433 	}
434 
435 	err = -EIO;
436 	new = 0;
437 	iinfo = UDF_I(inode);
438 
439 	down_write(&iinfo->i_data_sem);
440 	if (block == iinfo->i_next_alloc_block + 1) {
441 		iinfo->i_next_alloc_block++;
442 		iinfo->i_next_alloc_goal++;
443 	}
444 
445 	udf_clear_extent_cache(inode);
446 	phys = inode_getblk(inode, block, &err, &new);
447 	if (!phys)
448 		goto abort;
449 
450 	if (new)
451 		set_buffer_new(bh_result);
452 	map_bh(bh_result, inode->i_sb, phys);
453 
454 abort:
455 	up_write(&iinfo->i_data_sem);
456 	return err;
457 }
458 
459 static struct buffer_head *udf_getblk(struct inode *inode, long block,
460 				      int create, int *err)
461 {
462 	struct buffer_head *bh;
463 	struct buffer_head dummy;
464 
465 	dummy.b_state = 0;
466 	dummy.b_blocknr = -1000;
467 	*err = udf_get_block(inode, block, &dummy, create);
468 	if (!*err && buffer_mapped(&dummy)) {
469 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
470 		if (buffer_new(&dummy)) {
471 			lock_buffer(bh);
472 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
473 			set_buffer_uptodate(bh);
474 			unlock_buffer(bh);
475 			mark_buffer_dirty_inode(bh, inode);
476 		}
477 		return bh;
478 	}
479 
480 	return NULL;
481 }
482 
483 /* Extend the file by 'blocks' blocks, return the number of extents added */
484 static int udf_do_extend_file(struct inode *inode,
485 			      struct extent_position *last_pos,
486 			      struct kernel_long_ad *last_ext,
487 			      sector_t blocks)
488 {
489 	sector_t add;
490 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 	struct super_block *sb = inode->i_sb;
492 	struct kernel_lb_addr prealloc_loc = {};
493 	int prealloc_len = 0;
494 	struct udf_inode_info *iinfo;
495 	int err;
496 
497 	/* The previous extent is fake and we should not extend by anything
498 	 * - there's nothing to do... */
499 	if (!blocks && fake)
500 		return 0;
501 
502 	iinfo = UDF_I(inode);
503 	/* Round the last extent up to a multiple of block size */
504 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
505 		last_ext->extLength =
506 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
507 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
508 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
509 		iinfo->i_lenExtents =
510 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
511 			~(sb->s_blocksize - 1);
512 	}
513 
514 	/* Last extent are just preallocated blocks? */
515 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
516 						EXT_NOT_RECORDED_ALLOCATED) {
517 		/* Save the extent so that we can reattach it to the end */
518 		prealloc_loc = last_ext->extLocation;
519 		prealloc_len = last_ext->extLength;
520 		/* Mark the extent as a hole */
521 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
522 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
523 		last_ext->extLocation.logicalBlockNum = 0;
524 		last_ext->extLocation.partitionReferenceNum = 0;
525 	}
526 
527 	/* Can we merge with the previous extent? */
528 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
529 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
530 		add = ((1 << 30) - sb->s_blocksize -
531 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
532 			sb->s_blocksize_bits;
533 		if (add > blocks)
534 			add = blocks;
535 		blocks -= add;
536 		last_ext->extLength += add << sb->s_blocksize_bits;
537 	}
538 
539 	if (fake) {
540 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
541 			     last_ext->extLength, 1);
542 		count++;
543 	} else
544 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
545 				last_ext->extLength, 1);
546 
547 	/* Managed to do everything necessary? */
548 	if (!blocks)
549 		goto out;
550 
551 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
552 	last_ext->extLocation.logicalBlockNum = 0;
553 	last_ext->extLocation.partitionReferenceNum = 0;
554 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
555 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
556 				(add << sb->s_blocksize_bits);
557 
558 	/* Create enough extents to cover the whole hole */
559 	while (blocks > add) {
560 		blocks -= add;
561 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
562 				   last_ext->extLength, 1);
563 		if (err)
564 			return err;
565 		count++;
566 	}
567 	if (blocks) {
568 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
569 			(blocks << sb->s_blocksize_bits);
570 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
571 				   last_ext->extLength, 1);
572 		if (err)
573 			return err;
574 		count++;
575 	}
576 
577 out:
578 	/* Do we have some preallocated blocks saved? */
579 	if (prealloc_len) {
580 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
581 				   prealloc_len, 1);
582 		if (err)
583 			return err;
584 		last_ext->extLocation = prealloc_loc;
585 		last_ext->extLength = prealloc_len;
586 		count++;
587 	}
588 
589 	/* last_pos should point to the last written extent... */
590 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
591 		last_pos->offset -= sizeof(struct short_ad);
592 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
593 		last_pos->offset -= sizeof(struct long_ad);
594 	else
595 		return -EIO;
596 
597 	return count;
598 }
599 
600 static int udf_extend_file(struct inode *inode, loff_t newsize)
601 {
602 
603 	struct extent_position epos;
604 	struct kernel_lb_addr eloc;
605 	uint32_t elen;
606 	int8_t etype;
607 	struct super_block *sb = inode->i_sb;
608 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
609 	int adsize;
610 	struct udf_inode_info *iinfo = UDF_I(inode);
611 	struct kernel_long_ad extent;
612 	int err;
613 
614 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
615 		adsize = sizeof(struct short_ad);
616 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
617 		adsize = sizeof(struct long_ad);
618 	else
619 		BUG();
620 
621 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
622 
623 	/* File has extent covering the new size (could happen when extending
624 	 * inside a block)? */
625 	if (etype != -1)
626 		return 0;
627 	if (newsize & (sb->s_blocksize - 1))
628 		offset++;
629 	/* Extended file just to the boundary of the last file block? */
630 	if (offset == 0)
631 		return 0;
632 
633 	/* Truncate is extending the file by 'offset' blocks */
634 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
635 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
636 		/* File has no extents at all or has empty last
637 		 * indirect extent! Create a fake extent... */
638 		extent.extLocation.logicalBlockNum = 0;
639 		extent.extLocation.partitionReferenceNum = 0;
640 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
641 	} else {
642 		epos.offset -= adsize;
643 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
644 				      &extent.extLength, 0);
645 		extent.extLength |= etype << 30;
646 	}
647 	err = udf_do_extend_file(inode, &epos, &extent, offset);
648 	if (err < 0)
649 		goto out;
650 	err = 0;
651 	iinfo->i_lenExtents = newsize;
652 out:
653 	brelse(epos.bh);
654 	return err;
655 }
656 
657 static sector_t inode_getblk(struct inode *inode, sector_t block,
658 			     int *err, int *new)
659 {
660 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
661 	struct extent_position prev_epos, cur_epos, next_epos;
662 	int count = 0, startnum = 0, endnum = 0;
663 	uint32_t elen = 0, tmpelen;
664 	struct kernel_lb_addr eloc, tmpeloc;
665 	int c = 1;
666 	loff_t lbcount = 0, b_off = 0;
667 	uint32_t newblocknum, newblock;
668 	sector_t offset = 0;
669 	int8_t etype;
670 	struct udf_inode_info *iinfo = UDF_I(inode);
671 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
672 	int lastblock = 0;
673 	bool isBeyondEOF;
674 
675 	*err = 0;
676 	*new = 0;
677 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
678 	prev_epos.block = iinfo->i_location;
679 	prev_epos.bh = NULL;
680 	cur_epos = next_epos = prev_epos;
681 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
682 
683 	/* find the extent which contains the block we are looking for.
684 	   alternate between laarr[0] and laarr[1] for locations of the
685 	   current extent, and the previous extent */
686 	do {
687 		if (prev_epos.bh != cur_epos.bh) {
688 			brelse(prev_epos.bh);
689 			get_bh(cur_epos.bh);
690 			prev_epos.bh = cur_epos.bh;
691 		}
692 		if (cur_epos.bh != next_epos.bh) {
693 			brelse(cur_epos.bh);
694 			get_bh(next_epos.bh);
695 			cur_epos.bh = next_epos.bh;
696 		}
697 
698 		lbcount += elen;
699 
700 		prev_epos.block = cur_epos.block;
701 		cur_epos.block = next_epos.block;
702 
703 		prev_epos.offset = cur_epos.offset;
704 		cur_epos.offset = next_epos.offset;
705 
706 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
707 		if (etype == -1)
708 			break;
709 
710 		c = !c;
711 
712 		laarr[c].extLength = (etype << 30) | elen;
713 		laarr[c].extLocation = eloc;
714 
715 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
716 			pgoal = eloc.logicalBlockNum +
717 				((elen + inode->i_sb->s_blocksize - 1) >>
718 				 inode->i_sb->s_blocksize_bits);
719 
720 		count++;
721 	} while (lbcount + elen <= b_off);
722 
723 	b_off -= lbcount;
724 	offset = b_off >> inode->i_sb->s_blocksize_bits;
725 	/*
726 	 * Move prev_epos and cur_epos into indirect extent if we are at
727 	 * the pointer to it
728 	 */
729 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
730 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
731 
732 	/* if the extent is allocated and recorded, return the block
733 	   if the extent is not a multiple of the blocksize, round up */
734 
735 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
736 		if (elen & (inode->i_sb->s_blocksize - 1)) {
737 			elen = EXT_RECORDED_ALLOCATED |
738 				((elen + inode->i_sb->s_blocksize - 1) &
739 				 ~(inode->i_sb->s_blocksize - 1));
740 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
741 		}
742 		brelse(prev_epos.bh);
743 		brelse(cur_epos.bh);
744 		brelse(next_epos.bh);
745 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
746 		return newblock;
747 	}
748 
749 	/* Are we beyond EOF? */
750 	if (etype == -1) {
751 		int ret;
752 		isBeyondEOF = 1;
753 		if (count) {
754 			if (c)
755 				laarr[0] = laarr[1];
756 			startnum = 1;
757 		} else {
758 			/* Create a fake extent when there's not one */
759 			memset(&laarr[0].extLocation, 0x00,
760 				sizeof(struct kernel_lb_addr));
761 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
762 			/* Will udf_do_extend_file() create real extent from
763 			   a fake one? */
764 			startnum = (offset > 0);
765 		}
766 		/* Create extents for the hole between EOF and offset */
767 		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
768 		if (ret < 0) {
769 			brelse(prev_epos.bh);
770 			brelse(cur_epos.bh);
771 			brelse(next_epos.bh);
772 			*err = ret;
773 			return 0;
774 		}
775 		c = 0;
776 		offset = 0;
777 		count += ret;
778 		/* We are not covered by a preallocated extent? */
779 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
780 						EXT_NOT_RECORDED_ALLOCATED) {
781 			/* Is there any real extent? - otherwise we overwrite
782 			 * the fake one... */
783 			if (count)
784 				c = !c;
785 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
786 				inode->i_sb->s_blocksize;
787 			memset(&laarr[c].extLocation, 0x00,
788 				sizeof(struct kernel_lb_addr));
789 			count++;
790 		}
791 		endnum = c + 1;
792 		lastblock = 1;
793 	} else {
794 		isBeyondEOF = 0;
795 		endnum = startnum = ((count > 2) ? 2 : count);
796 
797 		/* if the current extent is in position 0,
798 		   swap it with the previous */
799 		if (!c && count != 1) {
800 			laarr[2] = laarr[0];
801 			laarr[0] = laarr[1];
802 			laarr[1] = laarr[2];
803 			c = 1;
804 		}
805 
806 		/* if the current block is located in an extent,
807 		   read the next extent */
808 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
809 		if (etype != -1) {
810 			laarr[c + 1].extLength = (etype << 30) | elen;
811 			laarr[c + 1].extLocation = eloc;
812 			count++;
813 			startnum++;
814 			endnum++;
815 		} else
816 			lastblock = 1;
817 	}
818 
819 	/* if the current extent is not recorded but allocated, get the
820 	 * block in the extent corresponding to the requested block */
821 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
822 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
823 	else { /* otherwise, allocate a new block */
824 		if (iinfo->i_next_alloc_block == block)
825 			goal = iinfo->i_next_alloc_goal;
826 
827 		if (!goal) {
828 			if (!(goal = pgoal)) /* XXX: what was intended here? */
829 				goal = iinfo->i_location.logicalBlockNum + 1;
830 		}
831 
832 		newblocknum = udf_new_block(inode->i_sb, inode,
833 				iinfo->i_location.partitionReferenceNum,
834 				goal, err);
835 		if (!newblocknum) {
836 			brelse(prev_epos.bh);
837 			brelse(cur_epos.bh);
838 			brelse(next_epos.bh);
839 			*err = -ENOSPC;
840 			return 0;
841 		}
842 		if (isBeyondEOF)
843 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
844 	}
845 
846 	/* if the extent the requsted block is located in contains multiple
847 	 * blocks, split the extent into at most three extents. blocks prior
848 	 * to requested block, requested block, and blocks after requested
849 	 * block */
850 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
851 
852 #ifdef UDF_PREALLOCATE
853 	/* We preallocate blocks only for regular files. It also makes sense
854 	 * for directories but there's a problem when to drop the
855 	 * preallocation. We might use some delayed work for that but I feel
856 	 * it's overengineering for a filesystem like UDF. */
857 	if (S_ISREG(inode->i_mode))
858 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
859 #endif
860 
861 	/* merge any continuous blocks in laarr */
862 	udf_merge_extents(inode, laarr, &endnum);
863 
864 	/* write back the new extents, inserting new extents if the new number
865 	 * of extents is greater than the old number, and deleting extents if
866 	 * the new number of extents is less than the old number */
867 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
868 
869 	brelse(prev_epos.bh);
870 	brelse(cur_epos.bh);
871 	brelse(next_epos.bh);
872 
873 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
874 				iinfo->i_location.partitionReferenceNum, 0);
875 	if (!newblock) {
876 		*err = -EIO;
877 		return 0;
878 	}
879 	*new = 1;
880 	iinfo->i_next_alloc_block = block;
881 	iinfo->i_next_alloc_goal = newblocknum;
882 	inode->i_ctime = current_fs_time(inode->i_sb);
883 
884 	if (IS_SYNC(inode))
885 		udf_sync_inode(inode);
886 	else
887 		mark_inode_dirty(inode);
888 
889 	return newblock;
890 }
891 
892 static void udf_split_extents(struct inode *inode, int *c, int offset,
893 			      int newblocknum,
894 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
895 			      int *endnum)
896 {
897 	unsigned long blocksize = inode->i_sb->s_blocksize;
898 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
899 
900 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
901 	    (laarr[*c].extLength >> 30) ==
902 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
903 		int curr = *c;
904 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
905 			    blocksize - 1) >> blocksize_bits;
906 		int8_t etype = (laarr[curr].extLength >> 30);
907 
908 		if (blen == 1)
909 			;
910 		else if (!offset || blen == offset + 1) {
911 			laarr[curr + 2] = laarr[curr + 1];
912 			laarr[curr + 1] = laarr[curr];
913 		} else {
914 			laarr[curr + 3] = laarr[curr + 1];
915 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
916 		}
917 
918 		if (offset) {
919 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
920 				udf_free_blocks(inode->i_sb, inode,
921 						&laarr[curr].extLocation,
922 						0, offset);
923 				laarr[curr].extLength =
924 					EXT_NOT_RECORDED_NOT_ALLOCATED |
925 					(offset << blocksize_bits);
926 				laarr[curr].extLocation.logicalBlockNum = 0;
927 				laarr[curr].extLocation.
928 						partitionReferenceNum = 0;
929 			} else
930 				laarr[curr].extLength = (etype << 30) |
931 					(offset << blocksize_bits);
932 			curr++;
933 			(*c)++;
934 			(*endnum)++;
935 		}
936 
937 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
938 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
939 			laarr[curr].extLocation.partitionReferenceNum =
940 				UDF_I(inode)->i_location.partitionReferenceNum;
941 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
942 			blocksize;
943 		curr++;
944 
945 		if (blen != offset + 1) {
946 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
947 				laarr[curr].extLocation.logicalBlockNum +=
948 								offset + 1;
949 			laarr[curr].extLength = (etype << 30) |
950 				((blen - (offset + 1)) << blocksize_bits);
951 			curr++;
952 			(*endnum)++;
953 		}
954 	}
955 }
956 
957 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
958 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
959 				 int *endnum)
960 {
961 	int start, length = 0, currlength = 0, i;
962 
963 	if (*endnum >= (c + 1)) {
964 		if (!lastblock)
965 			return;
966 		else
967 			start = c;
968 	} else {
969 		if ((laarr[c + 1].extLength >> 30) ==
970 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
971 			start = c + 1;
972 			length = currlength =
973 				(((laarr[c + 1].extLength &
974 					UDF_EXTENT_LENGTH_MASK) +
975 				inode->i_sb->s_blocksize - 1) >>
976 				inode->i_sb->s_blocksize_bits);
977 		} else
978 			start = c;
979 	}
980 
981 	for (i = start + 1; i <= *endnum; i++) {
982 		if (i == *endnum) {
983 			if (lastblock)
984 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
985 		} else if ((laarr[i].extLength >> 30) ==
986 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
987 			length += (((laarr[i].extLength &
988 						UDF_EXTENT_LENGTH_MASK) +
989 				    inode->i_sb->s_blocksize - 1) >>
990 				    inode->i_sb->s_blocksize_bits);
991 		} else
992 			break;
993 	}
994 
995 	if (length) {
996 		int next = laarr[start].extLocation.logicalBlockNum +
997 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
998 			  inode->i_sb->s_blocksize - 1) >>
999 			  inode->i_sb->s_blocksize_bits);
1000 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1001 				laarr[start].extLocation.partitionReferenceNum,
1002 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1003 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1004 				currlength);
1005 		if (numalloc) 	{
1006 			if (start == (c + 1))
1007 				laarr[start].extLength +=
1008 					(numalloc <<
1009 					 inode->i_sb->s_blocksize_bits);
1010 			else {
1011 				memmove(&laarr[c + 2], &laarr[c + 1],
1012 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1013 				(*endnum)++;
1014 				laarr[c + 1].extLocation.logicalBlockNum = next;
1015 				laarr[c + 1].extLocation.partitionReferenceNum =
1016 					laarr[c].extLocation.
1017 							partitionReferenceNum;
1018 				laarr[c + 1].extLength =
1019 					EXT_NOT_RECORDED_ALLOCATED |
1020 					(numalloc <<
1021 					 inode->i_sb->s_blocksize_bits);
1022 				start = c + 1;
1023 			}
1024 
1025 			for (i = start + 1; numalloc && i < *endnum; i++) {
1026 				int elen = ((laarr[i].extLength &
1027 						UDF_EXTENT_LENGTH_MASK) +
1028 					    inode->i_sb->s_blocksize - 1) >>
1029 					    inode->i_sb->s_blocksize_bits;
1030 
1031 				if (elen > numalloc) {
1032 					laarr[i].extLength -=
1033 						(numalloc <<
1034 						 inode->i_sb->s_blocksize_bits);
1035 					numalloc = 0;
1036 				} else {
1037 					numalloc -= elen;
1038 					if (*endnum > (i + 1))
1039 						memmove(&laarr[i],
1040 							&laarr[i + 1],
1041 							sizeof(struct long_ad) *
1042 							(*endnum - (i + 1)));
1043 					i--;
1044 					(*endnum)--;
1045 				}
1046 			}
1047 			UDF_I(inode)->i_lenExtents +=
1048 				numalloc << inode->i_sb->s_blocksize_bits;
1049 		}
1050 	}
1051 }
1052 
1053 static void udf_merge_extents(struct inode *inode,
1054 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1055 			      int *endnum)
1056 {
1057 	int i;
1058 	unsigned long blocksize = inode->i_sb->s_blocksize;
1059 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1060 
1061 	for (i = 0; i < (*endnum - 1); i++) {
1062 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1063 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1064 
1065 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1066 			(((li->extLength >> 30) ==
1067 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1068 			((lip1->extLocation.logicalBlockNum -
1069 			  li->extLocation.logicalBlockNum) ==
1070 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1071 			blocksize - 1) >> blocksize_bits)))) {
1072 
1073 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1074 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1075 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1076 				lip1->extLength = (lip1->extLength -
1077 						  (li->extLength &
1078 						   UDF_EXTENT_LENGTH_MASK) +
1079 						   UDF_EXTENT_LENGTH_MASK) &
1080 							~(blocksize - 1);
1081 				li->extLength = (li->extLength &
1082 						 UDF_EXTENT_FLAG_MASK) +
1083 						(UDF_EXTENT_LENGTH_MASK + 1) -
1084 						blocksize;
1085 				lip1->extLocation.logicalBlockNum =
1086 					li->extLocation.logicalBlockNum +
1087 					((li->extLength &
1088 						UDF_EXTENT_LENGTH_MASK) >>
1089 						blocksize_bits);
1090 			} else {
1091 				li->extLength = lip1->extLength +
1092 					(((li->extLength &
1093 						UDF_EXTENT_LENGTH_MASK) +
1094 					 blocksize - 1) & ~(blocksize - 1));
1095 				if (*endnum > (i + 2))
1096 					memmove(&laarr[i + 1], &laarr[i + 2],
1097 						sizeof(struct long_ad) *
1098 						(*endnum - (i + 2)));
1099 				i--;
1100 				(*endnum)--;
1101 			}
1102 		} else if (((li->extLength >> 30) ==
1103 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1104 			   ((lip1->extLength >> 30) ==
1105 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1106 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1107 					((li->extLength &
1108 					  UDF_EXTENT_LENGTH_MASK) +
1109 					 blocksize - 1) >> blocksize_bits);
1110 			li->extLocation.logicalBlockNum = 0;
1111 			li->extLocation.partitionReferenceNum = 0;
1112 
1113 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1114 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1115 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1116 				lip1->extLength = (lip1->extLength -
1117 						   (li->extLength &
1118 						   UDF_EXTENT_LENGTH_MASK) +
1119 						   UDF_EXTENT_LENGTH_MASK) &
1120 						   ~(blocksize - 1);
1121 				li->extLength = (li->extLength &
1122 						 UDF_EXTENT_FLAG_MASK) +
1123 						(UDF_EXTENT_LENGTH_MASK + 1) -
1124 						blocksize;
1125 			} else {
1126 				li->extLength = lip1->extLength +
1127 					(((li->extLength &
1128 						UDF_EXTENT_LENGTH_MASK) +
1129 					  blocksize - 1) & ~(blocksize - 1));
1130 				if (*endnum > (i + 2))
1131 					memmove(&laarr[i + 1], &laarr[i + 2],
1132 						sizeof(struct long_ad) *
1133 						(*endnum - (i + 2)));
1134 				i--;
1135 				(*endnum)--;
1136 			}
1137 		} else if ((li->extLength >> 30) ==
1138 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1139 			udf_free_blocks(inode->i_sb, inode,
1140 					&li->extLocation, 0,
1141 					((li->extLength &
1142 						UDF_EXTENT_LENGTH_MASK) +
1143 					 blocksize - 1) >> blocksize_bits);
1144 			li->extLocation.logicalBlockNum = 0;
1145 			li->extLocation.partitionReferenceNum = 0;
1146 			li->extLength = (li->extLength &
1147 						UDF_EXTENT_LENGTH_MASK) |
1148 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1149 		}
1150 	}
1151 }
1152 
1153 static void udf_update_extents(struct inode *inode,
1154 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1155 			       int startnum, int endnum,
1156 			       struct extent_position *epos)
1157 {
1158 	int start = 0, i;
1159 	struct kernel_lb_addr tmploc;
1160 	uint32_t tmplen;
1161 
1162 	if (startnum > endnum) {
1163 		for (i = 0; i < (startnum - endnum); i++)
1164 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1165 					laarr[i].extLength);
1166 	} else if (startnum < endnum) {
1167 		for (i = 0; i < (endnum - startnum); i++) {
1168 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1169 					laarr[i].extLength);
1170 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1171 				      &laarr[i].extLength, 1);
1172 			start++;
1173 		}
1174 	}
1175 
1176 	for (i = start; i < endnum; i++) {
1177 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1178 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1179 			       laarr[i].extLength, 1);
1180 	}
1181 }
1182 
1183 struct buffer_head *udf_bread(struct inode *inode, int block,
1184 			      int create, int *err)
1185 {
1186 	struct buffer_head *bh = NULL;
1187 
1188 	bh = udf_getblk(inode, block, create, err);
1189 	if (!bh)
1190 		return NULL;
1191 
1192 	if (buffer_uptodate(bh))
1193 		return bh;
1194 
1195 	ll_rw_block(READ, 1, &bh);
1196 
1197 	wait_on_buffer(bh);
1198 	if (buffer_uptodate(bh))
1199 		return bh;
1200 
1201 	brelse(bh);
1202 	*err = -EIO;
1203 	return NULL;
1204 }
1205 
1206 int udf_setsize(struct inode *inode, loff_t newsize)
1207 {
1208 	int err;
1209 	struct udf_inode_info *iinfo;
1210 	int bsize = 1 << inode->i_blkbits;
1211 
1212 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1213 	      S_ISLNK(inode->i_mode)))
1214 		return -EINVAL;
1215 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1216 		return -EPERM;
1217 
1218 	iinfo = UDF_I(inode);
1219 	if (newsize > inode->i_size) {
1220 		down_write(&iinfo->i_data_sem);
1221 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1222 			if (bsize <
1223 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1224 				err = udf_expand_file_adinicb(inode);
1225 				if (err)
1226 					return err;
1227 				down_write(&iinfo->i_data_sem);
1228 			} else {
1229 				iinfo->i_lenAlloc = newsize;
1230 				goto set_size;
1231 			}
1232 		}
1233 		err = udf_extend_file(inode, newsize);
1234 		if (err) {
1235 			up_write(&iinfo->i_data_sem);
1236 			return err;
1237 		}
1238 set_size:
1239 		truncate_setsize(inode, newsize);
1240 		up_write(&iinfo->i_data_sem);
1241 	} else {
1242 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1243 			down_write(&iinfo->i_data_sem);
1244 			udf_clear_extent_cache(inode);
1245 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1246 			       0x00, bsize - newsize -
1247 			       udf_file_entry_alloc_offset(inode));
1248 			iinfo->i_lenAlloc = newsize;
1249 			truncate_setsize(inode, newsize);
1250 			up_write(&iinfo->i_data_sem);
1251 			goto update_time;
1252 		}
1253 		err = block_truncate_page(inode->i_mapping, newsize,
1254 					  udf_get_block);
1255 		if (err)
1256 			return err;
1257 		down_write(&iinfo->i_data_sem);
1258 		udf_clear_extent_cache(inode);
1259 		truncate_setsize(inode, newsize);
1260 		udf_truncate_extents(inode);
1261 		up_write(&iinfo->i_data_sem);
1262 	}
1263 update_time:
1264 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1265 	if (IS_SYNC(inode))
1266 		udf_sync_inode(inode);
1267 	else
1268 		mark_inode_dirty(inode);
1269 	return 0;
1270 }
1271 
1272 static void __udf_read_inode(struct inode *inode)
1273 {
1274 	struct buffer_head *bh = NULL;
1275 	struct fileEntry *fe;
1276 	uint16_t ident;
1277 	struct udf_inode_info *iinfo = UDF_I(inode);
1278 
1279 	/*
1280 	 * Set defaults, but the inode is still incomplete!
1281 	 * Note: get_new_inode() sets the following on a new inode:
1282 	 *      i_sb = sb
1283 	 *      i_no = ino
1284 	 *      i_flags = sb->s_flags
1285 	 *      i_state = 0
1286 	 * clean_inode(): zero fills and sets
1287 	 *      i_count = 1
1288 	 *      i_nlink = 1
1289 	 *      i_op = NULL;
1290 	 */
1291 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1292 	if (!bh) {
1293 		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1294 		make_bad_inode(inode);
1295 		return;
1296 	}
1297 
1298 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1299 	    ident != TAG_IDENT_USE) {
1300 		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1301 			inode->i_ino, ident);
1302 		brelse(bh);
1303 		make_bad_inode(inode);
1304 		return;
1305 	}
1306 
1307 	fe = (struct fileEntry *)bh->b_data;
1308 
1309 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1310 		struct buffer_head *ibh;
1311 
1312 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1313 					&ident);
1314 		if (ident == TAG_IDENT_IE && ibh) {
1315 			struct buffer_head *nbh = NULL;
1316 			struct kernel_lb_addr loc;
1317 			struct indirectEntry *ie;
1318 
1319 			ie = (struct indirectEntry *)ibh->b_data;
1320 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1321 
1322 			if (ie->indirectICB.extLength &&
1323 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1324 							&ident))) {
1325 				if (ident == TAG_IDENT_FE ||
1326 					ident == TAG_IDENT_EFE) {
1327 					memcpy(&iinfo->i_location,
1328 						&loc,
1329 						sizeof(struct kernel_lb_addr));
1330 					brelse(bh);
1331 					brelse(ibh);
1332 					brelse(nbh);
1333 					__udf_read_inode(inode);
1334 					return;
1335 				}
1336 				brelse(nbh);
1337 			}
1338 		}
1339 		brelse(ibh);
1340 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1341 		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1342 			le16_to_cpu(fe->icbTag.strategyType));
1343 		brelse(bh);
1344 		make_bad_inode(inode);
1345 		return;
1346 	}
1347 	udf_fill_inode(inode, bh);
1348 
1349 	brelse(bh);
1350 }
1351 
1352 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1353 {
1354 	struct fileEntry *fe;
1355 	struct extendedFileEntry *efe;
1356 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1357 	struct udf_inode_info *iinfo = UDF_I(inode);
1358 	unsigned int link_count;
1359 
1360 	fe = (struct fileEntry *)bh->b_data;
1361 	efe = (struct extendedFileEntry *)bh->b_data;
1362 
1363 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1364 		iinfo->i_strat4096 = 0;
1365 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1366 		iinfo->i_strat4096 = 1;
1367 
1368 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1369 							ICBTAG_FLAG_AD_MASK;
1370 	iinfo->i_unique = 0;
1371 	iinfo->i_lenEAttr = 0;
1372 	iinfo->i_lenExtents = 0;
1373 	iinfo->i_lenAlloc = 0;
1374 	iinfo->i_next_alloc_block = 0;
1375 	iinfo->i_next_alloc_goal = 0;
1376 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1377 		iinfo->i_efe = 1;
1378 		iinfo->i_use = 0;
1379 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1380 					sizeof(struct extendedFileEntry))) {
1381 			make_bad_inode(inode);
1382 			return;
1383 		}
1384 		memcpy(iinfo->i_ext.i_data,
1385 		       bh->b_data + sizeof(struct extendedFileEntry),
1386 		       inode->i_sb->s_blocksize -
1387 					sizeof(struct extendedFileEntry));
1388 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1389 		iinfo->i_efe = 0;
1390 		iinfo->i_use = 0;
1391 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1392 						sizeof(struct fileEntry))) {
1393 			make_bad_inode(inode);
1394 			return;
1395 		}
1396 		memcpy(iinfo->i_ext.i_data,
1397 		       bh->b_data + sizeof(struct fileEntry),
1398 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1399 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1400 		iinfo->i_efe = 0;
1401 		iinfo->i_use = 1;
1402 		iinfo->i_lenAlloc = le32_to_cpu(
1403 				((struct unallocSpaceEntry *)bh->b_data)->
1404 				 lengthAllocDescs);
1405 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1406 					sizeof(struct unallocSpaceEntry))) {
1407 			make_bad_inode(inode);
1408 			return;
1409 		}
1410 		memcpy(iinfo->i_ext.i_data,
1411 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1412 		       inode->i_sb->s_blocksize -
1413 					sizeof(struct unallocSpaceEntry));
1414 		return;
1415 	}
1416 
1417 	read_lock(&sbi->s_cred_lock);
1418 	i_uid_write(inode, le32_to_cpu(fe->uid));
1419 	if (!uid_valid(inode->i_uid) ||
1420 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1421 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1422 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1423 
1424 	i_gid_write(inode, le32_to_cpu(fe->gid));
1425 	if (!gid_valid(inode->i_gid) ||
1426 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1427 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1428 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1429 
1430 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1431 			sbi->s_fmode != UDF_INVALID_MODE)
1432 		inode->i_mode = sbi->s_fmode;
1433 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1434 			sbi->s_dmode != UDF_INVALID_MODE)
1435 		inode->i_mode = sbi->s_dmode;
1436 	else
1437 		inode->i_mode = udf_convert_permissions(fe);
1438 	inode->i_mode &= ~sbi->s_umask;
1439 	read_unlock(&sbi->s_cred_lock);
1440 
1441 	link_count = le16_to_cpu(fe->fileLinkCount);
1442 	if (!link_count)
1443 		link_count = 1;
1444 	set_nlink(inode, link_count);
1445 
1446 	inode->i_size = le64_to_cpu(fe->informationLength);
1447 	iinfo->i_lenExtents = inode->i_size;
1448 
1449 	if (iinfo->i_efe == 0) {
1450 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1451 			(inode->i_sb->s_blocksize_bits - 9);
1452 
1453 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1454 			inode->i_atime = sbi->s_record_time;
1455 
1456 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1457 					    fe->modificationTime))
1458 			inode->i_mtime = sbi->s_record_time;
1459 
1460 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1461 			inode->i_ctime = sbi->s_record_time;
1462 
1463 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1464 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1465 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1466 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1467 	} else {
1468 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1469 		    (inode->i_sb->s_blocksize_bits - 9);
1470 
1471 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1472 			inode->i_atime = sbi->s_record_time;
1473 
1474 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1475 					    efe->modificationTime))
1476 			inode->i_mtime = sbi->s_record_time;
1477 
1478 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1479 			iinfo->i_crtime = sbi->s_record_time;
1480 
1481 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1482 			inode->i_ctime = sbi->s_record_time;
1483 
1484 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1485 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1486 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1487 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1488 	}
1489 
1490 	switch (fe->icbTag.fileType) {
1491 	case ICBTAG_FILE_TYPE_DIRECTORY:
1492 		inode->i_op = &udf_dir_inode_operations;
1493 		inode->i_fop = &udf_dir_operations;
1494 		inode->i_mode |= S_IFDIR;
1495 		inc_nlink(inode);
1496 		break;
1497 	case ICBTAG_FILE_TYPE_REALTIME:
1498 	case ICBTAG_FILE_TYPE_REGULAR:
1499 	case ICBTAG_FILE_TYPE_UNDEF:
1500 	case ICBTAG_FILE_TYPE_VAT20:
1501 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1502 			inode->i_data.a_ops = &udf_adinicb_aops;
1503 		else
1504 			inode->i_data.a_ops = &udf_aops;
1505 		inode->i_op = &udf_file_inode_operations;
1506 		inode->i_fop = &udf_file_operations;
1507 		inode->i_mode |= S_IFREG;
1508 		break;
1509 	case ICBTAG_FILE_TYPE_BLOCK:
1510 		inode->i_mode |= S_IFBLK;
1511 		break;
1512 	case ICBTAG_FILE_TYPE_CHAR:
1513 		inode->i_mode |= S_IFCHR;
1514 		break;
1515 	case ICBTAG_FILE_TYPE_FIFO:
1516 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1517 		break;
1518 	case ICBTAG_FILE_TYPE_SOCKET:
1519 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1520 		break;
1521 	case ICBTAG_FILE_TYPE_SYMLINK:
1522 		inode->i_data.a_ops = &udf_symlink_aops;
1523 		inode->i_op = &udf_symlink_inode_operations;
1524 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1525 		break;
1526 	case ICBTAG_FILE_TYPE_MAIN:
1527 		udf_debug("METADATA FILE-----\n");
1528 		break;
1529 	case ICBTAG_FILE_TYPE_MIRROR:
1530 		udf_debug("METADATA MIRROR FILE-----\n");
1531 		break;
1532 	case ICBTAG_FILE_TYPE_BITMAP:
1533 		udf_debug("METADATA BITMAP FILE-----\n");
1534 		break;
1535 	default:
1536 		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1537 			inode->i_ino, fe->icbTag.fileType);
1538 		make_bad_inode(inode);
1539 		return;
1540 	}
1541 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1542 		struct deviceSpec *dsea =
1543 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1544 		if (dsea) {
1545 			init_special_inode(inode, inode->i_mode,
1546 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1547 				      le32_to_cpu(dsea->minorDeviceIdent)));
1548 			/* Developer ID ??? */
1549 		} else
1550 			make_bad_inode(inode);
1551 	}
1552 }
1553 
1554 static int udf_alloc_i_data(struct inode *inode, size_t size)
1555 {
1556 	struct udf_inode_info *iinfo = UDF_I(inode);
1557 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1558 
1559 	if (!iinfo->i_ext.i_data) {
1560 		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1561 			inode->i_ino);
1562 		return -ENOMEM;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 static umode_t udf_convert_permissions(struct fileEntry *fe)
1569 {
1570 	umode_t mode;
1571 	uint32_t permissions;
1572 	uint32_t flags;
1573 
1574 	permissions = le32_to_cpu(fe->permissions);
1575 	flags = le16_to_cpu(fe->icbTag.flags);
1576 
1577 	mode =	((permissions) & S_IRWXO) |
1578 		((permissions >> 2) & S_IRWXG) |
1579 		((permissions >> 4) & S_IRWXU) |
1580 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1581 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1582 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1583 
1584 	return mode;
1585 }
1586 
1587 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1588 {
1589 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1590 }
1591 
1592 static int udf_sync_inode(struct inode *inode)
1593 {
1594 	return udf_update_inode(inode, 1);
1595 }
1596 
1597 static int udf_update_inode(struct inode *inode, int do_sync)
1598 {
1599 	struct buffer_head *bh = NULL;
1600 	struct fileEntry *fe;
1601 	struct extendedFileEntry *efe;
1602 	uint64_t lb_recorded;
1603 	uint32_t udfperms;
1604 	uint16_t icbflags;
1605 	uint16_t crclen;
1606 	int err = 0;
1607 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1608 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1609 	struct udf_inode_info *iinfo = UDF_I(inode);
1610 
1611 	bh = udf_tgetblk(inode->i_sb,
1612 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1613 	if (!bh) {
1614 		udf_debug("getblk failure\n");
1615 		return -ENOMEM;
1616 	}
1617 
1618 	lock_buffer(bh);
1619 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1620 	fe = (struct fileEntry *)bh->b_data;
1621 	efe = (struct extendedFileEntry *)bh->b_data;
1622 
1623 	if (iinfo->i_use) {
1624 		struct unallocSpaceEntry *use =
1625 			(struct unallocSpaceEntry *)bh->b_data;
1626 
1627 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1628 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1629 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1630 					sizeof(struct unallocSpaceEntry));
1631 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1632 		use->descTag.tagLocation =
1633 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1634 		crclen = sizeof(struct unallocSpaceEntry) +
1635 				iinfo->i_lenAlloc - sizeof(struct tag);
1636 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1637 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1638 							   sizeof(struct tag),
1639 							   crclen));
1640 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1641 
1642 		goto out;
1643 	}
1644 
1645 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1646 		fe->uid = cpu_to_le32(-1);
1647 	else
1648 		fe->uid = cpu_to_le32(i_uid_read(inode));
1649 
1650 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1651 		fe->gid = cpu_to_le32(-1);
1652 	else
1653 		fe->gid = cpu_to_le32(i_gid_read(inode));
1654 
1655 	udfperms = ((inode->i_mode & S_IRWXO)) |
1656 		   ((inode->i_mode & S_IRWXG) << 2) |
1657 		   ((inode->i_mode & S_IRWXU) << 4);
1658 
1659 	udfperms |= (le32_to_cpu(fe->permissions) &
1660 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1661 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1662 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1663 	fe->permissions = cpu_to_le32(udfperms);
1664 
1665 	if (S_ISDIR(inode->i_mode))
1666 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1667 	else
1668 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1669 
1670 	fe->informationLength = cpu_to_le64(inode->i_size);
1671 
1672 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1673 		struct regid *eid;
1674 		struct deviceSpec *dsea =
1675 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1676 		if (!dsea) {
1677 			dsea = (struct deviceSpec *)
1678 				udf_add_extendedattr(inode,
1679 						     sizeof(struct deviceSpec) +
1680 						     sizeof(struct regid), 12, 0x3);
1681 			dsea->attrType = cpu_to_le32(12);
1682 			dsea->attrSubtype = 1;
1683 			dsea->attrLength = cpu_to_le32(
1684 						sizeof(struct deviceSpec) +
1685 						sizeof(struct regid));
1686 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1687 		}
1688 		eid = (struct regid *)dsea->impUse;
1689 		memset(eid, 0, sizeof(struct regid));
1690 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1691 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1692 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1693 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1694 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1695 	}
1696 
1697 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1698 		lb_recorded = 0; /* No extents => no blocks! */
1699 	else
1700 		lb_recorded =
1701 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1702 			(blocksize_bits - 9);
1703 
1704 	if (iinfo->i_efe == 0) {
1705 		memcpy(bh->b_data + sizeof(struct fileEntry),
1706 		       iinfo->i_ext.i_data,
1707 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1708 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1709 
1710 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1711 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1712 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1713 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1714 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1715 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1716 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1717 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1718 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1719 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1720 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1721 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1722 		crclen = sizeof(struct fileEntry);
1723 	} else {
1724 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1725 		       iinfo->i_ext.i_data,
1726 		       inode->i_sb->s_blocksize -
1727 					sizeof(struct extendedFileEntry));
1728 		efe->objectSize = cpu_to_le64(inode->i_size);
1729 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1730 
1731 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1732 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1733 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1734 			iinfo->i_crtime = inode->i_atime;
1735 
1736 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1737 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1738 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1739 			iinfo->i_crtime = inode->i_mtime;
1740 
1741 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1742 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1743 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1744 			iinfo->i_crtime = inode->i_ctime;
1745 
1746 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1747 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1748 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1749 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1750 
1751 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1752 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1753 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1754 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1755 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1756 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1757 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1758 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1759 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1760 		crclen = sizeof(struct extendedFileEntry);
1761 	}
1762 	if (iinfo->i_strat4096) {
1763 		fe->icbTag.strategyType = cpu_to_le16(4096);
1764 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1765 		fe->icbTag.numEntries = cpu_to_le16(2);
1766 	} else {
1767 		fe->icbTag.strategyType = cpu_to_le16(4);
1768 		fe->icbTag.numEntries = cpu_to_le16(1);
1769 	}
1770 
1771 	if (S_ISDIR(inode->i_mode))
1772 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1773 	else if (S_ISREG(inode->i_mode))
1774 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1775 	else if (S_ISLNK(inode->i_mode))
1776 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1777 	else if (S_ISBLK(inode->i_mode))
1778 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1779 	else if (S_ISCHR(inode->i_mode))
1780 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1781 	else if (S_ISFIFO(inode->i_mode))
1782 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1783 	else if (S_ISSOCK(inode->i_mode))
1784 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1785 
1786 	icbflags =	iinfo->i_alloc_type |
1787 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1788 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1789 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1790 			(le16_to_cpu(fe->icbTag.flags) &
1791 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1792 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1793 
1794 	fe->icbTag.flags = cpu_to_le16(icbflags);
1795 	if (sbi->s_udfrev >= 0x0200)
1796 		fe->descTag.descVersion = cpu_to_le16(3);
1797 	else
1798 		fe->descTag.descVersion = cpu_to_le16(2);
1799 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1800 	fe->descTag.tagLocation = cpu_to_le32(
1801 					iinfo->i_location.logicalBlockNum);
1802 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1803 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1804 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1805 						  crclen));
1806 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1807 
1808 out:
1809 	set_buffer_uptodate(bh);
1810 	unlock_buffer(bh);
1811 
1812 	/* write the data blocks */
1813 	mark_buffer_dirty(bh);
1814 	if (do_sync) {
1815 		sync_dirty_buffer(bh);
1816 		if (buffer_write_io_error(bh)) {
1817 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1818 				 inode->i_ino);
1819 			err = -EIO;
1820 		}
1821 	}
1822 	brelse(bh);
1823 
1824 	return err;
1825 }
1826 
1827 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1828 {
1829 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1830 	struct inode *inode = iget_locked(sb, block);
1831 
1832 	if (!inode)
1833 		return NULL;
1834 
1835 	if (inode->i_state & I_NEW) {
1836 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1837 		__udf_read_inode(inode);
1838 		unlock_new_inode(inode);
1839 	}
1840 
1841 	if (is_bad_inode(inode))
1842 		goto out_iput;
1843 
1844 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1845 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1846 		udf_debug("block=%d, partition=%d out of range\n",
1847 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1848 		make_bad_inode(inode);
1849 		goto out_iput;
1850 	}
1851 
1852 	return inode;
1853 
1854  out_iput:
1855 	iput(inode);
1856 	return NULL;
1857 }
1858 
1859 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1860 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1861 {
1862 	int adsize;
1863 	struct short_ad *sad = NULL;
1864 	struct long_ad *lad = NULL;
1865 	struct allocExtDesc *aed;
1866 	uint8_t *ptr;
1867 	struct udf_inode_info *iinfo = UDF_I(inode);
1868 
1869 	if (!epos->bh)
1870 		ptr = iinfo->i_ext.i_data + epos->offset -
1871 			udf_file_entry_alloc_offset(inode) +
1872 			iinfo->i_lenEAttr;
1873 	else
1874 		ptr = epos->bh->b_data + epos->offset;
1875 
1876 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1877 		adsize = sizeof(struct short_ad);
1878 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1879 		adsize = sizeof(struct long_ad);
1880 	else
1881 		return -EIO;
1882 
1883 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1884 		unsigned char *sptr, *dptr;
1885 		struct buffer_head *nbh;
1886 		int err, loffset;
1887 		struct kernel_lb_addr obloc = epos->block;
1888 
1889 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1890 						obloc.partitionReferenceNum,
1891 						obloc.logicalBlockNum, &err);
1892 		if (!epos->block.logicalBlockNum)
1893 			return -ENOSPC;
1894 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1895 								 &epos->block,
1896 								 0));
1897 		if (!nbh)
1898 			return -EIO;
1899 		lock_buffer(nbh);
1900 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1901 		set_buffer_uptodate(nbh);
1902 		unlock_buffer(nbh);
1903 		mark_buffer_dirty_inode(nbh, inode);
1904 
1905 		aed = (struct allocExtDesc *)(nbh->b_data);
1906 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1907 			aed->previousAllocExtLocation =
1908 					cpu_to_le32(obloc.logicalBlockNum);
1909 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1910 			loffset = epos->offset;
1911 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1912 			sptr = ptr - adsize;
1913 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1914 			memcpy(dptr, sptr, adsize);
1915 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1916 		} else {
1917 			loffset = epos->offset + adsize;
1918 			aed->lengthAllocDescs = cpu_to_le32(0);
1919 			sptr = ptr;
1920 			epos->offset = sizeof(struct allocExtDesc);
1921 
1922 			if (epos->bh) {
1923 				aed = (struct allocExtDesc *)epos->bh->b_data;
1924 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1925 			} else {
1926 				iinfo->i_lenAlloc += adsize;
1927 				mark_inode_dirty(inode);
1928 			}
1929 		}
1930 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1931 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1932 				    epos->block.logicalBlockNum, sizeof(struct tag));
1933 		else
1934 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1935 				    epos->block.logicalBlockNum, sizeof(struct tag));
1936 		switch (iinfo->i_alloc_type) {
1937 		case ICBTAG_FLAG_AD_SHORT:
1938 			sad = (struct short_ad *)sptr;
1939 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1940 						     inode->i_sb->s_blocksize);
1941 			sad->extPosition =
1942 				cpu_to_le32(epos->block.logicalBlockNum);
1943 			break;
1944 		case ICBTAG_FLAG_AD_LONG:
1945 			lad = (struct long_ad *)sptr;
1946 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1947 						     inode->i_sb->s_blocksize);
1948 			lad->extLocation = cpu_to_lelb(epos->block);
1949 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1950 			break;
1951 		}
1952 		if (epos->bh) {
1953 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1954 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1955 				udf_update_tag(epos->bh->b_data, loffset);
1956 			else
1957 				udf_update_tag(epos->bh->b_data,
1958 						sizeof(struct allocExtDesc));
1959 			mark_buffer_dirty_inode(epos->bh, inode);
1960 			brelse(epos->bh);
1961 		} else {
1962 			mark_inode_dirty(inode);
1963 		}
1964 		epos->bh = nbh;
1965 	}
1966 
1967 	udf_write_aext(inode, epos, eloc, elen, inc);
1968 
1969 	if (!epos->bh) {
1970 		iinfo->i_lenAlloc += adsize;
1971 		mark_inode_dirty(inode);
1972 	} else {
1973 		aed = (struct allocExtDesc *)epos->bh->b_data;
1974 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1975 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1976 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1977 			udf_update_tag(epos->bh->b_data,
1978 					epos->offset + (inc ? 0 : adsize));
1979 		else
1980 			udf_update_tag(epos->bh->b_data,
1981 					sizeof(struct allocExtDesc));
1982 		mark_buffer_dirty_inode(epos->bh, inode);
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1989 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1990 {
1991 	int adsize;
1992 	uint8_t *ptr;
1993 	struct short_ad *sad;
1994 	struct long_ad *lad;
1995 	struct udf_inode_info *iinfo = UDF_I(inode);
1996 
1997 	if (!epos->bh)
1998 		ptr = iinfo->i_ext.i_data + epos->offset -
1999 			udf_file_entry_alloc_offset(inode) +
2000 			iinfo->i_lenEAttr;
2001 	else
2002 		ptr = epos->bh->b_data + epos->offset;
2003 
2004 	switch (iinfo->i_alloc_type) {
2005 	case ICBTAG_FLAG_AD_SHORT:
2006 		sad = (struct short_ad *)ptr;
2007 		sad->extLength = cpu_to_le32(elen);
2008 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2009 		adsize = sizeof(struct short_ad);
2010 		break;
2011 	case ICBTAG_FLAG_AD_LONG:
2012 		lad = (struct long_ad *)ptr;
2013 		lad->extLength = cpu_to_le32(elen);
2014 		lad->extLocation = cpu_to_lelb(*eloc);
2015 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2016 		adsize = sizeof(struct long_ad);
2017 		break;
2018 	default:
2019 		return;
2020 	}
2021 
2022 	if (epos->bh) {
2023 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2024 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2025 			struct allocExtDesc *aed =
2026 				(struct allocExtDesc *)epos->bh->b_data;
2027 			udf_update_tag(epos->bh->b_data,
2028 				       le32_to_cpu(aed->lengthAllocDescs) +
2029 				       sizeof(struct allocExtDesc));
2030 		}
2031 		mark_buffer_dirty_inode(epos->bh, inode);
2032 	} else {
2033 		mark_inode_dirty(inode);
2034 	}
2035 
2036 	if (inc)
2037 		epos->offset += adsize;
2038 }
2039 
2040 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2041 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2042 {
2043 	int8_t etype;
2044 
2045 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2046 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2047 		int block;
2048 		epos->block = *eloc;
2049 		epos->offset = sizeof(struct allocExtDesc);
2050 		brelse(epos->bh);
2051 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2052 		epos->bh = udf_tread(inode->i_sb, block);
2053 		if (!epos->bh) {
2054 			udf_debug("reading block %d failed!\n", block);
2055 			return -1;
2056 		}
2057 	}
2058 
2059 	return etype;
2060 }
2061 
2062 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2063 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2064 {
2065 	int alen;
2066 	int8_t etype;
2067 	uint8_t *ptr;
2068 	struct short_ad *sad;
2069 	struct long_ad *lad;
2070 	struct udf_inode_info *iinfo = UDF_I(inode);
2071 
2072 	if (!epos->bh) {
2073 		if (!epos->offset)
2074 			epos->offset = udf_file_entry_alloc_offset(inode);
2075 		ptr = iinfo->i_ext.i_data + epos->offset -
2076 			udf_file_entry_alloc_offset(inode) +
2077 			iinfo->i_lenEAttr;
2078 		alen = udf_file_entry_alloc_offset(inode) +
2079 							iinfo->i_lenAlloc;
2080 	} else {
2081 		if (!epos->offset)
2082 			epos->offset = sizeof(struct allocExtDesc);
2083 		ptr = epos->bh->b_data + epos->offset;
2084 		alen = sizeof(struct allocExtDesc) +
2085 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2086 							lengthAllocDescs);
2087 	}
2088 
2089 	switch (iinfo->i_alloc_type) {
2090 	case ICBTAG_FLAG_AD_SHORT:
2091 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2092 		if (!sad)
2093 			return -1;
2094 		etype = le32_to_cpu(sad->extLength) >> 30;
2095 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2096 		eloc->partitionReferenceNum =
2097 				iinfo->i_location.partitionReferenceNum;
2098 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2099 		break;
2100 	case ICBTAG_FLAG_AD_LONG:
2101 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2102 		if (!lad)
2103 			return -1;
2104 		etype = le32_to_cpu(lad->extLength) >> 30;
2105 		*eloc = lelb_to_cpu(lad->extLocation);
2106 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2107 		break;
2108 	default:
2109 		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2110 		return -1;
2111 	}
2112 
2113 	return etype;
2114 }
2115 
2116 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2117 			      struct kernel_lb_addr neloc, uint32_t nelen)
2118 {
2119 	struct kernel_lb_addr oeloc;
2120 	uint32_t oelen;
2121 	int8_t etype;
2122 
2123 	if (epos.bh)
2124 		get_bh(epos.bh);
2125 
2126 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2127 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2128 		neloc = oeloc;
2129 		nelen = (etype << 30) | oelen;
2130 	}
2131 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2132 	brelse(epos.bh);
2133 
2134 	return (nelen >> 30);
2135 }
2136 
2137 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2138 		       struct kernel_lb_addr eloc, uint32_t elen)
2139 {
2140 	struct extent_position oepos;
2141 	int adsize;
2142 	int8_t etype;
2143 	struct allocExtDesc *aed;
2144 	struct udf_inode_info *iinfo;
2145 
2146 	if (epos.bh) {
2147 		get_bh(epos.bh);
2148 		get_bh(epos.bh);
2149 	}
2150 
2151 	iinfo = UDF_I(inode);
2152 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2153 		adsize = sizeof(struct short_ad);
2154 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2155 		adsize = sizeof(struct long_ad);
2156 	else
2157 		adsize = 0;
2158 
2159 	oepos = epos;
2160 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2161 		return -1;
2162 
2163 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2164 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2165 		if (oepos.bh != epos.bh) {
2166 			oepos.block = epos.block;
2167 			brelse(oepos.bh);
2168 			get_bh(epos.bh);
2169 			oepos.bh = epos.bh;
2170 			oepos.offset = epos.offset - adsize;
2171 		}
2172 	}
2173 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2174 	elen = 0;
2175 
2176 	if (epos.bh != oepos.bh) {
2177 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2178 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2179 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2180 		if (!oepos.bh) {
2181 			iinfo->i_lenAlloc -= (adsize * 2);
2182 			mark_inode_dirty(inode);
2183 		} else {
2184 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2185 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2186 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2187 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2188 				udf_update_tag(oepos.bh->b_data,
2189 						oepos.offset - (2 * adsize));
2190 			else
2191 				udf_update_tag(oepos.bh->b_data,
2192 						sizeof(struct allocExtDesc));
2193 			mark_buffer_dirty_inode(oepos.bh, inode);
2194 		}
2195 	} else {
2196 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2197 		if (!oepos.bh) {
2198 			iinfo->i_lenAlloc -= adsize;
2199 			mark_inode_dirty(inode);
2200 		} else {
2201 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2202 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2203 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2204 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2205 				udf_update_tag(oepos.bh->b_data,
2206 						epos.offset - adsize);
2207 			else
2208 				udf_update_tag(oepos.bh->b_data,
2209 						sizeof(struct allocExtDesc));
2210 			mark_buffer_dirty_inode(oepos.bh, inode);
2211 		}
2212 	}
2213 
2214 	brelse(epos.bh);
2215 	brelse(oepos.bh);
2216 
2217 	return (elen >> 30);
2218 }
2219 
2220 int8_t inode_bmap(struct inode *inode, sector_t block,
2221 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2222 		  uint32_t *elen, sector_t *offset)
2223 {
2224 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2225 	loff_t lbcount = 0, bcount =
2226 	    (loff_t) block << blocksize_bits;
2227 	int8_t etype;
2228 	struct udf_inode_info *iinfo;
2229 
2230 	iinfo = UDF_I(inode);
2231 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2232 		pos->offset = 0;
2233 		pos->block = iinfo->i_location;
2234 		pos->bh = NULL;
2235 	}
2236 	*elen = 0;
2237 	do {
2238 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2239 		if (etype == -1) {
2240 			*offset = (bcount - lbcount) >> blocksize_bits;
2241 			iinfo->i_lenExtents = lbcount;
2242 			return -1;
2243 		}
2244 		lbcount += *elen;
2245 	} while (lbcount <= bcount);
2246 	/* update extent cache */
2247 	udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2248 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2249 
2250 	return etype;
2251 }
2252 
2253 long udf_block_map(struct inode *inode, sector_t block)
2254 {
2255 	struct kernel_lb_addr eloc;
2256 	uint32_t elen;
2257 	sector_t offset;
2258 	struct extent_position epos = {};
2259 	int ret;
2260 
2261 	down_read(&UDF_I(inode)->i_data_sem);
2262 
2263 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2264 						(EXT_RECORDED_ALLOCATED >> 30))
2265 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2266 	else
2267 		ret = 0;
2268 
2269 	up_read(&UDF_I(inode)->i_data_sem);
2270 	brelse(epos.bh);
2271 
2272 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2273 		return udf_fixed_to_variable(ret);
2274 	else
2275 		return ret;
2276 }
2277