xref: /openbmc/linux/fs/udf/inode.c (revision 95e9fd10)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
71 void udf_evict_inode(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 	int want_delete = 0;
75 
76 	if (!inode->i_nlink && !is_bad_inode(inode)) {
77 		want_delete = 1;
78 		udf_setsize(inode, 0);
79 		udf_update_inode(inode, IS_SYNC(inode));
80 	} else
81 		truncate_inode_pages(&inode->i_data, 0);
82 	invalidate_inode_buffers(inode);
83 	clear_inode(inode);
84 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 	    inode->i_size != iinfo->i_lenExtents) {
86 		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
87 			 inode->i_ino, inode->i_mode,
88 			 (unsigned long long)inode->i_size,
89 			 (unsigned long long)iinfo->i_lenExtents);
90 	}
91 	kfree(iinfo->i_ext.i_data);
92 	iinfo->i_ext.i_data = NULL;
93 	if (want_delete) {
94 		udf_free_inode(inode);
95 	}
96 }
97 
98 static int udf_writepage(struct page *page, struct writeback_control *wbc)
99 {
100 	return block_write_full_page(page, udf_get_block, wbc);
101 }
102 
103 static int udf_readpage(struct file *file, struct page *page)
104 {
105 	return mpage_readpage(page, udf_get_block);
106 }
107 
108 static int udf_readpages(struct file *file, struct address_space *mapping,
109 			struct list_head *pages, unsigned nr_pages)
110 {
111 	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
112 }
113 
114 static int udf_write_begin(struct file *file, struct address_space *mapping,
115 			loff_t pos, unsigned len, unsigned flags,
116 			struct page **pagep, void **fsdata)
117 {
118 	int ret;
119 
120 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
121 	if (unlikely(ret)) {
122 		struct inode *inode = mapping->host;
123 		struct udf_inode_info *iinfo = UDF_I(inode);
124 		loff_t isize = inode->i_size;
125 
126 		if (pos + len > isize) {
127 			truncate_pagecache(inode, pos + len, isize);
128 			if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
129 				down_write(&iinfo->i_data_sem);
130 				udf_truncate_extents(inode);
131 				up_write(&iinfo->i_data_sem);
132 			}
133 		}
134 	}
135 
136 	return ret;
137 }
138 
139 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
140 {
141 	return generic_block_bmap(mapping, block, udf_get_block);
142 }
143 
144 const struct address_space_operations udf_aops = {
145 	.readpage	= udf_readpage,
146 	.readpages	= udf_readpages,
147 	.writepage	= udf_writepage,
148 	.write_begin		= udf_write_begin,
149 	.write_end		= generic_write_end,
150 	.bmap		= udf_bmap,
151 };
152 
153 /*
154  * Expand file stored in ICB to a normal one-block-file
155  *
156  * This function requires i_data_sem for writing and releases it.
157  * This function requires i_mutex held
158  */
159 int udf_expand_file_adinicb(struct inode *inode)
160 {
161 	struct page *page;
162 	char *kaddr;
163 	struct udf_inode_info *iinfo = UDF_I(inode);
164 	int err;
165 	struct writeback_control udf_wbc = {
166 		.sync_mode = WB_SYNC_NONE,
167 		.nr_to_write = 1,
168 	};
169 
170 	if (!iinfo->i_lenAlloc) {
171 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
172 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
173 		else
174 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
175 		/* from now on we have normal address_space methods */
176 		inode->i_data.a_ops = &udf_aops;
177 		up_write(&iinfo->i_data_sem);
178 		mark_inode_dirty(inode);
179 		return 0;
180 	}
181 	/*
182 	 * Release i_data_sem so that we can lock a page - page lock ranks
183 	 * above i_data_sem. i_mutex still protects us against file changes.
184 	 */
185 	up_write(&iinfo->i_data_sem);
186 
187 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
188 	if (!page)
189 		return -ENOMEM;
190 
191 	if (!PageUptodate(page)) {
192 		kaddr = kmap(page);
193 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
194 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
195 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
196 			iinfo->i_lenAlloc);
197 		flush_dcache_page(page);
198 		SetPageUptodate(page);
199 		kunmap(page);
200 	}
201 	down_write(&iinfo->i_data_sem);
202 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
203 	       iinfo->i_lenAlloc);
204 	iinfo->i_lenAlloc = 0;
205 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
206 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
207 	else
208 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
209 	/* from now on we have normal address_space methods */
210 	inode->i_data.a_ops = &udf_aops;
211 	up_write(&iinfo->i_data_sem);
212 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
213 	if (err) {
214 		/* Restore everything back so that we don't lose data... */
215 		lock_page(page);
216 		kaddr = kmap(page);
217 		down_write(&iinfo->i_data_sem);
218 		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
219 		       inode->i_size);
220 		kunmap(page);
221 		unlock_page(page);
222 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
223 		inode->i_data.a_ops = &udf_adinicb_aops;
224 		up_write(&iinfo->i_data_sem);
225 	}
226 	page_cache_release(page);
227 	mark_inode_dirty(inode);
228 
229 	return err;
230 }
231 
232 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
233 					   int *err)
234 {
235 	int newblock;
236 	struct buffer_head *dbh = NULL;
237 	struct kernel_lb_addr eloc;
238 	uint8_t alloctype;
239 	struct extent_position epos;
240 
241 	struct udf_fileident_bh sfibh, dfibh;
242 	loff_t f_pos = udf_ext0_offset(inode);
243 	int size = udf_ext0_offset(inode) + inode->i_size;
244 	struct fileIdentDesc cfi, *sfi, *dfi;
245 	struct udf_inode_info *iinfo = UDF_I(inode);
246 
247 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
248 		alloctype = ICBTAG_FLAG_AD_SHORT;
249 	else
250 		alloctype = ICBTAG_FLAG_AD_LONG;
251 
252 	if (!inode->i_size) {
253 		iinfo->i_alloc_type = alloctype;
254 		mark_inode_dirty(inode);
255 		return NULL;
256 	}
257 
258 	/* alloc block, and copy data to it */
259 	*block = udf_new_block(inode->i_sb, inode,
260 			       iinfo->i_location.partitionReferenceNum,
261 			       iinfo->i_location.logicalBlockNum, err);
262 	if (!(*block))
263 		return NULL;
264 	newblock = udf_get_pblock(inode->i_sb, *block,
265 				  iinfo->i_location.partitionReferenceNum,
266 				0);
267 	if (!newblock)
268 		return NULL;
269 	dbh = udf_tgetblk(inode->i_sb, newblock);
270 	if (!dbh)
271 		return NULL;
272 	lock_buffer(dbh);
273 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
274 	set_buffer_uptodate(dbh);
275 	unlock_buffer(dbh);
276 	mark_buffer_dirty_inode(dbh, inode);
277 
278 	sfibh.soffset = sfibh.eoffset =
279 			f_pos & (inode->i_sb->s_blocksize - 1);
280 	sfibh.sbh = sfibh.ebh = NULL;
281 	dfibh.soffset = dfibh.eoffset = 0;
282 	dfibh.sbh = dfibh.ebh = dbh;
283 	while (f_pos < size) {
284 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
285 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
286 					 NULL, NULL, NULL);
287 		if (!sfi) {
288 			brelse(dbh);
289 			return NULL;
290 		}
291 		iinfo->i_alloc_type = alloctype;
292 		sfi->descTag.tagLocation = cpu_to_le32(*block);
293 		dfibh.soffset = dfibh.eoffset;
294 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
295 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
296 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
297 				 sfi->fileIdent +
298 					le16_to_cpu(sfi->lengthOfImpUse))) {
299 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
300 			brelse(dbh);
301 			return NULL;
302 		}
303 	}
304 	mark_buffer_dirty_inode(dbh, inode);
305 
306 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
307 		iinfo->i_lenAlloc);
308 	iinfo->i_lenAlloc = 0;
309 	eloc.logicalBlockNum = *block;
310 	eloc.partitionReferenceNum =
311 				iinfo->i_location.partitionReferenceNum;
312 	iinfo->i_lenExtents = inode->i_size;
313 	epos.bh = NULL;
314 	epos.block = iinfo->i_location;
315 	epos.offset = udf_file_entry_alloc_offset(inode);
316 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
317 	/* UniqueID stuff */
318 
319 	brelse(epos.bh);
320 	mark_inode_dirty(inode);
321 	return dbh;
322 }
323 
324 static int udf_get_block(struct inode *inode, sector_t block,
325 			 struct buffer_head *bh_result, int create)
326 {
327 	int err, new;
328 	sector_t phys = 0;
329 	struct udf_inode_info *iinfo;
330 
331 	if (!create) {
332 		phys = udf_block_map(inode, block);
333 		if (phys)
334 			map_bh(bh_result, inode->i_sb, phys);
335 		return 0;
336 	}
337 
338 	err = -EIO;
339 	new = 0;
340 	iinfo = UDF_I(inode);
341 
342 	down_write(&iinfo->i_data_sem);
343 	if (block == iinfo->i_next_alloc_block + 1) {
344 		iinfo->i_next_alloc_block++;
345 		iinfo->i_next_alloc_goal++;
346 	}
347 
348 
349 	phys = inode_getblk(inode, block, &err, &new);
350 	if (!phys)
351 		goto abort;
352 
353 	if (new)
354 		set_buffer_new(bh_result);
355 	map_bh(bh_result, inode->i_sb, phys);
356 
357 abort:
358 	up_write(&iinfo->i_data_sem);
359 	return err;
360 }
361 
362 static struct buffer_head *udf_getblk(struct inode *inode, long block,
363 				      int create, int *err)
364 {
365 	struct buffer_head *bh;
366 	struct buffer_head dummy;
367 
368 	dummy.b_state = 0;
369 	dummy.b_blocknr = -1000;
370 	*err = udf_get_block(inode, block, &dummy, create);
371 	if (!*err && buffer_mapped(&dummy)) {
372 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
373 		if (buffer_new(&dummy)) {
374 			lock_buffer(bh);
375 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
376 			set_buffer_uptodate(bh);
377 			unlock_buffer(bh);
378 			mark_buffer_dirty_inode(bh, inode);
379 		}
380 		return bh;
381 	}
382 
383 	return NULL;
384 }
385 
386 /* Extend the file by 'blocks' blocks, return the number of extents added */
387 static int udf_do_extend_file(struct inode *inode,
388 			      struct extent_position *last_pos,
389 			      struct kernel_long_ad *last_ext,
390 			      sector_t blocks)
391 {
392 	sector_t add;
393 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
394 	struct super_block *sb = inode->i_sb;
395 	struct kernel_lb_addr prealloc_loc = {};
396 	int prealloc_len = 0;
397 	struct udf_inode_info *iinfo;
398 	int err;
399 
400 	/* The previous extent is fake and we should not extend by anything
401 	 * - there's nothing to do... */
402 	if (!blocks && fake)
403 		return 0;
404 
405 	iinfo = UDF_I(inode);
406 	/* Round the last extent up to a multiple of block size */
407 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
408 		last_ext->extLength =
409 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
410 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
411 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
412 		iinfo->i_lenExtents =
413 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
414 			~(sb->s_blocksize - 1);
415 	}
416 
417 	/* Last extent are just preallocated blocks? */
418 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
419 						EXT_NOT_RECORDED_ALLOCATED) {
420 		/* Save the extent so that we can reattach it to the end */
421 		prealloc_loc = last_ext->extLocation;
422 		prealloc_len = last_ext->extLength;
423 		/* Mark the extent as a hole */
424 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
425 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
426 		last_ext->extLocation.logicalBlockNum = 0;
427 		last_ext->extLocation.partitionReferenceNum = 0;
428 	}
429 
430 	/* Can we merge with the previous extent? */
431 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
432 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
433 		add = ((1 << 30) - sb->s_blocksize -
434 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
435 			sb->s_blocksize_bits;
436 		if (add > blocks)
437 			add = blocks;
438 		blocks -= add;
439 		last_ext->extLength += add << sb->s_blocksize_bits;
440 	}
441 
442 	if (fake) {
443 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
444 			     last_ext->extLength, 1);
445 		count++;
446 	} else
447 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
448 				last_ext->extLength, 1);
449 
450 	/* Managed to do everything necessary? */
451 	if (!blocks)
452 		goto out;
453 
454 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
455 	last_ext->extLocation.logicalBlockNum = 0;
456 	last_ext->extLocation.partitionReferenceNum = 0;
457 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
458 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
459 				(add << sb->s_blocksize_bits);
460 
461 	/* Create enough extents to cover the whole hole */
462 	while (blocks > add) {
463 		blocks -= add;
464 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
465 				   last_ext->extLength, 1);
466 		if (err)
467 			return err;
468 		count++;
469 	}
470 	if (blocks) {
471 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
472 			(blocks << sb->s_blocksize_bits);
473 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
474 				   last_ext->extLength, 1);
475 		if (err)
476 			return err;
477 		count++;
478 	}
479 
480 out:
481 	/* Do we have some preallocated blocks saved? */
482 	if (prealloc_len) {
483 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
484 				   prealloc_len, 1);
485 		if (err)
486 			return err;
487 		last_ext->extLocation = prealloc_loc;
488 		last_ext->extLength = prealloc_len;
489 		count++;
490 	}
491 
492 	/* last_pos should point to the last written extent... */
493 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
494 		last_pos->offset -= sizeof(struct short_ad);
495 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
496 		last_pos->offset -= sizeof(struct long_ad);
497 	else
498 		return -EIO;
499 
500 	return count;
501 }
502 
503 static int udf_extend_file(struct inode *inode, loff_t newsize)
504 {
505 
506 	struct extent_position epos;
507 	struct kernel_lb_addr eloc;
508 	uint32_t elen;
509 	int8_t etype;
510 	struct super_block *sb = inode->i_sb;
511 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
512 	int adsize;
513 	struct udf_inode_info *iinfo = UDF_I(inode);
514 	struct kernel_long_ad extent;
515 	int err;
516 
517 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
518 		adsize = sizeof(struct short_ad);
519 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
520 		adsize = sizeof(struct long_ad);
521 	else
522 		BUG();
523 
524 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
525 
526 	/* File has extent covering the new size (could happen when extending
527 	 * inside a block)? */
528 	if (etype != -1)
529 		return 0;
530 	if (newsize & (sb->s_blocksize - 1))
531 		offset++;
532 	/* Extended file just to the boundary of the last file block? */
533 	if (offset == 0)
534 		return 0;
535 
536 	/* Truncate is extending the file by 'offset' blocks */
537 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
538 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
539 		/* File has no extents at all or has empty last
540 		 * indirect extent! Create a fake extent... */
541 		extent.extLocation.logicalBlockNum = 0;
542 		extent.extLocation.partitionReferenceNum = 0;
543 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
544 	} else {
545 		epos.offset -= adsize;
546 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
547 				      &extent.extLength, 0);
548 		extent.extLength |= etype << 30;
549 	}
550 	err = udf_do_extend_file(inode, &epos, &extent, offset);
551 	if (err < 0)
552 		goto out;
553 	err = 0;
554 	iinfo->i_lenExtents = newsize;
555 out:
556 	brelse(epos.bh);
557 	return err;
558 }
559 
560 static sector_t inode_getblk(struct inode *inode, sector_t block,
561 			     int *err, int *new)
562 {
563 	static sector_t last_block;
564 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
565 	struct extent_position prev_epos, cur_epos, next_epos;
566 	int count = 0, startnum = 0, endnum = 0;
567 	uint32_t elen = 0, tmpelen;
568 	struct kernel_lb_addr eloc, tmpeloc;
569 	int c = 1;
570 	loff_t lbcount = 0, b_off = 0;
571 	uint32_t newblocknum, newblock;
572 	sector_t offset = 0;
573 	int8_t etype;
574 	struct udf_inode_info *iinfo = UDF_I(inode);
575 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
576 	int lastblock = 0;
577 
578 	*err = 0;
579 	*new = 0;
580 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
581 	prev_epos.block = iinfo->i_location;
582 	prev_epos.bh = NULL;
583 	cur_epos = next_epos = prev_epos;
584 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
585 
586 	/* find the extent which contains the block we are looking for.
587 	   alternate between laarr[0] and laarr[1] for locations of the
588 	   current extent, and the previous extent */
589 	do {
590 		if (prev_epos.bh != cur_epos.bh) {
591 			brelse(prev_epos.bh);
592 			get_bh(cur_epos.bh);
593 			prev_epos.bh = cur_epos.bh;
594 		}
595 		if (cur_epos.bh != next_epos.bh) {
596 			brelse(cur_epos.bh);
597 			get_bh(next_epos.bh);
598 			cur_epos.bh = next_epos.bh;
599 		}
600 
601 		lbcount += elen;
602 
603 		prev_epos.block = cur_epos.block;
604 		cur_epos.block = next_epos.block;
605 
606 		prev_epos.offset = cur_epos.offset;
607 		cur_epos.offset = next_epos.offset;
608 
609 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
610 		if (etype == -1)
611 			break;
612 
613 		c = !c;
614 
615 		laarr[c].extLength = (etype << 30) | elen;
616 		laarr[c].extLocation = eloc;
617 
618 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
619 			pgoal = eloc.logicalBlockNum +
620 				((elen + inode->i_sb->s_blocksize - 1) >>
621 				 inode->i_sb->s_blocksize_bits);
622 
623 		count++;
624 	} while (lbcount + elen <= b_off);
625 
626 	b_off -= lbcount;
627 	offset = b_off >> inode->i_sb->s_blocksize_bits;
628 	/*
629 	 * Move prev_epos and cur_epos into indirect extent if we are at
630 	 * the pointer to it
631 	 */
632 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
633 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
634 
635 	/* if the extent is allocated and recorded, return the block
636 	   if the extent is not a multiple of the blocksize, round up */
637 
638 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
639 		if (elen & (inode->i_sb->s_blocksize - 1)) {
640 			elen = EXT_RECORDED_ALLOCATED |
641 				((elen + inode->i_sb->s_blocksize - 1) &
642 				 ~(inode->i_sb->s_blocksize - 1));
643 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
644 		}
645 		brelse(prev_epos.bh);
646 		brelse(cur_epos.bh);
647 		brelse(next_epos.bh);
648 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
649 		return newblock;
650 	}
651 
652 	last_block = block;
653 	/* Are we beyond EOF? */
654 	if (etype == -1) {
655 		int ret;
656 
657 		if (count) {
658 			if (c)
659 				laarr[0] = laarr[1];
660 			startnum = 1;
661 		} else {
662 			/* Create a fake extent when there's not one */
663 			memset(&laarr[0].extLocation, 0x00,
664 				sizeof(struct kernel_lb_addr));
665 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
666 			/* Will udf_do_extend_file() create real extent from
667 			   a fake one? */
668 			startnum = (offset > 0);
669 		}
670 		/* Create extents for the hole between EOF and offset */
671 		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
672 		if (ret < 0) {
673 			brelse(prev_epos.bh);
674 			brelse(cur_epos.bh);
675 			brelse(next_epos.bh);
676 			*err = ret;
677 			return 0;
678 		}
679 		c = 0;
680 		offset = 0;
681 		count += ret;
682 		/* We are not covered by a preallocated extent? */
683 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
684 						EXT_NOT_RECORDED_ALLOCATED) {
685 			/* Is there any real extent? - otherwise we overwrite
686 			 * the fake one... */
687 			if (count)
688 				c = !c;
689 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
690 				inode->i_sb->s_blocksize;
691 			memset(&laarr[c].extLocation, 0x00,
692 				sizeof(struct kernel_lb_addr));
693 			count++;
694 			endnum++;
695 		}
696 		endnum = c + 1;
697 		lastblock = 1;
698 	} else {
699 		endnum = startnum = ((count > 2) ? 2 : count);
700 
701 		/* if the current extent is in position 0,
702 		   swap it with the previous */
703 		if (!c && count != 1) {
704 			laarr[2] = laarr[0];
705 			laarr[0] = laarr[1];
706 			laarr[1] = laarr[2];
707 			c = 1;
708 		}
709 
710 		/* if the current block is located in an extent,
711 		   read the next extent */
712 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
713 		if (etype != -1) {
714 			laarr[c + 1].extLength = (etype << 30) | elen;
715 			laarr[c + 1].extLocation = eloc;
716 			count++;
717 			startnum++;
718 			endnum++;
719 		} else
720 			lastblock = 1;
721 	}
722 
723 	/* if the current extent is not recorded but allocated, get the
724 	 * block in the extent corresponding to the requested block */
725 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
726 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
727 	else { /* otherwise, allocate a new block */
728 		if (iinfo->i_next_alloc_block == block)
729 			goal = iinfo->i_next_alloc_goal;
730 
731 		if (!goal) {
732 			if (!(goal = pgoal)) /* XXX: what was intended here? */
733 				goal = iinfo->i_location.logicalBlockNum + 1;
734 		}
735 
736 		newblocknum = udf_new_block(inode->i_sb, inode,
737 				iinfo->i_location.partitionReferenceNum,
738 				goal, err);
739 		if (!newblocknum) {
740 			brelse(prev_epos.bh);
741 			*err = -ENOSPC;
742 			return 0;
743 		}
744 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
745 	}
746 
747 	/* if the extent the requsted block is located in contains multiple
748 	 * blocks, split the extent into at most three extents. blocks prior
749 	 * to requested block, requested block, and blocks after requested
750 	 * block */
751 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
752 
753 #ifdef UDF_PREALLOCATE
754 	/* We preallocate blocks only for regular files. It also makes sense
755 	 * for directories but there's a problem when to drop the
756 	 * preallocation. We might use some delayed work for that but I feel
757 	 * it's overengineering for a filesystem like UDF. */
758 	if (S_ISREG(inode->i_mode))
759 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
760 #endif
761 
762 	/* merge any continuous blocks in laarr */
763 	udf_merge_extents(inode, laarr, &endnum);
764 
765 	/* write back the new extents, inserting new extents if the new number
766 	 * of extents is greater than the old number, and deleting extents if
767 	 * the new number of extents is less than the old number */
768 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
769 
770 	brelse(prev_epos.bh);
771 
772 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
773 				iinfo->i_location.partitionReferenceNum, 0);
774 	if (!newblock) {
775 		*err = -EIO;
776 		return 0;
777 	}
778 	*new = 1;
779 	iinfo->i_next_alloc_block = block;
780 	iinfo->i_next_alloc_goal = newblocknum;
781 	inode->i_ctime = current_fs_time(inode->i_sb);
782 
783 	if (IS_SYNC(inode))
784 		udf_sync_inode(inode);
785 	else
786 		mark_inode_dirty(inode);
787 
788 	return newblock;
789 }
790 
791 static void udf_split_extents(struct inode *inode, int *c, int offset,
792 			      int newblocknum,
793 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
794 			      int *endnum)
795 {
796 	unsigned long blocksize = inode->i_sb->s_blocksize;
797 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
798 
799 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
800 	    (laarr[*c].extLength >> 30) ==
801 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
802 		int curr = *c;
803 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
804 			    blocksize - 1) >> blocksize_bits;
805 		int8_t etype = (laarr[curr].extLength >> 30);
806 
807 		if (blen == 1)
808 			;
809 		else if (!offset || blen == offset + 1) {
810 			laarr[curr + 2] = laarr[curr + 1];
811 			laarr[curr + 1] = laarr[curr];
812 		} else {
813 			laarr[curr + 3] = laarr[curr + 1];
814 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
815 		}
816 
817 		if (offset) {
818 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
819 				udf_free_blocks(inode->i_sb, inode,
820 						&laarr[curr].extLocation,
821 						0, offset);
822 				laarr[curr].extLength =
823 					EXT_NOT_RECORDED_NOT_ALLOCATED |
824 					(offset << blocksize_bits);
825 				laarr[curr].extLocation.logicalBlockNum = 0;
826 				laarr[curr].extLocation.
827 						partitionReferenceNum = 0;
828 			} else
829 				laarr[curr].extLength = (etype << 30) |
830 					(offset << blocksize_bits);
831 			curr++;
832 			(*c)++;
833 			(*endnum)++;
834 		}
835 
836 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
837 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
838 			laarr[curr].extLocation.partitionReferenceNum =
839 				UDF_I(inode)->i_location.partitionReferenceNum;
840 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
841 			blocksize;
842 		curr++;
843 
844 		if (blen != offset + 1) {
845 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
846 				laarr[curr].extLocation.logicalBlockNum +=
847 								offset + 1;
848 			laarr[curr].extLength = (etype << 30) |
849 				((blen - (offset + 1)) << blocksize_bits);
850 			curr++;
851 			(*endnum)++;
852 		}
853 	}
854 }
855 
856 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
857 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
858 				 int *endnum)
859 {
860 	int start, length = 0, currlength = 0, i;
861 
862 	if (*endnum >= (c + 1)) {
863 		if (!lastblock)
864 			return;
865 		else
866 			start = c;
867 	} else {
868 		if ((laarr[c + 1].extLength >> 30) ==
869 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
870 			start = c + 1;
871 			length = currlength =
872 				(((laarr[c + 1].extLength &
873 					UDF_EXTENT_LENGTH_MASK) +
874 				inode->i_sb->s_blocksize - 1) >>
875 				inode->i_sb->s_blocksize_bits);
876 		} else
877 			start = c;
878 	}
879 
880 	for (i = start + 1; i <= *endnum; i++) {
881 		if (i == *endnum) {
882 			if (lastblock)
883 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
884 		} else if ((laarr[i].extLength >> 30) ==
885 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
886 			length += (((laarr[i].extLength &
887 						UDF_EXTENT_LENGTH_MASK) +
888 				    inode->i_sb->s_blocksize - 1) >>
889 				    inode->i_sb->s_blocksize_bits);
890 		} else
891 			break;
892 	}
893 
894 	if (length) {
895 		int next = laarr[start].extLocation.logicalBlockNum +
896 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
897 			  inode->i_sb->s_blocksize - 1) >>
898 			  inode->i_sb->s_blocksize_bits);
899 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
900 				laarr[start].extLocation.partitionReferenceNum,
901 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
902 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
903 				currlength);
904 		if (numalloc) 	{
905 			if (start == (c + 1))
906 				laarr[start].extLength +=
907 					(numalloc <<
908 					 inode->i_sb->s_blocksize_bits);
909 			else {
910 				memmove(&laarr[c + 2], &laarr[c + 1],
911 					sizeof(struct long_ad) * (*endnum - (c + 1)));
912 				(*endnum)++;
913 				laarr[c + 1].extLocation.logicalBlockNum = next;
914 				laarr[c + 1].extLocation.partitionReferenceNum =
915 					laarr[c].extLocation.
916 							partitionReferenceNum;
917 				laarr[c + 1].extLength =
918 					EXT_NOT_RECORDED_ALLOCATED |
919 					(numalloc <<
920 					 inode->i_sb->s_blocksize_bits);
921 				start = c + 1;
922 			}
923 
924 			for (i = start + 1; numalloc && i < *endnum; i++) {
925 				int elen = ((laarr[i].extLength &
926 						UDF_EXTENT_LENGTH_MASK) +
927 					    inode->i_sb->s_blocksize - 1) >>
928 					    inode->i_sb->s_blocksize_bits;
929 
930 				if (elen > numalloc) {
931 					laarr[i].extLength -=
932 						(numalloc <<
933 						 inode->i_sb->s_blocksize_bits);
934 					numalloc = 0;
935 				} else {
936 					numalloc -= elen;
937 					if (*endnum > (i + 1))
938 						memmove(&laarr[i],
939 							&laarr[i + 1],
940 							sizeof(struct long_ad) *
941 							(*endnum - (i + 1)));
942 					i--;
943 					(*endnum)--;
944 				}
945 			}
946 			UDF_I(inode)->i_lenExtents +=
947 				numalloc << inode->i_sb->s_blocksize_bits;
948 		}
949 	}
950 }
951 
952 static void udf_merge_extents(struct inode *inode,
953 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
954 			      int *endnum)
955 {
956 	int i;
957 	unsigned long blocksize = inode->i_sb->s_blocksize;
958 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
959 
960 	for (i = 0; i < (*endnum - 1); i++) {
961 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
962 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
963 
964 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
965 			(((li->extLength >> 30) ==
966 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
967 			((lip1->extLocation.logicalBlockNum -
968 			  li->extLocation.logicalBlockNum) ==
969 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
970 			blocksize - 1) >> blocksize_bits)))) {
971 
972 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
973 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
974 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
975 				lip1->extLength = (lip1->extLength -
976 						  (li->extLength &
977 						   UDF_EXTENT_LENGTH_MASK) +
978 						   UDF_EXTENT_LENGTH_MASK) &
979 							~(blocksize - 1);
980 				li->extLength = (li->extLength &
981 						 UDF_EXTENT_FLAG_MASK) +
982 						(UDF_EXTENT_LENGTH_MASK + 1) -
983 						blocksize;
984 				lip1->extLocation.logicalBlockNum =
985 					li->extLocation.logicalBlockNum +
986 					((li->extLength &
987 						UDF_EXTENT_LENGTH_MASK) >>
988 						blocksize_bits);
989 			} else {
990 				li->extLength = lip1->extLength +
991 					(((li->extLength &
992 						UDF_EXTENT_LENGTH_MASK) +
993 					 blocksize - 1) & ~(blocksize - 1));
994 				if (*endnum > (i + 2))
995 					memmove(&laarr[i + 1], &laarr[i + 2],
996 						sizeof(struct long_ad) *
997 						(*endnum - (i + 2)));
998 				i--;
999 				(*endnum)--;
1000 			}
1001 		} else if (((li->extLength >> 30) ==
1002 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1003 			   ((lip1->extLength >> 30) ==
1004 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1005 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1006 					((li->extLength &
1007 					  UDF_EXTENT_LENGTH_MASK) +
1008 					 blocksize - 1) >> blocksize_bits);
1009 			li->extLocation.logicalBlockNum = 0;
1010 			li->extLocation.partitionReferenceNum = 0;
1011 
1012 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1013 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1014 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1015 				lip1->extLength = (lip1->extLength -
1016 						   (li->extLength &
1017 						   UDF_EXTENT_LENGTH_MASK) +
1018 						   UDF_EXTENT_LENGTH_MASK) &
1019 						   ~(blocksize - 1);
1020 				li->extLength = (li->extLength &
1021 						 UDF_EXTENT_FLAG_MASK) +
1022 						(UDF_EXTENT_LENGTH_MASK + 1) -
1023 						blocksize;
1024 			} else {
1025 				li->extLength = lip1->extLength +
1026 					(((li->extLength &
1027 						UDF_EXTENT_LENGTH_MASK) +
1028 					  blocksize - 1) & ~(blocksize - 1));
1029 				if (*endnum > (i + 2))
1030 					memmove(&laarr[i + 1], &laarr[i + 2],
1031 						sizeof(struct long_ad) *
1032 						(*endnum - (i + 2)));
1033 				i--;
1034 				(*endnum)--;
1035 			}
1036 		} else if ((li->extLength >> 30) ==
1037 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1038 			udf_free_blocks(inode->i_sb, inode,
1039 					&li->extLocation, 0,
1040 					((li->extLength &
1041 						UDF_EXTENT_LENGTH_MASK) +
1042 					 blocksize - 1) >> blocksize_bits);
1043 			li->extLocation.logicalBlockNum = 0;
1044 			li->extLocation.partitionReferenceNum = 0;
1045 			li->extLength = (li->extLength &
1046 						UDF_EXTENT_LENGTH_MASK) |
1047 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1048 		}
1049 	}
1050 }
1051 
1052 static void udf_update_extents(struct inode *inode,
1053 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1054 			       int startnum, int endnum,
1055 			       struct extent_position *epos)
1056 {
1057 	int start = 0, i;
1058 	struct kernel_lb_addr tmploc;
1059 	uint32_t tmplen;
1060 
1061 	if (startnum > endnum) {
1062 		for (i = 0; i < (startnum - endnum); i++)
1063 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1064 					laarr[i].extLength);
1065 	} else if (startnum < endnum) {
1066 		for (i = 0; i < (endnum - startnum); i++) {
1067 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1068 					laarr[i].extLength);
1069 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1070 				      &laarr[i].extLength, 1);
1071 			start++;
1072 		}
1073 	}
1074 
1075 	for (i = start; i < endnum; i++) {
1076 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1077 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1078 			       laarr[i].extLength, 1);
1079 	}
1080 }
1081 
1082 struct buffer_head *udf_bread(struct inode *inode, int block,
1083 			      int create, int *err)
1084 {
1085 	struct buffer_head *bh = NULL;
1086 
1087 	bh = udf_getblk(inode, block, create, err);
1088 	if (!bh)
1089 		return NULL;
1090 
1091 	if (buffer_uptodate(bh))
1092 		return bh;
1093 
1094 	ll_rw_block(READ, 1, &bh);
1095 
1096 	wait_on_buffer(bh);
1097 	if (buffer_uptodate(bh))
1098 		return bh;
1099 
1100 	brelse(bh);
1101 	*err = -EIO;
1102 	return NULL;
1103 }
1104 
1105 int udf_setsize(struct inode *inode, loff_t newsize)
1106 {
1107 	int err;
1108 	struct udf_inode_info *iinfo;
1109 	int bsize = 1 << inode->i_blkbits;
1110 
1111 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1112 	      S_ISLNK(inode->i_mode)))
1113 		return -EINVAL;
1114 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1115 		return -EPERM;
1116 
1117 	iinfo = UDF_I(inode);
1118 	if (newsize > inode->i_size) {
1119 		down_write(&iinfo->i_data_sem);
1120 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1121 			if (bsize <
1122 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1123 				err = udf_expand_file_adinicb(inode);
1124 				if (err)
1125 					return err;
1126 				down_write(&iinfo->i_data_sem);
1127 			} else {
1128 				iinfo->i_lenAlloc = newsize;
1129 				goto set_size;
1130 			}
1131 		}
1132 		err = udf_extend_file(inode, newsize);
1133 		if (err) {
1134 			up_write(&iinfo->i_data_sem);
1135 			return err;
1136 		}
1137 set_size:
1138 		truncate_setsize(inode, newsize);
1139 		up_write(&iinfo->i_data_sem);
1140 	} else {
1141 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1142 			down_write(&iinfo->i_data_sem);
1143 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1144 			       0x00, bsize - newsize -
1145 			       udf_file_entry_alloc_offset(inode));
1146 			iinfo->i_lenAlloc = newsize;
1147 			truncate_setsize(inode, newsize);
1148 			up_write(&iinfo->i_data_sem);
1149 			goto update_time;
1150 		}
1151 		err = block_truncate_page(inode->i_mapping, newsize,
1152 					  udf_get_block);
1153 		if (err)
1154 			return err;
1155 		down_write(&iinfo->i_data_sem);
1156 		truncate_setsize(inode, newsize);
1157 		udf_truncate_extents(inode);
1158 		up_write(&iinfo->i_data_sem);
1159 	}
1160 update_time:
1161 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1162 	if (IS_SYNC(inode))
1163 		udf_sync_inode(inode);
1164 	else
1165 		mark_inode_dirty(inode);
1166 	return 0;
1167 }
1168 
1169 static void __udf_read_inode(struct inode *inode)
1170 {
1171 	struct buffer_head *bh = NULL;
1172 	struct fileEntry *fe;
1173 	uint16_t ident;
1174 	struct udf_inode_info *iinfo = UDF_I(inode);
1175 
1176 	/*
1177 	 * Set defaults, but the inode is still incomplete!
1178 	 * Note: get_new_inode() sets the following on a new inode:
1179 	 *      i_sb = sb
1180 	 *      i_no = ino
1181 	 *      i_flags = sb->s_flags
1182 	 *      i_state = 0
1183 	 * clean_inode(): zero fills and sets
1184 	 *      i_count = 1
1185 	 *      i_nlink = 1
1186 	 *      i_op = NULL;
1187 	 */
1188 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1189 	if (!bh) {
1190 		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1191 		make_bad_inode(inode);
1192 		return;
1193 	}
1194 
1195 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1196 	    ident != TAG_IDENT_USE) {
1197 		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1198 			inode->i_ino, ident);
1199 		brelse(bh);
1200 		make_bad_inode(inode);
1201 		return;
1202 	}
1203 
1204 	fe = (struct fileEntry *)bh->b_data;
1205 
1206 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1207 		struct buffer_head *ibh;
1208 
1209 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1210 					&ident);
1211 		if (ident == TAG_IDENT_IE && ibh) {
1212 			struct buffer_head *nbh = NULL;
1213 			struct kernel_lb_addr loc;
1214 			struct indirectEntry *ie;
1215 
1216 			ie = (struct indirectEntry *)ibh->b_data;
1217 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1218 
1219 			if (ie->indirectICB.extLength &&
1220 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1221 							&ident))) {
1222 				if (ident == TAG_IDENT_FE ||
1223 					ident == TAG_IDENT_EFE) {
1224 					memcpy(&iinfo->i_location,
1225 						&loc,
1226 						sizeof(struct kernel_lb_addr));
1227 					brelse(bh);
1228 					brelse(ibh);
1229 					brelse(nbh);
1230 					__udf_read_inode(inode);
1231 					return;
1232 				}
1233 				brelse(nbh);
1234 			}
1235 		}
1236 		brelse(ibh);
1237 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1238 		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1239 			le16_to_cpu(fe->icbTag.strategyType));
1240 		brelse(bh);
1241 		make_bad_inode(inode);
1242 		return;
1243 	}
1244 	udf_fill_inode(inode, bh);
1245 
1246 	brelse(bh);
1247 }
1248 
1249 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1250 {
1251 	struct fileEntry *fe;
1252 	struct extendedFileEntry *efe;
1253 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1254 	struct udf_inode_info *iinfo = UDF_I(inode);
1255 	unsigned int link_count;
1256 
1257 	fe = (struct fileEntry *)bh->b_data;
1258 	efe = (struct extendedFileEntry *)bh->b_data;
1259 
1260 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1261 		iinfo->i_strat4096 = 0;
1262 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1263 		iinfo->i_strat4096 = 1;
1264 
1265 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1266 							ICBTAG_FLAG_AD_MASK;
1267 	iinfo->i_unique = 0;
1268 	iinfo->i_lenEAttr = 0;
1269 	iinfo->i_lenExtents = 0;
1270 	iinfo->i_lenAlloc = 0;
1271 	iinfo->i_next_alloc_block = 0;
1272 	iinfo->i_next_alloc_goal = 0;
1273 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1274 		iinfo->i_efe = 1;
1275 		iinfo->i_use = 0;
1276 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1277 					sizeof(struct extendedFileEntry))) {
1278 			make_bad_inode(inode);
1279 			return;
1280 		}
1281 		memcpy(iinfo->i_ext.i_data,
1282 		       bh->b_data + sizeof(struct extendedFileEntry),
1283 		       inode->i_sb->s_blocksize -
1284 					sizeof(struct extendedFileEntry));
1285 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1286 		iinfo->i_efe = 0;
1287 		iinfo->i_use = 0;
1288 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1289 						sizeof(struct fileEntry))) {
1290 			make_bad_inode(inode);
1291 			return;
1292 		}
1293 		memcpy(iinfo->i_ext.i_data,
1294 		       bh->b_data + sizeof(struct fileEntry),
1295 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1296 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1297 		iinfo->i_efe = 0;
1298 		iinfo->i_use = 1;
1299 		iinfo->i_lenAlloc = le32_to_cpu(
1300 				((struct unallocSpaceEntry *)bh->b_data)->
1301 				 lengthAllocDescs);
1302 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1303 					sizeof(struct unallocSpaceEntry))) {
1304 			make_bad_inode(inode);
1305 			return;
1306 		}
1307 		memcpy(iinfo->i_ext.i_data,
1308 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1309 		       inode->i_sb->s_blocksize -
1310 					sizeof(struct unallocSpaceEntry));
1311 		return;
1312 	}
1313 
1314 	read_lock(&sbi->s_cred_lock);
1315 	inode->i_uid = le32_to_cpu(fe->uid);
1316 	if (inode->i_uid == -1 ||
1317 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1318 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1319 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1320 
1321 	inode->i_gid = le32_to_cpu(fe->gid);
1322 	if (inode->i_gid == -1 ||
1323 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1324 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1325 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1326 
1327 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1328 			sbi->s_fmode != UDF_INVALID_MODE)
1329 		inode->i_mode = sbi->s_fmode;
1330 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1331 			sbi->s_dmode != UDF_INVALID_MODE)
1332 		inode->i_mode = sbi->s_dmode;
1333 	else
1334 		inode->i_mode = udf_convert_permissions(fe);
1335 	inode->i_mode &= ~sbi->s_umask;
1336 	read_unlock(&sbi->s_cred_lock);
1337 
1338 	link_count = le16_to_cpu(fe->fileLinkCount);
1339 	if (!link_count)
1340 		link_count = 1;
1341 	set_nlink(inode, link_count);
1342 
1343 	inode->i_size = le64_to_cpu(fe->informationLength);
1344 	iinfo->i_lenExtents = inode->i_size;
1345 
1346 	if (iinfo->i_efe == 0) {
1347 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1348 			(inode->i_sb->s_blocksize_bits - 9);
1349 
1350 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1351 			inode->i_atime = sbi->s_record_time;
1352 
1353 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1354 					    fe->modificationTime))
1355 			inode->i_mtime = sbi->s_record_time;
1356 
1357 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1358 			inode->i_ctime = sbi->s_record_time;
1359 
1360 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1361 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1362 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1363 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1364 	} else {
1365 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1366 		    (inode->i_sb->s_blocksize_bits - 9);
1367 
1368 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1369 			inode->i_atime = sbi->s_record_time;
1370 
1371 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1372 					    efe->modificationTime))
1373 			inode->i_mtime = sbi->s_record_time;
1374 
1375 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1376 			iinfo->i_crtime = sbi->s_record_time;
1377 
1378 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1379 			inode->i_ctime = sbi->s_record_time;
1380 
1381 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1382 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1383 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1384 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1385 	}
1386 
1387 	switch (fe->icbTag.fileType) {
1388 	case ICBTAG_FILE_TYPE_DIRECTORY:
1389 		inode->i_op = &udf_dir_inode_operations;
1390 		inode->i_fop = &udf_dir_operations;
1391 		inode->i_mode |= S_IFDIR;
1392 		inc_nlink(inode);
1393 		break;
1394 	case ICBTAG_FILE_TYPE_REALTIME:
1395 	case ICBTAG_FILE_TYPE_REGULAR:
1396 	case ICBTAG_FILE_TYPE_UNDEF:
1397 	case ICBTAG_FILE_TYPE_VAT20:
1398 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1399 			inode->i_data.a_ops = &udf_adinicb_aops;
1400 		else
1401 			inode->i_data.a_ops = &udf_aops;
1402 		inode->i_op = &udf_file_inode_operations;
1403 		inode->i_fop = &udf_file_operations;
1404 		inode->i_mode |= S_IFREG;
1405 		break;
1406 	case ICBTAG_FILE_TYPE_BLOCK:
1407 		inode->i_mode |= S_IFBLK;
1408 		break;
1409 	case ICBTAG_FILE_TYPE_CHAR:
1410 		inode->i_mode |= S_IFCHR;
1411 		break;
1412 	case ICBTAG_FILE_TYPE_FIFO:
1413 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1414 		break;
1415 	case ICBTAG_FILE_TYPE_SOCKET:
1416 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1417 		break;
1418 	case ICBTAG_FILE_TYPE_SYMLINK:
1419 		inode->i_data.a_ops = &udf_symlink_aops;
1420 		inode->i_op = &udf_symlink_inode_operations;
1421 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1422 		break;
1423 	case ICBTAG_FILE_TYPE_MAIN:
1424 		udf_debug("METADATA FILE-----\n");
1425 		break;
1426 	case ICBTAG_FILE_TYPE_MIRROR:
1427 		udf_debug("METADATA MIRROR FILE-----\n");
1428 		break;
1429 	case ICBTAG_FILE_TYPE_BITMAP:
1430 		udf_debug("METADATA BITMAP FILE-----\n");
1431 		break;
1432 	default:
1433 		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1434 			inode->i_ino, fe->icbTag.fileType);
1435 		make_bad_inode(inode);
1436 		return;
1437 	}
1438 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1439 		struct deviceSpec *dsea =
1440 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1441 		if (dsea) {
1442 			init_special_inode(inode, inode->i_mode,
1443 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1444 				      le32_to_cpu(dsea->minorDeviceIdent)));
1445 			/* Developer ID ??? */
1446 		} else
1447 			make_bad_inode(inode);
1448 	}
1449 }
1450 
1451 static int udf_alloc_i_data(struct inode *inode, size_t size)
1452 {
1453 	struct udf_inode_info *iinfo = UDF_I(inode);
1454 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1455 
1456 	if (!iinfo->i_ext.i_data) {
1457 		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1458 			inode->i_ino);
1459 		return -ENOMEM;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 static umode_t udf_convert_permissions(struct fileEntry *fe)
1466 {
1467 	umode_t mode;
1468 	uint32_t permissions;
1469 	uint32_t flags;
1470 
1471 	permissions = le32_to_cpu(fe->permissions);
1472 	flags = le16_to_cpu(fe->icbTag.flags);
1473 
1474 	mode =	((permissions) & S_IRWXO) |
1475 		((permissions >> 2) & S_IRWXG) |
1476 		((permissions >> 4) & S_IRWXU) |
1477 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1478 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1479 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1480 
1481 	return mode;
1482 }
1483 
1484 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1485 {
1486 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1487 }
1488 
1489 static int udf_sync_inode(struct inode *inode)
1490 {
1491 	return udf_update_inode(inode, 1);
1492 }
1493 
1494 static int udf_update_inode(struct inode *inode, int do_sync)
1495 {
1496 	struct buffer_head *bh = NULL;
1497 	struct fileEntry *fe;
1498 	struct extendedFileEntry *efe;
1499 	uint64_t lb_recorded;
1500 	uint32_t udfperms;
1501 	uint16_t icbflags;
1502 	uint16_t crclen;
1503 	int err = 0;
1504 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1505 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1506 	struct udf_inode_info *iinfo = UDF_I(inode);
1507 
1508 	bh = udf_tgetblk(inode->i_sb,
1509 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1510 	if (!bh) {
1511 		udf_debug("getblk failure\n");
1512 		return -ENOMEM;
1513 	}
1514 
1515 	lock_buffer(bh);
1516 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1517 	fe = (struct fileEntry *)bh->b_data;
1518 	efe = (struct extendedFileEntry *)bh->b_data;
1519 
1520 	if (iinfo->i_use) {
1521 		struct unallocSpaceEntry *use =
1522 			(struct unallocSpaceEntry *)bh->b_data;
1523 
1524 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1525 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1526 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1527 					sizeof(struct unallocSpaceEntry));
1528 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1529 		use->descTag.tagLocation =
1530 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1531 		crclen = sizeof(struct unallocSpaceEntry) +
1532 				iinfo->i_lenAlloc - sizeof(struct tag);
1533 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1534 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1535 							   sizeof(struct tag),
1536 							   crclen));
1537 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1538 
1539 		goto out;
1540 	}
1541 
1542 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1543 		fe->uid = cpu_to_le32(-1);
1544 	else
1545 		fe->uid = cpu_to_le32(inode->i_uid);
1546 
1547 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1548 		fe->gid = cpu_to_le32(-1);
1549 	else
1550 		fe->gid = cpu_to_le32(inode->i_gid);
1551 
1552 	udfperms = ((inode->i_mode & S_IRWXO)) |
1553 		   ((inode->i_mode & S_IRWXG) << 2) |
1554 		   ((inode->i_mode & S_IRWXU) << 4);
1555 
1556 	udfperms |= (le32_to_cpu(fe->permissions) &
1557 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1558 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1559 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1560 	fe->permissions = cpu_to_le32(udfperms);
1561 
1562 	if (S_ISDIR(inode->i_mode))
1563 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1564 	else
1565 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1566 
1567 	fe->informationLength = cpu_to_le64(inode->i_size);
1568 
1569 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1570 		struct regid *eid;
1571 		struct deviceSpec *dsea =
1572 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1573 		if (!dsea) {
1574 			dsea = (struct deviceSpec *)
1575 				udf_add_extendedattr(inode,
1576 						     sizeof(struct deviceSpec) +
1577 						     sizeof(struct regid), 12, 0x3);
1578 			dsea->attrType = cpu_to_le32(12);
1579 			dsea->attrSubtype = 1;
1580 			dsea->attrLength = cpu_to_le32(
1581 						sizeof(struct deviceSpec) +
1582 						sizeof(struct regid));
1583 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1584 		}
1585 		eid = (struct regid *)dsea->impUse;
1586 		memset(eid, 0, sizeof(struct regid));
1587 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1588 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1589 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1590 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1591 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1592 	}
1593 
1594 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1595 		lb_recorded = 0; /* No extents => no blocks! */
1596 	else
1597 		lb_recorded =
1598 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1599 			(blocksize_bits - 9);
1600 
1601 	if (iinfo->i_efe == 0) {
1602 		memcpy(bh->b_data + sizeof(struct fileEntry),
1603 		       iinfo->i_ext.i_data,
1604 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1605 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1606 
1607 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1608 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1609 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1610 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1611 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1612 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1613 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1614 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1615 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1616 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1617 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1618 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1619 		crclen = sizeof(struct fileEntry);
1620 	} else {
1621 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1622 		       iinfo->i_ext.i_data,
1623 		       inode->i_sb->s_blocksize -
1624 					sizeof(struct extendedFileEntry));
1625 		efe->objectSize = cpu_to_le64(inode->i_size);
1626 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1627 
1628 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1629 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1630 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1631 			iinfo->i_crtime = inode->i_atime;
1632 
1633 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1634 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1635 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1636 			iinfo->i_crtime = inode->i_mtime;
1637 
1638 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1639 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1640 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1641 			iinfo->i_crtime = inode->i_ctime;
1642 
1643 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1644 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1645 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1646 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1647 
1648 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1649 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1650 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1651 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1652 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1653 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1654 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1655 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1656 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1657 		crclen = sizeof(struct extendedFileEntry);
1658 	}
1659 	if (iinfo->i_strat4096) {
1660 		fe->icbTag.strategyType = cpu_to_le16(4096);
1661 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1662 		fe->icbTag.numEntries = cpu_to_le16(2);
1663 	} else {
1664 		fe->icbTag.strategyType = cpu_to_le16(4);
1665 		fe->icbTag.numEntries = cpu_to_le16(1);
1666 	}
1667 
1668 	if (S_ISDIR(inode->i_mode))
1669 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1670 	else if (S_ISREG(inode->i_mode))
1671 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1672 	else if (S_ISLNK(inode->i_mode))
1673 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1674 	else if (S_ISBLK(inode->i_mode))
1675 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1676 	else if (S_ISCHR(inode->i_mode))
1677 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1678 	else if (S_ISFIFO(inode->i_mode))
1679 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1680 	else if (S_ISSOCK(inode->i_mode))
1681 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1682 
1683 	icbflags =	iinfo->i_alloc_type |
1684 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1685 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1686 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1687 			(le16_to_cpu(fe->icbTag.flags) &
1688 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1689 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1690 
1691 	fe->icbTag.flags = cpu_to_le16(icbflags);
1692 	if (sbi->s_udfrev >= 0x0200)
1693 		fe->descTag.descVersion = cpu_to_le16(3);
1694 	else
1695 		fe->descTag.descVersion = cpu_to_le16(2);
1696 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1697 	fe->descTag.tagLocation = cpu_to_le32(
1698 					iinfo->i_location.logicalBlockNum);
1699 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1700 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1701 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1702 						  crclen));
1703 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1704 
1705 out:
1706 	set_buffer_uptodate(bh);
1707 	unlock_buffer(bh);
1708 
1709 	/* write the data blocks */
1710 	mark_buffer_dirty(bh);
1711 	if (do_sync) {
1712 		sync_dirty_buffer(bh);
1713 		if (buffer_write_io_error(bh)) {
1714 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1715 				 inode->i_ino);
1716 			err = -EIO;
1717 		}
1718 	}
1719 	brelse(bh);
1720 
1721 	return err;
1722 }
1723 
1724 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1725 {
1726 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1727 	struct inode *inode = iget_locked(sb, block);
1728 
1729 	if (!inode)
1730 		return NULL;
1731 
1732 	if (inode->i_state & I_NEW) {
1733 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1734 		__udf_read_inode(inode);
1735 		unlock_new_inode(inode);
1736 	}
1737 
1738 	if (is_bad_inode(inode))
1739 		goto out_iput;
1740 
1741 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1742 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1743 		udf_debug("block=%d, partition=%d out of range\n",
1744 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1745 		make_bad_inode(inode);
1746 		goto out_iput;
1747 	}
1748 
1749 	return inode;
1750 
1751  out_iput:
1752 	iput(inode);
1753 	return NULL;
1754 }
1755 
1756 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1757 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1758 {
1759 	int adsize;
1760 	struct short_ad *sad = NULL;
1761 	struct long_ad *lad = NULL;
1762 	struct allocExtDesc *aed;
1763 	uint8_t *ptr;
1764 	struct udf_inode_info *iinfo = UDF_I(inode);
1765 
1766 	if (!epos->bh)
1767 		ptr = iinfo->i_ext.i_data + epos->offset -
1768 			udf_file_entry_alloc_offset(inode) +
1769 			iinfo->i_lenEAttr;
1770 	else
1771 		ptr = epos->bh->b_data + epos->offset;
1772 
1773 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1774 		adsize = sizeof(struct short_ad);
1775 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1776 		adsize = sizeof(struct long_ad);
1777 	else
1778 		return -EIO;
1779 
1780 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1781 		unsigned char *sptr, *dptr;
1782 		struct buffer_head *nbh;
1783 		int err, loffset;
1784 		struct kernel_lb_addr obloc = epos->block;
1785 
1786 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1787 						obloc.partitionReferenceNum,
1788 						obloc.logicalBlockNum, &err);
1789 		if (!epos->block.logicalBlockNum)
1790 			return -ENOSPC;
1791 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1792 								 &epos->block,
1793 								 0));
1794 		if (!nbh)
1795 			return -EIO;
1796 		lock_buffer(nbh);
1797 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1798 		set_buffer_uptodate(nbh);
1799 		unlock_buffer(nbh);
1800 		mark_buffer_dirty_inode(nbh, inode);
1801 
1802 		aed = (struct allocExtDesc *)(nbh->b_data);
1803 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1804 			aed->previousAllocExtLocation =
1805 					cpu_to_le32(obloc.logicalBlockNum);
1806 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1807 			loffset = epos->offset;
1808 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1809 			sptr = ptr - adsize;
1810 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1811 			memcpy(dptr, sptr, adsize);
1812 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1813 		} else {
1814 			loffset = epos->offset + adsize;
1815 			aed->lengthAllocDescs = cpu_to_le32(0);
1816 			sptr = ptr;
1817 			epos->offset = sizeof(struct allocExtDesc);
1818 
1819 			if (epos->bh) {
1820 				aed = (struct allocExtDesc *)epos->bh->b_data;
1821 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1822 			} else {
1823 				iinfo->i_lenAlloc += adsize;
1824 				mark_inode_dirty(inode);
1825 			}
1826 		}
1827 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1828 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1829 				    epos->block.logicalBlockNum, sizeof(struct tag));
1830 		else
1831 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1832 				    epos->block.logicalBlockNum, sizeof(struct tag));
1833 		switch (iinfo->i_alloc_type) {
1834 		case ICBTAG_FLAG_AD_SHORT:
1835 			sad = (struct short_ad *)sptr;
1836 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1837 						     inode->i_sb->s_blocksize);
1838 			sad->extPosition =
1839 				cpu_to_le32(epos->block.logicalBlockNum);
1840 			break;
1841 		case ICBTAG_FLAG_AD_LONG:
1842 			lad = (struct long_ad *)sptr;
1843 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1844 						     inode->i_sb->s_blocksize);
1845 			lad->extLocation = cpu_to_lelb(epos->block);
1846 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1847 			break;
1848 		}
1849 		if (epos->bh) {
1850 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1851 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1852 				udf_update_tag(epos->bh->b_data, loffset);
1853 			else
1854 				udf_update_tag(epos->bh->b_data,
1855 						sizeof(struct allocExtDesc));
1856 			mark_buffer_dirty_inode(epos->bh, inode);
1857 			brelse(epos->bh);
1858 		} else {
1859 			mark_inode_dirty(inode);
1860 		}
1861 		epos->bh = nbh;
1862 	}
1863 
1864 	udf_write_aext(inode, epos, eloc, elen, inc);
1865 
1866 	if (!epos->bh) {
1867 		iinfo->i_lenAlloc += adsize;
1868 		mark_inode_dirty(inode);
1869 	} else {
1870 		aed = (struct allocExtDesc *)epos->bh->b_data;
1871 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1872 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1873 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1874 			udf_update_tag(epos->bh->b_data,
1875 					epos->offset + (inc ? 0 : adsize));
1876 		else
1877 			udf_update_tag(epos->bh->b_data,
1878 					sizeof(struct allocExtDesc));
1879 		mark_buffer_dirty_inode(epos->bh, inode);
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1886 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1887 {
1888 	int adsize;
1889 	uint8_t *ptr;
1890 	struct short_ad *sad;
1891 	struct long_ad *lad;
1892 	struct udf_inode_info *iinfo = UDF_I(inode);
1893 
1894 	if (!epos->bh)
1895 		ptr = iinfo->i_ext.i_data + epos->offset -
1896 			udf_file_entry_alloc_offset(inode) +
1897 			iinfo->i_lenEAttr;
1898 	else
1899 		ptr = epos->bh->b_data + epos->offset;
1900 
1901 	switch (iinfo->i_alloc_type) {
1902 	case ICBTAG_FLAG_AD_SHORT:
1903 		sad = (struct short_ad *)ptr;
1904 		sad->extLength = cpu_to_le32(elen);
1905 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1906 		adsize = sizeof(struct short_ad);
1907 		break;
1908 	case ICBTAG_FLAG_AD_LONG:
1909 		lad = (struct long_ad *)ptr;
1910 		lad->extLength = cpu_to_le32(elen);
1911 		lad->extLocation = cpu_to_lelb(*eloc);
1912 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1913 		adsize = sizeof(struct long_ad);
1914 		break;
1915 	default:
1916 		return;
1917 	}
1918 
1919 	if (epos->bh) {
1920 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1921 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1922 			struct allocExtDesc *aed =
1923 				(struct allocExtDesc *)epos->bh->b_data;
1924 			udf_update_tag(epos->bh->b_data,
1925 				       le32_to_cpu(aed->lengthAllocDescs) +
1926 				       sizeof(struct allocExtDesc));
1927 		}
1928 		mark_buffer_dirty_inode(epos->bh, inode);
1929 	} else {
1930 		mark_inode_dirty(inode);
1931 	}
1932 
1933 	if (inc)
1934 		epos->offset += adsize;
1935 }
1936 
1937 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1938 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1939 {
1940 	int8_t etype;
1941 
1942 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1943 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1944 		int block;
1945 		epos->block = *eloc;
1946 		epos->offset = sizeof(struct allocExtDesc);
1947 		brelse(epos->bh);
1948 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1949 		epos->bh = udf_tread(inode->i_sb, block);
1950 		if (!epos->bh) {
1951 			udf_debug("reading block %d failed!\n", block);
1952 			return -1;
1953 		}
1954 	}
1955 
1956 	return etype;
1957 }
1958 
1959 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1960 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1961 {
1962 	int alen;
1963 	int8_t etype;
1964 	uint8_t *ptr;
1965 	struct short_ad *sad;
1966 	struct long_ad *lad;
1967 	struct udf_inode_info *iinfo = UDF_I(inode);
1968 
1969 	if (!epos->bh) {
1970 		if (!epos->offset)
1971 			epos->offset = udf_file_entry_alloc_offset(inode);
1972 		ptr = iinfo->i_ext.i_data + epos->offset -
1973 			udf_file_entry_alloc_offset(inode) +
1974 			iinfo->i_lenEAttr;
1975 		alen = udf_file_entry_alloc_offset(inode) +
1976 							iinfo->i_lenAlloc;
1977 	} else {
1978 		if (!epos->offset)
1979 			epos->offset = sizeof(struct allocExtDesc);
1980 		ptr = epos->bh->b_data + epos->offset;
1981 		alen = sizeof(struct allocExtDesc) +
1982 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1983 							lengthAllocDescs);
1984 	}
1985 
1986 	switch (iinfo->i_alloc_type) {
1987 	case ICBTAG_FLAG_AD_SHORT:
1988 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1989 		if (!sad)
1990 			return -1;
1991 		etype = le32_to_cpu(sad->extLength) >> 30;
1992 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1993 		eloc->partitionReferenceNum =
1994 				iinfo->i_location.partitionReferenceNum;
1995 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1996 		break;
1997 	case ICBTAG_FLAG_AD_LONG:
1998 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1999 		if (!lad)
2000 			return -1;
2001 		etype = le32_to_cpu(lad->extLength) >> 30;
2002 		*eloc = lelb_to_cpu(lad->extLocation);
2003 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2004 		break;
2005 	default:
2006 		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2007 		return -1;
2008 	}
2009 
2010 	return etype;
2011 }
2012 
2013 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2014 			      struct kernel_lb_addr neloc, uint32_t nelen)
2015 {
2016 	struct kernel_lb_addr oeloc;
2017 	uint32_t oelen;
2018 	int8_t etype;
2019 
2020 	if (epos.bh)
2021 		get_bh(epos.bh);
2022 
2023 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2024 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2025 		neloc = oeloc;
2026 		nelen = (etype << 30) | oelen;
2027 	}
2028 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2029 	brelse(epos.bh);
2030 
2031 	return (nelen >> 30);
2032 }
2033 
2034 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2035 		       struct kernel_lb_addr eloc, uint32_t elen)
2036 {
2037 	struct extent_position oepos;
2038 	int adsize;
2039 	int8_t etype;
2040 	struct allocExtDesc *aed;
2041 	struct udf_inode_info *iinfo;
2042 
2043 	if (epos.bh) {
2044 		get_bh(epos.bh);
2045 		get_bh(epos.bh);
2046 	}
2047 
2048 	iinfo = UDF_I(inode);
2049 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2050 		adsize = sizeof(struct short_ad);
2051 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2052 		adsize = sizeof(struct long_ad);
2053 	else
2054 		adsize = 0;
2055 
2056 	oepos = epos;
2057 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2058 		return -1;
2059 
2060 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2061 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2062 		if (oepos.bh != epos.bh) {
2063 			oepos.block = epos.block;
2064 			brelse(oepos.bh);
2065 			get_bh(epos.bh);
2066 			oepos.bh = epos.bh;
2067 			oepos.offset = epos.offset - adsize;
2068 		}
2069 	}
2070 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2071 	elen = 0;
2072 
2073 	if (epos.bh != oepos.bh) {
2074 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2075 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2076 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2077 		if (!oepos.bh) {
2078 			iinfo->i_lenAlloc -= (adsize * 2);
2079 			mark_inode_dirty(inode);
2080 		} else {
2081 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2082 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2083 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2084 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2085 				udf_update_tag(oepos.bh->b_data,
2086 						oepos.offset - (2 * adsize));
2087 			else
2088 				udf_update_tag(oepos.bh->b_data,
2089 						sizeof(struct allocExtDesc));
2090 			mark_buffer_dirty_inode(oepos.bh, inode);
2091 		}
2092 	} else {
2093 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2094 		if (!oepos.bh) {
2095 			iinfo->i_lenAlloc -= adsize;
2096 			mark_inode_dirty(inode);
2097 		} else {
2098 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2099 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2100 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2101 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2102 				udf_update_tag(oepos.bh->b_data,
2103 						epos.offset - adsize);
2104 			else
2105 				udf_update_tag(oepos.bh->b_data,
2106 						sizeof(struct allocExtDesc));
2107 			mark_buffer_dirty_inode(oepos.bh, inode);
2108 		}
2109 	}
2110 
2111 	brelse(epos.bh);
2112 	brelse(oepos.bh);
2113 
2114 	return (elen >> 30);
2115 }
2116 
2117 int8_t inode_bmap(struct inode *inode, sector_t block,
2118 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2119 		  uint32_t *elen, sector_t *offset)
2120 {
2121 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2122 	loff_t lbcount = 0, bcount =
2123 	    (loff_t) block << blocksize_bits;
2124 	int8_t etype;
2125 	struct udf_inode_info *iinfo;
2126 
2127 	iinfo = UDF_I(inode);
2128 	pos->offset = 0;
2129 	pos->block = iinfo->i_location;
2130 	pos->bh = NULL;
2131 	*elen = 0;
2132 
2133 	do {
2134 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2135 		if (etype == -1) {
2136 			*offset = (bcount - lbcount) >> blocksize_bits;
2137 			iinfo->i_lenExtents = lbcount;
2138 			return -1;
2139 		}
2140 		lbcount += *elen;
2141 	} while (lbcount <= bcount);
2142 
2143 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2144 
2145 	return etype;
2146 }
2147 
2148 long udf_block_map(struct inode *inode, sector_t block)
2149 {
2150 	struct kernel_lb_addr eloc;
2151 	uint32_t elen;
2152 	sector_t offset;
2153 	struct extent_position epos = {};
2154 	int ret;
2155 
2156 	down_read(&UDF_I(inode)->i_data_sem);
2157 
2158 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2159 						(EXT_RECORDED_ALLOCATED >> 30))
2160 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2161 	else
2162 		ret = 0;
2163 
2164 	up_read(&UDF_I(inode)->i_data_sem);
2165 	brelse(epos.bh);
2166 
2167 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2168 		return udf_fixed_to_variable(ret);
2169 	else
2170 		return ret;
2171 }
2172