xref: /openbmc/linux/fs/udf/inode.c (revision 887069f4)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 	return block_write_full_page(page, udf_get_block, wbc);
188 }
189 
190 static int udf_writepages(struct address_space *mapping,
191 			struct writeback_control *wbc)
192 {
193 	return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195 
196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 	return mpage_readpage(page, udf_get_block);
199 }
200 
201 static void udf_readahead(struct readahead_control *rac)
202 {
203 	mpage_readahead(rac, udf_get_block);
204 }
205 
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 			loff_t pos, unsigned len, unsigned flags,
208 			struct page **pagep, void **fsdata)
209 {
210 	int ret;
211 
212 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 	if (unlikely(ret))
214 		udf_write_failed(mapping, pos + len);
215 	return ret;
216 }
217 
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 	struct file *file = iocb->ki_filp;
221 	struct address_space *mapping = file->f_mapping;
222 	struct inode *inode = mapping->host;
223 	size_t count = iov_iter_count(iter);
224 	ssize_t ret;
225 
226 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 		udf_write_failed(mapping, iocb->ki_pos + count);
229 	return ret;
230 }
231 
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 	return generic_block_bmap(mapping, block, udf_get_block);
235 }
236 
237 const struct address_space_operations udf_aops = {
238 	.set_page_dirty	= __set_page_dirty_buffers,
239 	.readpage	= udf_readpage,
240 	.readahead	= udf_readahead,
241 	.writepage	= udf_writepage,
242 	.writepages	= udf_writepages,
243 	.write_begin	= udf_write_begin,
244 	.write_end	= generic_write_end,
245 	.direct_IO	= udf_direct_IO,
246 	.bmap		= udf_bmap,
247 };
248 
249 /*
250  * Expand file stored in ICB to a normal one-block-file
251  *
252  * This function requires i_data_sem for writing and releases it.
253  * This function requires i_mutex held
254  */
255 int udf_expand_file_adinicb(struct inode *inode)
256 {
257 	struct page *page;
258 	char *kaddr;
259 	struct udf_inode_info *iinfo = UDF_I(inode);
260 	int err;
261 	struct writeback_control udf_wbc = {
262 		.sync_mode = WB_SYNC_NONE,
263 		.nr_to_write = 1,
264 	};
265 
266 	WARN_ON_ONCE(!inode_is_locked(inode));
267 	if (!iinfo->i_lenAlloc) {
268 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270 		else
271 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272 		/* from now on we have normal address_space methods */
273 		inode->i_data.a_ops = &udf_aops;
274 		up_write(&iinfo->i_data_sem);
275 		mark_inode_dirty(inode);
276 		return 0;
277 	}
278 	/*
279 	 * Release i_data_sem so that we can lock a page - page lock ranks
280 	 * above i_data_sem. i_mutex still protects us against file changes.
281 	 */
282 	up_write(&iinfo->i_data_sem);
283 
284 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285 	if (!page)
286 		return -ENOMEM;
287 
288 	if (!PageUptodate(page)) {
289 		kaddr = kmap_atomic(page);
290 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
291 		       PAGE_SIZE - iinfo->i_lenAlloc);
292 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293 			iinfo->i_lenAlloc);
294 		flush_dcache_page(page);
295 		SetPageUptodate(page);
296 		kunmap_atomic(kaddr);
297 	}
298 	down_write(&iinfo->i_data_sem);
299 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300 	       iinfo->i_lenAlloc);
301 	iinfo->i_lenAlloc = 0;
302 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304 	else
305 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306 	/* from now on we have normal address_space methods */
307 	inode->i_data.a_ops = &udf_aops;
308 	up_write(&iinfo->i_data_sem);
309 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310 	if (err) {
311 		/* Restore everything back so that we don't lose data... */
312 		lock_page(page);
313 		down_write(&iinfo->i_data_sem);
314 		kaddr = kmap_atomic(page);
315 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316 		kunmap_atomic(kaddr);
317 		unlock_page(page);
318 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 		inode->i_data.a_ops = &udf_adinicb_aops;
320 		up_write(&iinfo->i_data_sem);
321 	}
322 	put_page(page);
323 	mark_inode_dirty(inode);
324 
325 	return err;
326 }
327 
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 					    udf_pblk_t *block, int *err)
330 {
331 	udf_pblk_t newblock;
332 	struct buffer_head *dbh = NULL;
333 	struct kernel_lb_addr eloc;
334 	uint8_t alloctype;
335 	struct extent_position epos;
336 
337 	struct udf_fileident_bh sfibh, dfibh;
338 	loff_t f_pos = udf_ext0_offset(inode);
339 	int size = udf_ext0_offset(inode) + inode->i_size;
340 	struct fileIdentDesc cfi, *sfi, *dfi;
341 	struct udf_inode_info *iinfo = UDF_I(inode);
342 
343 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 		alloctype = ICBTAG_FLAG_AD_SHORT;
345 	else
346 		alloctype = ICBTAG_FLAG_AD_LONG;
347 
348 	if (!inode->i_size) {
349 		iinfo->i_alloc_type = alloctype;
350 		mark_inode_dirty(inode);
351 		return NULL;
352 	}
353 
354 	/* alloc block, and copy data to it */
355 	*block = udf_new_block(inode->i_sb, inode,
356 			       iinfo->i_location.partitionReferenceNum,
357 			       iinfo->i_location.logicalBlockNum, err);
358 	if (!(*block))
359 		return NULL;
360 	newblock = udf_get_pblock(inode->i_sb, *block,
361 				  iinfo->i_location.partitionReferenceNum,
362 				0);
363 	if (!newblock)
364 		return NULL;
365 	dbh = udf_tgetblk(inode->i_sb, newblock);
366 	if (!dbh)
367 		return NULL;
368 	lock_buffer(dbh);
369 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 	set_buffer_uptodate(dbh);
371 	unlock_buffer(dbh);
372 	mark_buffer_dirty_inode(dbh, inode);
373 
374 	sfibh.soffset = sfibh.eoffset =
375 			f_pos & (inode->i_sb->s_blocksize - 1);
376 	sfibh.sbh = sfibh.ebh = NULL;
377 	dfibh.soffset = dfibh.eoffset = 0;
378 	dfibh.sbh = dfibh.ebh = dbh;
379 	while (f_pos < size) {
380 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 					 NULL, NULL, NULL);
383 		if (!sfi) {
384 			brelse(dbh);
385 			return NULL;
386 		}
387 		iinfo->i_alloc_type = alloctype;
388 		sfi->descTag.tagLocation = cpu_to_le32(*block);
389 		dfibh.soffset = dfibh.eoffset;
390 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 				 udf_get_fi_ident(sfi))) {
394 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395 			brelse(dbh);
396 			return NULL;
397 		}
398 	}
399 	mark_buffer_dirty_inode(dbh, inode);
400 
401 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402 	iinfo->i_lenAlloc = 0;
403 	eloc.logicalBlockNum = *block;
404 	eloc.partitionReferenceNum =
405 				iinfo->i_location.partitionReferenceNum;
406 	iinfo->i_lenExtents = inode->i_size;
407 	epos.bh = NULL;
408 	epos.block = iinfo->i_location;
409 	epos.offset = udf_file_entry_alloc_offset(inode);
410 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411 	/* UniqueID stuff */
412 
413 	brelse(epos.bh);
414 	mark_inode_dirty(inode);
415 	return dbh;
416 }
417 
418 static int udf_get_block(struct inode *inode, sector_t block,
419 			 struct buffer_head *bh_result, int create)
420 {
421 	int err, new;
422 	sector_t phys = 0;
423 	struct udf_inode_info *iinfo;
424 
425 	if (!create) {
426 		phys = udf_block_map(inode, block);
427 		if (phys)
428 			map_bh(bh_result, inode->i_sb, phys);
429 		return 0;
430 	}
431 
432 	err = -EIO;
433 	new = 0;
434 	iinfo = UDF_I(inode);
435 
436 	down_write(&iinfo->i_data_sem);
437 	if (block == iinfo->i_next_alloc_block + 1) {
438 		iinfo->i_next_alloc_block++;
439 		iinfo->i_next_alloc_goal++;
440 	}
441 
442 	udf_clear_extent_cache(inode);
443 	phys = inode_getblk(inode, block, &err, &new);
444 	if (!phys)
445 		goto abort;
446 
447 	if (new)
448 		set_buffer_new(bh_result);
449 	map_bh(bh_result, inode->i_sb, phys);
450 
451 abort:
452 	up_write(&iinfo->i_data_sem);
453 	return err;
454 }
455 
456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
457 				      int create, int *err)
458 {
459 	struct buffer_head *bh;
460 	struct buffer_head dummy;
461 
462 	dummy.b_state = 0;
463 	dummy.b_blocknr = -1000;
464 	*err = udf_get_block(inode, block, &dummy, create);
465 	if (!*err && buffer_mapped(&dummy)) {
466 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
467 		if (buffer_new(&dummy)) {
468 			lock_buffer(bh);
469 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
470 			set_buffer_uptodate(bh);
471 			unlock_buffer(bh);
472 			mark_buffer_dirty_inode(bh, inode);
473 		}
474 		return bh;
475 	}
476 
477 	return NULL;
478 }
479 
480 /* Extend the file with new blocks totaling 'new_block_bytes',
481  * return the number of extents added
482  */
483 static int udf_do_extend_file(struct inode *inode,
484 			      struct extent_position *last_pos,
485 			      struct kernel_long_ad *last_ext,
486 			      loff_t new_block_bytes)
487 {
488 	uint32_t add;
489 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 	struct super_block *sb = inode->i_sb;
491 	struct kernel_lb_addr prealloc_loc = {};
492 	uint32_t prealloc_len = 0;
493 	struct udf_inode_info *iinfo;
494 	int err;
495 
496 	/* The previous extent is fake and we should not extend by anything
497 	 * - there's nothing to do... */
498 	if (!new_block_bytes && fake)
499 		return 0;
500 
501 	iinfo = UDF_I(inode);
502 	/* Round the last extent up to a multiple of block size */
503 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 		last_ext->extLength =
505 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 		iinfo->i_lenExtents =
509 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 			~(sb->s_blocksize - 1);
511 	}
512 
513 	/* Last extent are just preallocated blocks? */
514 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 						EXT_NOT_RECORDED_ALLOCATED) {
516 		/* Save the extent so that we can reattach it to the end */
517 		prealloc_loc = last_ext->extLocation;
518 		prealloc_len = last_ext->extLength;
519 		/* Mark the extent as a hole */
520 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 		last_ext->extLocation.logicalBlockNum = 0;
523 		last_ext->extLocation.partitionReferenceNum = 0;
524 	}
525 
526 	/* Can we merge with the previous extent? */
527 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 		add = (1 << 30) - sb->s_blocksize -
530 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
531 		if (add > new_block_bytes)
532 			add = new_block_bytes;
533 		new_block_bytes -= add;
534 		last_ext->extLength += add;
535 	}
536 
537 	if (fake) {
538 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
539 			     last_ext->extLength, 1);
540 		count++;
541 	} else {
542 		struct kernel_lb_addr tmploc;
543 		uint32_t tmplen;
544 
545 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
546 				last_ext->extLength, 1);
547 
548 		/*
549 		 * We've rewritten the last extent. If we are going to add
550 		 * more extents, we may need to enter possible following
551 		 * empty indirect extent.
552 		 */
553 		if (new_block_bytes || prealloc_len)
554 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
555 	}
556 
557 	/* Managed to do everything necessary? */
558 	if (!new_block_bytes)
559 		goto out;
560 
561 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
562 	last_ext->extLocation.logicalBlockNum = 0;
563 	last_ext->extLocation.partitionReferenceNum = 0;
564 	add = (1 << 30) - sb->s_blocksize;
565 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
566 
567 	/* Create enough extents to cover the whole hole */
568 	while (new_block_bytes > add) {
569 		new_block_bytes -= add;
570 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
571 				   last_ext->extLength, 1);
572 		if (err)
573 			return err;
574 		count++;
575 	}
576 	if (new_block_bytes) {
577 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
578 			new_block_bytes;
579 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
580 				   last_ext->extLength, 1);
581 		if (err)
582 			return err;
583 		count++;
584 	}
585 
586 out:
587 	/* Do we have some preallocated blocks saved? */
588 	if (prealloc_len) {
589 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
590 				   prealloc_len, 1);
591 		if (err)
592 			return err;
593 		last_ext->extLocation = prealloc_loc;
594 		last_ext->extLength = prealloc_len;
595 		count++;
596 	}
597 
598 	/* last_pos should point to the last written extent... */
599 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
600 		last_pos->offset -= sizeof(struct short_ad);
601 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
602 		last_pos->offset -= sizeof(struct long_ad);
603 	else
604 		return -EIO;
605 
606 	return count;
607 }
608 
609 /* Extend the final block of the file to final_block_len bytes */
610 static void udf_do_extend_final_block(struct inode *inode,
611 				      struct extent_position *last_pos,
612 				      struct kernel_long_ad *last_ext,
613 				      uint32_t final_block_len)
614 {
615 	struct super_block *sb = inode->i_sb;
616 	uint32_t added_bytes;
617 
618 	added_bytes = final_block_len -
619 		      (last_ext->extLength & (sb->s_blocksize - 1));
620 	last_ext->extLength += added_bytes;
621 	UDF_I(inode)->i_lenExtents += added_bytes;
622 
623 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
624 			last_ext->extLength, 1);
625 }
626 
627 static int udf_extend_file(struct inode *inode, loff_t newsize)
628 {
629 
630 	struct extent_position epos;
631 	struct kernel_lb_addr eloc;
632 	uint32_t elen;
633 	int8_t etype;
634 	struct super_block *sb = inode->i_sb;
635 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
636 	unsigned long partial_final_block;
637 	int adsize;
638 	struct udf_inode_info *iinfo = UDF_I(inode);
639 	struct kernel_long_ad extent;
640 	int err = 0;
641 	int within_final_block;
642 
643 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
644 		adsize = sizeof(struct short_ad);
645 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
646 		adsize = sizeof(struct long_ad);
647 	else
648 		BUG();
649 
650 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
651 	within_final_block = (etype != -1);
652 
653 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655 		/* File has no extents at all or has empty last
656 		 * indirect extent! Create a fake extent... */
657 		extent.extLocation.logicalBlockNum = 0;
658 		extent.extLocation.partitionReferenceNum = 0;
659 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660 	} else {
661 		epos.offset -= adsize;
662 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
663 				      &extent.extLength, 0);
664 		extent.extLength |= etype << 30;
665 	}
666 
667 	partial_final_block = newsize & (sb->s_blocksize - 1);
668 
669 	/* File has extent covering the new size (could happen when extending
670 	 * inside a block)?
671 	 */
672 	if (within_final_block) {
673 		/* Extending file within the last file block */
674 		udf_do_extend_final_block(inode, &epos, &extent,
675 					  partial_final_block);
676 	} else {
677 		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
678 			     partial_final_block;
679 		err = udf_do_extend_file(inode, &epos, &extent, add);
680 	}
681 
682 	if (err < 0)
683 		goto out;
684 	err = 0;
685 	iinfo->i_lenExtents = newsize;
686 out:
687 	brelse(epos.bh);
688 	return err;
689 }
690 
691 static sector_t inode_getblk(struct inode *inode, sector_t block,
692 			     int *err, int *new)
693 {
694 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
695 	struct extent_position prev_epos, cur_epos, next_epos;
696 	int count = 0, startnum = 0, endnum = 0;
697 	uint32_t elen = 0, tmpelen;
698 	struct kernel_lb_addr eloc, tmpeloc;
699 	int c = 1;
700 	loff_t lbcount = 0, b_off = 0;
701 	udf_pblk_t newblocknum, newblock;
702 	sector_t offset = 0;
703 	int8_t etype;
704 	struct udf_inode_info *iinfo = UDF_I(inode);
705 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
706 	int lastblock = 0;
707 	bool isBeyondEOF;
708 
709 	*err = 0;
710 	*new = 0;
711 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
712 	prev_epos.block = iinfo->i_location;
713 	prev_epos.bh = NULL;
714 	cur_epos = next_epos = prev_epos;
715 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
716 
717 	/* find the extent which contains the block we are looking for.
718 	   alternate between laarr[0] and laarr[1] for locations of the
719 	   current extent, and the previous extent */
720 	do {
721 		if (prev_epos.bh != cur_epos.bh) {
722 			brelse(prev_epos.bh);
723 			get_bh(cur_epos.bh);
724 			prev_epos.bh = cur_epos.bh;
725 		}
726 		if (cur_epos.bh != next_epos.bh) {
727 			brelse(cur_epos.bh);
728 			get_bh(next_epos.bh);
729 			cur_epos.bh = next_epos.bh;
730 		}
731 
732 		lbcount += elen;
733 
734 		prev_epos.block = cur_epos.block;
735 		cur_epos.block = next_epos.block;
736 
737 		prev_epos.offset = cur_epos.offset;
738 		cur_epos.offset = next_epos.offset;
739 
740 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
741 		if (etype == -1)
742 			break;
743 
744 		c = !c;
745 
746 		laarr[c].extLength = (etype << 30) | elen;
747 		laarr[c].extLocation = eloc;
748 
749 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
750 			pgoal = eloc.logicalBlockNum +
751 				((elen + inode->i_sb->s_blocksize - 1) >>
752 				 inode->i_sb->s_blocksize_bits);
753 
754 		count++;
755 	} while (lbcount + elen <= b_off);
756 
757 	b_off -= lbcount;
758 	offset = b_off >> inode->i_sb->s_blocksize_bits;
759 	/*
760 	 * Move prev_epos and cur_epos into indirect extent if we are at
761 	 * the pointer to it
762 	 */
763 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
764 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
765 
766 	/* if the extent is allocated and recorded, return the block
767 	   if the extent is not a multiple of the blocksize, round up */
768 
769 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
770 		if (elen & (inode->i_sb->s_blocksize - 1)) {
771 			elen = EXT_RECORDED_ALLOCATED |
772 				((elen + inode->i_sb->s_blocksize - 1) &
773 				 ~(inode->i_sb->s_blocksize - 1));
774 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
775 		}
776 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
777 		goto out_free;
778 	}
779 
780 	/* Are we beyond EOF? */
781 	if (etype == -1) {
782 		int ret;
783 		loff_t hole_len;
784 		isBeyondEOF = true;
785 		if (count) {
786 			if (c)
787 				laarr[0] = laarr[1];
788 			startnum = 1;
789 		} else {
790 			/* Create a fake extent when there's not one */
791 			memset(&laarr[0].extLocation, 0x00,
792 				sizeof(struct kernel_lb_addr));
793 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
794 			/* Will udf_do_extend_file() create real extent from
795 			   a fake one? */
796 			startnum = (offset > 0);
797 		}
798 		/* Create extents for the hole between EOF and offset */
799 		hole_len = (loff_t)offset << inode->i_blkbits;
800 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
801 		if (ret < 0) {
802 			*err = ret;
803 			newblock = 0;
804 			goto out_free;
805 		}
806 		c = 0;
807 		offset = 0;
808 		count += ret;
809 		/* We are not covered by a preallocated extent? */
810 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
811 						EXT_NOT_RECORDED_ALLOCATED) {
812 			/* Is there any real extent? - otherwise we overwrite
813 			 * the fake one... */
814 			if (count)
815 				c = !c;
816 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
817 				inode->i_sb->s_blocksize;
818 			memset(&laarr[c].extLocation, 0x00,
819 				sizeof(struct kernel_lb_addr));
820 			count++;
821 		}
822 		endnum = c + 1;
823 		lastblock = 1;
824 	} else {
825 		isBeyondEOF = false;
826 		endnum = startnum = ((count > 2) ? 2 : count);
827 
828 		/* if the current extent is in position 0,
829 		   swap it with the previous */
830 		if (!c && count != 1) {
831 			laarr[2] = laarr[0];
832 			laarr[0] = laarr[1];
833 			laarr[1] = laarr[2];
834 			c = 1;
835 		}
836 
837 		/* if the current block is located in an extent,
838 		   read the next extent */
839 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
840 		if (etype != -1) {
841 			laarr[c + 1].extLength = (etype << 30) | elen;
842 			laarr[c + 1].extLocation = eloc;
843 			count++;
844 			startnum++;
845 			endnum++;
846 		} else
847 			lastblock = 1;
848 	}
849 
850 	/* if the current extent is not recorded but allocated, get the
851 	 * block in the extent corresponding to the requested block */
852 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
853 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
854 	else { /* otherwise, allocate a new block */
855 		if (iinfo->i_next_alloc_block == block)
856 			goal = iinfo->i_next_alloc_goal;
857 
858 		if (!goal) {
859 			if (!(goal = pgoal)) /* XXX: what was intended here? */
860 				goal = iinfo->i_location.logicalBlockNum + 1;
861 		}
862 
863 		newblocknum = udf_new_block(inode->i_sb, inode,
864 				iinfo->i_location.partitionReferenceNum,
865 				goal, err);
866 		if (!newblocknum) {
867 			*err = -ENOSPC;
868 			newblock = 0;
869 			goto out_free;
870 		}
871 		if (isBeyondEOF)
872 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
873 	}
874 
875 	/* if the extent the requsted block is located in contains multiple
876 	 * blocks, split the extent into at most three extents. blocks prior
877 	 * to requested block, requested block, and blocks after requested
878 	 * block */
879 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
880 
881 	/* We preallocate blocks only for regular files. It also makes sense
882 	 * for directories but there's a problem when to drop the
883 	 * preallocation. We might use some delayed work for that but I feel
884 	 * it's overengineering for a filesystem like UDF. */
885 	if (S_ISREG(inode->i_mode))
886 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
887 
888 	/* merge any continuous blocks in laarr */
889 	udf_merge_extents(inode, laarr, &endnum);
890 
891 	/* write back the new extents, inserting new extents if the new number
892 	 * of extents is greater than the old number, and deleting extents if
893 	 * the new number of extents is less than the old number */
894 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
895 
896 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
897 				iinfo->i_location.partitionReferenceNum, 0);
898 	if (!newblock) {
899 		*err = -EIO;
900 		goto out_free;
901 	}
902 	*new = 1;
903 	iinfo->i_next_alloc_block = block;
904 	iinfo->i_next_alloc_goal = newblocknum;
905 	inode->i_ctime = current_time(inode);
906 
907 	if (IS_SYNC(inode))
908 		udf_sync_inode(inode);
909 	else
910 		mark_inode_dirty(inode);
911 out_free:
912 	brelse(prev_epos.bh);
913 	brelse(cur_epos.bh);
914 	brelse(next_epos.bh);
915 	return newblock;
916 }
917 
918 static void udf_split_extents(struct inode *inode, int *c, int offset,
919 			       udf_pblk_t newblocknum,
920 			       struct kernel_long_ad *laarr, int *endnum)
921 {
922 	unsigned long blocksize = inode->i_sb->s_blocksize;
923 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
924 
925 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
926 	    (laarr[*c].extLength >> 30) ==
927 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
928 		int curr = *c;
929 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
930 			    blocksize - 1) >> blocksize_bits;
931 		int8_t etype = (laarr[curr].extLength >> 30);
932 
933 		if (blen == 1)
934 			;
935 		else if (!offset || blen == offset + 1) {
936 			laarr[curr + 2] = laarr[curr + 1];
937 			laarr[curr + 1] = laarr[curr];
938 		} else {
939 			laarr[curr + 3] = laarr[curr + 1];
940 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
941 		}
942 
943 		if (offset) {
944 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
945 				udf_free_blocks(inode->i_sb, inode,
946 						&laarr[curr].extLocation,
947 						0, offset);
948 				laarr[curr].extLength =
949 					EXT_NOT_RECORDED_NOT_ALLOCATED |
950 					(offset << blocksize_bits);
951 				laarr[curr].extLocation.logicalBlockNum = 0;
952 				laarr[curr].extLocation.
953 						partitionReferenceNum = 0;
954 			} else
955 				laarr[curr].extLength = (etype << 30) |
956 					(offset << blocksize_bits);
957 			curr++;
958 			(*c)++;
959 			(*endnum)++;
960 		}
961 
962 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
963 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
964 			laarr[curr].extLocation.partitionReferenceNum =
965 				UDF_I(inode)->i_location.partitionReferenceNum;
966 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
967 			blocksize;
968 		curr++;
969 
970 		if (blen != offset + 1) {
971 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
972 				laarr[curr].extLocation.logicalBlockNum +=
973 								offset + 1;
974 			laarr[curr].extLength = (etype << 30) |
975 				((blen - (offset + 1)) << blocksize_bits);
976 			curr++;
977 			(*endnum)++;
978 		}
979 	}
980 }
981 
982 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
983 				 struct kernel_long_ad *laarr,
984 				 int *endnum)
985 {
986 	int start, length = 0, currlength = 0, i;
987 
988 	if (*endnum >= (c + 1)) {
989 		if (!lastblock)
990 			return;
991 		else
992 			start = c;
993 	} else {
994 		if ((laarr[c + 1].extLength >> 30) ==
995 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
996 			start = c + 1;
997 			length = currlength =
998 				(((laarr[c + 1].extLength &
999 					UDF_EXTENT_LENGTH_MASK) +
1000 				inode->i_sb->s_blocksize - 1) >>
1001 				inode->i_sb->s_blocksize_bits);
1002 		} else
1003 			start = c;
1004 	}
1005 
1006 	for (i = start + 1; i <= *endnum; i++) {
1007 		if (i == *endnum) {
1008 			if (lastblock)
1009 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1010 		} else if ((laarr[i].extLength >> 30) ==
1011 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1012 			length += (((laarr[i].extLength &
1013 						UDF_EXTENT_LENGTH_MASK) +
1014 				    inode->i_sb->s_blocksize - 1) >>
1015 				    inode->i_sb->s_blocksize_bits);
1016 		} else
1017 			break;
1018 	}
1019 
1020 	if (length) {
1021 		int next = laarr[start].extLocation.logicalBlockNum +
1022 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1023 			  inode->i_sb->s_blocksize - 1) >>
1024 			  inode->i_sb->s_blocksize_bits);
1025 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1026 				laarr[start].extLocation.partitionReferenceNum,
1027 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1028 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1029 				currlength);
1030 		if (numalloc) 	{
1031 			if (start == (c + 1))
1032 				laarr[start].extLength +=
1033 					(numalloc <<
1034 					 inode->i_sb->s_blocksize_bits);
1035 			else {
1036 				memmove(&laarr[c + 2], &laarr[c + 1],
1037 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1038 				(*endnum)++;
1039 				laarr[c + 1].extLocation.logicalBlockNum = next;
1040 				laarr[c + 1].extLocation.partitionReferenceNum =
1041 					laarr[c].extLocation.
1042 							partitionReferenceNum;
1043 				laarr[c + 1].extLength =
1044 					EXT_NOT_RECORDED_ALLOCATED |
1045 					(numalloc <<
1046 					 inode->i_sb->s_blocksize_bits);
1047 				start = c + 1;
1048 			}
1049 
1050 			for (i = start + 1; numalloc && i < *endnum; i++) {
1051 				int elen = ((laarr[i].extLength &
1052 						UDF_EXTENT_LENGTH_MASK) +
1053 					    inode->i_sb->s_blocksize - 1) >>
1054 					    inode->i_sb->s_blocksize_bits;
1055 
1056 				if (elen > numalloc) {
1057 					laarr[i].extLength -=
1058 						(numalloc <<
1059 						 inode->i_sb->s_blocksize_bits);
1060 					numalloc = 0;
1061 				} else {
1062 					numalloc -= elen;
1063 					if (*endnum > (i + 1))
1064 						memmove(&laarr[i],
1065 							&laarr[i + 1],
1066 							sizeof(struct long_ad) *
1067 							(*endnum - (i + 1)));
1068 					i--;
1069 					(*endnum)--;
1070 				}
1071 			}
1072 			UDF_I(inode)->i_lenExtents +=
1073 				numalloc << inode->i_sb->s_blocksize_bits;
1074 		}
1075 	}
1076 }
1077 
1078 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1079 			      int *endnum)
1080 {
1081 	int i;
1082 	unsigned long blocksize = inode->i_sb->s_blocksize;
1083 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1084 
1085 	for (i = 0; i < (*endnum - 1); i++) {
1086 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1087 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1088 
1089 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1090 			(((li->extLength >> 30) ==
1091 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1092 			((lip1->extLocation.logicalBlockNum -
1093 			  li->extLocation.logicalBlockNum) ==
1094 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 			blocksize - 1) >> blocksize_bits)))) {
1096 
1097 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1098 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1099 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1100 				lip1->extLength = (lip1->extLength -
1101 						  (li->extLength &
1102 						   UDF_EXTENT_LENGTH_MASK) +
1103 						   UDF_EXTENT_LENGTH_MASK) &
1104 							~(blocksize - 1);
1105 				li->extLength = (li->extLength &
1106 						 UDF_EXTENT_FLAG_MASK) +
1107 						(UDF_EXTENT_LENGTH_MASK + 1) -
1108 						blocksize;
1109 				lip1->extLocation.logicalBlockNum =
1110 					li->extLocation.logicalBlockNum +
1111 					((li->extLength &
1112 						UDF_EXTENT_LENGTH_MASK) >>
1113 						blocksize_bits);
1114 			} else {
1115 				li->extLength = lip1->extLength +
1116 					(((li->extLength &
1117 						UDF_EXTENT_LENGTH_MASK) +
1118 					 blocksize - 1) & ~(blocksize - 1));
1119 				if (*endnum > (i + 2))
1120 					memmove(&laarr[i + 1], &laarr[i + 2],
1121 						sizeof(struct long_ad) *
1122 						(*endnum - (i + 2)));
1123 				i--;
1124 				(*endnum)--;
1125 			}
1126 		} else if (((li->extLength >> 30) ==
1127 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1128 			   ((lip1->extLength >> 30) ==
1129 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1130 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1131 					((li->extLength &
1132 					  UDF_EXTENT_LENGTH_MASK) +
1133 					 blocksize - 1) >> blocksize_bits);
1134 			li->extLocation.logicalBlockNum = 0;
1135 			li->extLocation.partitionReferenceNum = 0;
1136 
1137 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1138 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1139 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1140 				lip1->extLength = (lip1->extLength -
1141 						   (li->extLength &
1142 						   UDF_EXTENT_LENGTH_MASK) +
1143 						   UDF_EXTENT_LENGTH_MASK) &
1144 						   ~(blocksize - 1);
1145 				li->extLength = (li->extLength &
1146 						 UDF_EXTENT_FLAG_MASK) +
1147 						(UDF_EXTENT_LENGTH_MASK + 1) -
1148 						blocksize;
1149 			} else {
1150 				li->extLength = lip1->extLength +
1151 					(((li->extLength &
1152 						UDF_EXTENT_LENGTH_MASK) +
1153 					  blocksize - 1) & ~(blocksize - 1));
1154 				if (*endnum > (i + 2))
1155 					memmove(&laarr[i + 1], &laarr[i + 2],
1156 						sizeof(struct long_ad) *
1157 						(*endnum - (i + 2)));
1158 				i--;
1159 				(*endnum)--;
1160 			}
1161 		} else if ((li->extLength >> 30) ==
1162 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1163 			udf_free_blocks(inode->i_sb, inode,
1164 					&li->extLocation, 0,
1165 					((li->extLength &
1166 						UDF_EXTENT_LENGTH_MASK) +
1167 					 blocksize - 1) >> blocksize_bits);
1168 			li->extLocation.logicalBlockNum = 0;
1169 			li->extLocation.partitionReferenceNum = 0;
1170 			li->extLength = (li->extLength &
1171 						UDF_EXTENT_LENGTH_MASK) |
1172 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1173 		}
1174 	}
1175 }
1176 
1177 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1178 			       int startnum, int endnum,
1179 			       struct extent_position *epos)
1180 {
1181 	int start = 0, i;
1182 	struct kernel_lb_addr tmploc;
1183 	uint32_t tmplen;
1184 
1185 	if (startnum > endnum) {
1186 		for (i = 0; i < (startnum - endnum); i++)
1187 			udf_delete_aext(inode, *epos);
1188 	} else if (startnum < endnum) {
1189 		for (i = 0; i < (endnum - startnum); i++) {
1190 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1191 					laarr[i].extLength);
1192 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1193 				      &laarr[i].extLength, 1);
1194 			start++;
1195 		}
1196 	}
1197 
1198 	for (i = start; i < endnum; i++) {
1199 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1200 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1201 			       laarr[i].extLength, 1);
1202 	}
1203 }
1204 
1205 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1206 			      int create, int *err)
1207 {
1208 	struct buffer_head *bh = NULL;
1209 
1210 	bh = udf_getblk(inode, block, create, err);
1211 	if (!bh)
1212 		return NULL;
1213 
1214 	if (buffer_uptodate(bh))
1215 		return bh;
1216 
1217 	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1218 
1219 	wait_on_buffer(bh);
1220 	if (buffer_uptodate(bh))
1221 		return bh;
1222 
1223 	brelse(bh);
1224 	*err = -EIO;
1225 	return NULL;
1226 }
1227 
1228 int udf_setsize(struct inode *inode, loff_t newsize)
1229 {
1230 	int err;
1231 	struct udf_inode_info *iinfo;
1232 	unsigned int bsize = i_blocksize(inode);
1233 
1234 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1235 	      S_ISLNK(inode->i_mode)))
1236 		return -EINVAL;
1237 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1238 		return -EPERM;
1239 
1240 	iinfo = UDF_I(inode);
1241 	if (newsize > inode->i_size) {
1242 		down_write(&iinfo->i_data_sem);
1243 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244 			if (bsize <
1245 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1246 				err = udf_expand_file_adinicb(inode);
1247 				if (err)
1248 					return err;
1249 				down_write(&iinfo->i_data_sem);
1250 			} else {
1251 				iinfo->i_lenAlloc = newsize;
1252 				goto set_size;
1253 			}
1254 		}
1255 		err = udf_extend_file(inode, newsize);
1256 		if (err) {
1257 			up_write(&iinfo->i_data_sem);
1258 			return err;
1259 		}
1260 set_size:
1261 		up_write(&iinfo->i_data_sem);
1262 		truncate_setsize(inode, newsize);
1263 	} else {
1264 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1265 			down_write(&iinfo->i_data_sem);
1266 			udf_clear_extent_cache(inode);
1267 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1268 			       0x00, bsize - newsize -
1269 			       udf_file_entry_alloc_offset(inode));
1270 			iinfo->i_lenAlloc = newsize;
1271 			truncate_setsize(inode, newsize);
1272 			up_write(&iinfo->i_data_sem);
1273 			goto update_time;
1274 		}
1275 		err = block_truncate_page(inode->i_mapping, newsize,
1276 					  udf_get_block);
1277 		if (err)
1278 			return err;
1279 		truncate_setsize(inode, newsize);
1280 		down_write(&iinfo->i_data_sem);
1281 		udf_clear_extent_cache(inode);
1282 		err = udf_truncate_extents(inode);
1283 		up_write(&iinfo->i_data_sem);
1284 		if (err)
1285 			return err;
1286 	}
1287 update_time:
1288 	inode->i_mtime = inode->i_ctime = current_time(inode);
1289 	if (IS_SYNC(inode))
1290 		udf_sync_inode(inode);
1291 	else
1292 		mark_inode_dirty(inode);
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1298  * arbitrary - just that we hopefully don't limit any real use of rewritten
1299  * inode on write-once media but avoid looping for too long on corrupted media.
1300  */
1301 #define UDF_MAX_ICB_NESTING 1024
1302 
1303 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1304 {
1305 	struct buffer_head *bh = NULL;
1306 	struct fileEntry *fe;
1307 	struct extendedFileEntry *efe;
1308 	uint16_t ident;
1309 	struct udf_inode_info *iinfo = UDF_I(inode);
1310 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1311 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1312 	unsigned int link_count;
1313 	unsigned int indirections = 0;
1314 	int bs = inode->i_sb->s_blocksize;
1315 	int ret = -EIO;
1316 	uint32_t uid, gid;
1317 
1318 reread:
1319 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1320 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1321 			  iloc->partitionReferenceNum, sbi->s_partitions);
1322 		return -EIO;
1323 	}
1324 
1325 	if (iloc->logicalBlockNum >=
1326 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1327 		udf_debug("block=%u, partition=%u out of range\n",
1328 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1329 		return -EIO;
1330 	}
1331 
1332 	/*
1333 	 * Set defaults, but the inode is still incomplete!
1334 	 * Note: get_new_inode() sets the following on a new inode:
1335 	 *      i_sb = sb
1336 	 *      i_no = ino
1337 	 *      i_flags = sb->s_flags
1338 	 *      i_state = 0
1339 	 * clean_inode(): zero fills and sets
1340 	 *      i_count = 1
1341 	 *      i_nlink = 1
1342 	 *      i_op = NULL;
1343 	 */
1344 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1345 	if (!bh) {
1346 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1347 		return -EIO;
1348 	}
1349 
1350 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1351 	    ident != TAG_IDENT_USE) {
1352 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1353 			inode->i_ino, ident);
1354 		goto out;
1355 	}
1356 
1357 	fe = (struct fileEntry *)bh->b_data;
1358 	efe = (struct extendedFileEntry *)bh->b_data;
1359 
1360 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1361 		struct buffer_head *ibh;
1362 
1363 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1364 		if (ident == TAG_IDENT_IE && ibh) {
1365 			struct kernel_lb_addr loc;
1366 			struct indirectEntry *ie;
1367 
1368 			ie = (struct indirectEntry *)ibh->b_data;
1369 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1370 
1371 			if (ie->indirectICB.extLength) {
1372 				brelse(ibh);
1373 				memcpy(&iinfo->i_location, &loc,
1374 				       sizeof(struct kernel_lb_addr));
1375 				if (++indirections > UDF_MAX_ICB_NESTING) {
1376 					udf_err(inode->i_sb,
1377 						"too many ICBs in ICB hierarchy"
1378 						" (max %d supported)\n",
1379 						UDF_MAX_ICB_NESTING);
1380 					goto out;
1381 				}
1382 				brelse(bh);
1383 				goto reread;
1384 			}
1385 		}
1386 		brelse(ibh);
1387 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1388 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1389 			le16_to_cpu(fe->icbTag.strategyType));
1390 		goto out;
1391 	}
1392 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1393 		iinfo->i_strat4096 = 0;
1394 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1395 		iinfo->i_strat4096 = 1;
1396 
1397 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1398 							ICBTAG_FLAG_AD_MASK;
1399 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1400 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1401 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1402 		ret = -EIO;
1403 		goto out;
1404 	}
1405 	iinfo->i_unique = 0;
1406 	iinfo->i_lenEAttr = 0;
1407 	iinfo->i_lenExtents = 0;
1408 	iinfo->i_lenAlloc = 0;
1409 	iinfo->i_next_alloc_block = 0;
1410 	iinfo->i_next_alloc_goal = 0;
1411 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1412 		iinfo->i_efe = 1;
1413 		iinfo->i_use = 0;
1414 		ret = udf_alloc_i_data(inode, bs -
1415 					sizeof(struct extendedFileEntry));
1416 		if (ret)
1417 			goto out;
1418 		memcpy(iinfo->i_data,
1419 		       bh->b_data + sizeof(struct extendedFileEntry),
1420 		       bs - sizeof(struct extendedFileEntry));
1421 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1422 		iinfo->i_efe = 0;
1423 		iinfo->i_use = 0;
1424 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1425 		if (ret)
1426 			goto out;
1427 		memcpy(iinfo->i_data,
1428 		       bh->b_data + sizeof(struct fileEntry),
1429 		       bs - sizeof(struct fileEntry));
1430 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1431 		iinfo->i_efe = 0;
1432 		iinfo->i_use = 1;
1433 		iinfo->i_lenAlloc = le32_to_cpu(
1434 				((struct unallocSpaceEntry *)bh->b_data)->
1435 				 lengthAllocDescs);
1436 		ret = udf_alloc_i_data(inode, bs -
1437 					sizeof(struct unallocSpaceEntry));
1438 		if (ret)
1439 			goto out;
1440 		memcpy(iinfo->i_data,
1441 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1442 		       bs - sizeof(struct unallocSpaceEntry));
1443 		return 0;
1444 	}
1445 
1446 	ret = -EIO;
1447 	read_lock(&sbi->s_cred_lock);
1448 	uid = le32_to_cpu(fe->uid);
1449 	if (uid == UDF_INVALID_ID ||
1450 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1451 		inode->i_uid = sbi->s_uid;
1452 	else
1453 		i_uid_write(inode, uid);
1454 
1455 	gid = le32_to_cpu(fe->gid);
1456 	if (gid == UDF_INVALID_ID ||
1457 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1458 		inode->i_gid = sbi->s_gid;
1459 	else
1460 		i_gid_write(inode, gid);
1461 
1462 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1463 			sbi->s_fmode != UDF_INVALID_MODE)
1464 		inode->i_mode = sbi->s_fmode;
1465 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1466 			sbi->s_dmode != UDF_INVALID_MODE)
1467 		inode->i_mode = sbi->s_dmode;
1468 	else
1469 		inode->i_mode = udf_convert_permissions(fe);
1470 	inode->i_mode &= ~sbi->s_umask;
1471 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1472 
1473 	read_unlock(&sbi->s_cred_lock);
1474 
1475 	link_count = le16_to_cpu(fe->fileLinkCount);
1476 	if (!link_count) {
1477 		if (!hidden_inode) {
1478 			ret = -ESTALE;
1479 			goto out;
1480 		}
1481 		link_count = 1;
1482 	}
1483 	set_nlink(inode, link_count);
1484 
1485 	inode->i_size = le64_to_cpu(fe->informationLength);
1486 	iinfo->i_lenExtents = inode->i_size;
1487 
1488 	if (iinfo->i_efe == 0) {
1489 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1490 			(inode->i_sb->s_blocksize_bits - 9);
1491 
1492 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1493 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1494 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1495 
1496 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1497 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1498 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1499 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1500 		iinfo->i_streamdir = 0;
1501 		iinfo->i_lenStreams = 0;
1502 	} else {
1503 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1504 		    (inode->i_sb->s_blocksize_bits - 9);
1505 
1506 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1507 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1508 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1509 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1510 
1511 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1512 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1513 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1514 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1515 
1516 		/* Named streams */
1517 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1518 		iinfo->i_locStreamdir =
1519 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1520 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1521 		if (iinfo->i_lenStreams >= inode->i_size)
1522 			iinfo->i_lenStreams -= inode->i_size;
1523 		else
1524 			iinfo->i_lenStreams = 0;
1525 	}
1526 	inode->i_generation = iinfo->i_unique;
1527 
1528 	/*
1529 	 * Sanity check length of allocation descriptors and extended attrs to
1530 	 * avoid integer overflows
1531 	 */
1532 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1533 		goto out;
1534 	/* Now do exact checks */
1535 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1536 		goto out;
1537 	/* Sanity checks for files in ICB so that we don't get confused later */
1538 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1539 		/*
1540 		 * For file in ICB data is stored in allocation descriptor
1541 		 * so sizes should match
1542 		 */
1543 		if (iinfo->i_lenAlloc != inode->i_size)
1544 			goto out;
1545 		/* File in ICB has to fit in there... */
1546 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1547 			goto out;
1548 	}
1549 
1550 	switch (fe->icbTag.fileType) {
1551 	case ICBTAG_FILE_TYPE_DIRECTORY:
1552 		inode->i_op = &udf_dir_inode_operations;
1553 		inode->i_fop = &udf_dir_operations;
1554 		inode->i_mode |= S_IFDIR;
1555 		inc_nlink(inode);
1556 		break;
1557 	case ICBTAG_FILE_TYPE_REALTIME:
1558 	case ICBTAG_FILE_TYPE_REGULAR:
1559 	case ICBTAG_FILE_TYPE_UNDEF:
1560 	case ICBTAG_FILE_TYPE_VAT20:
1561 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1562 			inode->i_data.a_ops = &udf_adinicb_aops;
1563 		else
1564 			inode->i_data.a_ops = &udf_aops;
1565 		inode->i_op = &udf_file_inode_operations;
1566 		inode->i_fop = &udf_file_operations;
1567 		inode->i_mode |= S_IFREG;
1568 		break;
1569 	case ICBTAG_FILE_TYPE_BLOCK:
1570 		inode->i_mode |= S_IFBLK;
1571 		break;
1572 	case ICBTAG_FILE_TYPE_CHAR:
1573 		inode->i_mode |= S_IFCHR;
1574 		break;
1575 	case ICBTAG_FILE_TYPE_FIFO:
1576 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1577 		break;
1578 	case ICBTAG_FILE_TYPE_SOCKET:
1579 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1580 		break;
1581 	case ICBTAG_FILE_TYPE_SYMLINK:
1582 		inode->i_data.a_ops = &udf_symlink_aops;
1583 		inode->i_op = &udf_symlink_inode_operations;
1584 		inode_nohighmem(inode);
1585 		inode->i_mode = S_IFLNK | 0777;
1586 		break;
1587 	case ICBTAG_FILE_TYPE_MAIN:
1588 		udf_debug("METADATA FILE-----\n");
1589 		break;
1590 	case ICBTAG_FILE_TYPE_MIRROR:
1591 		udf_debug("METADATA MIRROR FILE-----\n");
1592 		break;
1593 	case ICBTAG_FILE_TYPE_BITMAP:
1594 		udf_debug("METADATA BITMAP FILE-----\n");
1595 		break;
1596 	default:
1597 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1598 			inode->i_ino, fe->icbTag.fileType);
1599 		goto out;
1600 	}
1601 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1602 		struct deviceSpec *dsea =
1603 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1604 		if (dsea) {
1605 			init_special_inode(inode, inode->i_mode,
1606 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1607 				      le32_to_cpu(dsea->minorDeviceIdent)));
1608 			/* Developer ID ??? */
1609 		} else
1610 			goto out;
1611 	}
1612 	ret = 0;
1613 out:
1614 	brelse(bh);
1615 	return ret;
1616 }
1617 
1618 static int udf_alloc_i_data(struct inode *inode, size_t size)
1619 {
1620 	struct udf_inode_info *iinfo = UDF_I(inode);
1621 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1622 	if (!iinfo->i_data)
1623 		return -ENOMEM;
1624 	return 0;
1625 }
1626 
1627 static umode_t udf_convert_permissions(struct fileEntry *fe)
1628 {
1629 	umode_t mode;
1630 	uint32_t permissions;
1631 	uint32_t flags;
1632 
1633 	permissions = le32_to_cpu(fe->permissions);
1634 	flags = le16_to_cpu(fe->icbTag.flags);
1635 
1636 	mode =	((permissions) & 0007) |
1637 		((permissions >> 2) & 0070) |
1638 		((permissions >> 4) & 0700) |
1639 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1640 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1641 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1642 
1643 	return mode;
1644 }
1645 
1646 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1647 {
1648 	struct udf_inode_info *iinfo = UDF_I(inode);
1649 
1650 	/*
1651 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1652 	 * In Unix, delete permission tracks write
1653 	 */
1654 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1655 	if (mode & 0200)
1656 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1657 	if (mode & 0020)
1658 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1659 	if (mode & 0002)
1660 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1661 }
1662 
1663 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1664 {
1665 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1666 }
1667 
1668 static int udf_sync_inode(struct inode *inode)
1669 {
1670 	return udf_update_inode(inode, 1);
1671 }
1672 
1673 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1674 {
1675 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1676 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1677 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1678 		iinfo->i_crtime = time;
1679 }
1680 
1681 static int udf_update_inode(struct inode *inode, int do_sync)
1682 {
1683 	struct buffer_head *bh = NULL;
1684 	struct fileEntry *fe;
1685 	struct extendedFileEntry *efe;
1686 	uint64_t lb_recorded;
1687 	uint32_t udfperms;
1688 	uint16_t icbflags;
1689 	uint16_t crclen;
1690 	int err = 0;
1691 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1692 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1693 	struct udf_inode_info *iinfo = UDF_I(inode);
1694 
1695 	bh = udf_tgetblk(inode->i_sb,
1696 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1697 	if (!bh) {
1698 		udf_debug("getblk failure\n");
1699 		return -EIO;
1700 	}
1701 
1702 	lock_buffer(bh);
1703 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1704 	fe = (struct fileEntry *)bh->b_data;
1705 	efe = (struct extendedFileEntry *)bh->b_data;
1706 
1707 	if (iinfo->i_use) {
1708 		struct unallocSpaceEntry *use =
1709 			(struct unallocSpaceEntry *)bh->b_data;
1710 
1711 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1712 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1713 		       iinfo->i_data, inode->i_sb->s_blocksize -
1714 					sizeof(struct unallocSpaceEntry));
1715 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1716 		crclen = sizeof(struct unallocSpaceEntry);
1717 
1718 		goto finish;
1719 	}
1720 
1721 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1722 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1723 	else
1724 		fe->uid = cpu_to_le32(i_uid_read(inode));
1725 
1726 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1727 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1728 	else
1729 		fe->gid = cpu_to_le32(i_gid_read(inode));
1730 
1731 	udfperms = ((inode->i_mode & 0007)) |
1732 		   ((inode->i_mode & 0070) << 2) |
1733 		   ((inode->i_mode & 0700) << 4);
1734 
1735 	udfperms |= iinfo->i_extraPerms;
1736 	fe->permissions = cpu_to_le32(udfperms);
1737 
1738 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1739 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1740 	else
1741 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1742 
1743 	fe->informationLength = cpu_to_le64(inode->i_size);
1744 
1745 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1746 		struct regid *eid;
1747 		struct deviceSpec *dsea =
1748 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1749 		if (!dsea) {
1750 			dsea = (struct deviceSpec *)
1751 				udf_add_extendedattr(inode,
1752 						     sizeof(struct deviceSpec) +
1753 						     sizeof(struct regid), 12, 0x3);
1754 			dsea->attrType = cpu_to_le32(12);
1755 			dsea->attrSubtype = 1;
1756 			dsea->attrLength = cpu_to_le32(
1757 						sizeof(struct deviceSpec) +
1758 						sizeof(struct regid));
1759 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1760 		}
1761 		eid = (struct regid *)dsea->impUse;
1762 		memset(eid, 0, sizeof(*eid));
1763 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1764 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1765 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1766 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1767 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1768 	}
1769 
1770 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1771 		lb_recorded = 0; /* No extents => no blocks! */
1772 	else
1773 		lb_recorded =
1774 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1775 			(blocksize_bits - 9);
1776 
1777 	if (iinfo->i_efe == 0) {
1778 		memcpy(bh->b_data + sizeof(struct fileEntry),
1779 		       iinfo->i_data,
1780 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1781 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1782 
1783 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1784 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1785 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1786 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1787 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1788 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1791 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1792 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1793 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1794 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1795 		crclen = sizeof(struct fileEntry);
1796 	} else {
1797 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1798 		       iinfo->i_data,
1799 		       inode->i_sb->s_blocksize -
1800 					sizeof(struct extendedFileEntry));
1801 		efe->objectSize =
1802 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1803 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1804 
1805 		if (iinfo->i_streamdir) {
1806 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1807 
1808 			icb_lad->extLocation =
1809 				cpu_to_lelb(iinfo->i_locStreamdir);
1810 			icb_lad->extLength =
1811 				cpu_to_le32(inode->i_sb->s_blocksize);
1812 		}
1813 
1814 		udf_adjust_time(iinfo, inode->i_atime);
1815 		udf_adjust_time(iinfo, inode->i_mtime);
1816 		udf_adjust_time(iinfo, inode->i_ctime);
1817 
1818 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1819 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1820 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1821 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1822 
1823 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1824 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1825 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1826 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1827 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1828 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1829 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1830 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1831 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1832 		crclen = sizeof(struct extendedFileEntry);
1833 	}
1834 
1835 finish:
1836 	if (iinfo->i_strat4096) {
1837 		fe->icbTag.strategyType = cpu_to_le16(4096);
1838 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1839 		fe->icbTag.numEntries = cpu_to_le16(2);
1840 	} else {
1841 		fe->icbTag.strategyType = cpu_to_le16(4);
1842 		fe->icbTag.numEntries = cpu_to_le16(1);
1843 	}
1844 
1845 	if (iinfo->i_use)
1846 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1847 	else if (S_ISDIR(inode->i_mode))
1848 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1849 	else if (S_ISREG(inode->i_mode))
1850 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1851 	else if (S_ISLNK(inode->i_mode))
1852 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1853 	else if (S_ISBLK(inode->i_mode))
1854 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1855 	else if (S_ISCHR(inode->i_mode))
1856 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1857 	else if (S_ISFIFO(inode->i_mode))
1858 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1859 	else if (S_ISSOCK(inode->i_mode))
1860 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1861 
1862 	icbflags =	iinfo->i_alloc_type |
1863 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1864 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1865 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1866 			(le16_to_cpu(fe->icbTag.flags) &
1867 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1868 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1869 
1870 	fe->icbTag.flags = cpu_to_le16(icbflags);
1871 	if (sbi->s_udfrev >= 0x0200)
1872 		fe->descTag.descVersion = cpu_to_le16(3);
1873 	else
1874 		fe->descTag.descVersion = cpu_to_le16(2);
1875 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1876 	fe->descTag.tagLocation = cpu_to_le32(
1877 					iinfo->i_location.logicalBlockNum);
1878 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1879 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1880 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1881 						  crclen));
1882 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1883 
1884 	set_buffer_uptodate(bh);
1885 	unlock_buffer(bh);
1886 
1887 	/* write the data blocks */
1888 	mark_buffer_dirty(bh);
1889 	if (do_sync) {
1890 		sync_dirty_buffer(bh);
1891 		if (buffer_write_io_error(bh)) {
1892 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1893 				 inode->i_ino);
1894 			err = -EIO;
1895 		}
1896 	}
1897 	brelse(bh);
1898 
1899 	return err;
1900 }
1901 
1902 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1903 			 bool hidden_inode)
1904 {
1905 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1906 	struct inode *inode = iget_locked(sb, block);
1907 	int err;
1908 
1909 	if (!inode)
1910 		return ERR_PTR(-ENOMEM);
1911 
1912 	if (!(inode->i_state & I_NEW))
1913 		return inode;
1914 
1915 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1916 	err = udf_read_inode(inode, hidden_inode);
1917 	if (err < 0) {
1918 		iget_failed(inode);
1919 		return ERR_PTR(err);
1920 	}
1921 	unlock_new_inode(inode);
1922 
1923 	return inode;
1924 }
1925 
1926 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1927 			    struct extent_position *epos)
1928 {
1929 	struct super_block *sb = inode->i_sb;
1930 	struct buffer_head *bh;
1931 	struct allocExtDesc *aed;
1932 	struct extent_position nepos;
1933 	struct kernel_lb_addr neloc;
1934 	int ver, adsize;
1935 
1936 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1937 		adsize = sizeof(struct short_ad);
1938 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1939 		adsize = sizeof(struct long_ad);
1940 	else
1941 		return -EIO;
1942 
1943 	neloc.logicalBlockNum = block;
1944 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1945 
1946 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1947 	if (!bh)
1948 		return -EIO;
1949 	lock_buffer(bh);
1950 	memset(bh->b_data, 0x00, sb->s_blocksize);
1951 	set_buffer_uptodate(bh);
1952 	unlock_buffer(bh);
1953 	mark_buffer_dirty_inode(bh, inode);
1954 
1955 	aed = (struct allocExtDesc *)(bh->b_data);
1956 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1957 		aed->previousAllocExtLocation =
1958 				cpu_to_le32(epos->block.logicalBlockNum);
1959 	}
1960 	aed->lengthAllocDescs = cpu_to_le32(0);
1961 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1962 		ver = 3;
1963 	else
1964 		ver = 2;
1965 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1966 		    sizeof(struct tag));
1967 
1968 	nepos.block = neloc;
1969 	nepos.offset = sizeof(struct allocExtDesc);
1970 	nepos.bh = bh;
1971 
1972 	/*
1973 	 * Do we have to copy current last extent to make space for indirect
1974 	 * one?
1975 	 */
1976 	if (epos->offset + adsize > sb->s_blocksize) {
1977 		struct kernel_lb_addr cp_loc;
1978 		uint32_t cp_len;
1979 		int cp_type;
1980 
1981 		epos->offset -= adsize;
1982 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1983 		cp_len |= ((uint32_t)cp_type) << 30;
1984 
1985 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1986 		udf_write_aext(inode, epos, &nepos.block,
1987 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1988 	} else {
1989 		__udf_add_aext(inode, epos, &nepos.block,
1990 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1991 	}
1992 
1993 	brelse(epos->bh);
1994 	*epos = nepos;
1995 
1996 	return 0;
1997 }
1998 
1999 /*
2000  * Append extent at the given position - should be the first free one in inode
2001  * / indirect extent. This function assumes there is enough space in the inode
2002  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2003  */
2004 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2005 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2006 {
2007 	struct udf_inode_info *iinfo = UDF_I(inode);
2008 	struct allocExtDesc *aed;
2009 	int adsize;
2010 
2011 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2012 		adsize = sizeof(struct short_ad);
2013 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2014 		adsize = sizeof(struct long_ad);
2015 	else
2016 		return -EIO;
2017 
2018 	if (!epos->bh) {
2019 		WARN_ON(iinfo->i_lenAlloc !=
2020 			epos->offset - udf_file_entry_alloc_offset(inode));
2021 	} else {
2022 		aed = (struct allocExtDesc *)epos->bh->b_data;
2023 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2024 			epos->offset - sizeof(struct allocExtDesc));
2025 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2026 	}
2027 
2028 	udf_write_aext(inode, epos, eloc, elen, inc);
2029 
2030 	if (!epos->bh) {
2031 		iinfo->i_lenAlloc += adsize;
2032 		mark_inode_dirty(inode);
2033 	} else {
2034 		aed = (struct allocExtDesc *)epos->bh->b_data;
2035 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2036 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2037 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2038 			udf_update_tag(epos->bh->b_data,
2039 					epos->offset + (inc ? 0 : adsize));
2040 		else
2041 			udf_update_tag(epos->bh->b_data,
2042 					sizeof(struct allocExtDesc));
2043 		mark_buffer_dirty_inode(epos->bh, inode);
2044 	}
2045 
2046 	return 0;
2047 }
2048 
2049 /*
2050  * Append extent at given position - should be the first free one in inode
2051  * / indirect extent. Takes care of allocating and linking indirect blocks.
2052  */
2053 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2054 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2055 {
2056 	int adsize;
2057 	struct super_block *sb = inode->i_sb;
2058 
2059 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2060 		adsize = sizeof(struct short_ad);
2061 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2062 		adsize = sizeof(struct long_ad);
2063 	else
2064 		return -EIO;
2065 
2066 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2067 		int err;
2068 		udf_pblk_t new_block;
2069 
2070 		new_block = udf_new_block(sb, NULL,
2071 					  epos->block.partitionReferenceNum,
2072 					  epos->block.logicalBlockNum, &err);
2073 		if (!new_block)
2074 			return -ENOSPC;
2075 
2076 		err = udf_setup_indirect_aext(inode, new_block, epos);
2077 		if (err)
2078 			return err;
2079 	}
2080 
2081 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2082 }
2083 
2084 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2085 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2086 {
2087 	int adsize;
2088 	uint8_t *ptr;
2089 	struct short_ad *sad;
2090 	struct long_ad *lad;
2091 	struct udf_inode_info *iinfo = UDF_I(inode);
2092 
2093 	if (!epos->bh)
2094 		ptr = iinfo->i_data + epos->offset -
2095 			udf_file_entry_alloc_offset(inode) +
2096 			iinfo->i_lenEAttr;
2097 	else
2098 		ptr = epos->bh->b_data + epos->offset;
2099 
2100 	switch (iinfo->i_alloc_type) {
2101 	case ICBTAG_FLAG_AD_SHORT:
2102 		sad = (struct short_ad *)ptr;
2103 		sad->extLength = cpu_to_le32(elen);
2104 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2105 		adsize = sizeof(struct short_ad);
2106 		break;
2107 	case ICBTAG_FLAG_AD_LONG:
2108 		lad = (struct long_ad *)ptr;
2109 		lad->extLength = cpu_to_le32(elen);
2110 		lad->extLocation = cpu_to_lelb(*eloc);
2111 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2112 		adsize = sizeof(struct long_ad);
2113 		break;
2114 	default:
2115 		return;
2116 	}
2117 
2118 	if (epos->bh) {
2119 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2120 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2121 			struct allocExtDesc *aed =
2122 				(struct allocExtDesc *)epos->bh->b_data;
2123 			udf_update_tag(epos->bh->b_data,
2124 				       le32_to_cpu(aed->lengthAllocDescs) +
2125 				       sizeof(struct allocExtDesc));
2126 		}
2127 		mark_buffer_dirty_inode(epos->bh, inode);
2128 	} else {
2129 		mark_inode_dirty(inode);
2130 	}
2131 
2132 	if (inc)
2133 		epos->offset += adsize;
2134 }
2135 
2136 /*
2137  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2138  * someone does some weird stuff.
2139  */
2140 #define UDF_MAX_INDIR_EXTS 16
2141 
2142 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2143 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2144 {
2145 	int8_t etype;
2146 	unsigned int indirections = 0;
2147 
2148 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2149 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2150 		udf_pblk_t block;
2151 
2152 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2153 			udf_err(inode->i_sb,
2154 				"too many indirect extents in inode %lu\n",
2155 				inode->i_ino);
2156 			return -1;
2157 		}
2158 
2159 		epos->block = *eloc;
2160 		epos->offset = sizeof(struct allocExtDesc);
2161 		brelse(epos->bh);
2162 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2163 		epos->bh = udf_tread(inode->i_sb, block);
2164 		if (!epos->bh) {
2165 			udf_debug("reading block %u failed!\n", block);
2166 			return -1;
2167 		}
2168 	}
2169 
2170 	return etype;
2171 }
2172 
2173 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2174 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2175 {
2176 	int alen;
2177 	int8_t etype;
2178 	uint8_t *ptr;
2179 	struct short_ad *sad;
2180 	struct long_ad *lad;
2181 	struct udf_inode_info *iinfo = UDF_I(inode);
2182 
2183 	if (!epos->bh) {
2184 		if (!epos->offset)
2185 			epos->offset = udf_file_entry_alloc_offset(inode);
2186 		ptr = iinfo->i_data + epos->offset -
2187 			udf_file_entry_alloc_offset(inode) +
2188 			iinfo->i_lenEAttr;
2189 		alen = udf_file_entry_alloc_offset(inode) +
2190 							iinfo->i_lenAlloc;
2191 	} else {
2192 		if (!epos->offset)
2193 			epos->offset = sizeof(struct allocExtDesc);
2194 		ptr = epos->bh->b_data + epos->offset;
2195 		alen = sizeof(struct allocExtDesc) +
2196 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2197 							lengthAllocDescs);
2198 	}
2199 
2200 	switch (iinfo->i_alloc_type) {
2201 	case ICBTAG_FLAG_AD_SHORT:
2202 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2203 		if (!sad)
2204 			return -1;
2205 		etype = le32_to_cpu(sad->extLength) >> 30;
2206 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2207 		eloc->partitionReferenceNum =
2208 				iinfo->i_location.partitionReferenceNum;
2209 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2210 		break;
2211 	case ICBTAG_FLAG_AD_LONG:
2212 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2213 		if (!lad)
2214 			return -1;
2215 		etype = le32_to_cpu(lad->extLength) >> 30;
2216 		*eloc = lelb_to_cpu(lad->extLocation);
2217 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2218 		break;
2219 	default:
2220 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2221 		return -1;
2222 	}
2223 
2224 	return etype;
2225 }
2226 
2227 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2228 			      struct kernel_lb_addr neloc, uint32_t nelen)
2229 {
2230 	struct kernel_lb_addr oeloc;
2231 	uint32_t oelen;
2232 	int8_t etype;
2233 
2234 	if (epos.bh)
2235 		get_bh(epos.bh);
2236 
2237 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2238 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2239 		neloc = oeloc;
2240 		nelen = (etype << 30) | oelen;
2241 	}
2242 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2243 	brelse(epos.bh);
2244 
2245 	return (nelen >> 30);
2246 }
2247 
2248 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2249 {
2250 	struct extent_position oepos;
2251 	int adsize;
2252 	int8_t etype;
2253 	struct allocExtDesc *aed;
2254 	struct udf_inode_info *iinfo;
2255 	struct kernel_lb_addr eloc;
2256 	uint32_t elen;
2257 
2258 	if (epos.bh) {
2259 		get_bh(epos.bh);
2260 		get_bh(epos.bh);
2261 	}
2262 
2263 	iinfo = UDF_I(inode);
2264 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2265 		adsize = sizeof(struct short_ad);
2266 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2267 		adsize = sizeof(struct long_ad);
2268 	else
2269 		adsize = 0;
2270 
2271 	oepos = epos;
2272 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2273 		return -1;
2274 
2275 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2276 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2277 		if (oepos.bh != epos.bh) {
2278 			oepos.block = epos.block;
2279 			brelse(oepos.bh);
2280 			get_bh(epos.bh);
2281 			oepos.bh = epos.bh;
2282 			oepos.offset = epos.offset - adsize;
2283 		}
2284 	}
2285 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2286 	elen = 0;
2287 
2288 	if (epos.bh != oepos.bh) {
2289 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2290 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2291 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292 		if (!oepos.bh) {
2293 			iinfo->i_lenAlloc -= (adsize * 2);
2294 			mark_inode_dirty(inode);
2295 		} else {
2296 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2297 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2298 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2299 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2300 				udf_update_tag(oepos.bh->b_data,
2301 						oepos.offset - (2 * adsize));
2302 			else
2303 				udf_update_tag(oepos.bh->b_data,
2304 						sizeof(struct allocExtDesc));
2305 			mark_buffer_dirty_inode(oepos.bh, inode);
2306 		}
2307 	} else {
2308 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2309 		if (!oepos.bh) {
2310 			iinfo->i_lenAlloc -= adsize;
2311 			mark_inode_dirty(inode);
2312 		} else {
2313 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2314 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2315 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2316 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2317 				udf_update_tag(oepos.bh->b_data,
2318 						epos.offset - adsize);
2319 			else
2320 				udf_update_tag(oepos.bh->b_data,
2321 						sizeof(struct allocExtDesc));
2322 			mark_buffer_dirty_inode(oepos.bh, inode);
2323 		}
2324 	}
2325 
2326 	brelse(epos.bh);
2327 	brelse(oepos.bh);
2328 
2329 	return (elen >> 30);
2330 }
2331 
2332 int8_t inode_bmap(struct inode *inode, sector_t block,
2333 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2334 		  uint32_t *elen, sector_t *offset)
2335 {
2336 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2337 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2338 	int8_t etype;
2339 	struct udf_inode_info *iinfo;
2340 
2341 	iinfo = UDF_I(inode);
2342 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2343 		pos->offset = 0;
2344 		pos->block = iinfo->i_location;
2345 		pos->bh = NULL;
2346 	}
2347 	*elen = 0;
2348 	do {
2349 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2350 		if (etype == -1) {
2351 			*offset = (bcount - lbcount) >> blocksize_bits;
2352 			iinfo->i_lenExtents = lbcount;
2353 			return -1;
2354 		}
2355 		lbcount += *elen;
2356 	} while (lbcount <= bcount);
2357 	/* update extent cache */
2358 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2359 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2360 
2361 	return etype;
2362 }
2363 
2364 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2365 {
2366 	struct kernel_lb_addr eloc;
2367 	uint32_t elen;
2368 	sector_t offset;
2369 	struct extent_position epos = {};
2370 	udf_pblk_t ret;
2371 
2372 	down_read(&UDF_I(inode)->i_data_sem);
2373 
2374 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2375 						(EXT_RECORDED_ALLOCATED >> 30))
2376 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2377 	else
2378 		ret = 0;
2379 
2380 	up_read(&UDF_I(inode)->i_data_sem);
2381 	brelse(epos.bh);
2382 
2383 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2384 		return udf_fixed_to_variable(ret);
2385 	else
2386 		return ret;
2387 }
2388