xref: /openbmc/linux/fs/udf/inode.c (revision 87bc730c)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40 #include <linux/crc-itu-t.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static mode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 					sector_t *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
71 void udf_delete_inode(struct inode *inode)
72 {
73 	truncate_inode_pages(&inode->i_data, 0);
74 
75 	if (is_bad_inode(inode))
76 		goto no_delete;
77 
78 	inode->i_size = 0;
79 	udf_truncate(inode);
80 	lock_kernel();
81 
82 	udf_update_inode(inode, IS_SYNC(inode));
83 	udf_free_inode(inode);
84 
85 	unlock_kernel();
86 	return;
87 
88 no_delete:
89 	clear_inode(inode);
90 }
91 
92 /*
93  * If we are going to release inode from memory, we discard preallocation and
94  * truncate last inode extent to proper length. We could use drop_inode() but
95  * it's called under inode_lock and thus we cannot mark inode dirty there.  We
96  * use clear_inode() but we have to make sure to write inode as it's not written
97  * automatically.
98  */
99 void udf_clear_inode(struct inode *inode)
100 {
101 	struct udf_inode_info *iinfo;
102 	if (!(inode->i_sb->s_flags & MS_RDONLY)) {
103 		lock_kernel();
104 		/* Discard preallocation for directories, symlinks, etc. */
105 		udf_discard_prealloc(inode);
106 		udf_truncate_tail_extent(inode);
107 		unlock_kernel();
108 		write_inode_now(inode, 0);
109 		invalidate_inode_buffers(inode);
110 	}
111 	iinfo = UDF_I(inode);
112 	kfree(iinfo->i_ext.i_data);
113 	iinfo->i_ext.i_data = NULL;
114 }
115 
116 static int udf_writepage(struct page *page, struct writeback_control *wbc)
117 {
118 	return block_write_full_page(page, udf_get_block, wbc);
119 }
120 
121 static int udf_readpage(struct file *file, struct page *page)
122 {
123 	return block_read_full_page(page, udf_get_block);
124 }
125 
126 static int udf_write_begin(struct file *file, struct address_space *mapping,
127 			loff_t pos, unsigned len, unsigned flags,
128 			struct page **pagep, void **fsdata)
129 {
130 	*pagep = NULL;
131 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
132 				udf_get_block);
133 }
134 
135 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
136 {
137 	return generic_block_bmap(mapping, block, udf_get_block);
138 }
139 
140 const struct address_space_operations udf_aops = {
141 	.readpage	= udf_readpage,
142 	.writepage	= udf_writepage,
143 	.sync_page	= block_sync_page,
144 	.write_begin		= udf_write_begin,
145 	.write_end		= generic_write_end,
146 	.bmap		= udf_bmap,
147 };
148 
149 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
150 {
151 	struct page *page;
152 	char *kaddr;
153 	struct udf_inode_info *iinfo = UDF_I(inode);
154 	struct writeback_control udf_wbc = {
155 		.sync_mode = WB_SYNC_NONE,
156 		.nr_to_write = 1,
157 	};
158 
159 	/* from now on we have normal address_space methods */
160 	inode->i_data.a_ops = &udf_aops;
161 
162 	if (!iinfo->i_lenAlloc) {
163 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
164 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
165 		else
166 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
167 		mark_inode_dirty(inode);
168 		return;
169 	}
170 
171 	page = grab_cache_page(inode->i_mapping, 0);
172 	BUG_ON(!PageLocked(page));
173 
174 	if (!PageUptodate(page)) {
175 		kaddr = kmap(page);
176 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
177 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
178 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
179 			iinfo->i_lenAlloc);
180 		flush_dcache_page(page);
181 		SetPageUptodate(page);
182 		kunmap(page);
183 	}
184 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
185 	       iinfo->i_lenAlloc);
186 	iinfo->i_lenAlloc = 0;
187 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
188 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
189 	else
190 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
191 
192 	inode->i_data.a_ops->writepage(page, &udf_wbc);
193 	page_cache_release(page);
194 
195 	mark_inode_dirty(inode);
196 }
197 
198 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
199 					   int *err)
200 {
201 	int newblock;
202 	struct buffer_head *dbh = NULL;
203 	struct kernel_lb_addr eloc;
204 	uint32_t elen;
205 	uint8_t alloctype;
206 	struct extent_position epos;
207 
208 	struct udf_fileident_bh sfibh, dfibh;
209 	loff_t f_pos = udf_ext0_offset(inode);
210 	int size = udf_ext0_offset(inode) + inode->i_size;
211 	struct fileIdentDesc cfi, *sfi, *dfi;
212 	struct udf_inode_info *iinfo = UDF_I(inode);
213 
214 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
215 		alloctype = ICBTAG_FLAG_AD_SHORT;
216 	else
217 		alloctype = ICBTAG_FLAG_AD_LONG;
218 
219 	if (!inode->i_size) {
220 		iinfo->i_alloc_type = alloctype;
221 		mark_inode_dirty(inode);
222 		return NULL;
223 	}
224 
225 	/* alloc block, and copy data to it */
226 	*block = udf_new_block(inode->i_sb, inode,
227 			       iinfo->i_location.partitionReferenceNum,
228 			       iinfo->i_location.logicalBlockNum, err);
229 	if (!(*block))
230 		return NULL;
231 	newblock = udf_get_pblock(inode->i_sb, *block,
232 				  iinfo->i_location.partitionReferenceNum,
233 				0);
234 	if (!newblock)
235 		return NULL;
236 	dbh = udf_tgetblk(inode->i_sb, newblock);
237 	if (!dbh)
238 		return NULL;
239 	lock_buffer(dbh);
240 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
241 	set_buffer_uptodate(dbh);
242 	unlock_buffer(dbh);
243 	mark_buffer_dirty_inode(dbh, inode);
244 
245 	sfibh.soffset = sfibh.eoffset =
246 			f_pos & (inode->i_sb->s_blocksize - 1);
247 	sfibh.sbh = sfibh.ebh = NULL;
248 	dfibh.soffset = dfibh.eoffset = 0;
249 	dfibh.sbh = dfibh.ebh = dbh;
250 	while (f_pos < size) {
251 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
252 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
253 					 NULL, NULL, NULL);
254 		if (!sfi) {
255 			brelse(dbh);
256 			return NULL;
257 		}
258 		iinfo->i_alloc_type = alloctype;
259 		sfi->descTag.tagLocation = cpu_to_le32(*block);
260 		dfibh.soffset = dfibh.eoffset;
261 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
262 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
263 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
264 				 sfi->fileIdent +
265 					le16_to_cpu(sfi->lengthOfImpUse))) {
266 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
267 			brelse(dbh);
268 			return NULL;
269 		}
270 	}
271 	mark_buffer_dirty_inode(dbh, inode);
272 
273 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
274 		iinfo->i_lenAlloc);
275 	iinfo->i_lenAlloc = 0;
276 	eloc.logicalBlockNum = *block;
277 	eloc.partitionReferenceNum =
278 				iinfo->i_location.partitionReferenceNum;
279 	elen = inode->i_sb->s_blocksize;
280 	iinfo->i_lenExtents = elen;
281 	epos.bh = NULL;
282 	epos.block = iinfo->i_location;
283 	epos.offset = udf_file_entry_alloc_offset(inode);
284 	udf_add_aext(inode, &epos, &eloc, elen, 0);
285 	/* UniqueID stuff */
286 
287 	brelse(epos.bh);
288 	mark_inode_dirty(inode);
289 	return dbh;
290 }
291 
292 static int udf_get_block(struct inode *inode, sector_t block,
293 			 struct buffer_head *bh_result, int create)
294 {
295 	int err, new;
296 	struct buffer_head *bh;
297 	sector_t phys = 0;
298 	struct udf_inode_info *iinfo;
299 
300 	if (!create) {
301 		phys = udf_block_map(inode, block);
302 		if (phys)
303 			map_bh(bh_result, inode->i_sb, phys);
304 		return 0;
305 	}
306 
307 	err = -EIO;
308 	new = 0;
309 	bh = NULL;
310 
311 	lock_kernel();
312 
313 	iinfo = UDF_I(inode);
314 	if (block == iinfo->i_next_alloc_block + 1) {
315 		iinfo->i_next_alloc_block++;
316 		iinfo->i_next_alloc_goal++;
317 	}
318 
319 	err = 0;
320 
321 	bh = inode_getblk(inode, block, &err, &phys, &new);
322 	BUG_ON(bh);
323 	if (err)
324 		goto abort;
325 	BUG_ON(!phys);
326 
327 	if (new)
328 		set_buffer_new(bh_result);
329 	map_bh(bh_result, inode->i_sb, phys);
330 
331 abort:
332 	unlock_kernel();
333 	return err;
334 }
335 
336 static struct buffer_head *udf_getblk(struct inode *inode, long block,
337 				      int create, int *err)
338 {
339 	struct buffer_head *bh;
340 	struct buffer_head dummy;
341 
342 	dummy.b_state = 0;
343 	dummy.b_blocknr = -1000;
344 	*err = udf_get_block(inode, block, &dummy, create);
345 	if (!*err && buffer_mapped(&dummy)) {
346 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
347 		if (buffer_new(&dummy)) {
348 			lock_buffer(bh);
349 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
350 			set_buffer_uptodate(bh);
351 			unlock_buffer(bh);
352 			mark_buffer_dirty_inode(bh, inode);
353 		}
354 		return bh;
355 	}
356 
357 	return NULL;
358 }
359 
360 /* Extend the file by 'blocks' blocks, return the number of extents added */
361 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
362 		    struct kernel_long_ad *last_ext, sector_t blocks)
363 {
364 	sector_t add;
365 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
366 	struct super_block *sb = inode->i_sb;
367 	struct kernel_lb_addr prealloc_loc = {};
368 	int prealloc_len = 0;
369 	struct udf_inode_info *iinfo;
370 
371 	/* The previous extent is fake and we should not extend by anything
372 	 * - there's nothing to do... */
373 	if (!blocks && fake)
374 		return 0;
375 
376 	iinfo = UDF_I(inode);
377 	/* Round the last extent up to a multiple of block size */
378 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
379 		last_ext->extLength =
380 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
381 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
382 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
383 		iinfo->i_lenExtents =
384 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
385 			~(sb->s_blocksize - 1);
386 	}
387 
388 	/* Last extent are just preallocated blocks? */
389 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
390 						EXT_NOT_RECORDED_ALLOCATED) {
391 		/* Save the extent so that we can reattach it to the end */
392 		prealloc_loc = last_ext->extLocation;
393 		prealloc_len = last_ext->extLength;
394 		/* Mark the extent as a hole */
395 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
396 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
397 		last_ext->extLocation.logicalBlockNum = 0;
398 		last_ext->extLocation.partitionReferenceNum = 0;
399 	}
400 
401 	/* Can we merge with the previous extent? */
402 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
403 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
404 		add = ((1 << 30) - sb->s_blocksize -
405 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
406 			sb->s_blocksize_bits;
407 		if (add > blocks)
408 			add = blocks;
409 		blocks -= add;
410 		last_ext->extLength += add << sb->s_blocksize_bits;
411 	}
412 
413 	if (fake) {
414 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
415 			     last_ext->extLength, 1);
416 		count++;
417 	} else
418 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
419 				last_ext->extLength, 1);
420 
421 	/* Managed to do everything necessary? */
422 	if (!blocks)
423 		goto out;
424 
425 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
426 	last_ext->extLocation.logicalBlockNum = 0;
427 	last_ext->extLocation.partitionReferenceNum = 0;
428 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
429 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
430 				(add << sb->s_blocksize_bits);
431 
432 	/* Create enough extents to cover the whole hole */
433 	while (blocks > add) {
434 		blocks -= add;
435 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
436 				 last_ext->extLength, 1) == -1)
437 			return -1;
438 		count++;
439 	}
440 	if (blocks) {
441 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
442 			(blocks << sb->s_blocksize_bits);
443 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
444 				 last_ext->extLength, 1) == -1)
445 			return -1;
446 		count++;
447 	}
448 
449 out:
450 	/* Do we have some preallocated blocks saved? */
451 	if (prealloc_len) {
452 		if (udf_add_aext(inode, last_pos, &prealloc_loc,
453 				 prealloc_len, 1) == -1)
454 			return -1;
455 		last_ext->extLocation = prealloc_loc;
456 		last_ext->extLength = prealloc_len;
457 		count++;
458 	}
459 
460 	/* last_pos should point to the last written extent... */
461 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
462 		last_pos->offset -= sizeof(struct short_ad);
463 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
464 		last_pos->offset -= sizeof(struct long_ad);
465 	else
466 		return -1;
467 
468 	return count;
469 }
470 
471 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
472 					int *err, sector_t *phys, int *new)
473 {
474 	static sector_t last_block;
475 	struct buffer_head *result = NULL;
476 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
477 	struct extent_position prev_epos, cur_epos, next_epos;
478 	int count = 0, startnum = 0, endnum = 0;
479 	uint32_t elen = 0, tmpelen;
480 	struct kernel_lb_addr eloc, tmpeloc;
481 	int c = 1;
482 	loff_t lbcount = 0, b_off = 0;
483 	uint32_t newblocknum, newblock;
484 	sector_t offset = 0;
485 	int8_t etype;
486 	struct udf_inode_info *iinfo = UDF_I(inode);
487 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
488 	int lastblock = 0;
489 
490 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
491 	prev_epos.block = iinfo->i_location;
492 	prev_epos.bh = NULL;
493 	cur_epos = next_epos = prev_epos;
494 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
495 
496 	/* find the extent which contains the block we are looking for.
497 	   alternate between laarr[0] and laarr[1] for locations of the
498 	   current extent, and the previous extent */
499 	do {
500 		if (prev_epos.bh != cur_epos.bh) {
501 			brelse(prev_epos.bh);
502 			get_bh(cur_epos.bh);
503 			prev_epos.bh = cur_epos.bh;
504 		}
505 		if (cur_epos.bh != next_epos.bh) {
506 			brelse(cur_epos.bh);
507 			get_bh(next_epos.bh);
508 			cur_epos.bh = next_epos.bh;
509 		}
510 
511 		lbcount += elen;
512 
513 		prev_epos.block = cur_epos.block;
514 		cur_epos.block = next_epos.block;
515 
516 		prev_epos.offset = cur_epos.offset;
517 		cur_epos.offset = next_epos.offset;
518 
519 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
520 		if (etype == -1)
521 			break;
522 
523 		c = !c;
524 
525 		laarr[c].extLength = (etype << 30) | elen;
526 		laarr[c].extLocation = eloc;
527 
528 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
529 			pgoal = eloc.logicalBlockNum +
530 				((elen + inode->i_sb->s_blocksize - 1) >>
531 				 inode->i_sb->s_blocksize_bits);
532 
533 		count++;
534 	} while (lbcount + elen <= b_off);
535 
536 	b_off -= lbcount;
537 	offset = b_off >> inode->i_sb->s_blocksize_bits;
538 	/*
539 	 * Move prev_epos and cur_epos into indirect extent if we are at
540 	 * the pointer to it
541 	 */
542 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
543 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
544 
545 	/* if the extent is allocated and recorded, return the block
546 	   if the extent is not a multiple of the blocksize, round up */
547 
548 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
549 		if (elen & (inode->i_sb->s_blocksize - 1)) {
550 			elen = EXT_RECORDED_ALLOCATED |
551 				((elen + inode->i_sb->s_blocksize - 1) &
552 				 ~(inode->i_sb->s_blocksize - 1));
553 			etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
554 		}
555 		brelse(prev_epos.bh);
556 		brelse(cur_epos.bh);
557 		brelse(next_epos.bh);
558 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
559 		*phys = newblock;
560 		return NULL;
561 	}
562 
563 	last_block = block;
564 	/* Are we beyond EOF? */
565 	if (etype == -1) {
566 		int ret;
567 
568 		if (count) {
569 			if (c)
570 				laarr[0] = laarr[1];
571 			startnum = 1;
572 		} else {
573 			/* Create a fake extent when there's not one */
574 			memset(&laarr[0].extLocation, 0x00,
575 				sizeof(struct kernel_lb_addr));
576 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
577 			/* Will udf_extend_file() create real extent from
578 			   a fake one? */
579 			startnum = (offset > 0);
580 		}
581 		/* Create extents for the hole between EOF and offset */
582 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
583 		if (ret == -1) {
584 			brelse(prev_epos.bh);
585 			brelse(cur_epos.bh);
586 			brelse(next_epos.bh);
587 			/* We don't really know the error here so we just make
588 			 * something up */
589 			*err = -ENOSPC;
590 			return NULL;
591 		}
592 		c = 0;
593 		offset = 0;
594 		count += ret;
595 		/* We are not covered by a preallocated extent? */
596 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
597 						EXT_NOT_RECORDED_ALLOCATED) {
598 			/* Is there any real extent? - otherwise we overwrite
599 			 * the fake one... */
600 			if (count)
601 				c = !c;
602 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
603 				inode->i_sb->s_blocksize;
604 			memset(&laarr[c].extLocation, 0x00,
605 				sizeof(struct kernel_lb_addr));
606 			count++;
607 			endnum++;
608 		}
609 		endnum = c + 1;
610 		lastblock = 1;
611 	} else {
612 		endnum = startnum = ((count > 2) ? 2 : count);
613 
614 		/* if the current extent is in position 0,
615 		   swap it with the previous */
616 		if (!c && count != 1) {
617 			laarr[2] = laarr[0];
618 			laarr[0] = laarr[1];
619 			laarr[1] = laarr[2];
620 			c = 1;
621 		}
622 
623 		/* if the current block is located in an extent,
624 		   read the next extent */
625 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
626 		if (etype != -1) {
627 			laarr[c + 1].extLength = (etype << 30) | elen;
628 			laarr[c + 1].extLocation = eloc;
629 			count++;
630 			startnum++;
631 			endnum++;
632 		} else
633 			lastblock = 1;
634 	}
635 
636 	/* if the current extent is not recorded but allocated, get the
637 	 * block in the extent corresponding to the requested block */
638 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
639 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
640 	else { /* otherwise, allocate a new block */
641 		if (iinfo->i_next_alloc_block == block)
642 			goal = iinfo->i_next_alloc_goal;
643 
644 		if (!goal) {
645 			if (!(goal = pgoal)) /* XXX: what was intended here? */
646 				goal = iinfo->i_location.logicalBlockNum + 1;
647 		}
648 
649 		newblocknum = udf_new_block(inode->i_sb, inode,
650 				iinfo->i_location.partitionReferenceNum,
651 				goal, err);
652 		if (!newblocknum) {
653 			brelse(prev_epos.bh);
654 			*err = -ENOSPC;
655 			return NULL;
656 		}
657 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
658 	}
659 
660 	/* if the extent the requsted block is located in contains multiple
661 	 * blocks, split the extent into at most three extents. blocks prior
662 	 * to requested block, requested block, and blocks after requested
663 	 * block */
664 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
665 
666 #ifdef UDF_PREALLOCATE
667 	/* preallocate blocks */
668 	udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
669 #endif
670 
671 	/* merge any continuous blocks in laarr */
672 	udf_merge_extents(inode, laarr, &endnum);
673 
674 	/* write back the new extents, inserting new extents if the new number
675 	 * of extents is greater than the old number, and deleting extents if
676 	 * the new number of extents is less than the old number */
677 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
678 
679 	brelse(prev_epos.bh);
680 
681 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
682 				iinfo->i_location.partitionReferenceNum, 0);
683 	if (!newblock)
684 		return NULL;
685 	*phys = newblock;
686 	*err = 0;
687 	*new = 1;
688 	iinfo->i_next_alloc_block = block;
689 	iinfo->i_next_alloc_goal = newblocknum;
690 	inode->i_ctime = current_fs_time(inode->i_sb);
691 
692 	if (IS_SYNC(inode))
693 		udf_sync_inode(inode);
694 	else
695 		mark_inode_dirty(inode);
696 
697 	return result;
698 }
699 
700 static void udf_split_extents(struct inode *inode, int *c, int offset,
701 			      int newblocknum,
702 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
703 			      int *endnum)
704 {
705 	unsigned long blocksize = inode->i_sb->s_blocksize;
706 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
707 
708 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
709 	    (laarr[*c].extLength >> 30) ==
710 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
711 		int curr = *c;
712 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
713 			    blocksize - 1) >> blocksize_bits;
714 		int8_t etype = (laarr[curr].extLength >> 30);
715 
716 		if (blen == 1)
717 			;
718 		else if (!offset || blen == offset + 1) {
719 			laarr[curr + 2] = laarr[curr + 1];
720 			laarr[curr + 1] = laarr[curr];
721 		} else {
722 			laarr[curr + 3] = laarr[curr + 1];
723 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
724 		}
725 
726 		if (offset) {
727 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
728 				udf_free_blocks(inode->i_sb, inode,
729 						&laarr[curr].extLocation,
730 						0, offset);
731 				laarr[curr].extLength =
732 					EXT_NOT_RECORDED_NOT_ALLOCATED |
733 					(offset << blocksize_bits);
734 				laarr[curr].extLocation.logicalBlockNum = 0;
735 				laarr[curr].extLocation.
736 						partitionReferenceNum = 0;
737 			} else
738 				laarr[curr].extLength = (etype << 30) |
739 					(offset << blocksize_bits);
740 			curr++;
741 			(*c)++;
742 			(*endnum)++;
743 		}
744 
745 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
746 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
747 			laarr[curr].extLocation.partitionReferenceNum =
748 				UDF_I(inode)->i_location.partitionReferenceNum;
749 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
750 			blocksize;
751 		curr++;
752 
753 		if (blen != offset + 1) {
754 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
755 				laarr[curr].extLocation.logicalBlockNum +=
756 								offset + 1;
757 			laarr[curr].extLength = (etype << 30) |
758 				((blen - (offset + 1)) << blocksize_bits);
759 			curr++;
760 			(*endnum)++;
761 		}
762 	}
763 }
764 
765 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
766 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
767 				 int *endnum)
768 {
769 	int start, length = 0, currlength = 0, i;
770 
771 	if (*endnum >= (c + 1)) {
772 		if (!lastblock)
773 			return;
774 		else
775 			start = c;
776 	} else {
777 		if ((laarr[c + 1].extLength >> 30) ==
778 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
779 			start = c + 1;
780 			length = currlength =
781 				(((laarr[c + 1].extLength &
782 					UDF_EXTENT_LENGTH_MASK) +
783 				inode->i_sb->s_blocksize - 1) >>
784 				inode->i_sb->s_blocksize_bits);
785 		} else
786 			start = c;
787 	}
788 
789 	for (i = start + 1; i <= *endnum; i++) {
790 		if (i == *endnum) {
791 			if (lastblock)
792 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
793 		} else if ((laarr[i].extLength >> 30) ==
794 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
795 			length += (((laarr[i].extLength &
796 						UDF_EXTENT_LENGTH_MASK) +
797 				    inode->i_sb->s_blocksize - 1) >>
798 				    inode->i_sb->s_blocksize_bits);
799 		} else
800 			break;
801 	}
802 
803 	if (length) {
804 		int next = laarr[start].extLocation.logicalBlockNum +
805 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
806 			  inode->i_sb->s_blocksize - 1) >>
807 			  inode->i_sb->s_blocksize_bits);
808 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
809 				laarr[start].extLocation.partitionReferenceNum,
810 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
811 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
812 				currlength);
813 		if (numalloc) 	{
814 			if (start == (c + 1))
815 				laarr[start].extLength +=
816 					(numalloc <<
817 					 inode->i_sb->s_blocksize_bits);
818 			else {
819 				memmove(&laarr[c + 2], &laarr[c + 1],
820 					sizeof(struct long_ad) * (*endnum - (c + 1)));
821 				(*endnum)++;
822 				laarr[c + 1].extLocation.logicalBlockNum = next;
823 				laarr[c + 1].extLocation.partitionReferenceNum =
824 					laarr[c].extLocation.
825 							partitionReferenceNum;
826 				laarr[c + 1].extLength =
827 					EXT_NOT_RECORDED_ALLOCATED |
828 					(numalloc <<
829 					 inode->i_sb->s_blocksize_bits);
830 				start = c + 1;
831 			}
832 
833 			for (i = start + 1; numalloc && i < *endnum; i++) {
834 				int elen = ((laarr[i].extLength &
835 						UDF_EXTENT_LENGTH_MASK) +
836 					    inode->i_sb->s_blocksize - 1) >>
837 					    inode->i_sb->s_blocksize_bits;
838 
839 				if (elen > numalloc) {
840 					laarr[i].extLength -=
841 						(numalloc <<
842 						 inode->i_sb->s_blocksize_bits);
843 					numalloc = 0;
844 				} else {
845 					numalloc -= elen;
846 					if (*endnum > (i + 1))
847 						memmove(&laarr[i],
848 							&laarr[i + 1],
849 							sizeof(struct long_ad) *
850 							(*endnum - (i + 1)));
851 					i--;
852 					(*endnum)--;
853 				}
854 			}
855 			UDF_I(inode)->i_lenExtents +=
856 				numalloc << inode->i_sb->s_blocksize_bits;
857 		}
858 	}
859 }
860 
861 static void udf_merge_extents(struct inode *inode,
862 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
863 			      int *endnum)
864 {
865 	int i;
866 	unsigned long blocksize = inode->i_sb->s_blocksize;
867 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
868 
869 	for (i = 0; i < (*endnum - 1); i++) {
870 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
871 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
872 
873 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
874 			(((li->extLength >> 30) ==
875 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
876 			((lip1->extLocation.logicalBlockNum -
877 			  li->extLocation.logicalBlockNum) ==
878 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
879 			blocksize - 1) >> blocksize_bits)))) {
880 
881 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
882 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
883 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
884 				lip1->extLength = (lip1->extLength -
885 						  (li->extLength &
886 						   UDF_EXTENT_LENGTH_MASK) +
887 						   UDF_EXTENT_LENGTH_MASK) &
888 							~(blocksize - 1);
889 				li->extLength = (li->extLength &
890 						 UDF_EXTENT_FLAG_MASK) +
891 						(UDF_EXTENT_LENGTH_MASK + 1) -
892 						blocksize;
893 				lip1->extLocation.logicalBlockNum =
894 					li->extLocation.logicalBlockNum +
895 					((li->extLength &
896 						UDF_EXTENT_LENGTH_MASK) >>
897 						blocksize_bits);
898 			} else {
899 				li->extLength = lip1->extLength +
900 					(((li->extLength &
901 						UDF_EXTENT_LENGTH_MASK) +
902 					 blocksize - 1) & ~(blocksize - 1));
903 				if (*endnum > (i + 2))
904 					memmove(&laarr[i + 1], &laarr[i + 2],
905 						sizeof(struct long_ad) *
906 						(*endnum - (i + 2)));
907 				i--;
908 				(*endnum)--;
909 			}
910 		} else if (((li->extLength >> 30) ==
911 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
912 			   ((lip1->extLength >> 30) ==
913 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
914 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
915 					((li->extLength &
916 					  UDF_EXTENT_LENGTH_MASK) +
917 					 blocksize - 1) >> blocksize_bits);
918 			li->extLocation.logicalBlockNum = 0;
919 			li->extLocation.partitionReferenceNum = 0;
920 
921 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
922 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
923 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
924 				lip1->extLength = (lip1->extLength -
925 						   (li->extLength &
926 						   UDF_EXTENT_LENGTH_MASK) +
927 						   UDF_EXTENT_LENGTH_MASK) &
928 						   ~(blocksize - 1);
929 				li->extLength = (li->extLength &
930 						 UDF_EXTENT_FLAG_MASK) +
931 						(UDF_EXTENT_LENGTH_MASK + 1) -
932 						blocksize;
933 			} else {
934 				li->extLength = lip1->extLength +
935 					(((li->extLength &
936 						UDF_EXTENT_LENGTH_MASK) +
937 					  blocksize - 1) & ~(blocksize - 1));
938 				if (*endnum > (i + 2))
939 					memmove(&laarr[i + 1], &laarr[i + 2],
940 						sizeof(struct long_ad) *
941 						(*endnum - (i + 2)));
942 				i--;
943 				(*endnum)--;
944 			}
945 		} else if ((li->extLength >> 30) ==
946 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
947 			udf_free_blocks(inode->i_sb, inode,
948 					&li->extLocation, 0,
949 					((li->extLength &
950 						UDF_EXTENT_LENGTH_MASK) +
951 					 blocksize - 1) >> blocksize_bits);
952 			li->extLocation.logicalBlockNum = 0;
953 			li->extLocation.partitionReferenceNum = 0;
954 			li->extLength = (li->extLength &
955 						UDF_EXTENT_LENGTH_MASK) |
956 						EXT_NOT_RECORDED_NOT_ALLOCATED;
957 		}
958 	}
959 }
960 
961 static void udf_update_extents(struct inode *inode,
962 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
963 			       int startnum, int endnum,
964 			       struct extent_position *epos)
965 {
966 	int start = 0, i;
967 	struct kernel_lb_addr tmploc;
968 	uint32_t tmplen;
969 
970 	if (startnum > endnum) {
971 		for (i = 0; i < (startnum - endnum); i++)
972 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
973 					laarr[i].extLength);
974 	} else if (startnum < endnum) {
975 		for (i = 0; i < (endnum - startnum); i++) {
976 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
977 					laarr[i].extLength);
978 			udf_next_aext(inode, epos, &laarr[i].extLocation,
979 				      &laarr[i].extLength, 1);
980 			start++;
981 		}
982 	}
983 
984 	for (i = start; i < endnum; i++) {
985 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
986 		udf_write_aext(inode, epos, &laarr[i].extLocation,
987 			       laarr[i].extLength, 1);
988 	}
989 }
990 
991 struct buffer_head *udf_bread(struct inode *inode, int block,
992 			      int create, int *err)
993 {
994 	struct buffer_head *bh = NULL;
995 
996 	bh = udf_getblk(inode, block, create, err);
997 	if (!bh)
998 		return NULL;
999 
1000 	if (buffer_uptodate(bh))
1001 		return bh;
1002 
1003 	ll_rw_block(READ, 1, &bh);
1004 
1005 	wait_on_buffer(bh);
1006 	if (buffer_uptodate(bh))
1007 		return bh;
1008 
1009 	brelse(bh);
1010 	*err = -EIO;
1011 	return NULL;
1012 }
1013 
1014 void udf_truncate(struct inode *inode)
1015 {
1016 	int offset;
1017 	int err;
1018 	struct udf_inode_info *iinfo;
1019 
1020 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1021 	      S_ISLNK(inode->i_mode)))
1022 		return;
1023 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1024 		return;
1025 
1026 	lock_kernel();
1027 	iinfo = UDF_I(inode);
1028 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1029 		if (inode->i_sb->s_blocksize <
1030 				(udf_file_entry_alloc_offset(inode) +
1031 				 inode->i_size)) {
1032 			udf_expand_file_adinicb(inode, inode->i_size, &err);
1033 			if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1034 				inode->i_size = iinfo->i_lenAlloc;
1035 				unlock_kernel();
1036 				return;
1037 			} else
1038 				udf_truncate_extents(inode);
1039 		} else {
1040 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1041 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1042 				0x00, inode->i_sb->s_blocksize -
1043 				offset - udf_file_entry_alloc_offset(inode));
1044 			iinfo->i_lenAlloc = inode->i_size;
1045 		}
1046 	} else {
1047 		block_truncate_page(inode->i_mapping, inode->i_size,
1048 				    udf_get_block);
1049 		udf_truncate_extents(inode);
1050 	}
1051 
1052 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1053 	if (IS_SYNC(inode))
1054 		udf_sync_inode(inode);
1055 	else
1056 		mark_inode_dirty(inode);
1057 	unlock_kernel();
1058 }
1059 
1060 static void __udf_read_inode(struct inode *inode)
1061 {
1062 	struct buffer_head *bh = NULL;
1063 	struct fileEntry *fe;
1064 	uint16_t ident;
1065 	struct udf_inode_info *iinfo = UDF_I(inode);
1066 
1067 	/*
1068 	 * Set defaults, but the inode is still incomplete!
1069 	 * Note: get_new_inode() sets the following on a new inode:
1070 	 *      i_sb = sb
1071 	 *      i_no = ino
1072 	 *      i_flags = sb->s_flags
1073 	 *      i_state = 0
1074 	 * clean_inode(): zero fills and sets
1075 	 *      i_count = 1
1076 	 *      i_nlink = 1
1077 	 *      i_op = NULL;
1078 	 */
1079 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1080 	if (!bh) {
1081 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1082 		       inode->i_ino);
1083 		make_bad_inode(inode);
1084 		return;
1085 	}
1086 
1087 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1088 	    ident != TAG_IDENT_USE) {
1089 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1090 				"failed ident=%d\n", inode->i_ino, ident);
1091 		brelse(bh);
1092 		make_bad_inode(inode);
1093 		return;
1094 	}
1095 
1096 	fe = (struct fileEntry *)bh->b_data;
1097 
1098 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1099 		struct buffer_head *ibh;
1100 
1101 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1102 					&ident);
1103 		if (ident == TAG_IDENT_IE && ibh) {
1104 			struct buffer_head *nbh = NULL;
1105 			struct kernel_lb_addr loc;
1106 			struct indirectEntry *ie;
1107 
1108 			ie = (struct indirectEntry *)ibh->b_data;
1109 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1110 
1111 			if (ie->indirectICB.extLength &&
1112 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1113 							&ident))) {
1114 				if (ident == TAG_IDENT_FE ||
1115 					ident == TAG_IDENT_EFE) {
1116 					memcpy(&iinfo->i_location,
1117 						&loc,
1118 						sizeof(struct kernel_lb_addr));
1119 					brelse(bh);
1120 					brelse(ibh);
1121 					brelse(nbh);
1122 					__udf_read_inode(inode);
1123 					return;
1124 				}
1125 				brelse(nbh);
1126 			}
1127 		}
1128 		brelse(ibh);
1129 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1130 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1131 		       le16_to_cpu(fe->icbTag.strategyType));
1132 		brelse(bh);
1133 		make_bad_inode(inode);
1134 		return;
1135 	}
1136 	udf_fill_inode(inode, bh);
1137 
1138 	brelse(bh);
1139 }
1140 
1141 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1142 {
1143 	struct fileEntry *fe;
1144 	struct extendedFileEntry *efe;
1145 	int offset;
1146 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1147 	struct udf_inode_info *iinfo = UDF_I(inode);
1148 
1149 	fe = (struct fileEntry *)bh->b_data;
1150 	efe = (struct extendedFileEntry *)bh->b_data;
1151 
1152 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1153 		iinfo->i_strat4096 = 0;
1154 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1155 		iinfo->i_strat4096 = 1;
1156 
1157 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1158 							ICBTAG_FLAG_AD_MASK;
1159 	iinfo->i_unique = 0;
1160 	iinfo->i_lenEAttr = 0;
1161 	iinfo->i_lenExtents = 0;
1162 	iinfo->i_lenAlloc = 0;
1163 	iinfo->i_next_alloc_block = 0;
1164 	iinfo->i_next_alloc_goal = 0;
1165 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1166 		iinfo->i_efe = 1;
1167 		iinfo->i_use = 0;
1168 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1169 					sizeof(struct extendedFileEntry))) {
1170 			make_bad_inode(inode);
1171 			return;
1172 		}
1173 		memcpy(iinfo->i_ext.i_data,
1174 		       bh->b_data + sizeof(struct extendedFileEntry),
1175 		       inode->i_sb->s_blocksize -
1176 					sizeof(struct extendedFileEntry));
1177 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1178 		iinfo->i_efe = 0;
1179 		iinfo->i_use = 0;
1180 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1181 						sizeof(struct fileEntry))) {
1182 			make_bad_inode(inode);
1183 			return;
1184 		}
1185 		memcpy(iinfo->i_ext.i_data,
1186 		       bh->b_data + sizeof(struct fileEntry),
1187 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1188 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1189 		iinfo->i_efe = 0;
1190 		iinfo->i_use = 1;
1191 		iinfo->i_lenAlloc = le32_to_cpu(
1192 				((struct unallocSpaceEntry *)bh->b_data)->
1193 				 lengthAllocDescs);
1194 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1195 					sizeof(struct unallocSpaceEntry))) {
1196 			make_bad_inode(inode);
1197 			return;
1198 		}
1199 		memcpy(iinfo->i_ext.i_data,
1200 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1201 		       inode->i_sb->s_blocksize -
1202 					sizeof(struct unallocSpaceEntry));
1203 		return;
1204 	}
1205 
1206 	inode->i_uid = le32_to_cpu(fe->uid);
1207 	if (inode->i_uid == -1 ||
1208 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1209 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1210 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1211 
1212 	inode->i_gid = le32_to_cpu(fe->gid);
1213 	if (inode->i_gid == -1 ||
1214 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1215 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1216 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1217 
1218 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1219 	if (!inode->i_nlink)
1220 		inode->i_nlink = 1;
1221 
1222 	inode->i_size = le64_to_cpu(fe->informationLength);
1223 	iinfo->i_lenExtents = inode->i_size;
1224 
1225 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1226 			sbi->s_fmode != UDF_INVALID_MODE)
1227 		inode->i_mode = sbi->s_fmode;
1228 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1229 			sbi->s_dmode != UDF_INVALID_MODE)
1230 		inode->i_mode = sbi->s_dmode;
1231 	else
1232 		inode->i_mode = udf_convert_permissions(fe);
1233 	inode->i_mode &= ~sbi->s_umask;
1234 
1235 	if (iinfo->i_efe == 0) {
1236 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1237 			(inode->i_sb->s_blocksize_bits - 9);
1238 
1239 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1240 			inode->i_atime = sbi->s_record_time;
1241 
1242 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1243 					    fe->modificationTime))
1244 			inode->i_mtime = sbi->s_record_time;
1245 
1246 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1247 			inode->i_ctime = sbi->s_record_time;
1248 
1249 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1250 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1251 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1252 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1253 	} else {
1254 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1255 		    (inode->i_sb->s_blocksize_bits - 9);
1256 
1257 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1258 			inode->i_atime = sbi->s_record_time;
1259 
1260 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1261 					    efe->modificationTime))
1262 			inode->i_mtime = sbi->s_record_time;
1263 
1264 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1265 			iinfo->i_crtime = sbi->s_record_time;
1266 
1267 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1268 			inode->i_ctime = sbi->s_record_time;
1269 
1270 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1271 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1272 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1273 		offset = sizeof(struct extendedFileEntry) +
1274 							iinfo->i_lenEAttr;
1275 	}
1276 
1277 	switch (fe->icbTag.fileType) {
1278 	case ICBTAG_FILE_TYPE_DIRECTORY:
1279 		inode->i_op = &udf_dir_inode_operations;
1280 		inode->i_fop = &udf_dir_operations;
1281 		inode->i_mode |= S_IFDIR;
1282 		inc_nlink(inode);
1283 		break;
1284 	case ICBTAG_FILE_TYPE_REALTIME:
1285 	case ICBTAG_FILE_TYPE_REGULAR:
1286 	case ICBTAG_FILE_TYPE_UNDEF:
1287 	case ICBTAG_FILE_TYPE_VAT20:
1288 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1289 			inode->i_data.a_ops = &udf_adinicb_aops;
1290 		else
1291 			inode->i_data.a_ops = &udf_aops;
1292 		inode->i_op = &udf_file_inode_operations;
1293 		inode->i_fop = &udf_file_operations;
1294 		inode->i_mode |= S_IFREG;
1295 		break;
1296 	case ICBTAG_FILE_TYPE_BLOCK:
1297 		inode->i_mode |= S_IFBLK;
1298 		break;
1299 	case ICBTAG_FILE_TYPE_CHAR:
1300 		inode->i_mode |= S_IFCHR;
1301 		break;
1302 	case ICBTAG_FILE_TYPE_FIFO:
1303 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1304 		break;
1305 	case ICBTAG_FILE_TYPE_SOCKET:
1306 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1307 		break;
1308 	case ICBTAG_FILE_TYPE_SYMLINK:
1309 		inode->i_data.a_ops = &udf_symlink_aops;
1310 		inode->i_op = &page_symlink_inode_operations;
1311 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1312 		break;
1313 	case ICBTAG_FILE_TYPE_MAIN:
1314 		udf_debug("METADATA FILE-----\n");
1315 		break;
1316 	case ICBTAG_FILE_TYPE_MIRROR:
1317 		udf_debug("METADATA MIRROR FILE-----\n");
1318 		break;
1319 	case ICBTAG_FILE_TYPE_BITMAP:
1320 		udf_debug("METADATA BITMAP FILE-----\n");
1321 		break;
1322 	default:
1323 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1324 				"file type=%d\n", inode->i_ino,
1325 				fe->icbTag.fileType);
1326 		make_bad_inode(inode);
1327 		return;
1328 	}
1329 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1330 		struct deviceSpec *dsea =
1331 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1332 		if (dsea) {
1333 			init_special_inode(inode, inode->i_mode,
1334 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1335 				      le32_to_cpu(dsea->minorDeviceIdent)));
1336 			/* Developer ID ??? */
1337 		} else
1338 			make_bad_inode(inode);
1339 	}
1340 }
1341 
1342 static int udf_alloc_i_data(struct inode *inode, size_t size)
1343 {
1344 	struct udf_inode_info *iinfo = UDF_I(inode);
1345 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1346 
1347 	if (!iinfo->i_ext.i_data) {
1348 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1349 				"no free memory\n", inode->i_ino);
1350 		return -ENOMEM;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 static mode_t udf_convert_permissions(struct fileEntry *fe)
1357 {
1358 	mode_t mode;
1359 	uint32_t permissions;
1360 	uint32_t flags;
1361 
1362 	permissions = le32_to_cpu(fe->permissions);
1363 	flags = le16_to_cpu(fe->icbTag.flags);
1364 
1365 	mode =	((permissions) & S_IRWXO) |
1366 		((permissions >> 2) & S_IRWXG) |
1367 		((permissions >> 4) & S_IRWXU) |
1368 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1369 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1370 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1371 
1372 	return mode;
1373 }
1374 
1375 int udf_write_inode(struct inode *inode, int sync)
1376 {
1377 	int ret;
1378 
1379 	lock_kernel();
1380 	ret = udf_update_inode(inode, sync);
1381 	unlock_kernel();
1382 
1383 	return ret;
1384 }
1385 
1386 int udf_sync_inode(struct inode *inode)
1387 {
1388 	return udf_update_inode(inode, 1);
1389 }
1390 
1391 static int udf_update_inode(struct inode *inode, int do_sync)
1392 {
1393 	struct buffer_head *bh = NULL;
1394 	struct fileEntry *fe;
1395 	struct extendedFileEntry *efe;
1396 	uint32_t udfperms;
1397 	uint16_t icbflags;
1398 	uint16_t crclen;
1399 	int err = 0;
1400 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1401 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1402 	struct udf_inode_info *iinfo = UDF_I(inode);
1403 
1404 	bh = udf_tread(inode->i_sb,
1405 			udf_get_lb_pblock(inode->i_sb,
1406 					  &iinfo->i_location, 0));
1407 	if (!bh) {
1408 		udf_debug("bread failure\n");
1409 		return -EIO;
1410 	}
1411 
1412 	memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1413 
1414 	fe = (struct fileEntry *)bh->b_data;
1415 	efe = (struct extendedFileEntry *)bh->b_data;
1416 
1417 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1418 		struct unallocSpaceEntry *use =
1419 			(struct unallocSpaceEntry *)bh->b_data;
1420 
1421 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1422 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1423 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1424 					sizeof(struct unallocSpaceEntry));
1425 		crclen = sizeof(struct unallocSpaceEntry) +
1426 				iinfo->i_lenAlloc - sizeof(struct tag);
1427 		use->descTag.tagLocation = cpu_to_le32(
1428 						iinfo->i_location.
1429 							logicalBlockNum);
1430 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1431 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1432 							   sizeof(struct tag),
1433 							   crclen));
1434 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1435 
1436 		mark_buffer_dirty(bh);
1437 		brelse(bh);
1438 		return err;
1439 	}
1440 
1441 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1442 		fe->uid = cpu_to_le32(-1);
1443 	else
1444 		fe->uid = cpu_to_le32(inode->i_uid);
1445 
1446 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1447 		fe->gid = cpu_to_le32(-1);
1448 	else
1449 		fe->gid = cpu_to_le32(inode->i_gid);
1450 
1451 	udfperms = ((inode->i_mode & S_IRWXO)) |
1452 		   ((inode->i_mode & S_IRWXG) << 2) |
1453 		   ((inode->i_mode & S_IRWXU) << 4);
1454 
1455 	udfperms |= (le32_to_cpu(fe->permissions) &
1456 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1457 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1458 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1459 	fe->permissions = cpu_to_le32(udfperms);
1460 
1461 	if (S_ISDIR(inode->i_mode))
1462 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1463 	else
1464 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1465 
1466 	fe->informationLength = cpu_to_le64(inode->i_size);
1467 
1468 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1469 		struct regid *eid;
1470 		struct deviceSpec *dsea =
1471 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1472 		if (!dsea) {
1473 			dsea = (struct deviceSpec *)
1474 				udf_add_extendedattr(inode,
1475 						     sizeof(struct deviceSpec) +
1476 						     sizeof(struct regid), 12, 0x3);
1477 			dsea->attrType = cpu_to_le32(12);
1478 			dsea->attrSubtype = 1;
1479 			dsea->attrLength = cpu_to_le32(
1480 						sizeof(struct deviceSpec) +
1481 						sizeof(struct regid));
1482 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1483 		}
1484 		eid = (struct regid *)dsea->impUse;
1485 		memset(eid, 0, sizeof(struct regid));
1486 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1487 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1488 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1489 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1490 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1491 	}
1492 
1493 	if (iinfo->i_efe == 0) {
1494 		memcpy(bh->b_data + sizeof(struct fileEntry),
1495 		       iinfo->i_ext.i_data,
1496 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1497 		fe->logicalBlocksRecorded = cpu_to_le64(
1498 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1499 			(blocksize_bits - 9));
1500 
1501 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1502 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1503 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1504 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1505 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1506 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1507 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1508 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1509 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1510 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1511 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1512 		crclen = sizeof(struct fileEntry);
1513 	} else {
1514 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1515 		       iinfo->i_ext.i_data,
1516 		       inode->i_sb->s_blocksize -
1517 					sizeof(struct extendedFileEntry));
1518 		efe->objectSize = cpu_to_le64(inode->i_size);
1519 		efe->logicalBlocksRecorded = cpu_to_le64(
1520 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1521 			(blocksize_bits - 9));
1522 
1523 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1524 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1525 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1526 			iinfo->i_crtime = inode->i_atime;
1527 
1528 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1529 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1530 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1531 			iinfo->i_crtime = inode->i_mtime;
1532 
1533 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1534 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1535 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1536 			iinfo->i_crtime = inode->i_ctime;
1537 
1538 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1539 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1540 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1541 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1542 
1543 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1544 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1545 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1546 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1547 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1548 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1549 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1550 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1551 		crclen = sizeof(struct extendedFileEntry);
1552 	}
1553 	if (iinfo->i_strat4096) {
1554 		fe->icbTag.strategyType = cpu_to_le16(4096);
1555 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1556 		fe->icbTag.numEntries = cpu_to_le16(2);
1557 	} else {
1558 		fe->icbTag.strategyType = cpu_to_le16(4);
1559 		fe->icbTag.numEntries = cpu_to_le16(1);
1560 	}
1561 
1562 	if (S_ISDIR(inode->i_mode))
1563 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1564 	else if (S_ISREG(inode->i_mode))
1565 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1566 	else if (S_ISLNK(inode->i_mode))
1567 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1568 	else if (S_ISBLK(inode->i_mode))
1569 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1570 	else if (S_ISCHR(inode->i_mode))
1571 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1572 	else if (S_ISFIFO(inode->i_mode))
1573 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1574 	else if (S_ISSOCK(inode->i_mode))
1575 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1576 
1577 	icbflags =	iinfo->i_alloc_type |
1578 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1579 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1580 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1581 			(le16_to_cpu(fe->icbTag.flags) &
1582 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1583 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1584 
1585 	fe->icbTag.flags = cpu_to_le16(icbflags);
1586 	if (sbi->s_udfrev >= 0x0200)
1587 		fe->descTag.descVersion = cpu_to_le16(3);
1588 	else
1589 		fe->descTag.descVersion = cpu_to_le16(2);
1590 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1591 	fe->descTag.tagLocation = cpu_to_le32(
1592 					iinfo->i_location.logicalBlockNum);
1593 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
1594 								sizeof(struct tag);
1595 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1596 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1597 						  crclen));
1598 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1599 
1600 	/* write the data blocks */
1601 	mark_buffer_dirty(bh);
1602 	if (do_sync) {
1603 		sync_dirty_buffer(bh);
1604 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1605 			printk(KERN_WARNING "IO error syncing udf inode "
1606 				"[%s:%08lx]\n", inode->i_sb->s_id,
1607 				inode->i_ino);
1608 			err = -EIO;
1609 		}
1610 	}
1611 	brelse(bh);
1612 
1613 	return err;
1614 }
1615 
1616 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1617 {
1618 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1619 	struct inode *inode = iget_locked(sb, block);
1620 
1621 	if (!inode)
1622 		return NULL;
1623 
1624 	if (inode->i_state & I_NEW) {
1625 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1626 		__udf_read_inode(inode);
1627 		unlock_new_inode(inode);
1628 	}
1629 
1630 	if (is_bad_inode(inode))
1631 		goto out_iput;
1632 
1633 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1634 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1635 		udf_debug("block=%d, partition=%d out of range\n",
1636 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1637 		make_bad_inode(inode);
1638 		goto out_iput;
1639 	}
1640 
1641 	return inode;
1642 
1643  out_iput:
1644 	iput(inode);
1645 	return NULL;
1646 }
1647 
1648 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1649 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1650 {
1651 	int adsize;
1652 	struct short_ad *sad = NULL;
1653 	struct long_ad *lad = NULL;
1654 	struct allocExtDesc *aed;
1655 	int8_t etype;
1656 	uint8_t *ptr;
1657 	struct udf_inode_info *iinfo = UDF_I(inode);
1658 
1659 	if (!epos->bh)
1660 		ptr = iinfo->i_ext.i_data + epos->offset -
1661 			udf_file_entry_alloc_offset(inode) +
1662 			iinfo->i_lenEAttr;
1663 	else
1664 		ptr = epos->bh->b_data + epos->offset;
1665 
1666 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1667 		adsize = sizeof(struct short_ad);
1668 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1669 		adsize = sizeof(struct long_ad);
1670 	else
1671 		return -1;
1672 
1673 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1674 		char *sptr, *dptr;
1675 		struct buffer_head *nbh;
1676 		int err, loffset;
1677 		struct kernel_lb_addr obloc = epos->block;
1678 
1679 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1680 						obloc.partitionReferenceNum,
1681 						obloc.logicalBlockNum, &err);
1682 		if (!epos->block.logicalBlockNum)
1683 			return -1;
1684 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1685 								 &epos->block,
1686 								 0));
1687 		if (!nbh)
1688 			return -1;
1689 		lock_buffer(nbh);
1690 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1691 		set_buffer_uptodate(nbh);
1692 		unlock_buffer(nbh);
1693 		mark_buffer_dirty_inode(nbh, inode);
1694 
1695 		aed = (struct allocExtDesc *)(nbh->b_data);
1696 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1697 			aed->previousAllocExtLocation =
1698 					cpu_to_le32(obloc.logicalBlockNum);
1699 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1700 			loffset = epos->offset;
1701 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1702 			sptr = ptr - adsize;
1703 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1704 			memcpy(dptr, sptr, adsize);
1705 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1706 		} else {
1707 			loffset = epos->offset + adsize;
1708 			aed->lengthAllocDescs = cpu_to_le32(0);
1709 			sptr = ptr;
1710 			epos->offset = sizeof(struct allocExtDesc);
1711 
1712 			if (epos->bh) {
1713 				aed = (struct allocExtDesc *)epos->bh->b_data;
1714 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1715 			} else {
1716 				iinfo->i_lenAlloc += adsize;
1717 				mark_inode_dirty(inode);
1718 			}
1719 		}
1720 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1721 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1722 				    epos->block.logicalBlockNum, sizeof(struct tag));
1723 		else
1724 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1725 				    epos->block.logicalBlockNum, sizeof(struct tag));
1726 		switch (iinfo->i_alloc_type) {
1727 		case ICBTAG_FLAG_AD_SHORT:
1728 			sad = (struct short_ad *)sptr;
1729 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1730 						     inode->i_sb->s_blocksize);
1731 			sad->extPosition =
1732 				cpu_to_le32(epos->block.logicalBlockNum);
1733 			break;
1734 		case ICBTAG_FLAG_AD_LONG:
1735 			lad = (struct long_ad *)sptr;
1736 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1737 						     inode->i_sb->s_blocksize);
1738 			lad->extLocation = cpu_to_lelb(epos->block);
1739 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1740 			break;
1741 		}
1742 		if (epos->bh) {
1743 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1744 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1745 				udf_update_tag(epos->bh->b_data, loffset);
1746 			else
1747 				udf_update_tag(epos->bh->b_data,
1748 						sizeof(struct allocExtDesc));
1749 			mark_buffer_dirty_inode(epos->bh, inode);
1750 			brelse(epos->bh);
1751 		} else {
1752 			mark_inode_dirty(inode);
1753 		}
1754 		epos->bh = nbh;
1755 	}
1756 
1757 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1758 
1759 	if (!epos->bh) {
1760 		iinfo->i_lenAlloc += adsize;
1761 		mark_inode_dirty(inode);
1762 	} else {
1763 		aed = (struct allocExtDesc *)epos->bh->b_data;
1764 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1765 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1766 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1767 			udf_update_tag(epos->bh->b_data,
1768 					epos->offset + (inc ? 0 : adsize));
1769 		else
1770 			udf_update_tag(epos->bh->b_data,
1771 					sizeof(struct allocExtDesc));
1772 		mark_buffer_dirty_inode(epos->bh, inode);
1773 	}
1774 
1775 	return etype;
1776 }
1777 
1778 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1779 		      struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1780 {
1781 	int adsize;
1782 	uint8_t *ptr;
1783 	struct short_ad *sad;
1784 	struct long_ad *lad;
1785 	struct udf_inode_info *iinfo = UDF_I(inode);
1786 
1787 	if (!epos->bh)
1788 		ptr = iinfo->i_ext.i_data + epos->offset -
1789 			udf_file_entry_alloc_offset(inode) +
1790 			iinfo->i_lenEAttr;
1791 	else
1792 		ptr = epos->bh->b_data + epos->offset;
1793 
1794 	switch (iinfo->i_alloc_type) {
1795 	case ICBTAG_FLAG_AD_SHORT:
1796 		sad = (struct short_ad *)ptr;
1797 		sad->extLength = cpu_to_le32(elen);
1798 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1799 		adsize = sizeof(struct short_ad);
1800 		break;
1801 	case ICBTAG_FLAG_AD_LONG:
1802 		lad = (struct long_ad *)ptr;
1803 		lad->extLength = cpu_to_le32(elen);
1804 		lad->extLocation = cpu_to_lelb(*eloc);
1805 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1806 		adsize = sizeof(struct long_ad);
1807 		break;
1808 	default:
1809 		return -1;
1810 	}
1811 
1812 	if (epos->bh) {
1813 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1814 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1815 			struct allocExtDesc *aed =
1816 				(struct allocExtDesc *)epos->bh->b_data;
1817 			udf_update_tag(epos->bh->b_data,
1818 				       le32_to_cpu(aed->lengthAllocDescs) +
1819 				       sizeof(struct allocExtDesc));
1820 		}
1821 		mark_buffer_dirty_inode(epos->bh, inode);
1822 	} else {
1823 		mark_inode_dirty(inode);
1824 	}
1825 
1826 	if (inc)
1827 		epos->offset += adsize;
1828 
1829 	return (elen >> 30);
1830 }
1831 
1832 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1833 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1834 {
1835 	int8_t etype;
1836 
1837 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1838 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1839 		int block;
1840 		epos->block = *eloc;
1841 		epos->offset = sizeof(struct allocExtDesc);
1842 		brelse(epos->bh);
1843 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1844 		epos->bh = udf_tread(inode->i_sb, block);
1845 		if (!epos->bh) {
1846 			udf_debug("reading block %d failed!\n", block);
1847 			return -1;
1848 		}
1849 	}
1850 
1851 	return etype;
1852 }
1853 
1854 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1855 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1856 {
1857 	int alen;
1858 	int8_t etype;
1859 	uint8_t *ptr;
1860 	struct short_ad *sad;
1861 	struct long_ad *lad;
1862 	struct udf_inode_info *iinfo = UDF_I(inode);
1863 
1864 	if (!epos->bh) {
1865 		if (!epos->offset)
1866 			epos->offset = udf_file_entry_alloc_offset(inode);
1867 		ptr = iinfo->i_ext.i_data + epos->offset -
1868 			udf_file_entry_alloc_offset(inode) +
1869 			iinfo->i_lenEAttr;
1870 		alen = udf_file_entry_alloc_offset(inode) +
1871 							iinfo->i_lenAlloc;
1872 	} else {
1873 		if (!epos->offset)
1874 			epos->offset = sizeof(struct allocExtDesc);
1875 		ptr = epos->bh->b_data + epos->offset;
1876 		alen = sizeof(struct allocExtDesc) +
1877 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1878 							lengthAllocDescs);
1879 	}
1880 
1881 	switch (iinfo->i_alloc_type) {
1882 	case ICBTAG_FLAG_AD_SHORT:
1883 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1884 		if (!sad)
1885 			return -1;
1886 		etype = le32_to_cpu(sad->extLength) >> 30;
1887 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1888 		eloc->partitionReferenceNum =
1889 				iinfo->i_location.partitionReferenceNum;
1890 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1891 		break;
1892 	case ICBTAG_FLAG_AD_LONG:
1893 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1894 		if (!lad)
1895 			return -1;
1896 		etype = le32_to_cpu(lad->extLength) >> 30;
1897 		*eloc = lelb_to_cpu(lad->extLocation);
1898 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1899 		break;
1900 	default:
1901 		udf_debug("alloc_type = %d unsupported\n",
1902 				iinfo->i_alloc_type);
1903 		return -1;
1904 	}
1905 
1906 	return etype;
1907 }
1908 
1909 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1910 			      struct kernel_lb_addr neloc, uint32_t nelen)
1911 {
1912 	struct kernel_lb_addr oeloc;
1913 	uint32_t oelen;
1914 	int8_t etype;
1915 
1916 	if (epos.bh)
1917 		get_bh(epos.bh);
1918 
1919 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1920 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
1921 		neloc = oeloc;
1922 		nelen = (etype << 30) | oelen;
1923 	}
1924 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
1925 	brelse(epos.bh);
1926 
1927 	return (nelen >> 30);
1928 }
1929 
1930 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1931 		       struct kernel_lb_addr eloc, uint32_t elen)
1932 {
1933 	struct extent_position oepos;
1934 	int adsize;
1935 	int8_t etype;
1936 	struct allocExtDesc *aed;
1937 	struct udf_inode_info *iinfo;
1938 
1939 	if (epos.bh) {
1940 		get_bh(epos.bh);
1941 		get_bh(epos.bh);
1942 	}
1943 
1944 	iinfo = UDF_I(inode);
1945 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1946 		adsize = sizeof(struct short_ad);
1947 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1948 		adsize = sizeof(struct long_ad);
1949 	else
1950 		adsize = 0;
1951 
1952 	oepos = epos;
1953 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1954 		return -1;
1955 
1956 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1957 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1958 		if (oepos.bh != epos.bh) {
1959 			oepos.block = epos.block;
1960 			brelse(oepos.bh);
1961 			get_bh(epos.bh);
1962 			oepos.bh = epos.bh;
1963 			oepos.offset = epos.offset - adsize;
1964 		}
1965 	}
1966 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1967 	elen = 0;
1968 
1969 	if (epos.bh != oepos.bh) {
1970 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1971 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1972 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1973 		if (!oepos.bh) {
1974 			iinfo->i_lenAlloc -= (adsize * 2);
1975 			mark_inode_dirty(inode);
1976 		} else {
1977 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1978 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1979 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1980 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1981 				udf_update_tag(oepos.bh->b_data,
1982 						oepos.offset - (2 * adsize));
1983 			else
1984 				udf_update_tag(oepos.bh->b_data,
1985 						sizeof(struct allocExtDesc));
1986 			mark_buffer_dirty_inode(oepos.bh, inode);
1987 		}
1988 	} else {
1989 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1990 		if (!oepos.bh) {
1991 			iinfo->i_lenAlloc -= adsize;
1992 			mark_inode_dirty(inode);
1993 		} else {
1994 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1995 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1996 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1997 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1998 				udf_update_tag(oepos.bh->b_data,
1999 						epos.offset - adsize);
2000 			else
2001 				udf_update_tag(oepos.bh->b_data,
2002 						sizeof(struct allocExtDesc));
2003 			mark_buffer_dirty_inode(oepos.bh, inode);
2004 		}
2005 	}
2006 
2007 	brelse(epos.bh);
2008 	brelse(oepos.bh);
2009 
2010 	return (elen >> 30);
2011 }
2012 
2013 int8_t inode_bmap(struct inode *inode, sector_t block,
2014 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2015 		  uint32_t *elen, sector_t *offset)
2016 {
2017 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2018 	loff_t lbcount = 0, bcount =
2019 	    (loff_t) block << blocksize_bits;
2020 	int8_t etype;
2021 	struct udf_inode_info *iinfo;
2022 
2023 	iinfo = UDF_I(inode);
2024 	pos->offset = 0;
2025 	pos->block = iinfo->i_location;
2026 	pos->bh = NULL;
2027 	*elen = 0;
2028 
2029 	do {
2030 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2031 		if (etype == -1) {
2032 			*offset = (bcount - lbcount) >> blocksize_bits;
2033 			iinfo->i_lenExtents = lbcount;
2034 			return -1;
2035 		}
2036 		lbcount += *elen;
2037 	} while (lbcount <= bcount);
2038 
2039 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2040 
2041 	return etype;
2042 }
2043 
2044 long udf_block_map(struct inode *inode, sector_t block)
2045 {
2046 	struct kernel_lb_addr eloc;
2047 	uint32_t elen;
2048 	sector_t offset;
2049 	struct extent_position epos = {};
2050 	int ret;
2051 
2052 	lock_kernel();
2053 
2054 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2055 						(EXT_RECORDED_ALLOCATED >> 30))
2056 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2057 	else
2058 		ret = 0;
2059 
2060 	unlock_kernel();
2061 	brelse(epos.bh);
2062 
2063 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2064 		return udf_fixed_to_variable(ret);
2065 	else
2066 		return ret;
2067 }
2068