1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 static umode_t udf_convert_permissions(struct fileEntry *); 49 static int udf_update_inode(struct inode *, int); 50 static int udf_sync_inode(struct inode *inode); 51 static int udf_alloc_i_data(struct inode *inode, size_t size); 52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 53 static int8_t udf_insert_aext(struct inode *, struct extent_position, 54 struct kernel_lb_addr, uint32_t); 55 static void udf_split_extents(struct inode *, int *, int, int, 56 struct kernel_long_ad *, int *); 57 static void udf_prealloc_extents(struct inode *, int, int, 58 struct kernel_long_ad *, int *); 59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 61 int, struct extent_position *); 62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 63 64 static void __udf_clear_extent_cache(struct inode *inode) 65 { 66 struct udf_inode_info *iinfo = UDF_I(inode); 67 68 if (iinfo->cached_extent.lstart != -1) { 69 brelse(iinfo->cached_extent.epos.bh); 70 iinfo->cached_extent.lstart = -1; 71 } 72 } 73 74 /* Invalidate extent cache */ 75 static void udf_clear_extent_cache(struct inode *inode) 76 { 77 struct udf_inode_info *iinfo = UDF_I(inode); 78 79 spin_lock(&iinfo->i_extent_cache_lock); 80 __udf_clear_extent_cache(inode); 81 spin_unlock(&iinfo->i_extent_cache_lock); 82 } 83 84 /* Return contents of extent cache */ 85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 86 loff_t *lbcount, struct extent_position *pos) 87 { 88 struct udf_inode_info *iinfo = UDF_I(inode); 89 int ret = 0; 90 91 spin_lock(&iinfo->i_extent_cache_lock); 92 if ((iinfo->cached_extent.lstart <= bcount) && 93 (iinfo->cached_extent.lstart != -1)) { 94 /* Cache hit */ 95 *lbcount = iinfo->cached_extent.lstart; 96 memcpy(pos, &iinfo->cached_extent.epos, 97 sizeof(struct extent_position)); 98 if (pos->bh) 99 get_bh(pos->bh); 100 ret = 1; 101 } 102 spin_unlock(&iinfo->i_extent_cache_lock); 103 return ret; 104 } 105 106 /* Add extent to extent cache */ 107 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 108 struct extent_position *pos) 109 { 110 struct udf_inode_info *iinfo = UDF_I(inode); 111 112 spin_lock(&iinfo->i_extent_cache_lock); 113 /* Invalidate previously cached extent */ 114 __udf_clear_extent_cache(inode); 115 if (pos->bh) 116 get_bh(pos->bh); 117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 118 iinfo->cached_extent.lstart = estart; 119 switch (iinfo->i_alloc_type) { 120 case ICBTAG_FLAG_AD_SHORT: 121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 122 break; 123 case ICBTAG_FLAG_AD_LONG: 124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 125 break; 126 } 127 spin_unlock(&iinfo->i_extent_cache_lock); 128 } 129 130 void udf_evict_inode(struct inode *inode) 131 { 132 struct udf_inode_info *iinfo = UDF_I(inode); 133 int want_delete = 0; 134 135 if (!inode->i_nlink && !is_bad_inode(inode)) { 136 want_delete = 1; 137 udf_setsize(inode, 0); 138 udf_update_inode(inode, IS_SYNC(inode)); 139 } 140 truncate_inode_pages_final(&inode->i_data); 141 invalidate_inode_buffers(inode); 142 clear_inode(inode); 143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 144 inode->i_size != iinfo->i_lenExtents) { 145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 146 inode->i_ino, inode->i_mode, 147 (unsigned long long)inode->i_size, 148 (unsigned long long)iinfo->i_lenExtents); 149 } 150 kfree(iinfo->i_ext.i_data); 151 iinfo->i_ext.i_data = NULL; 152 udf_clear_extent_cache(inode); 153 if (want_delete) { 154 udf_free_inode(inode); 155 } 156 } 157 158 static void udf_write_failed(struct address_space *mapping, loff_t to) 159 { 160 struct inode *inode = mapping->host; 161 struct udf_inode_info *iinfo = UDF_I(inode); 162 loff_t isize = inode->i_size; 163 164 if (to > isize) { 165 truncate_pagecache(inode, isize); 166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 167 down_write(&iinfo->i_data_sem); 168 udf_clear_extent_cache(inode); 169 udf_truncate_extents(inode); 170 up_write(&iinfo->i_data_sem); 171 } 172 } 173 } 174 175 static int udf_writepage(struct page *page, struct writeback_control *wbc) 176 { 177 return block_write_full_page(page, udf_get_block, wbc); 178 } 179 180 static int udf_writepages(struct address_space *mapping, 181 struct writeback_control *wbc) 182 { 183 return mpage_writepages(mapping, wbc, udf_get_block); 184 } 185 186 static int udf_readpage(struct file *file, struct page *page) 187 { 188 return mpage_readpage(page, udf_get_block); 189 } 190 191 static int udf_readpages(struct file *file, struct address_space *mapping, 192 struct list_head *pages, unsigned nr_pages) 193 { 194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 195 } 196 197 static int udf_write_begin(struct file *file, struct address_space *mapping, 198 loff_t pos, unsigned len, unsigned flags, 199 struct page **pagep, void **fsdata) 200 { 201 int ret; 202 203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 204 if (unlikely(ret)) 205 udf_write_failed(mapping, pos + len); 206 return ret; 207 } 208 209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 210 { 211 struct file *file = iocb->ki_filp; 212 struct address_space *mapping = file->f_mapping; 213 struct inode *inode = mapping->host; 214 size_t count = iov_iter_count(iter); 215 ssize_t ret; 216 217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 219 udf_write_failed(mapping, iocb->ki_pos + count); 220 return ret; 221 } 222 223 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 224 { 225 return generic_block_bmap(mapping, block, udf_get_block); 226 } 227 228 const struct address_space_operations udf_aops = { 229 .readpage = udf_readpage, 230 .readpages = udf_readpages, 231 .writepage = udf_writepage, 232 .writepages = udf_writepages, 233 .write_begin = udf_write_begin, 234 .write_end = generic_write_end, 235 .direct_IO = udf_direct_IO, 236 .bmap = udf_bmap, 237 }; 238 239 /* 240 * Expand file stored in ICB to a normal one-block-file 241 * 242 * This function requires i_data_sem for writing and releases it. 243 * This function requires i_mutex held 244 */ 245 int udf_expand_file_adinicb(struct inode *inode) 246 { 247 struct page *page; 248 char *kaddr; 249 struct udf_inode_info *iinfo = UDF_I(inode); 250 int err; 251 struct writeback_control udf_wbc = { 252 .sync_mode = WB_SYNC_NONE, 253 .nr_to_write = 1, 254 }; 255 256 WARN_ON_ONCE(!inode_is_locked(inode)); 257 if (!iinfo->i_lenAlloc) { 258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 260 else 261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 262 /* from now on we have normal address_space methods */ 263 inode->i_data.a_ops = &udf_aops; 264 up_write(&iinfo->i_data_sem); 265 mark_inode_dirty(inode); 266 return 0; 267 } 268 /* 269 * Release i_data_sem so that we can lock a page - page lock ranks 270 * above i_data_sem. i_mutex still protects us against file changes. 271 */ 272 up_write(&iinfo->i_data_sem); 273 274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 275 if (!page) 276 return -ENOMEM; 277 278 if (!PageUptodate(page)) { 279 kaddr = kmap_atomic(page); 280 memset(kaddr + iinfo->i_lenAlloc, 0x00, 281 PAGE_SIZE - iinfo->i_lenAlloc); 282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 283 iinfo->i_lenAlloc); 284 flush_dcache_page(page); 285 SetPageUptodate(page); 286 kunmap_atomic(kaddr); 287 } 288 down_write(&iinfo->i_data_sem); 289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 290 iinfo->i_lenAlloc); 291 iinfo->i_lenAlloc = 0; 292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 294 else 295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 296 /* from now on we have normal address_space methods */ 297 inode->i_data.a_ops = &udf_aops; 298 up_write(&iinfo->i_data_sem); 299 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 300 if (err) { 301 /* Restore everything back so that we don't lose data... */ 302 lock_page(page); 303 down_write(&iinfo->i_data_sem); 304 kaddr = kmap_atomic(page); 305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 306 inode->i_size); 307 kunmap_atomic(kaddr); 308 unlock_page(page); 309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 310 inode->i_data.a_ops = &udf_adinicb_aops; 311 up_write(&iinfo->i_data_sem); 312 } 313 put_page(page); 314 mark_inode_dirty(inode); 315 316 return err; 317 } 318 319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 320 int *err) 321 { 322 int newblock; 323 struct buffer_head *dbh = NULL; 324 struct kernel_lb_addr eloc; 325 uint8_t alloctype; 326 struct extent_position epos; 327 328 struct udf_fileident_bh sfibh, dfibh; 329 loff_t f_pos = udf_ext0_offset(inode); 330 int size = udf_ext0_offset(inode) + inode->i_size; 331 struct fileIdentDesc cfi, *sfi, *dfi; 332 struct udf_inode_info *iinfo = UDF_I(inode); 333 334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 335 alloctype = ICBTAG_FLAG_AD_SHORT; 336 else 337 alloctype = ICBTAG_FLAG_AD_LONG; 338 339 if (!inode->i_size) { 340 iinfo->i_alloc_type = alloctype; 341 mark_inode_dirty(inode); 342 return NULL; 343 } 344 345 /* alloc block, and copy data to it */ 346 *block = udf_new_block(inode->i_sb, inode, 347 iinfo->i_location.partitionReferenceNum, 348 iinfo->i_location.logicalBlockNum, err); 349 if (!(*block)) 350 return NULL; 351 newblock = udf_get_pblock(inode->i_sb, *block, 352 iinfo->i_location.partitionReferenceNum, 353 0); 354 if (!newblock) 355 return NULL; 356 dbh = udf_tgetblk(inode->i_sb, newblock); 357 if (!dbh) 358 return NULL; 359 lock_buffer(dbh); 360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 361 set_buffer_uptodate(dbh); 362 unlock_buffer(dbh); 363 mark_buffer_dirty_inode(dbh, inode); 364 365 sfibh.soffset = sfibh.eoffset = 366 f_pos & (inode->i_sb->s_blocksize - 1); 367 sfibh.sbh = sfibh.ebh = NULL; 368 dfibh.soffset = dfibh.eoffset = 0; 369 dfibh.sbh = dfibh.ebh = dbh; 370 while (f_pos < size) { 371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 373 NULL, NULL, NULL); 374 if (!sfi) { 375 brelse(dbh); 376 return NULL; 377 } 378 iinfo->i_alloc_type = alloctype; 379 sfi->descTag.tagLocation = cpu_to_le32(*block); 380 dfibh.soffset = dfibh.eoffset; 381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 384 sfi->fileIdent + 385 le16_to_cpu(sfi->lengthOfImpUse))) { 386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 387 brelse(dbh); 388 return NULL; 389 } 390 } 391 mark_buffer_dirty_inode(dbh, inode); 392 393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 394 iinfo->i_lenAlloc); 395 iinfo->i_lenAlloc = 0; 396 eloc.logicalBlockNum = *block; 397 eloc.partitionReferenceNum = 398 iinfo->i_location.partitionReferenceNum; 399 iinfo->i_lenExtents = inode->i_size; 400 epos.bh = NULL; 401 epos.block = iinfo->i_location; 402 epos.offset = udf_file_entry_alloc_offset(inode); 403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 404 /* UniqueID stuff */ 405 406 brelse(epos.bh); 407 mark_inode_dirty(inode); 408 return dbh; 409 } 410 411 static int udf_get_block(struct inode *inode, sector_t block, 412 struct buffer_head *bh_result, int create) 413 { 414 int err, new; 415 sector_t phys = 0; 416 struct udf_inode_info *iinfo; 417 418 if (!create) { 419 phys = udf_block_map(inode, block); 420 if (phys) 421 map_bh(bh_result, inode->i_sb, phys); 422 return 0; 423 } 424 425 err = -EIO; 426 new = 0; 427 iinfo = UDF_I(inode); 428 429 down_write(&iinfo->i_data_sem); 430 if (block == iinfo->i_next_alloc_block + 1) { 431 iinfo->i_next_alloc_block++; 432 iinfo->i_next_alloc_goal++; 433 } 434 435 udf_clear_extent_cache(inode); 436 phys = inode_getblk(inode, block, &err, &new); 437 if (!phys) 438 goto abort; 439 440 if (new) 441 set_buffer_new(bh_result); 442 map_bh(bh_result, inode->i_sb, phys); 443 444 abort: 445 up_write(&iinfo->i_data_sem); 446 return err; 447 } 448 449 static struct buffer_head *udf_getblk(struct inode *inode, long block, 450 int create, int *err) 451 { 452 struct buffer_head *bh; 453 struct buffer_head dummy; 454 455 dummy.b_state = 0; 456 dummy.b_blocknr = -1000; 457 *err = udf_get_block(inode, block, &dummy, create); 458 if (!*err && buffer_mapped(&dummy)) { 459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 460 if (buffer_new(&dummy)) { 461 lock_buffer(bh); 462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 463 set_buffer_uptodate(bh); 464 unlock_buffer(bh); 465 mark_buffer_dirty_inode(bh, inode); 466 } 467 return bh; 468 } 469 470 return NULL; 471 } 472 473 /* Extend the file by 'blocks' blocks, return the number of extents added */ 474 static int udf_do_extend_file(struct inode *inode, 475 struct extent_position *last_pos, 476 struct kernel_long_ad *last_ext, 477 sector_t blocks) 478 { 479 sector_t add; 480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 481 struct super_block *sb = inode->i_sb; 482 struct kernel_lb_addr prealloc_loc = {}; 483 int prealloc_len = 0; 484 struct udf_inode_info *iinfo; 485 int err; 486 487 /* The previous extent is fake and we should not extend by anything 488 * - there's nothing to do... */ 489 if (!blocks && fake) 490 return 0; 491 492 iinfo = UDF_I(inode); 493 /* Round the last extent up to a multiple of block size */ 494 if (last_ext->extLength & (sb->s_blocksize - 1)) { 495 last_ext->extLength = 496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 499 iinfo->i_lenExtents = 500 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 501 ~(sb->s_blocksize - 1); 502 } 503 504 /* Last extent are just preallocated blocks? */ 505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 506 EXT_NOT_RECORDED_ALLOCATED) { 507 /* Save the extent so that we can reattach it to the end */ 508 prealloc_loc = last_ext->extLocation; 509 prealloc_len = last_ext->extLength; 510 /* Mark the extent as a hole */ 511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 513 last_ext->extLocation.logicalBlockNum = 0; 514 last_ext->extLocation.partitionReferenceNum = 0; 515 } 516 517 /* Can we merge with the previous extent? */ 518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 519 EXT_NOT_RECORDED_NOT_ALLOCATED) { 520 add = ((1 << 30) - sb->s_blocksize - 521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 522 sb->s_blocksize_bits; 523 if (add > blocks) 524 add = blocks; 525 blocks -= add; 526 last_ext->extLength += add << sb->s_blocksize_bits; 527 } 528 529 if (fake) { 530 udf_add_aext(inode, last_pos, &last_ext->extLocation, 531 last_ext->extLength, 1); 532 count++; 533 } else { 534 struct kernel_lb_addr tmploc; 535 uint32_t tmplen; 536 537 udf_write_aext(inode, last_pos, &last_ext->extLocation, 538 last_ext->extLength, 1); 539 /* 540 * We've rewritten the last extent but there may be empty 541 * indirect extent after it - enter it. 542 */ 543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 544 } 545 546 /* Managed to do everything necessary? */ 547 if (!blocks) 548 goto out; 549 550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 551 last_ext->extLocation.logicalBlockNum = 0; 552 last_ext->extLocation.partitionReferenceNum = 0; 553 add = (1 << (30-sb->s_blocksize_bits)) - 1; 554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 555 (add << sb->s_blocksize_bits); 556 557 /* Create enough extents to cover the whole hole */ 558 while (blocks > add) { 559 blocks -= add; 560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 561 last_ext->extLength, 1); 562 if (err) 563 return err; 564 count++; 565 } 566 if (blocks) { 567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 568 (blocks << sb->s_blocksize_bits); 569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 570 last_ext->extLength, 1); 571 if (err) 572 return err; 573 count++; 574 } 575 576 out: 577 /* Do we have some preallocated blocks saved? */ 578 if (prealloc_len) { 579 err = udf_add_aext(inode, last_pos, &prealloc_loc, 580 prealloc_len, 1); 581 if (err) 582 return err; 583 last_ext->extLocation = prealloc_loc; 584 last_ext->extLength = prealloc_len; 585 count++; 586 } 587 588 /* last_pos should point to the last written extent... */ 589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 590 last_pos->offset -= sizeof(struct short_ad); 591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 592 last_pos->offset -= sizeof(struct long_ad); 593 else 594 return -EIO; 595 596 return count; 597 } 598 599 static int udf_extend_file(struct inode *inode, loff_t newsize) 600 { 601 602 struct extent_position epos; 603 struct kernel_lb_addr eloc; 604 uint32_t elen; 605 int8_t etype; 606 struct super_block *sb = inode->i_sb; 607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 608 int adsize; 609 struct udf_inode_info *iinfo = UDF_I(inode); 610 struct kernel_long_ad extent; 611 int err; 612 613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 614 adsize = sizeof(struct short_ad); 615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 616 adsize = sizeof(struct long_ad); 617 else 618 BUG(); 619 620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 621 622 /* File has extent covering the new size (could happen when extending 623 * inside a block)? */ 624 if (etype != -1) 625 return 0; 626 if (newsize & (sb->s_blocksize - 1)) 627 offset++; 628 /* Extended file just to the boundary of the last file block? */ 629 if (offset == 0) 630 return 0; 631 632 /* Truncate is extending the file by 'offset' blocks */ 633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 635 /* File has no extents at all or has empty last 636 * indirect extent! Create a fake extent... */ 637 extent.extLocation.logicalBlockNum = 0; 638 extent.extLocation.partitionReferenceNum = 0; 639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 640 } else { 641 epos.offset -= adsize; 642 etype = udf_next_aext(inode, &epos, &extent.extLocation, 643 &extent.extLength, 0); 644 extent.extLength |= etype << 30; 645 } 646 err = udf_do_extend_file(inode, &epos, &extent, offset); 647 if (err < 0) 648 goto out; 649 err = 0; 650 iinfo->i_lenExtents = newsize; 651 out: 652 brelse(epos.bh); 653 return err; 654 } 655 656 static sector_t inode_getblk(struct inode *inode, sector_t block, 657 int *err, int *new) 658 { 659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 660 struct extent_position prev_epos, cur_epos, next_epos; 661 int count = 0, startnum = 0, endnum = 0; 662 uint32_t elen = 0, tmpelen; 663 struct kernel_lb_addr eloc, tmpeloc; 664 int c = 1; 665 loff_t lbcount = 0, b_off = 0; 666 uint32_t newblocknum, newblock; 667 sector_t offset = 0; 668 int8_t etype; 669 struct udf_inode_info *iinfo = UDF_I(inode); 670 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 671 int lastblock = 0; 672 bool isBeyondEOF; 673 674 *err = 0; 675 *new = 0; 676 prev_epos.offset = udf_file_entry_alloc_offset(inode); 677 prev_epos.block = iinfo->i_location; 678 prev_epos.bh = NULL; 679 cur_epos = next_epos = prev_epos; 680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 681 682 /* find the extent which contains the block we are looking for. 683 alternate between laarr[0] and laarr[1] for locations of the 684 current extent, and the previous extent */ 685 do { 686 if (prev_epos.bh != cur_epos.bh) { 687 brelse(prev_epos.bh); 688 get_bh(cur_epos.bh); 689 prev_epos.bh = cur_epos.bh; 690 } 691 if (cur_epos.bh != next_epos.bh) { 692 brelse(cur_epos.bh); 693 get_bh(next_epos.bh); 694 cur_epos.bh = next_epos.bh; 695 } 696 697 lbcount += elen; 698 699 prev_epos.block = cur_epos.block; 700 cur_epos.block = next_epos.block; 701 702 prev_epos.offset = cur_epos.offset; 703 cur_epos.offset = next_epos.offset; 704 705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 706 if (etype == -1) 707 break; 708 709 c = !c; 710 711 laarr[c].extLength = (etype << 30) | elen; 712 laarr[c].extLocation = eloc; 713 714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 715 pgoal = eloc.logicalBlockNum + 716 ((elen + inode->i_sb->s_blocksize - 1) >> 717 inode->i_sb->s_blocksize_bits); 718 719 count++; 720 } while (lbcount + elen <= b_off); 721 722 b_off -= lbcount; 723 offset = b_off >> inode->i_sb->s_blocksize_bits; 724 /* 725 * Move prev_epos and cur_epos into indirect extent if we are at 726 * the pointer to it 727 */ 728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 730 731 /* if the extent is allocated and recorded, return the block 732 if the extent is not a multiple of the blocksize, round up */ 733 734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 735 if (elen & (inode->i_sb->s_blocksize - 1)) { 736 elen = EXT_RECORDED_ALLOCATED | 737 ((elen + inode->i_sb->s_blocksize - 1) & 738 ~(inode->i_sb->s_blocksize - 1)); 739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 740 } 741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 742 goto out_free; 743 } 744 745 /* Are we beyond EOF? */ 746 if (etype == -1) { 747 int ret; 748 isBeyondEOF = true; 749 if (count) { 750 if (c) 751 laarr[0] = laarr[1]; 752 startnum = 1; 753 } else { 754 /* Create a fake extent when there's not one */ 755 memset(&laarr[0].extLocation, 0x00, 756 sizeof(struct kernel_lb_addr)); 757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 758 /* Will udf_do_extend_file() create real extent from 759 a fake one? */ 760 startnum = (offset > 0); 761 } 762 /* Create extents for the hole between EOF and offset */ 763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 764 if (ret < 0) { 765 *err = ret; 766 newblock = 0; 767 goto out_free; 768 } 769 c = 0; 770 offset = 0; 771 count += ret; 772 /* We are not covered by a preallocated extent? */ 773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 774 EXT_NOT_RECORDED_ALLOCATED) { 775 /* Is there any real extent? - otherwise we overwrite 776 * the fake one... */ 777 if (count) 778 c = !c; 779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 780 inode->i_sb->s_blocksize; 781 memset(&laarr[c].extLocation, 0x00, 782 sizeof(struct kernel_lb_addr)); 783 count++; 784 } 785 endnum = c + 1; 786 lastblock = 1; 787 } else { 788 isBeyondEOF = false; 789 endnum = startnum = ((count > 2) ? 2 : count); 790 791 /* if the current extent is in position 0, 792 swap it with the previous */ 793 if (!c && count != 1) { 794 laarr[2] = laarr[0]; 795 laarr[0] = laarr[1]; 796 laarr[1] = laarr[2]; 797 c = 1; 798 } 799 800 /* if the current block is located in an extent, 801 read the next extent */ 802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 803 if (etype != -1) { 804 laarr[c + 1].extLength = (etype << 30) | elen; 805 laarr[c + 1].extLocation = eloc; 806 count++; 807 startnum++; 808 endnum++; 809 } else 810 lastblock = 1; 811 } 812 813 /* if the current extent is not recorded but allocated, get the 814 * block in the extent corresponding to the requested block */ 815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 817 else { /* otherwise, allocate a new block */ 818 if (iinfo->i_next_alloc_block == block) 819 goal = iinfo->i_next_alloc_goal; 820 821 if (!goal) { 822 if (!(goal = pgoal)) /* XXX: what was intended here? */ 823 goal = iinfo->i_location.logicalBlockNum + 1; 824 } 825 826 newblocknum = udf_new_block(inode->i_sb, inode, 827 iinfo->i_location.partitionReferenceNum, 828 goal, err); 829 if (!newblocknum) { 830 *err = -ENOSPC; 831 newblock = 0; 832 goto out_free; 833 } 834 if (isBeyondEOF) 835 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 836 } 837 838 /* if the extent the requsted block is located in contains multiple 839 * blocks, split the extent into at most three extents. blocks prior 840 * to requested block, requested block, and blocks after requested 841 * block */ 842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 843 844 /* We preallocate blocks only for regular files. It also makes sense 845 * for directories but there's a problem when to drop the 846 * preallocation. We might use some delayed work for that but I feel 847 * it's overengineering for a filesystem like UDF. */ 848 if (S_ISREG(inode->i_mode)) 849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 850 851 /* merge any continuous blocks in laarr */ 852 udf_merge_extents(inode, laarr, &endnum); 853 854 /* write back the new extents, inserting new extents if the new number 855 * of extents is greater than the old number, and deleting extents if 856 * the new number of extents is less than the old number */ 857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 858 859 newblock = udf_get_pblock(inode->i_sb, newblocknum, 860 iinfo->i_location.partitionReferenceNum, 0); 861 if (!newblock) { 862 *err = -EIO; 863 goto out_free; 864 } 865 *new = 1; 866 iinfo->i_next_alloc_block = block; 867 iinfo->i_next_alloc_goal = newblocknum; 868 inode->i_ctime = current_time(inode); 869 870 if (IS_SYNC(inode)) 871 udf_sync_inode(inode); 872 else 873 mark_inode_dirty(inode); 874 out_free: 875 brelse(prev_epos.bh); 876 brelse(cur_epos.bh); 877 brelse(next_epos.bh); 878 return newblock; 879 } 880 881 static void udf_split_extents(struct inode *inode, int *c, int offset, 882 int newblocknum, struct kernel_long_ad *laarr, 883 int *endnum) 884 { 885 unsigned long blocksize = inode->i_sb->s_blocksize; 886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 887 888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 889 (laarr[*c].extLength >> 30) == 890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 891 int curr = *c; 892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 893 blocksize - 1) >> blocksize_bits; 894 int8_t etype = (laarr[curr].extLength >> 30); 895 896 if (blen == 1) 897 ; 898 else if (!offset || blen == offset + 1) { 899 laarr[curr + 2] = laarr[curr + 1]; 900 laarr[curr + 1] = laarr[curr]; 901 } else { 902 laarr[curr + 3] = laarr[curr + 1]; 903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 904 } 905 906 if (offset) { 907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 908 udf_free_blocks(inode->i_sb, inode, 909 &laarr[curr].extLocation, 910 0, offset); 911 laarr[curr].extLength = 912 EXT_NOT_RECORDED_NOT_ALLOCATED | 913 (offset << blocksize_bits); 914 laarr[curr].extLocation.logicalBlockNum = 0; 915 laarr[curr].extLocation. 916 partitionReferenceNum = 0; 917 } else 918 laarr[curr].extLength = (etype << 30) | 919 (offset << blocksize_bits); 920 curr++; 921 (*c)++; 922 (*endnum)++; 923 } 924 925 laarr[curr].extLocation.logicalBlockNum = newblocknum; 926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 927 laarr[curr].extLocation.partitionReferenceNum = 928 UDF_I(inode)->i_location.partitionReferenceNum; 929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 930 blocksize; 931 curr++; 932 933 if (blen != offset + 1) { 934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 935 laarr[curr].extLocation.logicalBlockNum += 936 offset + 1; 937 laarr[curr].extLength = (etype << 30) | 938 ((blen - (offset + 1)) << blocksize_bits); 939 curr++; 940 (*endnum)++; 941 } 942 } 943 } 944 945 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 946 struct kernel_long_ad *laarr, 947 int *endnum) 948 { 949 int start, length = 0, currlength = 0, i; 950 951 if (*endnum >= (c + 1)) { 952 if (!lastblock) 953 return; 954 else 955 start = c; 956 } else { 957 if ((laarr[c + 1].extLength >> 30) == 958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 959 start = c + 1; 960 length = currlength = 961 (((laarr[c + 1].extLength & 962 UDF_EXTENT_LENGTH_MASK) + 963 inode->i_sb->s_blocksize - 1) >> 964 inode->i_sb->s_blocksize_bits); 965 } else 966 start = c; 967 } 968 969 for (i = start + 1; i <= *endnum; i++) { 970 if (i == *endnum) { 971 if (lastblock) 972 length += UDF_DEFAULT_PREALLOC_BLOCKS; 973 } else if ((laarr[i].extLength >> 30) == 974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 975 length += (((laarr[i].extLength & 976 UDF_EXTENT_LENGTH_MASK) + 977 inode->i_sb->s_blocksize - 1) >> 978 inode->i_sb->s_blocksize_bits); 979 } else 980 break; 981 } 982 983 if (length) { 984 int next = laarr[start].extLocation.logicalBlockNum + 985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 986 inode->i_sb->s_blocksize - 1) >> 987 inode->i_sb->s_blocksize_bits); 988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 989 laarr[start].extLocation.partitionReferenceNum, 990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 991 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 992 currlength); 993 if (numalloc) { 994 if (start == (c + 1)) 995 laarr[start].extLength += 996 (numalloc << 997 inode->i_sb->s_blocksize_bits); 998 else { 999 memmove(&laarr[c + 2], &laarr[c + 1], 1000 sizeof(struct long_ad) * (*endnum - (c + 1))); 1001 (*endnum)++; 1002 laarr[c + 1].extLocation.logicalBlockNum = next; 1003 laarr[c + 1].extLocation.partitionReferenceNum = 1004 laarr[c].extLocation. 1005 partitionReferenceNum; 1006 laarr[c + 1].extLength = 1007 EXT_NOT_RECORDED_ALLOCATED | 1008 (numalloc << 1009 inode->i_sb->s_blocksize_bits); 1010 start = c + 1; 1011 } 1012 1013 for (i = start + 1; numalloc && i < *endnum; i++) { 1014 int elen = ((laarr[i].extLength & 1015 UDF_EXTENT_LENGTH_MASK) + 1016 inode->i_sb->s_blocksize - 1) >> 1017 inode->i_sb->s_blocksize_bits; 1018 1019 if (elen > numalloc) { 1020 laarr[i].extLength -= 1021 (numalloc << 1022 inode->i_sb->s_blocksize_bits); 1023 numalloc = 0; 1024 } else { 1025 numalloc -= elen; 1026 if (*endnum > (i + 1)) 1027 memmove(&laarr[i], 1028 &laarr[i + 1], 1029 sizeof(struct long_ad) * 1030 (*endnum - (i + 1))); 1031 i--; 1032 (*endnum)--; 1033 } 1034 } 1035 UDF_I(inode)->i_lenExtents += 1036 numalloc << inode->i_sb->s_blocksize_bits; 1037 } 1038 } 1039 } 1040 1041 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1042 int *endnum) 1043 { 1044 int i; 1045 unsigned long blocksize = inode->i_sb->s_blocksize; 1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1047 1048 for (i = 0; i < (*endnum - 1); i++) { 1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1051 1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1053 (((li->extLength >> 30) == 1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1055 ((lip1->extLocation.logicalBlockNum - 1056 li->extLocation.logicalBlockNum) == 1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1058 blocksize - 1) >> blocksize_bits)))) { 1059 1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1063 lip1->extLength = (lip1->extLength - 1064 (li->extLength & 1065 UDF_EXTENT_LENGTH_MASK) + 1066 UDF_EXTENT_LENGTH_MASK) & 1067 ~(blocksize - 1); 1068 li->extLength = (li->extLength & 1069 UDF_EXTENT_FLAG_MASK) + 1070 (UDF_EXTENT_LENGTH_MASK + 1) - 1071 blocksize; 1072 lip1->extLocation.logicalBlockNum = 1073 li->extLocation.logicalBlockNum + 1074 ((li->extLength & 1075 UDF_EXTENT_LENGTH_MASK) >> 1076 blocksize_bits); 1077 } else { 1078 li->extLength = lip1->extLength + 1079 (((li->extLength & 1080 UDF_EXTENT_LENGTH_MASK) + 1081 blocksize - 1) & ~(blocksize - 1)); 1082 if (*endnum > (i + 2)) 1083 memmove(&laarr[i + 1], &laarr[i + 2], 1084 sizeof(struct long_ad) * 1085 (*endnum - (i + 2))); 1086 i--; 1087 (*endnum)--; 1088 } 1089 } else if (((li->extLength >> 30) == 1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1091 ((lip1->extLength >> 30) == 1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1094 ((li->extLength & 1095 UDF_EXTENT_LENGTH_MASK) + 1096 blocksize - 1) >> blocksize_bits); 1097 li->extLocation.logicalBlockNum = 0; 1098 li->extLocation.partitionReferenceNum = 0; 1099 1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1103 lip1->extLength = (lip1->extLength - 1104 (li->extLength & 1105 UDF_EXTENT_LENGTH_MASK) + 1106 UDF_EXTENT_LENGTH_MASK) & 1107 ~(blocksize - 1); 1108 li->extLength = (li->extLength & 1109 UDF_EXTENT_FLAG_MASK) + 1110 (UDF_EXTENT_LENGTH_MASK + 1) - 1111 blocksize; 1112 } else { 1113 li->extLength = lip1->extLength + 1114 (((li->extLength & 1115 UDF_EXTENT_LENGTH_MASK) + 1116 blocksize - 1) & ~(blocksize - 1)); 1117 if (*endnum > (i + 2)) 1118 memmove(&laarr[i + 1], &laarr[i + 2], 1119 sizeof(struct long_ad) * 1120 (*endnum - (i + 2))); 1121 i--; 1122 (*endnum)--; 1123 } 1124 } else if ((li->extLength >> 30) == 1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1126 udf_free_blocks(inode->i_sb, inode, 1127 &li->extLocation, 0, 1128 ((li->extLength & 1129 UDF_EXTENT_LENGTH_MASK) + 1130 blocksize - 1) >> blocksize_bits); 1131 li->extLocation.logicalBlockNum = 0; 1132 li->extLocation.partitionReferenceNum = 0; 1133 li->extLength = (li->extLength & 1134 UDF_EXTENT_LENGTH_MASK) | 1135 EXT_NOT_RECORDED_NOT_ALLOCATED; 1136 } 1137 } 1138 } 1139 1140 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1141 int startnum, int endnum, 1142 struct extent_position *epos) 1143 { 1144 int start = 0, i; 1145 struct kernel_lb_addr tmploc; 1146 uint32_t tmplen; 1147 1148 if (startnum > endnum) { 1149 for (i = 0; i < (startnum - endnum); i++) 1150 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1151 laarr[i].extLength); 1152 } else if (startnum < endnum) { 1153 for (i = 0; i < (endnum - startnum); i++) { 1154 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1155 laarr[i].extLength); 1156 udf_next_aext(inode, epos, &laarr[i].extLocation, 1157 &laarr[i].extLength, 1); 1158 start++; 1159 } 1160 } 1161 1162 for (i = start; i < endnum; i++) { 1163 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1164 udf_write_aext(inode, epos, &laarr[i].extLocation, 1165 laarr[i].extLength, 1); 1166 } 1167 } 1168 1169 struct buffer_head *udf_bread(struct inode *inode, int block, 1170 int create, int *err) 1171 { 1172 struct buffer_head *bh = NULL; 1173 1174 bh = udf_getblk(inode, block, create, err); 1175 if (!bh) 1176 return NULL; 1177 1178 if (buffer_uptodate(bh)) 1179 return bh; 1180 1181 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1182 1183 wait_on_buffer(bh); 1184 if (buffer_uptodate(bh)) 1185 return bh; 1186 1187 brelse(bh); 1188 *err = -EIO; 1189 return NULL; 1190 } 1191 1192 int udf_setsize(struct inode *inode, loff_t newsize) 1193 { 1194 int err; 1195 struct udf_inode_info *iinfo; 1196 int bsize = i_blocksize(inode); 1197 1198 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1199 S_ISLNK(inode->i_mode))) 1200 return -EINVAL; 1201 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1202 return -EPERM; 1203 1204 iinfo = UDF_I(inode); 1205 if (newsize > inode->i_size) { 1206 down_write(&iinfo->i_data_sem); 1207 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1208 if (bsize < 1209 (udf_file_entry_alloc_offset(inode) + newsize)) { 1210 err = udf_expand_file_adinicb(inode); 1211 if (err) 1212 return err; 1213 down_write(&iinfo->i_data_sem); 1214 } else { 1215 iinfo->i_lenAlloc = newsize; 1216 goto set_size; 1217 } 1218 } 1219 err = udf_extend_file(inode, newsize); 1220 if (err) { 1221 up_write(&iinfo->i_data_sem); 1222 return err; 1223 } 1224 set_size: 1225 up_write(&iinfo->i_data_sem); 1226 truncate_setsize(inode, newsize); 1227 } else { 1228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1229 down_write(&iinfo->i_data_sem); 1230 udf_clear_extent_cache(inode); 1231 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1232 0x00, bsize - newsize - 1233 udf_file_entry_alloc_offset(inode)); 1234 iinfo->i_lenAlloc = newsize; 1235 truncate_setsize(inode, newsize); 1236 up_write(&iinfo->i_data_sem); 1237 goto update_time; 1238 } 1239 err = block_truncate_page(inode->i_mapping, newsize, 1240 udf_get_block); 1241 if (err) 1242 return err; 1243 truncate_setsize(inode, newsize); 1244 down_write(&iinfo->i_data_sem); 1245 udf_clear_extent_cache(inode); 1246 udf_truncate_extents(inode); 1247 up_write(&iinfo->i_data_sem); 1248 } 1249 update_time: 1250 inode->i_mtime = inode->i_ctime = current_time(inode); 1251 if (IS_SYNC(inode)) 1252 udf_sync_inode(inode); 1253 else 1254 mark_inode_dirty(inode); 1255 return 0; 1256 } 1257 1258 /* 1259 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1260 * arbitrary - just that we hopefully don't limit any real use of rewritten 1261 * inode on write-once media but avoid looping for too long on corrupted media. 1262 */ 1263 #define UDF_MAX_ICB_NESTING 1024 1264 1265 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1266 { 1267 struct buffer_head *bh = NULL; 1268 struct fileEntry *fe; 1269 struct extendedFileEntry *efe; 1270 uint16_t ident; 1271 struct udf_inode_info *iinfo = UDF_I(inode); 1272 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1273 struct kernel_lb_addr *iloc = &iinfo->i_location; 1274 unsigned int link_count; 1275 unsigned int indirections = 0; 1276 int bs = inode->i_sb->s_blocksize; 1277 int ret = -EIO; 1278 1279 reread: 1280 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1281 udf_debug("partition reference: %d > logical volume partitions: %d\n", 1282 iloc->partitionReferenceNum, sbi->s_partitions); 1283 return -EIO; 1284 } 1285 1286 if (iloc->logicalBlockNum >= 1287 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1288 udf_debug("block=%d, partition=%d out of range\n", 1289 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1290 return -EIO; 1291 } 1292 1293 /* 1294 * Set defaults, but the inode is still incomplete! 1295 * Note: get_new_inode() sets the following on a new inode: 1296 * i_sb = sb 1297 * i_no = ino 1298 * i_flags = sb->s_flags 1299 * i_state = 0 1300 * clean_inode(): zero fills and sets 1301 * i_count = 1 1302 * i_nlink = 1 1303 * i_op = NULL; 1304 */ 1305 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1306 if (!bh) { 1307 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1308 return -EIO; 1309 } 1310 1311 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1312 ident != TAG_IDENT_USE) { 1313 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1314 inode->i_ino, ident); 1315 goto out; 1316 } 1317 1318 fe = (struct fileEntry *)bh->b_data; 1319 efe = (struct extendedFileEntry *)bh->b_data; 1320 1321 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1322 struct buffer_head *ibh; 1323 1324 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1325 if (ident == TAG_IDENT_IE && ibh) { 1326 struct kernel_lb_addr loc; 1327 struct indirectEntry *ie; 1328 1329 ie = (struct indirectEntry *)ibh->b_data; 1330 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1331 1332 if (ie->indirectICB.extLength) { 1333 brelse(ibh); 1334 memcpy(&iinfo->i_location, &loc, 1335 sizeof(struct kernel_lb_addr)); 1336 if (++indirections > UDF_MAX_ICB_NESTING) { 1337 udf_err(inode->i_sb, 1338 "too many ICBs in ICB hierarchy" 1339 " (max %d supported)\n", 1340 UDF_MAX_ICB_NESTING); 1341 goto out; 1342 } 1343 brelse(bh); 1344 goto reread; 1345 } 1346 } 1347 brelse(ibh); 1348 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1349 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1350 le16_to_cpu(fe->icbTag.strategyType)); 1351 goto out; 1352 } 1353 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1354 iinfo->i_strat4096 = 0; 1355 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1356 iinfo->i_strat4096 = 1; 1357 1358 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1359 ICBTAG_FLAG_AD_MASK; 1360 iinfo->i_unique = 0; 1361 iinfo->i_lenEAttr = 0; 1362 iinfo->i_lenExtents = 0; 1363 iinfo->i_lenAlloc = 0; 1364 iinfo->i_next_alloc_block = 0; 1365 iinfo->i_next_alloc_goal = 0; 1366 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1367 iinfo->i_efe = 1; 1368 iinfo->i_use = 0; 1369 ret = udf_alloc_i_data(inode, bs - 1370 sizeof(struct extendedFileEntry)); 1371 if (ret) 1372 goto out; 1373 memcpy(iinfo->i_ext.i_data, 1374 bh->b_data + sizeof(struct extendedFileEntry), 1375 bs - sizeof(struct extendedFileEntry)); 1376 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1377 iinfo->i_efe = 0; 1378 iinfo->i_use = 0; 1379 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1380 if (ret) 1381 goto out; 1382 memcpy(iinfo->i_ext.i_data, 1383 bh->b_data + sizeof(struct fileEntry), 1384 bs - sizeof(struct fileEntry)); 1385 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1386 iinfo->i_efe = 0; 1387 iinfo->i_use = 1; 1388 iinfo->i_lenAlloc = le32_to_cpu( 1389 ((struct unallocSpaceEntry *)bh->b_data)-> 1390 lengthAllocDescs); 1391 ret = udf_alloc_i_data(inode, bs - 1392 sizeof(struct unallocSpaceEntry)); 1393 if (ret) 1394 goto out; 1395 memcpy(iinfo->i_ext.i_data, 1396 bh->b_data + sizeof(struct unallocSpaceEntry), 1397 bs - sizeof(struct unallocSpaceEntry)); 1398 return 0; 1399 } 1400 1401 ret = -EIO; 1402 read_lock(&sbi->s_cred_lock); 1403 i_uid_write(inode, le32_to_cpu(fe->uid)); 1404 if (!uid_valid(inode->i_uid) || 1405 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1406 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1407 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1408 1409 i_gid_write(inode, le32_to_cpu(fe->gid)); 1410 if (!gid_valid(inode->i_gid) || 1411 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1412 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1413 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1414 1415 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1416 sbi->s_fmode != UDF_INVALID_MODE) 1417 inode->i_mode = sbi->s_fmode; 1418 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1419 sbi->s_dmode != UDF_INVALID_MODE) 1420 inode->i_mode = sbi->s_dmode; 1421 else 1422 inode->i_mode = udf_convert_permissions(fe); 1423 inode->i_mode &= ~sbi->s_umask; 1424 read_unlock(&sbi->s_cred_lock); 1425 1426 link_count = le16_to_cpu(fe->fileLinkCount); 1427 if (!link_count) { 1428 if (!hidden_inode) { 1429 ret = -ESTALE; 1430 goto out; 1431 } 1432 link_count = 1; 1433 } 1434 set_nlink(inode, link_count); 1435 1436 inode->i_size = le64_to_cpu(fe->informationLength); 1437 iinfo->i_lenExtents = inode->i_size; 1438 1439 if (iinfo->i_efe == 0) { 1440 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1441 (inode->i_sb->s_blocksize_bits - 9); 1442 1443 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1444 inode->i_atime = sbi->s_record_time; 1445 1446 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1447 fe->modificationTime)) 1448 inode->i_mtime = sbi->s_record_time; 1449 1450 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1451 inode->i_ctime = sbi->s_record_time; 1452 1453 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1454 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1455 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1456 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1457 } else { 1458 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1459 (inode->i_sb->s_blocksize_bits - 9); 1460 1461 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1462 inode->i_atime = sbi->s_record_time; 1463 1464 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1465 efe->modificationTime)) 1466 inode->i_mtime = sbi->s_record_time; 1467 1468 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1469 iinfo->i_crtime = sbi->s_record_time; 1470 1471 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1472 inode->i_ctime = sbi->s_record_time; 1473 1474 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1475 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1476 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1477 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1478 } 1479 inode->i_generation = iinfo->i_unique; 1480 1481 /* 1482 * Sanity check length of allocation descriptors and extended attrs to 1483 * avoid integer overflows 1484 */ 1485 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1486 goto out; 1487 /* Now do exact checks */ 1488 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1489 goto out; 1490 /* Sanity checks for files in ICB so that we don't get confused later */ 1491 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1492 /* 1493 * For file in ICB data is stored in allocation descriptor 1494 * so sizes should match 1495 */ 1496 if (iinfo->i_lenAlloc != inode->i_size) 1497 goto out; 1498 /* File in ICB has to fit in there... */ 1499 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1500 goto out; 1501 } 1502 1503 switch (fe->icbTag.fileType) { 1504 case ICBTAG_FILE_TYPE_DIRECTORY: 1505 inode->i_op = &udf_dir_inode_operations; 1506 inode->i_fop = &udf_dir_operations; 1507 inode->i_mode |= S_IFDIR; 1508 inc_nlink(inode); 1509 break; 1510 case ICBTAG_FILE_TYPE_REALTIME: 1511 case ICBTAG_FILE_TYPE_REGULAR: 1512 case ICBTAG_FILE_TYPE_UNDEF: 1513 case ICBTAG_FILE_TYPE_VAT20: 1514 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1515 inode->i_data.a_ops = &udf_adinicb_aops; 1516 else 1517 inode->i_data.a_ops = &udf_aops; 1518 inode->i_op = &udf_file_inode_operations; 1519 inode->i_fop = &udf_file_operations; 1520 inode->i_mode |= S_IFREG; 1521 break; 1522 case ICBTAG_FILE_TYPE_BLOCK: 1523 inode->i_mode |= S_IFBLK; 1524 break; 1525 case ICBTAG_FILE_TYPE_CHAR: 1526 inode->i_mode |= S_IFCHR; 1527 break; 1528 case ICBTAG_FILE_TYPE_FIFO: 1529 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1530 break; 1531 case ICBTAG_FILE_TYPE_SOCKET: 1532 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1533 break; 1534 case ICBTAG_FILE_TYPE_SYMLINK: 1535 inode->i_data.a_ops = &udf_symlink_aops; 1536 inode->i_op = &udf_symlink_inode_operations; 1537 inode_nohighmem(inode); 1538 inode->i_mode = S_IFLNK | 0777; 1539 break; 1540 case ICBTAG_FILE_TYPE_MAIN: 1541 udf_debug("METADATA FILE-----\n"); 1542 break; 1543 case ICBTAG_FILE_TYPE_MIRROR: 1544 udf_debug("METADATA MIRROR FILE-----\n"); 1545 break; 1546 case ICBTAG_FILE_TYPE_BITMAP: 1547 udf_debug("METADATA BITMAP FILE-----\n"); 1548 break; 1549 default: 1550 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1551 inode->i_ino, fe->icbTag.fileType); 1552 goto out; 1553 } 1554 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1555 struct deviceSpec *dsea = 1556 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1557 if (dsea) { 1558 init_special_inode(inode, inode->i_mode, 1559 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1560 le32_to_cpu(dsea->minorDeviceIdent))); 1561 /* Developer ID ??? */ 1562 } else 1563 goto out; 1564 } 1565 ret = 0; 1566 out: 1567 brelse(bh); 1568 return ret; 1569 } 1570 1571 static int udf_alloc_i_data(struct inode *inode, size_t size) 1572 { 1573 struct udf_inode_info *iinfo = UDF_I(inode); 1574 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1575 if (!iinfo->i_ext.i_data) 1576 return -ENOMEM; 1577 return 0; 1578 } 1579 1580 static umode_t udf_convert_permissions(struct fileEntry *fe) 1581 { 1582 umode_t mode; 1583 uint32_t permissions; 1584 uint32_t flags; 1585 1586 permissions = le32_to_cpu(fe->permissions); 1587 flags = le16_to_cpu(fe->icbTag.flags); 1588 1589 mode = ((permissions) & 0007) | 1590 ((permissions >> 2) & 0070) | 1591 ((permissions >> 4) & 0700) | 1592 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1593 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1594 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1595 1596 return mode; 1597 } 1598 1599 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1600 { 1601 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1602 } 1603 1604 static int udf_sync_inode(struct inode *inode) 1605 { 1606 return udf_update_inode(inode, 1); 1607 } 1608 1609 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time) 1610 { 1611 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1612 (iinfo->i_crtime.tv_sec == time.tv_sec && 1613 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1614 iinfo->i_crtime = time; 1615 } 1616 1617 static int udf_update_inode(struct inode *inode, int do_sync) 1618 { 1619 struct buffer_head *bh = NULL; 1620 struct fileEntry *fe; 1621 struct extendedFileEntry *efe; 1622 uint64_t lb_recorded; 1623 uint32_t udfperms; 1624 uint16_t icbflags; 1625 uint16_t crclen; 1626 int err = 0; 1627 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1628 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1629 struct udf_inode_info *iinfo = UDF_I(inode); 1630 1631 bh = udf_tgetblk(inode->i_sb, 1632 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1633 if (!bh) { 1634 udf_debug("getblk failure\n"); 1635 return -EIO; 1636 } 1637 1638 lock_buffer(bh); 1639 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1640 fe = (struct fileEntry *)bh->b_data; 1641 efe = (struct extendedFileEntry *)bh->b_data; 1642 1643 if (iinfo->i_use) { 1644 struct unallocSpaceEntry *use = 1645 (struct unallocSpaceEntry *)bh->b_data; 1646 1647 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1648 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1649 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1650 sizeof(struct unallocSpaceEntry)); 1651 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1652 crclen = sizeof(struct unallocSpaceEntry); 1653 1654 goto finish; 1655 } 1656 1657 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1658 fe->uid = cpu_to_le32(-1); 1659 else 1660 fe->uid = cpu_to_le32(i_uid_read(inode)); 1661 1662 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1663 fe->gid = cpu_to_le32(-1); 1664 else 1665 fe->gid = cpu_to_le32(i_gid_read(inode)); 1666 1667 udfperms = ((inode->i_mode & 0007)) | 1668 ((inode->i_mode & 0070) << 2) | 1669 ((inode->i_mode & 0700) << 4); 1670 1671 udfperms |= (le32_to_cpu(fe->permissions) & 1672 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1673 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1674 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1675 fe->permissions = cpu_to_le32(udfperms); 1676 1677 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1678 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1679 else 1680 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1681 1682 fe->informationLength = cpu_to_le64(inode->i_size); 1683 1684 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1685 struct regid *eid; 1686 struct deviceSpec *dsea = 1687 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1688 if (!dsea) { 1689 dsea = (struct deviceSpec *) 1690 udf_add_extendedattr(inode, 1691 sizeof(struct deviceSpec) + 1692 sizeof(struct regid), 12, 0x3); 1693 dsea->attrType = cpu_to_le32(12); 1694 dsea->attrSubtype = 1; 1695 dsea->attrLength = cpu_to_le32( 1696 sizeof(struct deviceSpec) + 1697 sizeof(struct regid)); 1698 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1699 } 1700 eid = (struct regid *)dsea->impUse; 1701 memset(eid, 0, sizeof(*eid)); 1702 strcpy(eid->ident, UDF_ID_DEVELOPER); 1703 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1704 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1705 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1706 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1707 } 1708 1709 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1710 lb_recorded = 0; /* No extents => no blocks! */ 1711 else 1712 lb_recorded = 1713 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1714 (blocksize_bits - 9); 1715 1716 if (iinfo->i_efe == 0) { 1717 memcpy(bh->b_data + sizeof(struct fileEntry), 1718 iinfo->i_ext.i_data, 1719 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1720 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1721 1722 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1723 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1724 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1725 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1726 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1727 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1728 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1729 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1730 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1731 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1732 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1733 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1734 crclen = sizeof(struct fileEntry); 1735 } else { 1736 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1737 iinfo->i_ext.i_data, 1738 inode->i_sb->s_blocksize - 1739 sizeof(struct extendedFileEntry)); 1740 efe->objectSize = cpu_to_le64(inode->i_size); 1741 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1742 1743 udf_adjust_time(iinfo, inode->i_atime); 1744 udf_adjust_time(iinfo, inode->i_mtime); 1745 udf_adjust_time(iinfo, inode->i_ctime); 1746 1747 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1748 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1749 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1750 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1751 1752 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1753 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1754 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1755 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1756 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1757 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1758 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1759 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1760 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1761 crclen = sizeof(struct extendedFileEntry); 1762 } 1763 1764 finish: 1765 if (iinfo->i_strat4096) { 1766 fe->icbTag.strategyType = cpu_to_le16(4096); 1767 fe->icbTag.strategyParameter = cpu_to_le16(1); 1768 fe->icbTag.numEntries = cpu_to_le16(2); 1769 } else { 1770 fe->icbTag.strategyType = cpu_to_le16(4); 1771 fe->icbTag.numEntries = cpu_to_le16(1); 1772 } 1773 1774 if (iinfo->i_use) 1775 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1776 else if (S_ISDIR(inode->i_mode)) 1777 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1778 else if (S_ISREG(inode->i_mode)) 1779 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1780 else if (S_ISLNK(inode->i_mode)) 1781 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1782 else if (S_ISBLK(inode->i_mode)) 1783 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1784 else if (S_ISCHR(inode->i_mode)) 1785 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1786 else if (S_ISFIFO(inode->i_mode)) 1787 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1788 else if (S_ISSOCK(inode->i_mode)) 1789 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1790 1791 icbflags = iinfo->i_alloc_type | 1792 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1793 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1794 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1795 (le16_to_cpu(fe->icbTag.flags) & 1796 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1797 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1798 1799 fe->icbTag.flags = cpu_to_le16(icbflags); 1800 if (sbi->s_udfrev >= 0x0200) 1801 fe->descTag.descVersion = cpu_to_le16(3); 1802 else 1803 fe->descTag.descVersion = cpu_to_le16(2); 1804 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1805 fe->descTag.tagLocation = cpu_to_le32( 1806 iinfo->i_location.logicalBlockNum); 1807 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1808 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1809 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1810 crclen)); 1811 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1812 1813 set_buffer_uptodate(bh); 1814 unlock_buffer(bh); 1815 1816 /* write the data blocks */ 1817 mark_buffer_dirty(bh); 1818 if (do_sync) { 1819 sync_dirty_buffer(bh); 1820 if (buffer_write_io_error(bh)) { 1821 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1822 inode->i_ino); 1823 err = -EIO; 1824 } 1825 } 1826 brelse(bh); 1827 1828 return err; 1829 } 1830 1831 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1832 bool hidden_inode) 1833 { 1834 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1835 struct inode *inode = iget_locked(sb, block); 1836 int err; 1837 1838 if (!inode) 1839 return ERR_PTR(-ENOMEM); 1840 1841 if (!(inode->i_state & I_NEW)) 1842 return inode; 1843 1844 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1845 err = udf_read_inode(inode, hidden_inode); 1846 if (err < 0) { 1847 iget_failed(inode); 1848 return ERR_PTR(err); 1849 } 1850 unlock_new_inode(inode); 1851 1852 return inode; 1853 } 1854 1855 int udf_setup_indirect_aext(struct inode *inode, int block, 1856 struct extent_position *epos) 1857 { 1858 struct super_block *sb = inode->i_sb; 1859 struct buffer_head *bh; 1860 struct allocExtDesc *aed; 1861 struct extent_position nepos; 1862 struct kernel_lb_addr neloc; 1863 int ver, adsize; 1864 1865 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1866 adsize = sizeof(struct short_ad); 1867 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1868 adsize = sizeof(struct long_ad); 1869 else 1870 return -EIO; 1871 1872 neloc.logicalBlockNum = block; 1873 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1874 1875 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1876 if (!bh) 1877 return -EIO; 1878 lock_buffer(bh); 1879 memset(bh->b_data, 0x00, sb->s_blocksize); 1880 set_buffer_uptodate(bh); 1881 unlock_buffer(bh); 1882 mark_buffer_dirty_inode(bh, inode); 1883 1884 aed = (struct allocExtDesc *)(bh->b_data); 1885 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1886 aed->previousAllocExtLocation = 1887 cpu_to_le32(epos->block.logicalBlockNum); 1888 } 1889 aed->lengthAllocDescs = cpu_to_le32(0); 1890 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1891 ver = 3; 1892 else 1893 ver = 2; 1894 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1895 sizeof(struct tag)); 1896 1897 nepos.block = neloc; 1898 nepos.offset = sizeof(struct allocExtDesc); 1899 nepos.bh = bh; 1900 1901 /* 1902 * Do we have to copy current last extent to make space for indirect 1903 * one? 1904 */ 1905 if (epos->offset + adsize > sb->s_blocksize) { 1906 struct kernel_lb_addr cp_loc; 1907 uint32_t cp_len; 1908 int cp_type; 1909 1910 epos->offset -= adsize; 1911 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1912 cp_len |= ((uint32_t)cp_type) << 30; 1913 1914 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1915 udf_write_aext(inode, epos, &nepos.block, 1916 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1917 } else { 1918 __udf_add_aext(inode, epos, &nepos.block, 1919 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1920 } 1921 1922 brelse(epos->bh); 1923 *epos = nepos; 1924 1925 return 0; 1926 } 1927 1928 /* 1929 * Append extent at the given position - should be the first free one in inode 1930 * / indirect extent. This function assumes there is enough space in the inode 1931 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1932 */ 1933 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1934 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1935 { 1936 struct udf_inode_info *iinfo = UDF_I(inode); 1937 struct allocExtDesc *aed; 1938 int adsize; 1939 1940 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1941 adsize = sizeof(struct short_ad); 1942 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1943 adsize = sizeof(struct long_ad); 1944 else 1945 return -EIO; 1946 1947 if (!epos->bh) { 1948 WARN_ON(iinfo->i_lenAlloc != 1949 epos->offset - udf_file_entry_alloc_offset(inode)); 1950 } else { 1951 aed = (struct allocExtDesc *)epos->bh->b_data; 1952 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 1953 epos->offset - sizeof(struct allocExtDesc)); 1954 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 1955 } 1956 1957 udf_write_aext(inode, epos, eloc, elen, inc); 1958 1959 if (!epos->bh) { 1960 iinfo->i_lenAlloc += adsize; 1961 mark_inode_dirty(inode); 1962 } else { 1963 aed = (struct allocExtDesc *)epos->bh->b_data; 1964 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1965 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1966 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1967 udf_update_tag(epos->bh->b_data, 1968 epos->offset + (inc ? 0 : adsize)); 1969 else 1970 udf_update_tag(epos->bh->b_data, 1971 sizeof(struct allocExtDesc)); 1972 mark_buffer_dirty_inode(epos->bh, inode); 1973 } 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * Append extent at given position - should be the first free one in inode 1980 * / indirect extent. Takes care of allocating and linking indirect blocks. 1981 */ 1982 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1983 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1984 { 1985 int adsize; 1986 struct super_block *sb = inode->i_sb; 1987 1988 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1989 adsize = sizeof(struct short_ad); 1990 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1991 adsize = sizeof(struct long_ad); 1992 else 1993 return -EIO; 1994 1995 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 1996 int err; 1997 int new_block; 1998 1999 new_block = udf_new_block(sb, NULL, 2000 epos->block.partitionReferenceNum, 2001 epos->block.logicalBlockNum, &err); 2002 if (!new_block) 2003 return -ENOSPC; 2004 2005 err = udf_setup_indirect_aext(inode, new_block, epos); 2006 if (err) 2007 return err; 2008 } 2009 2010 return __udf_add_aext(inode, epos, eloc, elen, inc); 2011 } 2012 2013 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2014 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2015 { 2016 int adsize; 2017 uint8_t *ptr; 2018 struct short_ad *sad; 2019 struct long_ad *lad; 2020 struct udf_inode_info *iinfo = UDF_I(inode); 2021 2022 if (!epos->bh) 2023 ptr = iinfo->i_ext.i_data + epos->offset - 2024 udf_file_entry_alloc_offset(inode) + 2025 iinfo->i_lenEAttr; 2026 else 2027 ptr = epos->bh->b_data + epos->offset; 2028 2029 switch (iinfo->i_alloc_type) { 2030 case ICBTAG_FLAG_AD_SHORT: 2031 sad = (struct short_ad *)ptr; 2032 sad->extLength = cpu_to_le32(elen); 2033 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2034 adsize = sizeof(struct short_ad); 2035 break; 2036 case ICBTAG_FLAG_AD_LONG: 2037 lad = (struct long_ad *)ptr; 2038 lad->extLength = cpu_to_le32(elen); 2039 lad->extLocation = cpu_to_lelb(*eloc); 2040 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2041 adsize = sizeof(struct long_ad); 2042 break; 2043 default: 2044 return; 2045 } 2046 2047 if (epos->bh) { 2048 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2049 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2050 struct allocExtDesc *aed = 2051 (struct allocExtDesc *)epos->bh->b_data; 2052 udf_update_tag(epos->bh->b_data, 2053 le32_to_cpu(aed->lengthAllocDescs) + 2054 sizeof(struct allocExtDesc)); 2055 } 2056 mark_buffer_dirty_inode(epos->bh, inode); 2057 } else { 2058 mark_inode_dirty(inode); 2059 } 2060 2061 if (inc) 2062 epos->offset += adsize; 2063 } 2064 2065 /* 2066 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2067 * someone does some weird stuff. 2068 */ 2069 #define UDF_MAX_INDIR_EXTS 16 2070 2071 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2072 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2073 { 2074 int8_t etype; 2075 unsigned int indirections = 0; 2076 2077 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2078 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2079 int block; 2080 2081 if (++indirections > UDF_MAX_INDIR_EXTS) { 2082 udf_err(inode->i_sb, 2083 "too many indirect extents in inode %lu\n", 2084 inode->i_ino); 2085 return -1; 2086 } 2087 2088 epos->block = *eloc; 2089 epos->offset = sizeof(struct allocExtDesc); 2090 brelse(epos->bh); 2091 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2092 epos->bh = udf_tread(inode->i_sb, block); 2093 if (!epos->bh) { 2094 udf_debug("reading block %d failed!\n", block); 2095 return -1; 2096 } 2097 } 2098 2099 return etype; 2100 } 2101 2102 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2103 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2104 { 2105 int alen; 2106 int8_t etype; 2107 uint8_t *ptr; 2108 struct short_ad *sad; 2109 struct long_ad *lad; 2110 struct udf_inode_info *iinfo = UDF_I(inode); 2111 2112 if (!epos->bh) { 2113 if (!epos->offset) 2114 epos->offset = udf_file_entry_alloc_offset(inode); 2115 ptr = iinfo->i_ext.i_data + epos->offset - 2116 udf_file_entry_alloc_offset(inode) + 2117 iinfo->i_lenEAttr; 2118 alen = udf_file_entry_alloc_offset(inode) + 2119 iinfo->i_lenAlloc; 2120 } else { 2121 if (!epos->offset) 2122 epos->offset = sizeof(struct allocExtDesc); 2123 ptr = epos->bh->b_data + epos->offset; 2124 alen = sizeof(struct allocExtDesc) + 2125 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2126 lengthAllocDescs); 2127 } 2128 2129 switch (iinfo->i_alloc_type) { 2130 case ICBTAG_FLAG_AD_SHORT: 2131 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2132 if (!sad) 2133 return -1; 2134 etype = le32_to_cpu(sad->extLength) >> 30; 2135 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2136 eloc->partitionReferenceNum = 2137 iinfo->i_location.partitionReferenceNum; 2138 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2139 break; 2140 case ICBTAG_FLAG_AD_LONG: 2141 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2142 if (!lad) 2143 return -1; 2144 etype = le32_to_cpu(lad->extLength) >> 30; 2145 *eloc = lelb_to_cpu(lad->extLocation); 2146 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2147 break; 2148 default: 2149 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2150 return -1; 2151 } 2152 2153 return etype; 2154 } 2155 2156 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2157 struct kernel_lb_addr neloc, uint32_t nelen) 2158 { 2159 struct kernel_lb_addr oeloc; 2160 uint32_t oelen; 2161 int8_t etype; 2162 2163 if (epos.bh) 2164 get_bh(epos.bh); 2165 2166 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2167 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2168 neloc = oeloc; 2169 nelen = (etype << 30) | oelen; 2170 } 2171 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2172 brelse(epos.bh); 2173 2174 return (nelen >> 30); 2175 } 2176 2177 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2178 struct kernel_lb_addr eloc, uint32_t elen) 2179 { 2180 struct extent_position oepos; 2181 int adsize; 2182 int8_t etype; 2183 struct allocExtDesc *aed; 2184 struct udf_inode_info *iinfo; 2185 2186 if (epos.bh) { 2187 get_bh(epos.bh); 2188 get_bh(epos.bh); 2189 } 2190 2191 iinfo = UDF_I(inode); 2192 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2193 adsize = sizeof(struct short_ad); 2194 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2195 adsize = sizeof(struct long_ad); 2196 else 2197 adsize = 0; 2198 2199 oepos = epos; 2200 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2201 return -1; 2202 2203 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2204 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2205 if (oepos.bh != epos.bh) { 2206 oepos.block = epos.block; 2207 brelse(oepos.bh); 2208 get_bh(epos.bh); 2209 oepos.bh = epos.bh; 2210 oepos.offset = epos.offset - adsize; 2211 } 2212 } 2213 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2214 elen = 0; 2215 2216 if (epos.bh != oepos.bh) { 2217 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2218 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2219 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2220 if (!oepos.bh) { 2221 iinfo->i_lenAlloc -= (adsize * 2); 2222 mark_inode_dirty(inode); 2223 } else { 2224 aed = (struct allocExtDesc *)oepos.bh->b_data; 2225 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2226 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2227 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2228 udf_update_tag(oepos.bh->b_data, 2229 oepos.offset - (2 * adsize)); 2230 else 2231 udf_update_tag(oepos.bh->b_data, 2232 sizeof(struct allocExtDesc)); 2233 mark_buffer_dirty_inode(oepos.bh, inode); 2234 } 2235 } else { 2236 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2237 if (!oepos.bh) { 2238 iinfo->i_lenAlloc -= adsize; 2239 mark_inode_dirty(inode); 2240 } else { 2241 aed = (struct allocExtDesc *)oepos.bh->b_data; 2242 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2243 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2244 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2245 udf_update_tag(oepos.bh->b_data, 2246 epos.offset - adsize); 2247 else 2248 udf_update_tag(oepos.bh->b_data, 2249 sizeof(struct allocExtDesc)); 2250 mark_buffer_dirty_inode(oepos.bh, inode); 2251 } 2252 } 2253 2254 brelse(epos.bh); 2255 brelse(oepos.bh); 2256 2257 return (elen >> 30); 2258 } 2259 2260 int8_t inode_bmap(struct inode *inode, sector_t block, 2261 struct extent_position *pos, struct kernel_lb_addr *eloc, 2262 uint32_t *elen, sector_t *offset) 2263 { 2264 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2265 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2266 int8_t etype; 2267 struct udf_inode_info *iinfo; 2268 2269 iinfo = UDF_I(inode); 2270 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2271 pos->offset = 0; 2272 pos->block = iinfo->i_location; 2273 pos->bh = NULL; 2274 } 2275 *elen = 0; 2276 do { 2277 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2278 if (etype == -1) { 2279 *offset = (bcount - lbcount) >> blocksize_bits; 2280 iinfo->i_lenExtents = lbcount; 2281 return -1; 2282 } 2283 lbcount += *elen; 2284 } while (lbcount <= bcount); 2285 /* update extent cache */ 2286 udf_update_extent_cache(inode, lbcount - *elen, pos); 2287 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2288 2289 return etype; 2290 } 2291 2292 long udf_block_map(struct inode *inode, sector_t block) 2293 { 2294 struct kernel_lb_addr eloc; 2295 uint32_t elen; 2296 sector_t offset; 2297 struct extent_position epos = {}; 2298 int ret; 2299 2300 down_read(&UDF_I(inode)->i_data_sem); 2301 2302 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2303 (EXT_RECORDED_ALLOCATED >> 30)) 2304 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2305 else 2306 ret = 0; 2307 2308 up_read(&UDF_I(inode)->i_data_sem); 2309 brelse(epos.bh); 2310 2311 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2312 return udf_fixed_to_variable(ret); 2313 else 2314 return ret; 2315 } 2316