1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static umode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static int udf_sync_inode(struct inode *inode); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 56 static int8_t udf_insert_aext(struct inode *, struct extent_position, 57 struct kernel_lb_addr, uint32_t); 58 static void udf_split_extents(struct inode *, int *, int, int, 59 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 60 static void udf_prealloc_extents(struct inode *, int, int, 61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 62 static void udf_merge_extents(struct inode *, 63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 64 static void udf_update_extents(struct inode *, 65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 66 struct extent_position *); 67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 68 69 static void __udf_clear_extent_cache(struct inode *inode) 70 { 71 struct udf_inode_info *iinfo = UDF_I(inode); 72 73 if (iinfo->cached_extent.lstart != -1) { 74 brelse(iinfo->cached_extent.epos.bh); 75 iinfo->cached_extent.lstart = -1; 76 } 77 } 78 79 /* Invalidate extent cache */ 80 static void udf_clear_extent_cache(struct inode *inode) 81 { 82 struct udf_inode_info *iinfo = UDF_I(inode); 83 84 spin_lock(&iinfo->i_extent_cache_lock); 85 __udf_clear_extent_cache(inode); 86 spin_unlock(&iinfo->i_extent_cache_lock); 87 } 88 89 /* Return contents of extent cache */ 90 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 91 loff_t *lbcount, struct extent_position *pos) 92 { 93 struct udf_inode_info *iinfo = UDF_I(inode); 94 int ret = 0; 95 96 spin_lock(&iinfo->i_extent_cache_lock); 97 if ((iinfo->cached_extent.lstart <= bcount) && 98 (iinfo->cached_extent.lstart != -1)) { 99 /* Cache hit */ 100 *lbcount = iinfo->cached_extent.lstart; 101 memcpy(pos, &iinfo->cached_extent.epos, 102 sizeof(struct extent_position)); 103 if (pos->bh) 104 get_bh(pos->bh); 105 ret = 1; 106 } 107 spin_unlock(&iinfo->i_extent_cache_lock); 108 return ret; 109 } 110 111 /* Add extent to extent cache */ 112 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 113 struct extent_position *pos, int next_epos) 114 { 115 struct udf_inode_info *iinfo = UDF_I(inode); 116 117 spin_lock(&iinfo->i_extent_cache_lock); 118 /* Invalidate previously cached extent */ 119 __udf_clear_extent_cache(inode); 120 if (pos->bh) 121 get_bh(pos->bh); 122 memcpy(&iinfo->cached_extent.epos, pos, 123 sizeof(struct extent_position)); 124 iinfo->cached_extent.lstart = estart; 125 if (next_epos) 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= 129 sizeof(struct short_ad); 130 break; 131 case ICBTAG_FLAG_AD_LONG: 132 iinfo->cached_extent.epos.offset -= 133 sizeof(struct long_ad); 134 } 135 spin_unlock(&iinfo->i_extent_cache_lock); 136 } 137 138 void udf_evict_inode(struct inode *inode) 139 { 140 struct udf_inode_info *iinfo = UDF_I(inode); 141 int want_delete = 0; 142 143 if (!inode->i_nlink && !is_bad_inode(inode)) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 truncate_inode_pages_final(&inode->i_data); 149 invalidate_inode_buffers(inode); 150 clear_inode(inode); 151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 152 inode->i_size != iinfo->i_lenExtents) { 153 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 154 inode->i_ino, inode->i_mode, 155 (unsigned long long)inode->i_size, 156 (unsigned long long)iinfo->i_lenExtents); 157 } 158 kfree(iinfo->i_ext.i_data); 159 iinfo->i_ext.i_data = NULL; 160 udf_clear_extent_cache(inode); 161 if (want_delete) { 162 udf_free_inode(inode); 163 } 164 } 165 166 static void udf_write_failed(struct address_space *mapping, loff_t to) 167 { 168 struct inode *inode = mapping->host; 169 struct udf_inode_info *iinfo = UDF_I(inode); 170 loff_t isize = inode->i_size; 171 172 if (to > isize) { 173 truncate_pagecache(inode, isize); 174 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 175 down_write(&iinfo->i_data_sem); 176 udf_clear_extent_cache(inode); 177 udf_truncate_extents(inode); 178 up_write(&iinfo->i_data_sem); 179 } 180 } 181 } 182 183 static int udf_writepage(struct page *page, struct writeback_control *wbc) 184 { 185 return block_write_full_page(page, udf_get_block, wbc); 186 } 187 188 static int udf_writepages(struct address_space *mapping, 189 struct writeback_control *wbc) 190 { 191 return mpage_writepages(mapping, wbc, udf_get_block); 192 } 193 194 static int udf_readpage(struct file *file, struct page *page) 195 { 196 return mpage_readpage(page, udf_get_block); 197 } 198 199 static int udf_readpages(struct file *file, struct address_space *mapping, 200 struct list_head *pages, unsigned nr_pages) 201 { 202 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 203 } 204 205 static int udf_write_begin(struct file *file, struct address_space *mapping, 206 loff_t pos, unsigned len, unsigned flags, 207 struct page **pagep, void **fsdata) 208 { 209 int ret; 210 211 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 212 if (unlikely(ret)) 213 udf_write_failed(mapping, pos + len); 214 return ret; 215 } 216 217 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 218 { 219 struct file *file = iocb->ki_filp; 220 struct address_space *mapping = file->f_mapping; 221 struct inode *inode = mapping->host; 222 size_t count = iov_iter_count(iter); 223 ssize_t ret; 224 225 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 226 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 227 udf_write_failed(mapping, iocb->ki_pos + count); 228 return ret; 229 } 230 231 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 232 { 233 return generic_block_bmap(mapping, block, udf_get_block); 234 } 235 236 const struct address_space_operations udf_aops = { 237 .readpage = udf_readpage, 238 .readpages = udf_readpages, 239 .writepage = udf_writepage, 240 .writepages = udf_writepages, 241 .write_begin = udf_write_begin, 242 .write_end = generic_write_end, 243 .direct_IO = udf_direct_IO, 244 .bmap = udf_bmap, 245 }; 246 247 /* 248 * Expand file stored in ICB to a normal one-block-file 249 * 250 * This function requires i_data_sem for writing and releases it. 251 * This function requires i_mutex held 252 */ 253 int udf_expand_file_adinicb(struct inode *inode) 254 { 255 struct page *page; 256 char *kaddr; 257 struct udf_inode_info *iinfo = UDF_I(inode); 258 int err; 259 struct writeback_control udf_wbc = { 260 .sync_mode = WB_SYNC_NONE, 261 .nr_to_write = 1, 262 }; 263 264 WARN_ON_ONCE(!inode_is_locked(inode)); 265 if (!iinfo->i_lenAlloc) { 266 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 267 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 268 else 269 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 270 /* from now on we have normal address_space methods */ 271 inode->i_data.a_ops = &udf_aops; 272 up_write(&iinfo->i_data_sem); 273 mark_inode_dirty(inode); 274 return 0; 275 } 276 /* 277 * Release i_data_sem so that we can lock a page - page lock ranks 278 * above i_data_sem. i_mutex still protects us against file changes. 279 */ 280 up_write(&iinfo->i_data_sem); 281 282 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 283 if (!page) 284 return -ENOMEM; 285 286 if (!PageUptodate(page)) { 287 kaddr = kmap(page); 288 memset(kaddr + iinfo->i_lenAlloc, 0x00, 289 PAGE_SIZE - iinfo->i_lenAlloc); 290 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 291 iinfo->i_lenAlloc); 292 flush_dcache_page(page); 293 SetPageUptodate(page); 294 kunmap(page); 295 } 296 down_write(&iinfo->i_data_sem); 297 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 298 iinfo->i_lenAlloc); 299 iinfo->i_lenAlloc = 0; 300 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 301 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 302 else 303 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 304 /* from now on we have normal address_space methods */ 305 inode->i_data.a_ops = &udf_aops; 306 up_write(&iinfo->i_data_sem); 307 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 308 if (err) { 309 /* Restore everything back so that we don't lose data... */ 310 lock_page(page); 311 kaddr = kmap(page); 312 down_write(&iinfo->i_data_sem); 313 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 314 inode->i_size); 315 kunmap(page); 316 unlock_page(page); 317 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 318 inode->i_data.a_ops = &udf_adinicb_aops; 319 up_write(&iinfo->i_data_sem); 320 } 321 put_page(page); 322 mark_inode_dirty(inode); 323 324 return err; 325 } 326 327 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 328 int *err) 329 { 330 int newblock; 331 struct buffer_head *dbh = NULL; 332 struct kernel_lb_addr eloc; 333 uint8_t alloctype; 334 struct extent_position epos; 335 336 struct udf_fileident_bh sfibh, dfibh; 337 loff_t f_pos = udf_ext0_offset(inode); 338 int size = udf_ext0_offset(inode) + inode->i_size; 339 struct fileIdentDesc cfi, *sfi, *dfi; 340 struct udf_inode_info *iinfo = UDF_I(inode); 341 342 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 343 alloctype = ICBTAG_FLAG_AD_SHORT; 344 else 345 alloctype = ICBTAG_FLAG_AD_LONG; 346 347 if (!inode->i_size) { 348 iinfo->i_alloc_type = alloctype; 349 mark_inode_dirty(inode); 350 return NULL; 351 } 352 353 /* alloc block, and copy data to it */ 354 *block = udf_new_block(inode->i_sb, inode, 355 iinfo->i_location.partitionReferenceNum, 356 iinfo->i_location.logicalBlockNum, err); 357 if (!(*block)) 358 return NULL; 359 newblock = udf_get_pblock(inode->i_sb, *block, 360 iinfo->i_location.partitionReferenceNum, 361 0); 362 if (!newblock) 363 return NULL; 364 dbh = udf_tgetblk(inode->i_sb, newblock); 365 if (!dbh) 366 return NULL; 367 lock_buffer(dbh); 368 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 369 set_buffer_uptodate(dbh); 370 unlock_buffer(dbh); 371 mark_buffer_dirty_inode(dbh, inode); 372 373 sfibh.soffset = sfibh.eoffset = 374 f_pos & (inode->i_sb->s_blocksize - 1); 375 sfibh.sbh = sfibh.ebh = NULL; 376 dfibh.soffset = dfibh.eoffset = 0; 377 dfibh.sbh = dfibh.ebh = dbh; 378 while (f_pos < size) { 379 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 380 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 381 NULL, NULL, NULL); 382 if (!sfi) { 383 brelse(dbh); 384 return NULL; 385 } 386 iinfo->i_alloc_type = alloctype; 387 sfi->descTag.tagLocation = cpu_to_le32(*block); 388 dfibh.soffset = dfibh.eoffset; 389 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 390 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 391 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 392 sfi->fileIdent + 393 le16_to_cpu(sfi->lengthOfImpUse))) { 394 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 395 brelse(dbh); 396 return NULL; 397 } 398 } 399 mark_buffer_dirty_inode(dbh, inode); 400 401 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 402 iinfo->i_lenAlloc); 403 iinfo->i_lenAlloc = 0; 404 eloc.logicalBlockNum = *block; 405 eloc.partitionReferenceNum = 406 iinfo->i_location.partitionReferenceNum; 407 iinfo->i_lenExtents = inode->i_size; 408 epos.bh = NULL; 409 epos.block = iinfo->i_location; 410 epos.offset = udf_file_entry_alloc_offset(inode); 411 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 412 /* UniqueID stuff */ 413 414 brelse(epos.bh); 415 mark_inode_dirty(inode); 416 return dbh; 417 } 418 419 static int udf_get_block(struct inode *inode, sector_t block, 420 struct buffer_head *bh_result, int create) 421 { 422 int err, new; 423 sector_t phys = 0; 424 struct udf_inode_info *iinfo; 425 426 if (!create) { 427 phys = udf_block_map(inode, block); 428 if (phys) 429 map_bh(bh_result, inode->i_sb, phys); 430 return 0; 431 } 432 433 err = -EIO; 434 new = 0; 435 iinfo = UDF_I(inode); 436 437 down_write(&iinfo->i_data_sem); 438 if (block == iinfo->i_next_alloc_block + 1) { 439 iinfo->i_next_alloc_block++; 440 iinfo->i_next_alloc_goal++; 441 } 442 443 udf_clear_extent_cache(inode); 444 phys = inode_getblk(inode, block, &err, &new); 445 if (!phys) 446 goto abort; 447 448 if (new) 449 set_buffer_new(bh_result); 450 map_bh(bh_result, inode->i_sb, phys); 451 452 abort: 453 up_write(&iinfo->i_data_sem); 454 return err; 455 } 456 457 static struct buffer_head *udf_getblk(struct inode *inode, long block, 458 int create, int *err) 459 { 460 struct buffer_head *bh; 461 struct buffer_head dummy; 462 463 dummy.b_state = 0; 464 dummy.b_blocknr = -1000; 465 *err = udf_get_block(inode, block, &dummy, create); 466 if (!*err && buffer_mapped(&dummy)) { 467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 468 if (buffer_new(&dummy)) { 469 lock_buffer(bh); 470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 471 set_buffer_uptodate(bh); 472 unlock_buffer(bh); 473 mark_buffer_dirty_inode(bh, inode); 474 } 475 return bh; 476 } 477 478 return NULL; 479 } 480 481 /* Extend the file by 'blocks' blocks, return the number of extents added */ 482 static int udf_do_extend_file(struct inode *inode, 483 struct extent_position *last_pos, 484 struct kernel_long_ad *last_ext, 485 sector_t blocks) 486 { 487 sector_t add; 488 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 489 struct super_block *sb = inode->i_sb; 490 struct kernel_lb_addr prealloc_loc = {}; 491 int prealloc_len = 0; 492 struct udf_inode_info *iinfo; 493 int err; 494 495 /* The previous extent is fake and we should not extend by anything 496 * - there's nothing to do... */ 497 if (!blocks && fake) 498 return 0; 499 500 iinfo = UDF_I(inode); 501 /* Round the last extent up to a multiple of block size */ 502 if (last_ext->extLength & (sb->s_blocksize - 1)) { 503 last_ext->extLength = 504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 507 iinfo->i_lenExtents = 508 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 509 ~(sb->s_blocksize - 1); 510 } 511 512 /* Last extent are just preallocated blocks? */ 513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 514 EXT_NOT_RECORDED_ALLOCATED) { 515 /* Save the extent so that we can reattach it to the end */ 516 prealloc_loc = last_ext->extLocation; 517 prealloc_len = last_ext->extLength; 518 /* Mark the extent as a hole */ 519 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 520 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 521 last_ext->extLocation.logicalBlockNum = 0; 522 last_ext->extLocation.partitionReferenceNum = 0; 523 } 524 525 /* Can we merge with the previous extent? */ 526 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 527 EXT_NOT_RECORDED_NOT_ALLOCATED) { 528 add = ((1 << 30) - sb->s_blocksize - 529 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 530 sb->s_blocksize_bits; 531 if (add > blocks) 532 add = blocks; 533 blocks -= add; 534 last_ext->extLength += add << sb->s_blocksize_bits; 535 } 536 537 if (fake) { 538 udf_add_aext(inode, last_pos, &last_ext->extLocation, 539 last_ext->extLength, 1); 540 count++; 541 } else { 542 struct kernel_lb_addr tmploc; 543 uint32_t tmplen; 544 545 udf_write_aext(inode, last_pos, &last_ext->extLocation, 546 last_ext->extLength, 1); 547 /* 548 * We've rewritten the last extent but there may be empty 549 * indirect extent after it - enter it. 550 */ 551 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 552 } 553 554 /* Managed to do everything necessary? */ 555 if (!blocks) 556 goto out; 557 558 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 559 last_ext->extLocation.logicalBlockNum = 0; 560 last_ext->extLocation.partitionReferenceNum = 0; 561 add = (1 << (30-sb->s_blocksize_bits)) - 1; 562 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 563 (add << sb->s_blocksize_bits); 564 565 /* Create enough extents to cover the whole hole */ 566 while (blocks > add) { 567 blocks -= add; 568 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 569 last_ext->extLength, 1); 570 if (err) 571 return err; 572 count++; 573 } 574 if (blocks) { 575 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 576 (blocks << sb->s_blocksize_bits); 577 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 578 last_ext->extLength, 1); 579 if (err) 580 return err; 581 count++; 582 } 583 584 out: 585 /* Do we have some preallocated blocks saved? */ 586 if (prealloc_len) { 587 err = udf_add_aext(inode, last_pos, &prealloc_loc, 588 prealloc_len, 1); 589 if (err) 590 return err; 591 last_ext->extLocation = prealloc_loc; 592 last_ext->extLength = prealloc_len; 593 count++; 594 } 595 596 /* last_pos should point to the last written extent... */ 597 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 598 last_pos->offset -= sizeof(struct short_ad); 599 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 600 last_pos->offset -= sizeof(struct long_ad); 601 else 602 return -EIO; 603 604 return count; 605 } 606 607 static int udf_extend_file(struct inode *inode, loff_t newsize) 608 { 609 610 struct extent_position epos; 611 struct kernel_lb_addr eloc; 612 uint32_t elen; 613 int8_t etype; 614 struct super_block *sb = inode->i_sb; 615 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 616 int adsize; 617 struct udf_inode_info *iinfo = UDF_I(inode); 618 struct kernel_long_ad extent; 619 int err; 620 621 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 622 adsize = sizeof(struct short_ad); 623 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 624 adsize = sizeof(struct long_ad); 625 else 626 BUG(); 627 628 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 629 630 /* File has extent covering the new size (could happen when extending 631 * inside a block)? */ 632 if (etype != -1) 633 return 0; 634 if (newsize & (sb->s_blocksize - 1)) 635 offset++; 636 /* Extended file just to the boundary of the last file block? */ 637 if (offset == 0) 638 return 0; 639 640 /* Truncate is extending the file by 'offset' blocks */ 641 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 642 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 643 /* File has no extents at all or has empty last 644 * indirect extent! Create a fake extent... */ 645 extent.extLocation.logicalBlockNum = 0; 646 extent.extLocation.partitionReferenceNum = 0; 647 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 648 } else { 649 epos.offset -= adsize; 650 etype = udf_next_aext(inode, &epos, &extent.extLocation, 651 &extent.extLength, 0); 652 extent.extLength |= etype << 30; 653 } 654 err = udf_do_extend_file(inode, &epos, &extent, offset); 655 if (err < 0) 656 goto out; 657 err = 0; 658 iinfo->i_lenExtents = newsize; 659 out: 660 brelse(epos.bh); 661 return err; 662 } 663 664 static sector_t inode_getblk(struct inode *inode, sector_t block, 665 int *err, int *new) 666 { 667 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 668 struct extent_position prev_epos, cur_epos, next_epos; 669 int count = 0, startnum = 0, endnum = 0; 670 uint32_t elen = 0, tmpelen; 671 struct kernel_lb_addr eloc, tmpeloc; 672 int c = 1; 673 loff_t lbcount = 0, b_off = 0; 674 uint32_t newblocknum, newblock; 675 sector_t offset = 0; 676 int8_t etype; 677 struct udf_inode_info *iinfo = UDF_I(inode); 678 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 679 int lastblock = 0; 680 bool isBeyondEOF; 681 682 *err = 0; 683 *new = 0; 684 prev_epos.offset = udf_file_entry_alloc_offset(inode); 685 prev_epos.block = iinfo->i_location; 686 prev_epos.bh = NULL; 687 cur_epos = next_epos = prev_epos; 688 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 689 690 /* find the extent which contains the block we are looking for. 691 alternate between laarr[0] and laarr[1] for locations of the 692 current extent, and the previous extent */ 693 do { 694 if (prev_epos.bh != cur_epos.bh) { 695 brelse(prev_epos.bh); 696 get_bh(cur_epos.bh); 697 prev_epos.bh = cur_epos.bh; 698 } 699 if (cur_epos.bh != next_epos.bh) { 700 brelse(cur_epos.bh); 701 get_bh(next_epos.bh); 702 cur_epos.bh = next_epos.bh; 703 } 704 705 lbcount += elen; 706 707 prev_epos.block = cur_epos.block; 708 cur_epos.block = next_epos.block; 709 710 prev_epos.offset = cur_epos.offset; 711 cur_epos.offset = next_epos.offset; 712 713 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 714 if (etype == -1) 715 break; 716 717 c = !c; 718 719 laarr[c].extLength = (etype << 30) | elen; 720 laarr[c].extLocation = eloc; 721 722 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 723 pgoal = eloc.logicalBlockNum + 724 ((elen + inode->i_sb->s_blocksize - 1) >> 725 inode->i_sb->s_blocksize_bits); 726 727 count++; 728 } while (lbcount + elen <= b_off); 729 730 b_off -= lbcount; 731 offset = b_off >> inode->i_sb->s_blocksize_bits; 732 /* 733 * Move prev_epos and cur_epos into indirect extent if we are at 734 * the pointer to it 735 */ 736 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 737 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 738 739 /* if the extent is allocated and recorded, return the block 740 if the extent is not a multiple of the blocksize, round up */ 741 742 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 743 if (elen & (inode->i_sb->s_blocksize - 1)) { 744 elen = EXT_RECORDED_ALLOCATED | 745 ((elen + inode->i_sb->s_blocksize - 1) & 746 ~(inode->i_sb->s_blocksize - 1)); 747 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 748 } 749 brelse(prev_epos.bh); 750 brelse(cur_epos.bh); 751 brelse(next_epos.bh); 752 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 753 return newblock; 754 } 755 756 /* Are we beyond EOF? */ 757 if (etype == -1) { 758 int ret; 759 isBeyondEOF = true; 760 if (count) { 761 if (c) 762 laarr[0] = laarr[1]; 763 startnum = 1; 764 } else { 765 /* Create a fake extent when there's not one */ 766 memset(&laarr[0].extLocation, 0x00, 767 sizeof(struct kernel_lb_addr)); 768 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 769 /* Will udf_do_extend_file() create real extent from 770 a fake one? */ 771 startnum = (offset > 0); 772 } 773 /* Create extents for the hole between EOF and offset */ 774 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 775 if (ret < 0) { 776 brelse(prev_epos.bh); 777 brelse(cur_epos.bh); 778 brelse(next_epos.bh); 779 *err = ret; 780 return 0; 781 } 782 c = 0; 783 offset = 0; 784 count += ret; 785 /* We are not covered by a preallocated extent? */ 786 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 787 EXT_NOT_RECORDED_ALLOCATED) { 788 /* Is there any real extent? - otherwise we overwrite 789 * the fake one... */ 790 if (count) 791 c = !c; 792 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 793 inode->i_sb->s_blocksize; 794 memset(&laarr[c].extLocation, 0x00, 795 sizeof(struct kernel_lb_addr)); 796 count++; 797 } 798 endnum = c + 1; 799 lastblock = 1; 800 } else { 801 isBeyondEOF = false; 802 endnum = startnum = ((count > 2) ? 2 : count); 803 804 /* if the current extent is in position 0, 805 swap it with the previous */ 806 if (!c && count != 1) { 807 laarr[2] = laarr[0]; 808 laarr[0] = laarr[1]; 809 laarr[1] = laarr[2]; 810 c = 1; 811 } 812 813 /* if the current block is located in an extent, 814 read the next extent */ 815 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 816 if (etype != -1) { 817 laarr[c + 1].extLength = (etype << 30) | elen; 818 laarr[c + 1].extLocation = eloc; 819 count++; 820 startnum++; 821 endnum++; 822 } else 823 lastblock = 1; 824 } 825 826 /* if the current extent is not recorded but allocated, get the 827 * block in the extent corresponding to the requested block */ 828 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 829 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 830 else { /* otherwise, allocate a new block */ 831 if (iinfo->i_next_alloc_block == block) 832 goal = iinfo->i_next_alloc_goal; 833 834 if (!goal) { 835 if (!(goal = pgoal)) /* XXX: what was intended here? */ 836 goal = iinfo->i_location.logicalBlockNum + 1; 837 } 838 839 newblocknum = udf_new_block(inode->i_sb, inode, 840 iinfo->i_location.partitionReferenceNum, 841 goal, err); 842 if (!newblocknum) { 843 brelse(prev_epos.bh); 844 brelse(cur_epos.bh); 845 brelse(next_epos.bh); 846 *err = -ENOSPC; 847 return 0; 848 } 849 if (isBeyondEOF) 850 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 851 } 852 853 /* if the extent the requsted block is located in contains multiple 854 * blocks, split the extent into at most three extents. blocks prior 855 * to requested block, requested block, and blocks after requested 856 * block */ 857 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 858 859 #ifdef UDF_PREALLOCATE 860 /* We preallocate blocks only for regular files. It also makes sense 861 * for directories but there's a problem when to drop the 862 * preallocation. We might use some delayed work for that but I feel 863 * it's overengineering for a filesystem like UDF. */ 864 if (S_ISREG(inode->i_mode)) 865 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 866 #endif 867 868 /* merge any continuous blocks in laarr */ 869 udf_merge_extents(inode, laarr, &endnum); 870 871 /* write back the new extents, inserting new extents if the new number 872 * of extents is greater than the old number, and deleting extents if 873 * the new number of extents is less than the old number */ 874 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 875 876 brelse(prev_epos.bh); 877 brelse(cur_epos.bh); 878 brelse(next_epos.bh); 879 880 newblock = udf_get_pblock(inode->i_sb, newblocknum, 881 iinfo->i_location.partitionReferenceNum, 0); 882 if (!newblock) { 883 *err = -EIO; 884 return 0; 885 } 886 *new = 1; 887 iinfo->i_next_alloc_block = block; 888 iinfo->i_next_alloc_goal = newblocknum; 889 inode->i_ctime = current_time(inode); 890 891 if (IS_SYNC(inode)) 892 udf_sync_inode(inode); 893 else 894 mark_inode_dirty(inode); 895 896 return newblock; 897 } 898 899 static void udf_split_extents(struct inode *inode, int *c, int offset, 900 int newblocknum, 901 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 902 int *endnum) 903 { 904 unsigned long blocksize = inode->i_sb->s_blocksize; 905 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 906 907 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 908 (laarr[*c].extLength >> 30) == 909 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 910 int curr = *c; 911 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 912 blocksize - 1) >> blocksize_bits; 913 int8_t etype = (laarr[curr].extLength >> 30); 914 915 if (blen == 1) 916 ; 917 else if (!offset || blen == offset + 1) { 918 laarr[curr + 2] = laarr[curr + 1]; 919 laarr[curr + 1] = laarr[curr]; 920 } else { 921 laarr[curr + 3] = laarr[curr + 1]; 922 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 923 } 924 925 if (offset) { 926 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 927 udf_free_blocks(inode->i_sb, inode, 928 &laarr[curr].extLocation, 929 0, offset); 930 laarr[curr].extLength = 931 EXT_NOT_RECORDED_NOT_ALLOCATED | 932 (offset << blocksize_bits); 933 laarr[curr].extLocation.logicalBlockNum = 0; 934 laarr[curr].extLocation. 935 partitionReferenceNum = 0; 936 } else 937 laarr[curr].extLength = (etype << 30) | 938 (offset << blocksize_bits); 939 curr++; 940 (*c)++; 941 (*endnum)++; 942 } 943 944 laarr[curr].extLocation.logicalBlockNum = newblocknum; 945 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 946 laarr[curr].extLocation.partitionReferenceNum = 947 UDF_I(inode)->i_location.partitionReferenceNum; 948 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 949 blocksize; 950 curr++; 951 952 if (blen != offset + 1) { 953 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 954 laarr[curr].extLocation.logicalBlockNum += 955 offset + 1; 956 laarr[curr].extLength = (etype << 30) | 957 ((blen - (offset + 1)) << blocksize_bits); 958 curr++; 959 (*endnum)++; 960 } 961 } 962 } 963 964 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 965 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 966 int *endnum) 967 { 968 int start, length = 0, currlength = 0, i; 969 970 if (*endnum >= (c + 1)) { 971 if (!lastblock) 972 return; 973 else 974 start = c; 975 } else { 976 if ((laarr[c + 1].extLength >> 30) == 977 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 978 start = c + 1; 979 length = currlength = 980 (((laarr[c + 1].extLength & 981 UDF_EXTENT_LENGTH_MASK) + 982 inode->i_sb->s_blocksize - 1) >> 983 inode->i_sb->s_blocksize_bits); 984 } else 985 start = c; 986 } 987 988 for (i = start + 1; i <= *endnum; i++) { 989 if (i == *endnum) { 990 if (lastblock) 991 length += UDF_DEFAULT_PREALLOC_BLOCKS; 992 } else if ((laarr[i].extLength >> 30) == 993 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 994 length += (((laarr[i].extLength & 995 UDF_EXTENT_LENGTH_MASK) + 996 inode->i_sb->s_blocksize - 1) >> 997 inode->i_sb->s_blocksize_bits); 998 } else 999 break; 1000 } 1001 1002 if (length) { 1003 int next = laarr[start].extLocation.logicalBlockNum + 1004 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1005 inode->i_sb->s_blocksize - 1) >> 1006 inode->i_sb->s_blocksize_bits); 1007 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1008 laarr[start].extLocation.partitionReferenceNum, 1009 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1010 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1011 currlength); 1012 if (numalloc) { 1013 if (start == (c + 1)) 1014 laarr[start].extLength += 1015 (numalloc << 1016 inode->i_sb->s_blocksize_bits); 1017 else { 1018 memmove(&laarr[c + 2], &laarr[c + 1], 1019 sizeof(struct long_ad) * (*endnum - (c + 1))); 1020 (*endnum)++; 1021 laarr[c + 1].extLocation.logicalBlockNum = next; 1022 laarr[c + 1].extLocation.partitionReferenceNum = 1023 laarr[c].extLocation. 1024 partitionReferenceNum; 1025 laarr[c + 1].extLength = 1026 EXT_NOT_RECORDED_ALLOCATED | 1027 (numalloc << 1028 inode->i_sb->s_blocksize_bits); 1029 start = c + 1; 1030 } 1031 1032 for (i = start + 1; numalloc && i < *endnum; i++) { 1033 int elen = ((laarr[i].extLength & 1034 UDF_EXTENT_LENGTH_MASK) + 1035 inode->i_sb->s_blocksize - 1) >> 1036 inode->i_sb->s_blocksize_bits; 1037 1038 if (elen > numalloc) { 1039 laarr[i].extLength -= 1040 (numalloc << 1041 inode->i_sb->s_blocksize_bits); 1042 numalloc = 0; 1043 } else { 1044 numalloc -= elen; 1045 if (*endnum > (i + 1)) 1046 memmove(&laarr[i], 1047 &laarr[i + 1], 1048 sizeof(struct long_ad) * 1049 (*endnum - (i + 1))); 1050 i--; 1051 (*endnum)--; 1052 } 1053 } 1054 UDF_I(inode)->i_lenExtents += 1055 numalloc << inode->i_sb->s_blocksize_bits; 1056 } 1057 } 1058 } 1059 1060 static void udf_merge_extents(struct inode *inode, 1061 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1062 int *endnum) 1063 { 1064 int i; 1065 unsigned long blocksize = inode->i_sb->s_blocksize; 1066 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1067 1068 for (i = 0; i < (*endnum - 1); i++) { 1069 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1070 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1071 1072 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1073 (((li->extLength >> 30) == 1074 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1075 ((lip1->extLocation.logicalBlockNum - 1076 li->extLocation.logicalBlockNum) == 1077 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1078 blocksize - 1) >> blocksize_bits)))) { 1079 1080 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1081 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1082 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1083 lip1->extLength = (lip1->extLength - 1084 (li->extLength & 1085 UDF_EXTENT_LENGTH_MASK) + 1086 UDF_EXTENT_LENGTH_MASK) & 1087 ~(blocksize - 1); 1088 li->extLength = (li->extLength & 1089 UDF_EXTENT_FLAG_MASK) + 1090 (UDF_EXTENT_LENGTH_MASK + 1) - 1091 blocksize; 1092 lip1->extLocation.logicalBlockNum = 1093 li->extLocation.logicalBlockNum + 1094 ((li->extLength & 1095 UDF_EXTENT_LENGTH_MASK) >> 1096 blocksize_bits); 1097 } else { 1098 li->extLength = lip1->extLength + 1099 (((li->extLength & 1100 UDF_EXTENT_LENGTH_MASK) + 1101 blocksize - 1) & ~(blocksize - 1)); 1102 if (*endnum > (i + 2)) 1103 memmove(&laarr[i + 1], &laarr[i + 2], 1104 sizeof(struct long_ad) * 1105 (*endnum - (i + 2))); 1106 i--; 1107 (*endnum)--; 1108 } 1109 } else if (((li->extLength >> 30) == 1110 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1111 ((lip1->extLength >> 30) == 1112 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1113 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1114 ((li->extLength & 1115 UDF_EXTENT_LENGTH_MASK) + 1116 blocksize - 1) >> blocksize_bits); 1117 li->extLocation.logicalBlockNum = 0; 1118 li->extLocation.partitionReferenceNum = 0; 1119 1120 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1121 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1122 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1123 lip1->extLength = (lip1->extLength - 1124 (li->extLength & 1125 UDF_EXTENT_LENGTH_MASK) + 1126 UDF_EXTENT_LENGTH_MASK) & 1127 ~(blocksize - 1); 1128 li->extLength = (li->extLength & 1129 UDF_EXTENT_FLAG_MASK) + 1130 (UDF_EXTENT_LENGTH_MASK + 1) - 1131 blocksize; 1132 } else { 1133 li->extLength = lip1->extLength + 1134 (((li->extLength & 1135 UDF_EXTENT_LENGTH_MASK) + 1136 blocksize - 1) & ~(blocksize - 1)); 1137 if (*endnum > (i + 2)) 1138 memmove(&laarr[i + 1], &laarr[i + 2], 1139 sizeof(struct long_ad) * 1140 (*endnum - (i + 2))); 1141 i--; 1142 (*endnum)--; 1143 } 1144 } else if ((li->extLength >> 30) == 1145 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1146 udf_free_blocks(inode->i_sb, inode, 1147 &li->extLocation, 0, 1148 ((li->extLength & 1149 UDF_EXTENT_LENGTH_MASK) + 1150 blocksize - 1) >> blocksize_bits); 1151 li->extLocation.logicalBlockNum = 0; 1152 li->extLocation.partitionReferenceNum = 0; 1153 li->extLength = (li->extLength & 1154 UDF_EXTENT_LENGTH_MASK) | 1155 EXT_NOT_RECORDED_NOT_ALLOCATED; 1156 } 1157 } 1158 } 1159 1160 static void udf_update_extents(struct inode *inode, 1161 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1162 int startnum, int endnum, 1163 struct extent_position *epos) 1164 { 1165 int start = 0, i; 1166 struct kernel_lb_addr tmploc; 1167 uint32_t tmplen; 1168 1169 if (startnum > endnum) { 1170 for (i = 0; i < (startnum - endnum); i++) 1171 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1172 laarr[i].extLength); 1173 } else if (startnum < endnum) { 1174 for (i = 0; i < (endnum - startnum); i++) { 1175 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1176 laarr[i].extLength); 1177 udf_next_aext(inode, epos, &laarr[i].extLocation, 1178 &laarr[i].extLength, 1); 1179 start++; 1180 } 1181 } 1182 1183 for (i = start; i < endnum; i++) { 1184 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1185 udf_write_aext(inode, epos, &laarr[i].extLocation, 1186 laarr[i].extLength, 1); 1187 } 1188 } 1189 1190 struct buffer_head *udf_bread(struct inode *inode, int block, 1191 int create, int *err) 1192 { 1193 struct buffer_head *bh = NULL; 1194 1195 bh = udf_getblk(inode, block, create, err); 1196 if (!bh) 1197 return NULL; 1198 1199 if (buffer_uptodate(bh)) 1200 return bh; 1201 1202 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1203 1204 wait_on_buffer(bh); 1205 if (buffer_uptodate(bh)) 1206 return bh; 1207 1208 brelse(bh); 1209 *err = -EIO; 1210 return NULL; 1211 } 1212 1213 int udf_setsize(struct inode *inode, loff_t newsize) 1214 { 1215 int err; 1216 struct udf_inode_info *iinfo; 1217 int bsize = 1 << inode->i_blkbits; 1218 1219 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1220 S_ISLNK(inode->i_mode))) 1221 return -EINVAL; 1222 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1223 return -EPERM; 1224 1225 iinfo = UDF_I(inode); 1226 if (newsize > inode->i_size) { 1227 down_write(&iinfo->i_data_sem); 1228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1229 if (bsize < 1230 (udf_file_entry_alloc_offset(inode) + newsize)) { 1231 err = udf_expand_file_adinicb(inode); 1232 if (err) 1233 return err; 1234 down_write(&iinfo->i_data_sem); 1235 } else { 1236 iinfo->i_lenAlloc = newsize; 1237 goto set_size; 1238 } 1239 } 1240 err = udf_extend_file(inode, newsize); 1241 if (err) { 1242 up_write(&iinfo->i_data_sem); 1243 return err; 1244 } 1245 set_size: 1246 truncate_setsize(inode, newsize); 1247 up_write(&iinfo->i_data_sem); 1248 } else { 1249 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1250 down_write(&iinfo->i_data_sem); 1251 udf_clear_extent_cache(inode); 1252 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1253 0x00, bsize - newsize - 1254 udf_file_entry_alloc_offset(inode)); 1255 iinfo->i_lenAlloc = newsize; 1256 truncate_setsize(inode, newsize); 1257 up_write(&iinfo->i_data_sem); 1258 goto update_time; 1259 } 1260 err = block_truncate_page(inode->i_mapping, newsize, 1261 udf_get_block); 1262 if (err) 1263 return err; 1264 down_write(&iinfo->i_data_sem); 1265 udf_clear_extent_cache(inode); 1266 truncate_setsize(inode, newsize); 1267 udf_truncate_extents(inode); 1268 up_write(&iinfo->i_data_sem); 1269 } 1270 update_time: 1271 inode->i_mtime = inode->i_ctime = current_time(inode); 1272 if (IS_SYNC(inode)) 1273 udf_sync_inode(inode); 1274 else 1275 mark_inode_dirty(inode); 1276 return 0; 1277 } 1278 1279 /* 1280 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1281 * arbitrary - just that we hopefully don't limit any real use of rewritten 1282 * inode on write-once media but avoid looping for too long on corrupted media. 1283 */ 1284 #define UDF_MAX_ICB_NESTING 1024 1285 1286 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1287 { 1288 struct buffer_head *bh = NULL; 1289 struct fileEntry *fe; 1290 struct extendedFileEntry *efe; 1291 uint16_t ident; 1292 struct udf_inode_info *iinfo = UDF_I(inode); 1293 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1294 struct kernel_lb_addr *iloc = &iinfo->i_location; 1295 unsigned int link_count; 1296 unsigned int indirections = 0; 1297 int bs = inode->i_sb->s_blocksize; 1298 int ret = -EIO; 1299 1300 reread: 1301 if (iloc->logicalBlockNum >= 1302 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1303 udf_debug("block=%d, partition=%d out of range\n", 1304 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1305 return -EIO; 1306 } 1307 1308 /* 1309 * Set defaults, but the inode is still incomplete! 1310 * Note: get_new_inode() sets the following on a new inode: 1311 * i_sb = sb 1312 * i_no = ino 1313 * i_flags = sb->s_flags 1314 * i_state = 0 1315 * clean_inode(): zero fills and sets 1316 * i_count = 1 1317 * i_nlink = 1 1318 * i_op = NULL; 1319 */ 1320 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1321 if (!bh) { 1322 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1323 return -EIO; 1324 } 1325 1326 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1327 ident != TAG_IDENT_USE) { 1328 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1329 inode->i_ino, ident); 1330 goto out; 1331 } 1332 1333 fe = (struct fileEntry *)bh->b_data; 1334 efe = (struct extendedFileEntry *)bh->b_data; 1335 1336 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1337 struct buffer_head *ibh; 1338 1339 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1340 if (ident == TAG_IDENT_IE && ibh) { 1341 struct kernel_lb_addr loc; 1342 struct indirectEntry *ie; 1343 1344 ie = (struct indirectEntry *)ibh->b_data; 1345 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1346 1347 if (ie->indirectICB.extLength) { 1348 brelse(ibh); 1349 memcpy(&iinfo->i_location, &loc, 1350 sizeof(struct kernel_lb_addr)); 1351 if (++indirections > UDF_MAX_ICB_NESTING) { 1352 udf_err(inode->i_sb, 1353 "too many ICBs in ICB hierarchy" 1354 " (max %d supported)\n", 1355 UDF_MAX_ICB_NESTING); 1356 goto out; 1357 } 1358 brelse(bh); 1359 goto reread; 1360 } 1361 } 1362 brelse(ibh); 1363 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1364 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1365 le16_to_cpu(fe->icbTag.strategyType)); 1366 goto out; 1367 } 1368 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1369 iinfo->i_strat4096 = 0; 1370 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1371 iinfo->i_strat4096 = 1; 1372 1373 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1374 ICBTAG_FLAG_AD_MASK; 1375 iinfo->i_unique = 0; 1376 iinfo->i_lenEAttr = 0; 1377 iinfo->i_lenExtents = 0; 1378 iinfo->i_lenAlloc = 0; 1379 iinfo->i_next_alloc_block = 0; 1380 iinfo->i_next_alloc_goal = 0; 1381 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1382 iinfo->i_efe = 1; 1383 iinfo->i_use = 0; 1384 ret = udf_alloc_i_data(inode, bs - 1385 sizeof(struct extendedFileEntry)); 1386 if (ret) 1387 goto out; 1388 memcpy(iinfo->i_ext.i_data, 1389 bh->b_data + sizeof(struct extendedFileEntry), 1390 bs - sizeof(struct extendedFileEntry)); 1391 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1392 iinfo->i_efe = 0; 1393 iinfo->i_use = 0; 1394 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1395 if (ret) 1396 goto out; 1397 memcpy(iinfo->i_ext.i_data, 1398 bh->b_data + sizeof(struct fileEntry), 1399 bs - sizeof(struct fileEntry)); 1400 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1401 iinfo->i_efe = 0; 1402 iinfo->i_use = 1; 1403 iinfo->i_lenAlloc = le32_to_cpu( 1404 ((struct unallocSpaceEntry *)bh->b_data)-> 1405 lengthAllocDescs); 1406 ret = udf_alloc_i_data(inode, bs - 1407 sizeof(struct unallocSpaceEntry)); 1408 if (ret) 1409 goto out; 1410 memcpy(iinfo->i_ext.i_data, 1411 bh->b_data + sizeof(struct unallocSpaceEntry), 1412 bs - sizeof(struct unallocSpaceEntry)); 1413 return 0; 1414 } 1415 1416 ret = -EIO; 1417 read_lock(&sbi->s_cred_lock); 1418 i_uid_write(inode, le32_to_cpu(fe->uid)); 1419 if (!uid_valid(inode->i_uid) || 1420 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1421 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1422 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1423 1424 i_gid_write(inode, le32_to_cpu(fe->gid)); 1425 if (!gid_valid(inode->i_gid) || 1426 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1427 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1428 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1429 1430 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1431 sbi->s_fmode != UDF_INVALID_MODE) 1432 inode->i_mode = sbi->s_fmode; 1433 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1434 sbi->s_dmode != UDF_INVALID_MODE) 1435 inode->i_mode = sbi->s_dmode; 1436 else 1437 inode->i_mode = udf_convert_permissions(fe); 1438 inode->i_mode &= ~sbi->s_umask; 1439 read_unlock(&sbi->s_cred_lock); 1440 1441 link_count = le16_to_cpu(fe->fileLinkCount); 1442 if (!link_count) { 1443 if (!hidden_inode) { 1444 ret = -ESTALE; 1445 goto out; 1446 } 1447 link_count = 1; 1448 } 1449 set_nlink(inode, link_count); 1450 1451 inode->i_size = le64_to_cpu(fe->informationLength); 1452 iinfo->i_lenExtents = inode->i_size; 1453 1454 if (iinfo->i_efe == 0) { 1455 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1456 (inode->i_sb->s_blocksize_bits - 9); 1457 1458 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1459 inode->i_atime = sbi->s_record_time; 1460 1461 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1462 fe->modificationTime)) 1463 inode->i_mtime = sbi->s_record_time; 1464 1465 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1466 inode->i_ctime = sbi->s_record_time; 1467 1468 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1469 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1470 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1471 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1472 } else { 1473 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1474 (inode->i_sb->s_blocksize_bits - 9); 1475 1476 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1477 inode->i_atime = sbi->s_record_time; 1478 1479 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1480 efe->modificationTime)) 1481 inode->i_mtime = sbi->s_record_time; 1482 1483 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1484 iinfo->i_crtime = sbi->s_record_time; 1485 1486 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1487 inode->i_ctime = sbi->s_record_time; 1488 1489 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1490 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1491 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1492 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1493 } 1494 inode->i_generation = iinfo->i_unique; 1495 1496 /* 1497 * Sanity check length of allocation descriptors and extended attrs to 1498 * avoid integer overflows 1499 */ 1500 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1501 goto out; 1502 /* Now do exact checks */ 1503 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1504 goto out; 1505 /* Sanity checks for files in ICB so that we don't get confused later */ 1506 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1507 /* 1508 * For file in ICB data is stored in allocation descriptor 1509 * so sizes should match 1510 */ 1511 if (iinfo->i_lenAlloc != inode->i_size) 1512 goto out; 1513 /* File in ICB has to fit in there... */ 1514 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1515 goto out; 1516 } 1517 1518 switch (fe->icbTag.fileType) { 1519 case ICBTAG_FILE_TYPE_DIRECTORY: 1520 inode->i_op = &udf_dir_inode_operations; 1521 inode->i_fop = &udf_dir_operations; 1522 inode->i_mode |= S_IFDIR; 1523 inc_nlink(inode); 1524 break; 1525 case ICBTAG_FILE_TYPE_REALTIME: 1526 case ICBTAG_FILE_TYPE_REGULAR: 1527 case ICBTAG_FILE_TYPE_UNDEF: 1528 case ICBTAG_FILE_TYPE_VAT20: 1529 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1530 inode->i_data.a_ops = &udf_adinicb_aops; 1531 else 1532 inode->i_data.a_ops = &udf_aops; 1533 inode->i_op = &udf_file_inode_operations; 1534 inode->i_fop = &udf_file_operations; 1535 inode->i_mode |= S_IFREG; 1536 break; 1537 case ICBTAG_FILE_TYPE_BLOCK: 1538 inode->i_mode |= S_IFBLK; 1539 break; 1540 case ICBTAG_FILE_TYPE_CHAR: 1541 inode->i_mode |= S_IFCHR; 1542 break; 1543 case ICBTAG_FILE_TYPE_FIFO: 1544 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1545 break; 1546 case ICBTAG_FILE_TYPE_SOCKET: 1547 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1548 break; 1549 case ICBTAG_FILE_TYPE_SYMLINK: 1550 inode->i_data.a_ops = &udf_symlink_aops; 1551 inode->i_op = &page_symlink_inode_operations; 1552 inode_nohighmem(inode); 1553 inode->i_mode = S_IFLNK | S_IRWXUGO; 1554 break; 1555 case ICBTAG_FILE_TYPE_MAIN: 1556 udf_debug("METADATA FILE-----\n"); 1557 break; 1558 case ICBTAG_FILE_TYPE_MIRROR: 1559 udf_debug("METADATA MIRROR FILE-----\n"); 1560 break; 1561 case ICBTAG_FILE_TYPE_BITMAP: 1562 udf_debug("METADATA BITMAP FILE-----\n"); 1563 break; 1564 default: 1565 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1566 inode->i_ino, fe->icbTag.fileType); 1567 goto out; 1568 } 1569 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1570 struct deviceSpec *dsea = 1571 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1572 if (dsea) { 1573 init_special_inode(inode, inode->i_mode, 1574 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1575 le32_to_cpu(dsea->minorDeviceIdent))); 1576 /* Developer ID ??? */ 1577 } else 1578 goto out; 1579 } 1580 ret = 0; 1581 out: 1582 brelse(bh); 1583 return ret; 1584 } 1585 1586 static int udf_alloc_i_data(struct inode *inode, size_t size) 1587 { 1588 struct udf_inode_info *iinfo = UDF_I(inode); 1589 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1590 1591 if (!iinfo->i_ext.i_data) { 1592 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1593 inode->i_ino); 1594 return -ENOMEM; 1595 } 1596 1597 return 0; 1598 } 1599 1600 static umode_t udf_convert_permissions(struct fileEntry *fe) 1601 { 1602 umode_t mode; 1603 uint32_t permissions; 1604 uint32_t flags; 1605 1606 permissions = le32_to_cpu(fe->permissions); 1607 flags = le16_to_cpu(fe->icbTag.flags); 1608 1609 mode = ((permissions) & S_IRWXO) | 1610 ((permissions >> 2) & S_IRWXG) | 1611 ((permissions >> 4) & S_IRWXU) | 1612 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1613 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1614 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1615 1616 return mode; 1617 } 1618 1619 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1620 { 1621 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1622 } 1623 1624 static int udf_sync_inode(struct inode *inode) 1625 { 1626 return udf_update_inode(inode, 1); 1627 } 1628 1629 static int udf_update_inode(struct inode *inode, int do_sync) 1630 { 1631 struct buffer_head *bh = NULL; 1632 struct fileEntry *fe; 1633 struct extendedFileEntry *efe; 1634 uint64_t lb_recorded; 1635 uint32_t udfperms; 1636 uint16_t icbflags; 1637 uint16_t crclen; 1638 int err = 0; 1639 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1640 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1641 struct udf_inode_info *iinfo = UDF_I(inode); 1642 1643 bh = udf_tgetblk(inode->i_sb, 1644 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1645 if (!bh) { 1646 udf_debug("getblk failure\n"); 1647 return -EIO; 1648 } 1649 1650 lock_buffer(bh); 1651 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1652 fe = (struct fileEntry *)bh->b_data; 1653 efe = (struct extendedFileEntry *)bh->b_data; 1654 1655 if (iinfo->i_use) { 1656 struct unallocSpaceEntry *use = 1657 (struct unallocSpaceEntry *)bh->b_data; 1658 1659 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1660 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1661 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1662 sizeof(struct unallocSpaceEntry)); 1663 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1664 crclen = sizeof(struct unallocSpaceEntry); 1665 1666 goto finish; 1667 } 1668 1669 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1670 fe->uid = cpu_to_le32(-1); 1671 else 1672 fe->uid = cpu_to_le32(i_uid_read(inode)); 1673 1674 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1675 fe->gid = cpu_to_le32(-1); 1676 else 1677 fe->gid = cpu_to_le32(i_gid_read(inode)); 1678 1679 udfperms = ((inode->i_mode & S_IRWXO)) | 1680 ((inode->i_mode & S_IRWXG) << 2) | 1681 ((inode->i_mode & S_IRWXU) << 4); 1682 1683 udfperms |= (le32_to_cpu(fe->permissions) & 1684 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1685 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1686 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1687 fe->permissions = cpu_to_le32(udfperms); 1688 1689 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1690 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1691 else 1692 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1693 1694 fe->informationLength = cpu_to_le64(inode->i_size); 1695 1696 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1697 struct regid *eid; 1698 struct deviceSpec *dsea = 1699 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1700 if (!dsea) { 1701 dsea = (struct deviceSpec *) 1702 udf_add_extendedattr(inode, 1703 sizeof(struct deviceSpec) + 1704 sizeof(struct regid), 12, 0x3); 1705 dsea->attrType = cpu_to_le32(12); 1706 dsea->attrSubtype = 1; 1707 dsea->attrLength = cpu_to_le32( 1708 sizeof(struct deviceSpec) + 1709 sizeof(struct regid)); 1710 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1711 } 1712 eid = (struct regid *)dsea->impUse; 1713 memset(eid, 0, sizeof(struct regid)); 1714 strcpy(eid->ident, UDF_ID_DEVELOPER); 1715 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1716 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1717 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1718 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1719 } 1720 1721 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1722 lb_recorded = 0; /* No extents => no blocks! */ 1723 else 1724 lb_recorded = 1725 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1726 (blocksize_bits - 9); 1727 1728 if (iinfo->i_efe == 0) { 1729 memcpy(bh->b_data + sizeof(struct fileEntry), 1730 iinfo->i_ext.i_data, 1731 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1732 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1733 1734 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1735 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1736 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1737 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1738 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1739 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1740 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1741 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1742 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1743 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1744 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1745 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1746 crclen = sizeof(struct fileEntry); 1747 } else { 1748 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1749 iinfo->i_ext.i_data, 1750 inode->i_sb->s_blocksize - 1751 sizeof(struct extendedFileEntry)); 1752 efe->objectSize = cpu_to_le64(inode->i_size); 1753 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1754 1755 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1756 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1757 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1758 iinfo->i_crtime = inode->i_atime; 1759 1760 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1761 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1762 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1763 iinfo->i_crtime = inode->i_mtime; 1764 1765 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1766 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1767 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1768 iinfo->i_crtime = inode->i_ctime; 1769 1770 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1771 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1772 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1773 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1774 1775 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1776 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1777 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1778 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1779 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1780 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1781 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1782 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1783 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1784 crclen = sizeof(struct extendedFileEntry); 1785 } 1786 1787 finish: 1788 if (iinfo->i_strat4096) { 1789 fe->icbTag.strategyType = cpu_to_le16(4096); 1790 fe->icbTag.strategyParameter = cpu_to_le16(1); 1791 fe->icbTag.numEntries = cpu_to_le16(2); 1792 } else { 1793 fe->icbTag.strategyType = cpu_to_le16(4); 1794 fe->icbTag.numEntries = cpu_to_le16(1); 1795 } 1796 1797 if (iinfo->i_use) 1798 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1799 else if (S_ISDIR(inode->i_mode)) 1800 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1801 else if (S_ISREG(inode->i_mode)) 1802 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1803 else if (S_ISLNK(inode->i_mode)) 1804 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1805 else if (S_ISBLK(inode->i_mode)) 1806 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1807 else if (S_ISCHR(inode->i_mode)) 1808 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1809 else if (S_ISFIFO(inode->i_mode)) 1810 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1811 else if (S_ISSOCK(inode->i_mode)) 1812 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1813 1814 icbflags = iinfo->i_alloc_type | 1815 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1816 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1817 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1818 (le16_to_cpu(fe->icbTag.flags) & 1819 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1820 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1821 1822 fe->icbTag.flags = cpu_to_le16(icbflags); 1823 if (sbi->s_udfrev >= 0x0200) 1824 fe->descTag.descVersion = cpu_to_le16(3); 1825 else 1826 fe->descTag.descVersion = cpu_to_le16(2); 1827 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1828 fe->descTag.tagLocation = cpu_to_le32( 1829 iinfo->i_location.logicalBlockNum); 1830 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1831 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1832 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1833 crclen)); 1834 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1835 1836 set_buffer_uptodate(bh); 1837 unlock_buffer(bh); 1838 1839 /* write the data blocks */ 1840 mark_buffer_dirty(bh); 1841 if (do_sync) { 1842 sync_dirty_buffer(bh); 1843 if (buffer_write_io_error(bh)) { 1844 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1845 inode->i_ino); 1846 err = -EIO; 1847 } 1848 } 1849 brelse(bh); 1850 1851 return err; 1852 } 1853 1854 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1855 bool hidden_inode) 1856 { 1857 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1858 struct inode *inode = iget_locked(sb, block); 1859 int err; 1860 1861 if (!inode) 1862 return ERR_PTR(-ENOMEM); 1863 1864 if (!(inode->i_state & I_NEW)) 1865 return inode; 1866 1867 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1868 err = udf_read_inode(inode, hidden_inode); 1869 if (err < 0) { 1870 iget_failed(inode); 1871 return ERR_PTR(err); 1872 } 1873 unlock_new_inode(inode); 1874 1875 return inode; 1876 } 1877 1878 int udf_setup_indirect_aext(struct inode *inode, int block, 1879 struct extent_position *epos) 1880 { 1881 struct super_block *sb = inode->i_sb; 1882 struct buffer_head *bh; 1883 struct allocExtDesc *aed; 1884 struct extent_position nepos; 1885 struct kernel_lb_addr neloc; 1886 int ver, adsize; 1887 1888 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1889 adsize = sizeof(struct short_ad); 1890 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1891 adsize = sizeof(struct long_ad); 1892 else 1893 return -EIO; 1894 1895 neloc.logicalBlockNum = block; 1896 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1897 1898 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1899 if (!bh) 1900 return -EIO; 1901 lock_buffer(bh); 1902 memset(bh->b_data, 0x00, sb->s_blocksize); 1903 set_buffer_uptodate(bh); 1904 unlock_buffer(bh); 1905 mark_buffer_dirty_inode(bh, inode); 1906 1907 aed = (struct allocExtDesc *)(bh->b_data); 1908 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1909 aed->previousAllocExtLocation = 1910 cpu_to_le32(epos->block.logicalBlockNum); 1911 } 1912 aed->lengthAllocDescs = cpu_to_le32(0); 1913 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1914 ver = 3; 1915 else 1916 ver = 2; 1917 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1918 sizeof(struct tag)); 1919 1920 nepos.block = neloc; 1921 nepos.offset = sizeof(struct allocExtDesc); 1922 nepos.bh = bh; 1923 1924 /* 1925 * Do we have to copy current last extent to make space for indirect 1926 * one? 1927 */ 1928 if (epos->offset + adsize > sb->s_blocksize) { 1929 struct kernel_lb_addr cp_loc; 1930 uint32_t cp_len; 1931 int cp_type; 1932 1933 epos->offset -= adsize; 1934 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1935 cp_len |= ((uint32_t)cp_type) << 30; 1936 1937 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1938 udf_write_aext(inode, epos, &nepos.block, 1939 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1940 } else { 1941 __udf_add_aext(inode, epos, &nepos.block, 1942 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1943 } 1944 1945 brelse(epos->bh); 1946 *epos = nepos; 1947 1948 return 0; 1949 } 1950 1951 /* 1952 * Append extent at the given position - should be the first free one in inode 1953 * / indirect extent. This function assumes there is enough space in the inode 1954 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1955 */ 1956 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1957 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1958 { 1959 struct udf_inode_info *iinfo = UDF_I(inode); 1960 struct allocExtDesc *aed; 1961 int adsize; 1962 1963 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1964 adsize = sizeof(struct short_ad); 1965 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1966 adsize = sizeof(struct long_ad); 1967 else 1968 return -EIO; 1969 1970 if (!epos->bh) { 1971 WARN_ON(iinfo->i_lenAlloc != 1972 epos->offset - udf_file_entry_alloc_offset(inode)); 1973 } else { 1974 aed = (struct allocExtDesc *)epos->bh->b_data; 1975 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 1976 epos->offset - sizeof(struct allocExtDesc)); 1977 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 1978 } 1979 1980 udf_write_aext(inode, epos, eloc, elen, inc); 1981 1982 if (!epos->bh) { 1983 iinfo->i_lenAlloc += adsize; 1984 mark_inode_dirty(inode); 1985 } else { 1986 aed = (struct allocExtDesc *)epos->bh->b_data; 1987 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1988 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1989 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1990 udf_update_tag(epos->bh->b_data, 1991 epos->offset + (inc ? 0 : adsize)); 1992 else 1993 udf_update_tag(epos->bh->b_data, 1994 sizeof(struct allocExtDesc)); 1995 mark_buffer_dirty_inode(epos->bh, inode); 1996 } 1997 1998 return 0; 1999 } 2000 2001 /* 2002 * Append extent at given position - should be the first free one in inode 2003 * / indirect extent. Takes care of allocating and linking indirect blocks. 2004 */ 2005 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2007 { 2008 int adsize; 2009 struct super_block *sb = inode->i_sb; 2010 2011 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2012 adsize = sizeof(struct short_ad); 2013 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2014 adsize = sizeof(struct long_ad); 2015 else 2016 return -EIO; 2017 2018 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2019 int err; 2020 int new_block; 2021 2022 new_block = udf_new_block(sb, NULL, 2023 epos->block.partitionReferenceNum, 2024 epos->block.logicalBlockNum, &err); 2025 if (!new_block) 2026 return -ENOSPC; 2027 2028 err = udf_setup_indirect_aext(inode, new_block, epos); 2029 if (err) 2030 return err; 2031 } 2032 2033 return __udf_add_aext(inode, epos, eloc, elen, inc); 2034 } 2035 2036 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2037 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2038 { 2039 int adsize; 2040 uint8_t *ptr; 2041 struct short_ad *sad; 2042 struct long_ad *lad; 2043 struct udf_inode_info *iinfo = UDF_I(inode); 2044 2045 if (!epos->bh) 2046 ptr = iinfo->i_ext.i_data + epos->offset - 2047 udf_file_entry_alloc_offset(inode) + 2048 iinfo->i_lenEAttr; 2049 else 2050 ptr = epos->bh->b_data + epos->offset; 2051 2052 switch (iinfo->i_alloc_type) { 2053 case ICBTAG_FLAG_AD_SHORT: 2054 sad = (struct short_ad *)ptr; 2055 sad->extLength = cpu_to_le32(elen); 2056 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2057 adsize = sizeof(struct short_ad); 2058 break; 2059 case ICBTAG_FLAG_AD_LONG: 2060 lad = (struct long_ad *)ptr; 2061 lad->extLength = cpu_to_le32(elen); 2062 lad->extLocation = cpu_to_lelb(*eloc); 2063 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2064 adsize = sizeof(struct long_ad); 2065 break; 2066 default: 2067 return; 2068 } 2069 2070 if (epos->bh) { 2071 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2072 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2073 struct allocExtDesc *aed = 2074 (struct allocExtDesc *)epos->bh->b_data; 2075 udf_update_tag(epos->bh->b_data, 2076 le32_to_cpu(aed->lengthAllocDescs) + 2077 sizeof(struct allocExtDesc)); 2078 } 2079 mark_buffer_dirty_inode(epos->bh, inode); 2080 } else { 2081 mark_inode_dirty(inode); 2082 } 2083 2084 if (inc) 2085 epos->offset += adsize; 2086 } 2087 2088 /* 2089 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2090 * someone does some weird stuff. 2091 */ 2092 #define UDF_MAX_INDIR_EXTS 16 2093 2094 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2095 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2096 { 2097 int8_t etype; 2098 unsigned int indirections = 0; 2099 2100 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2101 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2102 int block; 2103 2104 if (++indirections > UDF_MAX_INDIR_EXTS) { 2105 udf_err(inode->i_sb, 2106 "too many indirect extents in inode %lu\n", 2107 inode->i_ino); 2108 return -1; 2109 } 2110 2111 epos->block = *eloc; 2112 epos->offset = sizeof(struct allocExtDesc); 2113 brelse(epos->bh); 2114 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2115 epos->bh = udf_tread(inode->i_sb, block); 2116 if (!epos->bh) { 2117 udf_debug("reading block %d failed!\n", block); 2118 return -1; 2119 } 2120 } 2121 2122 return etype; 2123 } 2124 2125 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2126 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2127 { 2128 int alen; 2129 int8_t etype; 2130 uint8_t *ptr; 2131 struct short_ad *sad; 2132 struct long_ad *lad; 2133 struct udf_inode_info *iinfo = UDF_I(inode); 2134 2135 if (!epos->bh) { 2136 if (!epos->offset) 2137 epos->offset = udf_file_entry_alloc_offset(inode); 2138 ptr = iinfo->i_ext.i_data + epos->offset - 2139 udf_file_entry_alloc_offset(inode) + 2140 iinfo->i_lenEAttr; 2141 alen = udf_file_entry_alloc_offset(inode) + 2142 iinfo->i_lenAlloc; 2143 } else { 2144 if (!epos->offset) 2145 epos->offset = sizeof(struct allocExtDesc); 2146 ptr = epos->bh->b_data + epos->offset; 2147 alen = sizeof(struct allocExtDesc) + 2148 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2149 lengthAllocDescs); 2150 } 2151 2152 switch (iinfo->i_alloc_type) { 2153 case ICBTAG_FLAG_AD_SHORT: 2154 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2155 if (!sad) 2156 return -1; 2157 etype = le32_to_cpu(sad->extLength) >> 30; 2158 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2159 eloc->partitionReferenceNum = 2160 iinfo->i_location.partitionReferenceNum; 2161 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2162 break; 2163 case ICBTAG_FLAG_AD_LONG: 2164 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2165 if (!lad) 2166 return -1; 2167 etype = le32_to_cpu(lad->extLength) >> 30; 2168 *eloc = lelb_to_cpu(lad->extLocation); 2169 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2170 break; 2171 default: 2172 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2173 return -1; 2174 } 2175 2176 return etype; 2177 } 2178 2179 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2180 struct kernel_lb_addr neloc, uint32_t nelen) 2181 { 2182 struct kernel_lb_addr oeloc; 2183 uint32_t oelen; 2184 int8_t etype; 2185 2186 if (epos.bh) 2187 get_bh(epos.bh); 2188 2189 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2190 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2191 neloc = oeloc; 2192 nelen = (etype << 30) | oelen; 2193 } 2194 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2195 brelse(epos.bh); 2196 2197 return (nelen >> 30); 2198 } 2199 2200 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2201 struct kernel_lb_addr eloc, uint32_t elen) 2202 { 2203 struct extent_position oepos; 2204 int adsize; 2205 int8_t etype; 2206 struct allocExtDesc *aed; 2207 struct udf_inode_info *iinfo; 2208 2209 if (epos.bh) { 2210 get_bh(epos.bh); 2211 get_bh(epos.bh); 2212 } 2213 2214 iinfo = UDF_I(inode); 2215 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2216 adsize = sizeof(struct short_ad); 2217 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2218 adsize = sizeof(struct long_ad); 2219 else 2220 adsize = 0; 2221 2222 oepos = epos; 2223 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2224 return -1; 2225 2226 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2227 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2228 if (oepos.bh != epos.bh) { 2229 oepos.block = epos.block; 2230 brelse(oepos.bh); 2231 get_bh(epos.bh); 2232 oepos.bh = epos.bh; 2233 oepos.offset = epos.offset - adsize; 2234 } 2235 } 2236 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2237 elen = 0; 2238 2239 if (epos.bh != oepos.bh) { 2240 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2241 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2242 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2243 if (!oepos.bh) { 2244 iinfo->i_lenAlloc -= (adsize * 2); 2245 mark_inode_dirty(inode); 2246 } else { 2247 aed = (struct allocExtDesc *)oepos.bh->b_data; 2248 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2249 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2250 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2251 udf_update_tag(oepos.bh->b_data, 2252 oepos.offset - (2 * adsize)); 2253 else 2254 udf_update_tag(oepos.bh->b_data, 2255 sizeof(struct allocExtDesc)); 2256 mark_buffer_dirty_inode(oepos.bh, inode); 2257 } 2258 } else { 2259 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2260 if (!oepos.bh) { 2261 iinfo->i_lenAlloc -= adsize; 2262 mark_inode_dirty(inode); 2263 } else { 2264 aed = (struct allocExtDesc *)oepos.bh->b_data; 2265 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2266 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2267 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2268 udf_update_tag(oepos.bh->b_data, 2269 epos.offset - adsize); 2270 else 2271 udf_update_tag(oepos.bh->b_data, 2272 sizeof(struct allocExtDesc)); 2273 mark_buffer_dirty_inode(oepos.bh, inode); 2274 } 2275 } 2276 2277 brelse(epos.bh); 2278 brelse(oepos.bh); 2279 2280 return (elen >> 30); 2281 } 2282 2283 int8_t inode_bmap(struct inode *inode, sector_t block, 2284 struct extent_position *pos, struct kernel_lb_addr *eloc, 2285 uint32_t *elen, sector_t *offset) 2286 { 2287 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2288 loff_t lbcount = 0, bcount = 2289 (loff_t) block << blocksize_bits; 2290 int8_t etype; 2291 struct udf_inode_info *iinfo; 2292 2293 iinfo = UDF_I(inode); 2294 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2295 pos->offset = 0; 2296 pos->block = iinfo->i_location; 2297 pos->bh = NULL; 2298 } 2299 *elen = 0; 2300 do { 2301 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2302 if (etype == -1) { 2303 *offset = (bcount - lbcount) >> blocksize_bits; 2304 iinfo->i_lenExtents = lbcount; 2305 return -1; 2306 } 2307 lbcount += *elen; 2308 } while (lbcount <= bcount); 2309 /* update extent cache */ 2310 udf_update_extent_cache(inode, lbcount - *elen, pos, 1); 2311 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2312 2313 return etype; 2314 } 2315 2316 long udf_block_map(struct inode *inode, sector_t block) 2317 { 2318 struct kernel_lb_addr eloc; 2319 uint32_t elen; 2320 sector_t offset; 2321 struct extent_position epos = {}; 2322 int ret; 2323 2324 down_read(&UDF_I(inode)->i_data_sem); 2325 2326 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2327 (EXT_RECORDED_ALLOCATED >> 30)) 2328 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2329 else 2330 ret = 0; 2331 2332 up_read(&UDF_I(inode)->i_data_sem); 2333 brelse(epos.bh); 2334 2335 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2336 return udf_fixed_to_variable(ret); 2337 else 2338 return ret; 2339 } 2340