1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 static umode_t udf_convert_permissions(struct fileEntry *); 56 static int udf_update_inode(struct inode *, int); 57 static int udf_sync_inode(struct inode *inode); 58 static int udf_alloc_i_data(struct inode *inode, size_t size); 59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 60 static int8_t udf_insert_aext(struct inode *, struct extent_position, 61 struct kernel_lb_addr, uint32_t); 62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 63 struct kernel_long_ad *, int *); 64 static void udf_prealloc_extents(struct inode *, int, int, 65 struct kernel_long_ad *, int *); 66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 68 int, struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 static void __udf_clear_extent_cache(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79 } 80 81 /* Invalidate extent cache */ 82 static void udf_clear_extent_cache(struct inode *inode) 83 { 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89 } 90 91 /* Return contents of extent cache */ 92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94 { 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111 } 112 113 /* Add extent to extent cache */ 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos) 116 { 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 125 iinfo->cached_extent.lstart = estart; 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 129 break; 130 case ICBTAG_FLAG_AD_LONG: 131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 132 break; 133 } 134 spin_unlock(&iinfo->i_extent_cache_lock); 135 } 136 137 void udf_evict_inode(struct inode *inode) 138 { 139 struct udf_inode_info *iinfo = UDF_I(inode); 140 int want_delete = 0; 141 142 if (!is_bad_inode(inode)) { 143 if (!inode->i_nlink) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 149 inode->i_size != iinfo->i_lenExtents) { 150 udf_warn(inode->i_sb, 151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 152 inode->i_ino, inode->i_mode, 153 (unsigned long long)inode->i_size, 154 (unsigned long long)iinfo->i_lenExtents); 155 } 156 } 157 truncate_inode_pages_final(&inode->i_data); 158 invalidate_inode_buffers(inode); 159 clear_inode(inode); 160 kfree(iinfo->i_data); 161 iinfo->i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166 } 167 168 static void udf_write_failed(struct address_space *mapping, loff_t to) 169 { 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183 } 184 185 static int udf_writepage(struct page *page, struct writeback_control *wbc) 186 { 187 return block_write_full_page(page, udf_get_block, wbc); 188 } 189 190 static int udf_writepages(struct address_space *mapping, 191 struct writeback_control *wbc) 192 { 193 return mpage_writepages(mapping, wbc, udf_get_block); 194 } 195 196 static int udf_read_folio(struct file *file, struct folio *folio) 197 { 198 return mpage_read_folio(folio, udf_get_block); 199 } 200 201 static void udf_readahead(struct readahead_control *rac) 202 { 203 mpage_readahead(rac, udf_get_block); 204 } 205 206 static int udf_write_begin(struct file *file, struct address_space *mapping, 207 loff_t pos, unsigned len, 208 struct page **pagep, void **fsdata) 209 { 210 int ret; 211 212 ret = block_write_begin(mapping, pos, len, pagep, udf_get_block); 213 if (unlikely(ret)) 214 udf_write_failed(mapping, pos + len); 215 return ret; 216 } 217 218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 219 { 220 struct file *file = iocb->ki_filp; 221 struct address_space *mapping = file->f_mapping; 222 struct inode *inode = mapping->host; 223 size_t count = iov_iter_count(iter); 224 ssize_t ret; 225 226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 228 udf_write_failed(mapping, iocb->ki_pos + count); 229 return ret; 230 } 231 232 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 233 { 234 return generic_block_bmap(mapping, block, udf_get_block); 235 } 236 237 const struct address_space_operations udf_aops = { 238 .dirty_folio = block_dirty_folio, 239 .invalidate_folio = block_invalidate_folio, 240 .read_folio = udf_read_folio, 241 .readahead = udf_readahead, 242 .writepage = udf_writepage, 243 .writepages = udf_writepages, 244 .write_begin = udf_write_begin, 245 .write_end = generic_write_end, 246 .direct_IO = udf_direct_IO, 247 .bmap = udf_bmap, 248 }; 249 250 /* 251 * Expand file stored in ICB to a normal one-block-file 252 * 253 * This function requires i_data_sem for writing and releases it. 254 * This function requires i_mutex held 255 */ 256 int udf_expand_file_adinicb(struct inode *inode) 257 { 258 struct page *page; 259 char *kaddr; 260 struct udf_inode_info *iinfo = UDF_I(inode); 261 int err; 262 263 WARN_ON_ONCE(!inode_is_locked(inode)); 264 if (!iinfo->i_lenAlloc) { 265 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 266 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 267 else 268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 269 /* from now on we have normal address_space methods */ 270 inode->i_data.a_ops = &udf_aops; 271 up_write(&iinfo->i_data_sem); 272 mark_inode_dirty(inode); 273 return 0; 274 } 275 /* 276 * Release i_data_sem so that we can lock a page - page lock ranks 277 * above i_data_sem. i_mutex still protects us against file changes. 278 */ 279 up_write(&iinfo->i_data_sem); 280 281 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 282 if (!page) 283 return -ENOMEM; 284 285 if (!PageUptodate(page)) { 286 kaddr = kmap_atomic(page); 287 memset(kaddr + iinfo->i_lenAlloc, 0x00, 288 PAGE_SIZE - iinfo->i_lenAlloc); 289 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 290 iinfo->i_lenAlloc); 291 flush_dcache_page(page); 292 SetPageUptodate(page); 293 kunmap_atomic(kaddr); 294 } 295 down_write(&iinfo->i_data_sem); 296 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 297 iinfo->i_lenAlloc); 298 iinfo->i_lenAlloc = 0; 299 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 300 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 301 else 302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 303 /* from now on we have normal address_space methods */ 304 inode->i_data.a_ops = &udf_aops; 305 set_page_dirty(page); 306 unlock_page(page); 307 up_write(&iinfo->i_data_sem); 308 err = filemap_fdatawrite(inode->i_mapping); 309 if (err) { 310 /* Restore everything back so that we don't lose data... */ 311 lock_page(page); 312 down_write(&iinfo->i_data_sem); 313 kaddr = kmap_atomic(page); 314 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 315 kunmap_atomic(kaddr); 316 unlock_page(page); 317 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 318 inode->i_data.a_ops = &udf_adinicb_aops; 319 iinfo->i_lenAlloc = inode->i_size; 320 up_write(&iinfo->i_data_sem); 321 } 322 put_page(page); 323 mark_inode_dirty(inode); 324 325 return err; 326 } 327 328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 329 udf_pblk_t *block, int *err) 330 { 331 udf_pblk_t newblock; 332 struct buffer_head *dbh = NULL; 333 struct kernel_lb_addr eloc; 334 uint8_t alloctype; 335 struct extent_position epos; 336 337 struct udf_fileident_bh sfibh, dfibh; 338 loff_t f_pos = udf_ext0_offset(inode); 339 int size = udf_ext0_offset(inode) + inode->i_size; 340 struct fileIdentDesc cfi, *sfi, *dfi; 341 struct udf_inode_info *iinfo = UDF_I(inode); 342 343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 344 alloctype = ICBTAG_FLAG_AD_SHORT; 345 else 346 alloctype = ICBTAG_FLAG_AD_LONG; 347 348 if (!inode->i_size) { 349 iinfo->i_alloc_type = alloctype; 350 mark_inode_dirty(inode); 351 return NULL; 352 } 353 354 /* alloc block, and copy data to it */ 355 *block = udf_new_block(inode->i_sb, inode, 356 iinfo->i_location.partitionReferenceNum, 357 iinfo->i_location.logicalBlockNum, err); 358 if (!(*block)) 359 return NULL; 360 newblock = udf_get_pblock(inode->i_sb, *block, 361 iinfo->i_location.partitionReferenceNum, 362 0); 363 if (!newblock) 364 return NULL; 365 dbh = udf_tgetblk(inode->i_sb, newblock); 366 if (!dbh) 367 return NULL; 368 lock_buffer(dbh); 369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 370 set_buffer_uptodate(dbh); 371 unlock_buffer(dbh); 372 mark_buffer_dirty_inode(dbh, inode); 373 374 sfibh.soffset = sfibh.eoffset = 375 f_pos & (inode->i_sb->s_blocksize - 1); 376 sfibh.sbh = sfibh.ebh = NULL; 377 dfibh.soffset = dfibh.eoffset = 0; 378 dfibh.sbh = dfibh.ebh = dbh; 379 while (f_pos < size) { 380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 382 NULL, NULL, NULL); 383 if (!sfi) { 384 brelse(dbh); 385 return NULL; 386 } 387 iinfo->i_alloc_type = alloctype; 388 sfi->descTag.tagLocation = cpu_to_le32(*block); 389 dfibh.soffset = dfibh.eoffset; 390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 393 udf_get_fi_ident(sfi))) { 394 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 395 brelse(dbh); 396 return NULL; 397 } 398 } 399 mark_buffer_dirty_inode(dbh, inode); 400 401 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); 402 iinfo->i_lenAlloc = 0; 403 eloc.logicalBlockNum = *block; 404 eloc.partitionReferenceNum = 405 iinfo->i_location.partitionReferenceNum; 406 iinfo->i_lenExtents = inode->i_size; 407 epos.bh = NULL; 408 epos.block = iinfo->i_location; 409 epos.offset = udf_file_entry_alloc_offset(inode); 410 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 411 /* UniqueID stuff */ 412 413 brelse(epos.bh); 414 mark_inode_dirty(inode); 415 return dbh; 416 } 417 418 static int udf_get_block(struct inode *inode, sector_t block, 419 struct buffer_head *bh_result, int create) 420 { 421 int err, new; 422 sector_t phys = 0; 423 struct udf_inode_info *iinfo; 424 425 if (!create) { 426 phys = udf_block_map(inode, block); 427 if (phys) 428 map_bh(bh_result, inode->i_sb, phys); 429 return 0; 430 } 431 432 err = -EIO; 433 new = 0; 434 iinfo = UDF_I(inode); 435 436 down_write(&iinfo->i_data_sem); 437 if (block == iinfo->i_next_alloc_block + 1) { 438 iinfo->i_next_alloc_block++; 439 iinfo->i_next_alloc_goal++; 440 } 441 442 udf_clear_extent_cache(inode); 443 phys = inode_getblk(inode, block, &err, &new); 444 if (!phys) 445 goto abort; 446 447 if (new) 448 set_buffer_new(bh_result); 449 map_bh(bh_result, inode->i_sb, phys); 450 451 abort: 452 up_write(&iinfo->i_data_sem); 453 return err; 454 } 455 456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 457 int create, int *err) 458 { 459 struct buffer_head *bh; 460 struct buffer_head dummy; 461 462 dummy.b_state = 0; 463 dummy.b_blocknr = -1000; 464 *err = udf_get_block(inode, block, &dummy, create); 465 if (!*err && buffer_mapped(&dummy)) { 466 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 467 if (buffer_new(&dummy)) { 468 lock_buffer(bh); 469 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 470 set_buffer_uptodate(bh); 471 unlock_buffer(bh); 472 mark_buffer_dirty_inode(bh, inode); 473 } 474 return bh; 475 } 476 477 return NULL; 478 } 479 480 /* Extend the file with new blocks totaling 'new_block_bytes', 481 * return the number of extents added 482 */ 483 static int udf_do_extend_file(struct inode *inode, 484 struct extent_position *last_pos, 485 struct kernel_long_ad *last_ext, 486 loff_t new_block_bytes) 487 { 488 uint32_t add; 489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 490 struct super_block *sb = inode->i_sb; 491 struct kernel_lb_addr prealloc_loc = {}; 492 uint32_t prealloc_len = 0; 493 struct udf_inode_info *iinfo; 494 int err; 495 496 /* The previous extent is fake and we should not extend by anything 497 * - there's nothing to do... */ 498 if (!new_block_bytes && fake) 499 return 0; 500 501 iinfo = UDF_I(inode); 502 /* Round the last extent up to a multiple of block size */ 503 if (last_ext->extLength & (sb->s_blocksize - 1)) { 504 last_ext->extLength = 505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 508 iinfo->i_lenExtents = 509 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 510 ~(sb->s_blocksize - 1); 511 } 512 513 /* Last extent are just preallocated blocks? */ 514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 515 EXT_NOT_RECORDED_ALLOCATED) { 516 /* Save the extent so that we can reattach it to the end */ 517 prealloc_loc = last_ext->extLocation; 518 prealloc_len = last_ext->extLength; 519 /* Mark the extent as a hole */ 520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 522 last_ext->extLocation.logicalBlockNum = 0; 523 last_ext->extLocation.partitionReferenceNum = 0; 524 } 525 526 /* Can we merge with the previous extent? */ 527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 528 EXT_NOT_RECORDED_NOT_ALLOCATED) { 529 add = (1 << 30) - sb->s_blocksize - 530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 531 if (add > new_block_bytes) 532 add = new_block_bytes; 533 new_block_bytes -= add; 534 last_ext->extLength += add; 535 } 536 537 if (fake) { 538 udf_add_aext(inode, last_pos, &last_ext->extLocation, 539 last_ext->extLength, 1); 540 count++; 541 } else { 542 struct kernel_lb_addr tmploc; 543 uint32_t tmplen; 544 545 udf_write_aext(inode, last_pos, &last_ext->extLocation, 546 last_ext->extLength, 1); 547 548 /* 549 * We've rewritten the last extent. If we are going to add 550 * more extents, we may need to enter possible following 551 * empty indirect extent. 552 */ 553 if (new_block_bytes || prealloc_len) 554 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 555 } 556 557 /* Managed to do everything necessary? */ 558 if (!new_block_bytes) 559 goto out; 560 561 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 562 last_ext->extLocation.logicalBlockNum = 0; 563 last_ext->extLocation.partitionReferenceNum = 0; 564 add = (1 << 30) - sb->s_blocksize; 565 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 566 567 /* Create enough extents to cover the whole hole */ 568 while (new_block_bytes > add) { 569 new_block_bytes -= add; 570 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 571 last_ext->extLength, 1); 572 if (err) 573 return err; 574 count++; 575 } 576 if (new_block_bytes) { 577 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 578 new_block_bytes; 579 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 580 last_ext->extLength, 1); 581 if (err) 582 return err; 583 count++; 584 } 585 586 out: 587 /* Do we have some preallocated blocks saved? */ 588 if (prealloc_len) { 589 err = udf_add_aext(inode, last_pos, &prealloc_loc, 590 prealloc_len, 1); 591 if (err) 592 return err; 593 last_ext->extLocation = prealloc_loc; 594 last_ext->extLength = prealloc_len; 595 count++; 596 } 597 598 /* last_pos should point to the last written extent... */ 599 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 600 last_pos->offset -= sizeof(struct short_ad); 601 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 602 last_pos->offset -= sizeof(struct long_ad); 603 else 604 return -EIO; 605 606 return count; 607 } 608 609 /* Extend the final block of the file to final_block_len bytes */ 610 static void udf_do_extend_final_block(struct inode *inode, 611 struct extent_position *last_pos, 612 struct kernel_long_ad *last_ext, 613 uint32_t final_block_len) 614 { 615 struct super_block *sb = inode->i_sb; 616 uint32_t added_bytes; 617 618 added_bytes = final_block_len - 619 (last_ext->extLength & (sb->s_blocksize - 1)); 620 last_ext->extLength += added_bytes; 621 UDF_I(inode)->i_lenExtents += added_bytes; 622 623 udf_write_aext(inode, last_pos, &last_ext->extLocation, 624 last_ext->extLength, 1); 625 } 626 627 static int udf_extend_file(struct inode *inode, loff_t newsize) 628 { 629 630 struct extent_position epos; 631 struct kernel_lb_addr eloc; 632 uint32_t elen; 633 int8_t etype; 634 struct super_block *sb = inode->i_sb; 635 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 636 unsigned long partial_final_block; 637 int adsize; 638 struct udf_inode_info *iinfo = UDF_I(inode); 639 struct kernel_long_ad extent; 640 int err = 0; 641 int within_final_block; 642 643 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 644 adsize = sizeof(struct short_ad); 645 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 646 adsize = sizeof(struct long_ad); 647 else 648 BUG(); 649 650 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 651 within_final_block = (etype != -1); 652 653 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 654 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 655 /* File has no extents at all or has empty last 656 * indirect extent! Create a fake extent... */ 657 extent.extLocation.logicalBlockNum = 0; 658 extent.extLocation.partitionReferenceNum = 0; 659 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 660 } else { 661 epos.offset -= adsize; 662 etype = udf_next_aext(inode, &epos, &extent.extLocation, 663 &extent.extLength, 0); 664 extent.extLength |= etype << 30; 665 } 666 667 partial_final_block = newsize & (sb->s_blocksize - 1); 668 669 /* File has extent covering the new size (could happen when extending 670 * inside a block)? 671 */ 672 if (within_final_block) { 673 /* Extending file within the last file block */ 674 udf_do_extend_final_block(inode, &epos, &extent, 675 partial_final_block); 676 } else { 677 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) | 678 partial_final_block; 679 err = udf_do_extend_file(inode, &epos, &extent, add); 680 } 681 682 if (err < 0) 683 goto out; 684 err = 0; 685 iinfo->i_lenExtents = newsize; 686 out: 687 brelse(epos.bh); 688 return err; 689 } 690 691 static sector_t inode_getblk(struct inode *inode, sector_t block, 692 int *err, int *new) 693 { 694 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 695 struct extent_position prev_epos, cur_epos, next_epos; 696 int count = 0, startnum = 0, endnum = 0; 697 uint32_t elen = 0, tmpelen; 698 struct kernel_lb_addr eloc, tmpeloc; 699 int c = 1; 700 loff_t lbcount = 0, b_off = 0; 701 udf_pblk_t newblocknum, newblock; 702 sector_t offset = 0; 703 int8_t etype; 704 struct udf_inode_info *iinfo = UDF_I(inode); 705 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 706 int lastblock = 0; 707 bool isBeyondEOF; 708 709 *err = 0; 710 *new = 0; 711 prev_epos.offset = udf_file_entry_alloc_offset(inode); 712 prev_epos.block = iinfo->i_location; 713 prev_epos.bh = NULL; 714 cur_epos = next_epos = prev_epos; 715 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 716 717 /* find the extent which contains the block we are looking for. 718 alternate between laarr[0] and laarr[1] for locations of the 719 current extent, and the previous extent */ 720 do { 721 if (prev_epos.bh != cur_epos.bh) { 722 brelse(prev_epos.bh); 723 get_bh(cur_epos.bh); 724 prev_epos.bh = cur_epos.bh; 725 } 726 if (cur_epos.bh != next_epos.bh) { 727 brelse(cur_epos.bh); 728 get_bh(next_epos.bh); 729 cur_epos.bh = next_epos.bh; 730 } 731 732 lbcount += elen; 733 734 prev_epos.block = cur_epos.block; 735 cur_epos.block = next_epos.block; 736 737 prev_epos.offset = cur_epos.offset; 738 cur_epos.offset = next_epos.offset; 739 740 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 741 if (etype == -1) 742 break; 743 744 c = !c; 745 746 laarr[c].extLength = (etype << 30) | elen; 747 laarr[c].extLocation = eloc; 748 749 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 750 pgoal = eloc.logicalBlockNum + 751 ((elen + inode->i_sb->s_blocksize - 1) >> 752 inode->i_sb->s_blocksize_bits); 753 754 count++; 755 } while (lbcount + elen <= b_off); 756 757 b_off -= lbcount; 758 offset = b_off >> inode->i_sb->s_blocksize_bits; 759 /* 760 * Move prev_epos and cur_epos into indirect extent if we are at 761 * the pointer to it 762 */ 763 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 764 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 765 766 /* if the extent is allocated and recorded, return the block 767 if the extent is not a multiple of the blocksize, round up */ 768 769 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 770 if (elen & (inode->i_sb->s_blocksize - 1)) { 771 elen = EXT_RECORDED_ALLOCATED | 772 ((elen + inode->i_sb->s_blocksize - 1) & 773 ~(inode->i_sb->s_blocksize - 1)); 774 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 775 } 776 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 777 goto out_free; 778 } 779 780 /* Are we beyond EOF? */ 781 if (etype == -1) { 782 int ret; 783 loff_t hole_len; 784 isBeyondEOF = true; 785 if (count) { 786 if (c) 787 laarr[0] = laarr[1]; 788 startnum = 1; 789 } else { 790 /* Create a fake extent when there's not one */ 791 memset(&laarr[0].extLocation, 0x00, 792 sizeof(struct kernel_lb_addr)); 793 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 794 /* Will udf_do_extend_file() create real extent from 795 a fake one? */ 796 startnum = (offset > 0); 797 } 798 /* Create extents for the hole between EOF and offset */ 799 hole_len = (loff_t)offset << inode->i_blkbits; 800 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 801 if (ret < 0) { 802 *err = ret; 803 newblock = 0; 804 goto out_free; 805 } 806 c = 0; 807 offset = 0; 808 count += ret; 809 /* We are not covered by a preallocated extent? */ 810 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 811 EXT_NOT_RECORDED_ALLOCATED) { 812 /* Is there any real extent? - otherwise we overwrite 813 * the fake one... */ 814 if (count) 815 c = !c; 816 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 817 inode->i_sb->s_blocksize; 818 memset(&laarr[c].extLocation, 0x00, 819 sizeof(struct kernel_lb_addr)); 820 count++; 821 } 822 endnum = c + 1; 823 lastblock = 1; 824 } else { 825 isBeyondEOF = false; 826 endnum = startnum = ((count > 2) ? 2 : count); 827 828 /* if the current extent is in position 0, 829 swap it with the previous */ 830 if (!c && count != 1) { 831 laarr[2] = laarr[0]; 832 laarr[0] = laarr[1]; 833 laarr[1] = laarr[2]; 834 c = 1; 835 } 836 837 /* if the current block is located in an extent, 838 read the next extent */ 839 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 840 if (etype != -1) { 841 laarr[c + 1].extLength = (etype << 30) | elen; 842 laarr[c + 1].extLocation = eloc; 843 count++; 844 startnum++; 845 endnum++; 846 } else 847 lastblock = 1; 848 } 849 850 /* if the current extent is not recorded but allocated, get the 851 * block in the extent corresponding to the requested block */ 852 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 853 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 854 else { /* otherwise, allocate a new block */ 855 if (iinfo->i_next_alloc_block == block) 856 goal = iinfo->i_next_alloc_goal; 857 858 if (!goal) { 859 if (!(goal = pgoal)) /* XXX: what was intended here? */ 860 goal = iinfo->i_location.logicalBlockNum + 1; 861 } 862 863 newblocknum = udf_new_block(inode->i_sb, inode, 864 iinfo->i_location.partitionReferenceNum, 865 goal, err); 866 if (!newblocknum) { 867 *err = -ENOSPC; 868 newblock = 0; 869 goto out_free; 870 } 871 if (isBeyondEOF) 872 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 873 } 874 875 /* if the extent the requsted block is located in contains multiple 876 * blocks, split the extent into at most three extents. blocks prior 877 * to requested block, requested block, and blocks after requested 878 * block */ 879 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 880 881 /* We preallocate blocks only for regular files. It also makes sense 882 * for directories but there's a problem when to drop the 883 * preallocation. We might use some delayed work for that but I feel 884 * it's overengineering for a filesystem like UDF. */ 885 if (S_ISREG(inode->i_mode)) 886 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 887 888 /* merge any continuous blocks in laarr */ 889 udf_merge_extents(inode, laarr, &endnum); 890 891 /* write back the new extents, inserting new extents if the new number 892 * of extents is greater than the old number, and deleting extents if 893 * the new number of extents is less than the old number */ 894 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 895 896 newblock = udf_get_pblock(inode->i_sb, newblocknum, 897 iinfo->i_location.partitionReferenceNum, 0); 898 if (!newblock) { 899 *err = -EIO; 900 goto out_free; 901 } 902 *new = 1; 903 iinfo->i_next_alloc_block = block; 904 iinfo->i_next_alloc_goal = newblocknum; 905 inode->i_ctime = current_time(inode); 906 907 if (IS_SYNC(inode)) 908 udf_sync_inode(inode); 909 else 910 mark_inode_dirty(inode); 911 out_free: 912 brelse(prev_epos.bh); 913 brelse(cur_epos.bh); 914 brelse(next_epos.bh); 915 return newblock; 916 } 917 918 static void udf_split_extents(struct inode *inode, int *c, int offset, 919 udf_pblk_t newblocknum, 920 struct kernel_long_ad *laarr, int *endnum) 921 { 922 unsigned long blocksize = inode->i_sb->s_blocksize; 923 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 924 925 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 926 (laarr[*c].extLength >> 30) == 927 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 928 int curr = *c; 929 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 930 blocksize - 1) >> blocksize_bits; 931 int8_t etype = (laarr[curr].extLength >> 30); 932 933 if (blen == 1) 934 ; 935 else if (!offset || blen == offset + 1) { 936 laarr[curr + 2] = laarr[curr + 1]; 937 laarr[curr + 1] = laarr[curr]; 938 } else { 939 laarr[curr + 3] = laarr[curr + 1]; 940 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 941 } 942 943 if (offset) { 944 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 945 udf_free_blocks(inode->i_sb, inode, 946 &laarr[curr].extLocation, 947 0, offset); 948 laarr[curr].extLength = 949 EXT_NOT_RECORDED_NOT_ALLOCATED | 950 (offset << blocksize_bits); 951 laarr[curr].extLocation.logicalBlockNum = 0; 952 laarr[curr].extLocation. 953 partitionReferenceNum = 0; 954 } else 955 laarr[curr].extLength = (etype << 30) | 956 (offset << blocksize_bits); 957 curr++; 958 (*c)++; 959 (*endnum)++; 960 } 961 962 laarr[curr].extLocation.logicalBlockNum = newblocknum; 963 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 964 laarr[curr].extLocation.partitionReferenceNum = 965 UDF_I(inode)->i_location.partitionReferenceNum; 966 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 967 blocksize; 968 curr++; 969 970 if (blen != offset + 1) { 971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 972 laarr[curr].extLocation.logicalBlockNum += 973 offset + 1; 974 laarr[curr].extLength = (etype << 30) | 975 ((blen - (offset + 1)) << blocksize_bits); 976 curr++; 977 (*endnum)++; 978 } 979 } 980 } 981 982 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 983 struct kernel_long_ad *laarr, 984 int *endnum) 985 { 986 int start, length = 0, currlength = 0, i; 987 988 if (*endnum >= (c + 1)) { 989 if (!lastblock) 990 return; 991 else 992 start = c; 993 } else { 994 if ((laarr[c + 1].extLength >> 30) == 995 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 996 start = c + 1; 997 length = currlength = 998 (((laarr[c + 1].extLength & 999 UDF_EXTENT_LENGTH_MASK) + 1000 inode->i_sb->s_blocksize - 1) >> 1001 inode->i_sb->s_blocksize_bits); 1002 } else 1003 start = c; 1004 } 1005 1006 for (i = start + 1; i <= *endnum; i++) { 1007 if (i == *endnum) { 1008 if (lastblock) 1009 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1010 } else if ((laarr[i].extLength >> 30) == 1011 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1012 length += (((laarr[i].extLength & 1013 UDF_EXTENT_LENGTH_MASK) + 1014 inode->i_sb->s_blocksize - 1) >> 1015 inode->i_sb->s_blocksize_bits); 1016 } else 1017 break; 1018 } 1019 1020 if (length) { 1021 int next = laarr[start].extLocation.logicalBlockNum + 1022 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1023 inode->i_sb->s_blocksize - 1) >> 1024 inode->i_sb->s_blocksize_bits); 1025 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1026 laarr[start].extLocation.partitionReferenceNum, 1027 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1028 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1029 currlength); 1030 if (numalloc) { 1031 if (start == (c + 1)) 1032 laarr[start].extLength += 1033 (numalloc << 1034 inode->i_sb->s_blocksize_bits); 1035 else { 1036 memmove(&laarr[c + 2], &laarr[c + 1], 1037 sizeof(struct long_ad) * (*endnum - (c + 1))); 1038 (*endnum)++; 1039 laarr[c + 1].extLocation.logicalBlockNum = next; 1040 laarr[c + 1].extLocation.partitionReferenceNum = 1041 laarr[c].extLocation. 1042 partitionReferenceNum; 1043 laarr[c + 1].extLength = 1044 EXT_NOT_RECORDED_ALLOCATED | 1045 (numalloc << 1046 inode->i_sb->s_blocksize_bits); 1047 start = c + 1; 1048 } 1049 1050 for (i = start + 1; numalloc && i < *endnum; i++) { 1051 int elen = ((laarr[i].extLength & 1052 UDF_EXTENT_LENGTH_MASK) + 1053 inode->i_sb->s_blocksize - 1) >> 1054 inode->i_sb->s_blocksize_bits; 1055 1056 if (elen > numalloc) { 1057 laarr[i].extLength -= 1058 (numalloc << 1059 inode->i_sb->s_blocksize_bits); 1060 numalloc = 0; 1061 } else { 1062 numalloc -= elen; 1063 if (*endnum > (i + 1)) 1064 memmove(&laarr[i], 1065 &laarr[i + 1], 1066 sizeof(struct long_ad) * 1067 (*endnum - (i + 1))); 1068 i--; 1069 (*endnum)--; 1070 } 1071 } 1072 UDF_I(inode)->i_lenExtents += 1073 numalloc << inode->i_sb->s_blocksize_bits; 1074 } 1075 } 1076 } 1077 1078 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1079 int *endnum) 1080 { 1081 int i; 1082 unsigned long blocksize = inode->i_sb->s_blocksize; 1083 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1084 1085 for (i = 0; i < (*endnum - 1); i++) { 1086 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1087 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1088 1089 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1090 (((li->extLength >> 30) == 1091 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1092 ((lip1->extLocation.logicalBlockNum - 1093 li->extLocation.logicalBlockNum) == 1094 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1095 blocksize - 1) >> blocksize_bits)))) { 1096 1097 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1098 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1099 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1100 lip1->extLength = (lip1->extLength - 1101 (li->extLength & 1102 UDF_EXTENT_LENGTH_MASK) + 1103 UDF_EXTENT_LENGTH_MASK) & 1104 ~(blocksize - 1); 1105 li->extLength = (li->extLength & 1106 UDF_EXTENT_FLAG_MASK) + 1107 (UDF_EXTENT_LENGTH_MASK + 1) - 1108 blocksize; 1109 lip1->extLocation.logicalBlockNum = 1110 li->extLocation.logicalBlockNum + 1111 ((li->extLength & 1112 UDF_EXTENT_LENGTH_MASK) >> 1113 blocksize_bits); 1114 } else { 1115 li->extLength = lip1->extLength + 1116 (((li->extLength & 1117 UDF_EXTENT_LENGTH_MASK) + 1118 blocksize - 1) & ~(blocksize - 1)); 1119 if (*endnum > (i + 2)) 1120 memmove(&laarr[i + 1], &laarr[i + 2], 1121 sizeof(struct long_ad) * 1122 (*endnum - (i + 2))); 1123 i--; 1124 (*endnum)--; 1125 } 1126 } else if (((li->extLength >> 30) == 1127 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1128 ((lip1->extLength >> 30) == 1129 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1130 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1131 ((li->extLength & 1132 UDF_EXTENT_LENGTH_MASK) + 1133 blocksize - 1) >> blocksize_bits); 1134 li->extLocation.logicalBlockNum = 0; 1135 li->extLocation.partitionReferenceNum = 0; 1136 1137 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1138 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1139 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1140 lip1->extLength = (lip1->extLength - 1141 (li->extLength & 1142 UDF_EXTENT_LENGTH_MASK) + 1143 UDF_EXTENT_LENGTH_MASK) & 1144 ~(blocksize - 1); 1145 li->extLength = (li->extLength & 1146 UDF_EXTENT_FLAG_MASK) + 1147 (UDF_EXTENT_LENGTH_MASK + 1) - 1148 blocksize; 1149 } else { 1150 li->extLength = lip1->extLength + 1151 (((li->extLength & 1152 UDF_EXTENT_LENGTH_MASK) + 1153 blocksize - 1) & ~(blocksize - 1)); 1154 if (*endnum > (i + 2)) 1155 memmove(&laarr[i + 1], &laarr[i + 2], 1156 sizeof(struct long_ad) * 1157 (*endnum - (i + 2))); 1158 i--; 1159 (*endnum)--; 1160 } 1161 } else if ((li->extLength >> 30) == 1162 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1163 udf_free_blocks(inode->i_sb, inode, 1164 &li->extLocation, 0, 1165 ((li->extLength & 1166 UDF_EXTENT_LENGTH_MASK) + 1167 blocksize - 1) >> blocksize_bits); 1168 li->extLocation.logicalBlockNum = 0; 1169 li->extLocation.partitionReferenceNum = 0; 1170 li->extLength = (li->extLength & 1171 UDF_EXTENT_LENGTH_MASK) | 1172 EXT_NOT_RECORDED_NOT_ALLOCATED; 1173 } 1174 } 1175 } 1176 1177 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1178 int startnum, int endnum, 1179 struct extent_position *epos) 1180 { 1181 int start = 0, i; 1182 struct kernel_lb_addr tmploc; 1183 uint32_t tmplen; 1184 1185 if (startnum > endnum) { 1186 for (i = 0; i < (startnum - endnum); i++) 1187 udf_delete_aext(inode, *epos); 1188 } else if (startnum < endnum) { 1189 for (i = 0; i < (endnum - startnum); i++) { 1190 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1191 laarr[i].extLength); 1192 udf_next_aext(inode, epos, &laarr[i].extLocation, 1193 &laarr[i].extLength, 1); 1194 start++; 1195 } 1196 } 1197 1198 for (i = start; i < endnum; i++) { 1199 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1200 udf_write_aext(inode, epos, &laarr[i].extLocation, 1201 laarr[i].extLength, 1); 1202 } 1203 } 1204 1205 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1206 int create, int *err) 1207 { 1208 struct buffer_head *bh = NULL; 1209 1210 bh = udf_getblk(inode, block, create, err); 1211 if (!bh) 1212 return NULL; 1213 1214 if (bh_read(bh, 0) >= 0) 1215 return bh; 1216 1217 brelse(bh); 1218 *err = -EIO; 1219 return NULL; 1220 } 1221 1222 int udf_setsize(struct inode *inode, loff_t newsize) 1223 { 1224 int err; 1225 struct udf_inode_info *iinfo; 1226 unsigned int bsize = i_blocksize(inode); 1227 1228 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1229 S_ISLNK(inode->i_mode))) 1230 return -EINVAL; 1231 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1232 return -EPERM; 1233 1234 iinfo = UDF_I(inode); 1235 if (newsize > inode->i_size) { 1236 down_write(&iinfo->i_data_sem); 1237 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1238 if (bsize < 1239 (udf_file_entry_alloc_offset(inode) + newsize)) { 1240 err = udf_expand_file_adinicb(inode); 1241 if (err) 1242 return err; 1243 down_write(&iinfo->i_data_sem); 1244 } else { 1245 iinfo->i_lenAlloc = newsize; 1246 goto set_size; 1247 } 1248 } 1249 err = udf_extend_file(inode, newsize); 1250 if (err) { 1251 up_write(&iinfo->i_data_sem); 1252 return err; 1253 } 1254 set_size: 1255 up_write(&iinfo->i_data_sem); 1256 truncate_setsize(inode, newsize); 1257 } else { 1258 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1259 down_write(&iinfo->i_data_sem); 1260 udf_clear_extent_cache(inode); 1261 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1262 0x00, bsize - newsize - 1263 udf_file_entry_alloc_offset(inode)); 1264 iinfo->i_lenAlloc = newsize; 1265 truncate_setsize(inode, newsize); 1266 up_write(&iinfo->i_data_sem); 1267 goto update_time; 1268 } 1269 err = block_truncate_page(inode->i_mapping, newsize, 1270 udf_get_block); 1271 if (err) 1272 return err; 1273 truncate_setsize(inode, newsize); 1274 down_write(&iinfo->i_data_sem); 1275 udf_clear_extent_cache(inode); 1276 err = udf_truncate_extents(inode); 1277 up_write(&iinfo->i_data_sem); 1278 if (err) 1279 return err; 1280 } 1281 update_time: 1282 inode->i_mtime = inode->i_ctime = current_time(inode); 1283 if (IS_SYNC(inode)) 1284 udf_sync_inode(inode); 1285 else 1286 mark_inode_dirty(inode); 1287 return 0; 1288 } 1289 1290 /* 1291 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1292 * arbitrary - just that we hopefully don't limit any real use of rewritten 1293 * inode on write-once media but avoid looping for too long on corrupted media. 1294 */ 1295 #define UDF_MAX_ICB_NESTING 1024 1296 1297 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1298 { 1299 struct buffer_head *bh = NULL; 1300 struct fileEntry *fe; 1301 struct extendedFileEntry *efe; 1302 uint16_t ident; 1303 struct udf_inode_info *iinfo = UDF_I(inode); 1304 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1305 struct kernel_lb_addr *iloc = &iinfo->i_location; 1306 unsigned int link_count; 1307 unsigned int indirections = 0; 1308 int bs = inode->i_sb->s_blocksize; 1309 int ret = -EIO; 1310 uint32_t uid, gid; 1311 1312 reread: 1313 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1314 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1315 iloc->partitionReferenceNum, sbi->s_partitions); 1316 return -EIO; 1317 } 1318 1319 if (iloc->logicalBlockNum >= 1320 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1321 udf_debug("block=%u, partition=%u out of range\n", 1322 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1323 return -EIO; 1324 } 1325 1326 /* 1327 * Set defaults, but the inode is still incomplete! 1328 * Note: get_new_inode() sets the following on a new inode: 1329 * i_sb = sb 1330 * i_no = ino 1331 * i_flags = sb->s_flags 1332 * i_state = 0 1333 * clean_inode(): zero fills and sets 1334 * i_count = 1 1335 * i_nlink = 1 1336 * i_op = NULL; 1337 */ 1338 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1339 if (!bh) { 1340 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1341 return -EIO; 1342 } 1343 1344 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1345 ident != TAG_IDENT_USE) { 1346 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1347 inode->i_ino, ident); 1348 goto out; 1349 } 1350 1351 fe = (struct fileEntry *)bh->b_data; 1352 efe = (struct extendedFileEntry *)bh->b_data; 1353 1354 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1355 struct buffer_head *ibh; 1356 1357 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1358 if (ident == TAG_IDENT_IE && ibh) { 1359 struct kernel_lb_addr loc; 1360 struct indirectEntry *ie; 1361 1362 ie = (struct indirectEntry *)ibh->b_data; 1363 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1364 1365 if (ie->indirectICB.extLength) { 1366 brelse(ibh); 1367 memcpy(&iinfo->i_location, &loc, 1368 sizeof(struct kernel_lb_addr)); 1369 if (++indirections > UDF_MAX_ICB_NESTING) { 1370 udf_err(inode->i_sb, 1371 "too many ICBs in ICB hierarchy" 1372 " (max %d supported)\n", 1373 UDF_MAX_ICB_NESTING); 1374 goto out; 1375 } 1376 brelse(bh); 1377 goto reread; 1378 } 1379 } 1380 brelse(ibh); 1381 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1382 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1383 le16_to_cpu(fe->icbTag.strategyType)); 1384 goto out; 1385 } 1386 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1387 iinfo->i_strat4096 = 0; 1388 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1389 iinfo->i_strat4096 = 1; 1390 1391 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1392 ICBTAG_FLAG_AD_MASK; 1393 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1394 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1395 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1396 ret = -EIO; 1397 goto out; 1398 } 1399 iinfo->i_unique = 0; 1400 iinfo->i_lenEAttr = 0; 1401 iinfo->i_lenExtents = 0; 1402 iinfo->i_lenAlloc = 0; 1403 iinfo->i_next_alloc_block = 0; 1404 iinfo->i_next_alloc_goal = 0; 1405 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1406 iinfo->i_efe = 1; 1407 iinfo->i_use = 0; 1408 ret = udf_alloc_i_data(inode, bs - 1409 sizeof(struct extendedFileEntry)); 1410 if (ret) 1411 goto out; 1412 memcpy(iinfo->i_data, 1413 bh->b_data + sizeof(struct extendedFileEntry), 1414 bs - sizeof(struct extendedFileEntry)); 1415 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1416 iinfo->i_efe = 0; 1417 iinfo->i_use = 0; 1418 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1419 if (ret) 1420 goto out; 1421 memcpy(iinfo->i_data, 1422 bh->b_data + sizeof(struct fileEntry), 1423 bs - sizeof(struct fileEntry)); 1424 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1425 iinfo->i_efe = 0; 1426 iinfo->i_use = 1; 1427 iinfo->i_lenAlloc = le32_to_cpu( 1428 ((struct unallocSpaceEntry *)bh->b_data)-> 1429 lengthAllocDescs); 1430 ret = udf_alloc_i_data(inode, bs - 1431 sizeof(struct unallocSpaceEntry)); 1432 if (ret) 1433 goto out; 1434 memcpy(iinfo->i_data, 1435 bh->b_data + sizeof(struct unallocSpaceEntry), 1436 bs - sizeof(struct unallocSpaceEntry)); 1437 return 0; 1438 } 1439 1440 ret = -EIO; 1441 read_lock(&sbi->s_cred_lock); 1442 uid = le32_to_cpu(fe->uid); 1443 if (uid == UDF_INVALID_ID || 1444 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1445 inode->i_uid = sbi->s_uid; 1446 else 1447 i_uid_write(inode, uid); 1448 1449 gid = le32_to_cpu(fe->gid); 1450 if (gid == UDF_INVALID_ID || 1451 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1452 inode->i_gid = sbi->s_gid; 1453 else 1454 i_gid_write(inode, gid); 1455 1456 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1457 sbi->s_fmode != UDF_INVALID_MODE) 1458 inode->i_mode = sbi->s_fmode; 1459 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1460 sbi->s_dmode != UDF_INVALID_MODE) 1461 inode->i_mode = sbi->s_dmode; 1462 else 1463 inode->i_mode = udf_convert_permissions(fe); 1464 inode->i_mode &= ~sbi->s_umask; 1465 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1466 1467 read_unlock(&sbi->s_cred_lock); 1468 1469 link_count = le16_to_cpu(fe->fileLinkCount); 1470 if (!link_count) { 1471 if (!hidden_inode) { 1472 ret = -ESTALE; 1473 goto out; 1474 } 1475 link_count = 1; 1476 } 1477 set_nlink(inode, link_count); 1478 1479 inode->i_size = le64_to_cpu(fe->informationLength); 1480 iinfo->i_lenExtents = inode->i_size; 1481 1482 if (iinfo->i_efe == 0) { 1483 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1484 (inode->i_sb->s_blocksize_bits - 9); 1485 1486 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1487 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1488 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1489 1490 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1491 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1492 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1493 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1494 iinfo->i_streamdir = 0; 1495 iinfo->i_lenStreams = 0; 1496 } else { 1497 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1498 (inode->i_sb->s_blocksize_bits - 9); 1499 1500 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1501 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1502 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1503 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1504 1505 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1506 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1507 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1508 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1509 1510 /* Named streams */ 1511 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1512 iinfo->i_locStreamdir = 1513 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1514 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1515 if (iinfo->i_lenStreams >= inode->i_size) 1516 iinfo->i_lenStreams -= inode->i_size; 1517 else 1518 iinfo->i_lenStreams = 0; 1519 } 1520 inode->i_generation = iinfo->i_unique; 1521 1522 /* 1523 * Sanity check length of allocation descriptors and extended attrs to 1524 * avoid integer overflows 1525 */ 1526 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1527 goto out; 1528 /* Now do exact checks */ 1529 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1530 goto out; 1531 /* Sanity checks for files in ICB so that we don't get confused later */ 1532 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1533 /* 1534 * For file in ICB data is stored in allocation descriptor 1535 * so sizes should match 1536 */ 1537 if (iinfo->i_lenAlloc != inode->i_size) 1538 goto out; 1539 /* File in ICB has to fit in there... */ 1540 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1541 goto out; 1542 } 1543 1544 switch (fe->icbTag.fileType) { 1545 case ICBTAG_FILE_TYPE_DIRECTORY: 1546 inode->i_op = &udf_dir_inode_operations; 1547 inode->i_fop = &udf_dir_operations; 1548 inode->i_mode |= S_IFDIR; 1549 inc_nlink(inode); 1550 break; 1551 case ICBTAG_FILE_TYPE_REALTIME: 1552 case ICBTAG_FILE_TYPE_REGULAR: 1553 case ICBTAG_FILE_TYPE_UNDEF: 1554 case ICBTAG_FILE_TYPE_VAT20: 1555 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1556 inode->i_data.a_ops = &udf_adinicb_aops; 1557 else 1558 inode->i_data.a_ops = &udf_aops; 1559 inode->i_op = &udf_file_inode_operations; 1560 inode->i_fop = &udf_file_operations; 1561 inode->i_mode |= S_IFREG; 1562 break; 1563 case ICBTAG_FILE_TYPE_BLOCK: 1564 inode->i_mode |= S_IFBLK; 1565 break; 1566 case ICBTAG_FILE_TYPE_CHAR: 1567 inode->i_mode |= S_IFCHR; 1568 break; 1569 case ICBTAG_FILE_TYPE_FIFO: 1570 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1571 break; 1572 case ICBTAG_FILE_TYPE_SOCKET: 1573 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1574 break; 1575 case ICBTAG_FILE_TYPE_SYMLINK: 1576 inode->i_data.a_ops = &udf_symlink_aops; 1577 inode->i_op = &udf_symlink_inode_operations; 1578 inode_nohighmem(inode); 1579 inode->i_mode = S_IFLNK | 0777; 1580 break; 1581 case ICBTAG_FILE_TYPE_MAIN: 1582 udf_debug("METADATA FILE-----\n"); 1583 break; 1584 case ICBTAG_FILE_TYPE_MIRROR: 1585 udf_debug("METADATA MIRROR FILE-----\n"); 1586 break; 1587 case ICBTAG_FILE_TYPE_BITMAP: 1588 udf_debug("METADATA BITMAP FILE-----\n"); 1589 break; 1590 default: 1591 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1592 inode->i_ino, fe->icbTag.fileType); 1593 goto out; 1594 } 1595 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1596 struct deviceSpec *dsea = 1597 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1598 if (dsea) { 1599 init_special_inode(inode, inode->i_mode, 1600 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1601 le32_to_cpu(dsea->minorDeviceIdent))); 1602 /* Developer ID ??? */ 1603 } else 1604 goto out; 1605 } 1606 ret = 0; 1607 out: 1608 brelse(bh); 1609 return ret; 1610 } 1611 1612 static int udf_alloc_i_data(struct inode *inode, size_t size) 1613 { 1614 struct udf_inode_info *iinfo = UDF_I(inode); 1615 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1616 if (!iinfo->i_data) 1617 return -ENOMEM; 1618 return 0; 1619 } 1620 1621 static umode_t udf_convert_permissions(struct fileEntry *fe) 1622 { 1623 umode_t mode; 1624 uint32_t permissions; 1625 uint32_t flags; 1626 1627 permissions = le32_to_cpu(fe->permissions); 1628 flags = le16_to_cpu(fe->icbTag.flags); 1629 1630 mode = ((permissions) & 0007) | 1631 ((permissions >> 2) & 0070) | 1632 ((permissions >> 4) & 0700) | 1633 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1634 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1635 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1636 1637 return mode; 1638 } 1639 1640 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1641 { 1642 struct udf_inode_info *iinfo = UDF_I(inode); 1643 1644 /* 1645 * UDF 2.01 sec. 3.3.3.3 Note 2: 1646 * In Unix, delete permission tracks write 1647 */ 1648 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1649 if (mode & 0200) 1650 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1651 if (mode & 0020) 1652 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1653 if (mode & 0002) 1654 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1655 } 1656 1657 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1658 { 1659 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1660 } 1661 1662 static int udf_sync_inode(struct inode *inode) 1663 { 1664 return udf_update_inode(inode, 1); 1665 } 1666 1667 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1668 { 1669 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1670 (iinfo->i_crtime.tv_sec == time.tv_sec && 1671 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1672 iinfo->i_crtime = time; 1673 } 1674 1675 static int udf_update_inode(struct inode *inode, int do_sync) 1676 { 1677 struct buffer_head *bh = NULL; 1678 struct fileEntry *fe; 1679 struct extendedFileEntry *efe; 1680 uint64_t lb_recorded; 1681 uint32_t udfperms; 1682 uint16_t icbflags; 1683 uint16_t crclen; 1684 int err = 0; 1685 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1686 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1687 struct udf_inode_info *iinfo = UDF_I(inode); 1688 1689 bh = udf_tgetblk(inode->i_sb, 1690 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1691 if (!bh) { 1692 udf_debug("getblk failure\n"); 1693 return -EIO; 1694 } 1695 1696 lock_buffer(bh); 1697 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1698 fe = (struct fileEntry *)bh->b_data; 1699 efe = (struct extendedFileEntry *)bh->b_data; 1700 1701 if (iinfo->i_use) { 1702 struct unallocSpaceEntry *use = 1703 (struct unallocSpaceEntry *)bh->b_data; 1704 1705 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1706 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1707 iinfo->i_data, inode->i_sb->s_blocksize - 1708 sizeof(struct unallocSpaceEntry)); 1709 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1710 crclen = sizeof(struct unallocSpaceEntry); 1711 1712 goto finish; 1713 } 1714 1715 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1716 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1717 else 1718 fe->uid = cpu_to_le32(i_uid_read(inode)); 1719 1720 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1721 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1722 else 1723 fe->gid = cpu_to_le32(i_gid_read(inode)); 1724 1725 udfperms = ((inode->i_mode & 0007)) | 1726 ((inode->i_mode & 0070) << 2) | 1727 ((inode->i_mode & 0700) << 4); 1728 1729 udfperms |= iinfo->i_extraPerms; 1730 fe->permissions = cpu_to_le32(udfperms); 1731 1732 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1733 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1734 else 1735 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1736 1737 fe->informationLength = cpu_to_le64(inode->i_size); 1738 1739 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1740 struct regid *eid; 1741 struct deviceSpec *dsea = 1742 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1743 if (!dsea) { 1744 dsea = (struct deviceSpec *) 1745 udf_add_extendedattr(inode, 1746 sizeof(struct deviceSpec) + 1747 sizeof(struct regid), 12, 0x3); 1748 dsea->attrType = cpu_to_le32(12); 1749 dsea->attrSubtype = 1; 1750 dsea->attrLength = cpu_to_le32( 1751 sizeof(struct deviceSpec) + 1752 sizeof(struct regid)); 1753 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1754 } 1755 eid = (struct regid *)dsea->impUse; 1756 memset(eid, 0, sizeof(*eid)); 1757 strcpy(eid->ident, UDF_ID_DEVELOPER); 1758 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1759 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1760 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1761 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1762 } 1763 1764 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1765 lb_recorded = 0; /* No extents => no blocks! */ 1766 else 1767 lb_recorded = 1768 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1769 (blocksize_bits - 9); 1770 1771 if (iinfo->i_efe == 0) { 1772 memcpy(bh->b_data + sizeof(struct fileEntry), 1773 iinfo->i_data, 1774 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1775 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1776 1777 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1778 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1779 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1780 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1781 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1782 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1783 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1784 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1785 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1786 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1787 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1788 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1789 crclen = sizeof(struct fileEntry); 1790 } else { 1791 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1792 iinfo->i_data, 1793 inode->i_sb->s_blocksize - 1794 sizeof(struct extendedFileEntry)); 1795 efe->objectSize = 1796 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1797 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1798 1799 if (iinfo->i_streamdir) { 1800 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1801 1802 icb_lad->extLocation = 1803 cpu_to_lelb(iinfo->i_locStreamdir); 1804 icb_lad->extLength = 1805 cpu_to_le32(inode->i_sb->s_blocksize); 1806 } 1807 1808 udf_adjust_time(iinfo, inode->i_atime); 1809 udf_adjust_time(iinfo, inode->i_mtime); 1810 udf_adjust_time(iinfo, inode->i_ctime); 1811 1812 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1813 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1814 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1815 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1816 1817 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1818 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1819 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1820 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1821 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1822 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1823 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1824 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1825 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1826 crclen = sizeof(struct extendedFileEntry); 1827 } 1828 1829 finish: 1830 if (iinfo->i_strat4096) { 1831 fe->icbTag.strategyType = cpu_to_le16(4096); 1832 fe->icbTag.strategyParameter = cpu_to_le16(1); 1833 fe->icbTag.numEntries = cpu_to_le16(2); 1834 } else { 1835 fe->icbTag.strategyType = cpu_to_le16(4); 1836 fe->icbTag.numEntries = cpu_to_le16(1); 1837 } 1838 1839 if (iinfo->i_use) 1840 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1841 else if (S_ISDIR(inode->i_mode)) 1842 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1843 else if (S_ISREG(inode->i_mode)) 1844 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1845 else if (S_ISLNK(inode->i_mode)) 1846 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1847 else if (S_ISBLK(inode->i_mode)) 1848 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1849 else if (S_ISCHR(inode->i_mode)) 1850 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1851 else if (S_ISFIFO(inode->i_mode)) 1852 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1853 else if (S_ISSOCK(inode->i_mode)) 1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1855 1856 icbflags = iinfo->i_alloc_type | 1857 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1858 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1859 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1860 (le16_to_cpu(fe->icbTag.flags) & 1861 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1862 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1863 1864 fe->icbTag.flags = cpu_to_le16(icbflags); 1865 if (sbi->s_udfrev >= 0x0200) 1866 fe->descTag.descVersion = cpu_to_le16(3); 1867 else 1868 fe->descTag.descVersion = cpu_to_le16(2); 1869 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1870 fe->descTag.tagLocation = cpu_to_le32( 1871 iinfo->i_location.logicalBlockNum); 1872 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1873 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1874 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1875 crclen)); 1876 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1877 1878 set_buffer_uptodate(bh); 1879 unlock_buffer(bh); 1880 1881 /* write the data blocks */ 1882 mark_buffer_dirty(bh); 1883 if (do_sync) { 1884 sync_dirty_buffer(bh); 1885 if (buffer_write_io_error(bh)) { 1886 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1887 inode->i_ino); 1888 err = -EIO; 1889 } 1890 } 1891 brelse(bh); 1892 1893 return err; 1894 } 1895 1896 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1897 bool hidden_inode) 1898 { 1899 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1900 struct inode *inode = iget_locked(sb, block); 1901 int err; 1902 1903 if (!inode) 1904 return ERR_PTR(-ENOMEM); 1905 1906 if (!(inode->i_state & I_NEW)) 1907 return inode; 1908 1909 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1910 err = udf_read_inode(inode, hidden_inode); 1911 if (err < 0) { 1912 iget_failed(inode); 1913 return ERR_PTR(err); 1914 } 1915 unlock_new_inode(inode); 1916 1917 return inode; 1918 } 1919 1920 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1921 struct extent_position *epos) 1922 { 1923 struct super_block *sb = inode->i_sb; 1924 struct buffer_head *bh; 1925 struct allocExtDesc *aed; 1926 struct extent_position nepos; 1927 struct kernel_lb_addr neloc; 1928 int ver, adsize; 1929 1930 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1931 adsize = sizeof(struct short_ad); 1932 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1933 adsize = sizeof(struct long_ad); 1934 else 1935 return -EIO; 1936 1937 neloc.logicalBlockNum = block; 1938 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1939 1940 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1941 if (!bh) 1942 return -EIO; 1943 lock_buffer(bh); 1944 memset(bh->b_data, 0x00, sb->s_blocksize); 1945 set_buffer_uptodate(bh); 1946 unlock_buffer(bh); 1947 mark_buffer_dirty_inode(bh, inode); 1948 1949 aed = (struct allocExtDesc *)(bh->b_data); 1950 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1951 aed->previousAllocExtLocation = 1952 cpu_to_le32(epos->block.logicalBlockNum); 1953 } 1954 aed->lengthAllocDescs = cpu_to_le32(0); 1955 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1956 ver = 3; 1957 else 1958 ver = 2; 1959 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1960 sizeof(struct tag)); 1961 1962 nepos.block = neloc; 1963 nepos.offset = sizeof(struct allocExtDesc); 1964 nepos.bh = bh; 1965 1966 /* 1967 * Do we have to copy current last extent to make space for indirect 1968 * one? 1969 */ 1970 if (epos->offset + adsize > sb->s_blocksize) { 1971 struct kernel_lb_addr cp_loc; 1972 uint32_t cp_len; 1973 int cp_type; 1974 1975 epos->offset -= adsize; 1976 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1977 cp_len |= ((uint32_t)cp_type) << 30; 1978 1979 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1980 udf_write_aext(inode, epos, &nepos.block, 1981 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1982 } else { 1983 __udf_add_aext(inode, epos, &nepos.block, 1984 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1985 } 1986 1987 brelse(epos->bh); 1988 *epos = nepos; 1989 1990 return 0; 1991 } 1992 1993 /* 1994 * Append extent at the given position - should be the first free one in inode 1995 * / indirect extent. This function assumes there is enough space in the inode 1996 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1997 */ 1998 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1999 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2000 { 2001 struct udf_inode_info *iinfo = UDF_I(inode); 2002 struct allocExtDesc *aed; 2003 int adsize; 2004 2005 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2006 adsize = sizeof(struct short_ad); 2007 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2008 adsize = sizeof(struct long_ad); 2009 else 2010 return -EIO; 2011 2012 if (!epos->bh) { 2013 WARN_ON(iinfo->i_lenAlloc != 2014 epos->offset - udf_file_entry_alloc_offset(inode)); 2015 } else { 2016 aed = (struct allocExtDesc *)epos->bh->b_data; 2017 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2018 epos->offset - sizeof(struct allocExtDesc)); 2019 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2020 } 2021 2022 udf_write_aext(inode, epos, eloc, elen, inc); 2023 2024 if (!epos->bh) { 2025 iinfo->i_lenAlloc += adsize; 2026 mark_inode_dirty(inode); 2027 } else { 2028 aed = (struct allocExtDesc *)epos->bh->b_data; 2029 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2030 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2031 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2032 udf_update_tag(epos->bh->b_data, 2033 epos->offset + (inc ? 0 : adsize)); 2034 else 2035 udf_update_tag(epos->bh->b_data, 2036 sizeof(struct allocExtDesc)); 2037 mark_buffer_dirty_inode(epos->bh, inode); 2038 } 2039 2040 return 0; 2041 } 2042 2043 /* 2044 * Append extent at given position - should be the first free one in inode 2045 * / indirect extent. Takes care of allocating and linking indirect blocks. 2046 */ 2047 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2048 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2049 { 2050 int adsize; 2051 struct super_block *sb = inode->i_sb; 2052 2053 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2054 adsize = sizeof(struct short_ad); 2055 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2056 adsize = sizeof(struct long_ad); 2057 else 2058 return -EIO; 2059 2060 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2061 int err; 2062 udf_pblk_t new_block; 2063 2064 new_block = udf_new_block(sb, NULL, 2065 epos->block.partitionReferenceNum, 2066 epos->block.logicalBlockNum, &err); 2067 if (!new_block) 2068 return -ENOSPC; 2069 2070 err = udf_setup_indirect_aext(inode, new_block, epos); 2071 if (err) 2072 return err; 2073 } 2074 2075 return __udf_add_aext(inode, epos, eloc, elen, inc); 2076 } 2077 2078 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2079 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2080 { 2081 int adsize; 2082 uint8_t *ptr; 2083 struct short_ad *sad; 2084 struct long_ad *lad; 2085 struct udf_inode_info *iinfo = UDF_I(inode); 2086 2087 if (!epos->bh) 2088 ptr = iinfo->i_data + epos->offset - 2089 udf_file_entry_alloc_offset(inode) + 2090 iinfo->i_lenEAttr; 2091 else 2092 ptr = epos->bh->b_data + epos->offset; 2093 2094 switch (iinfo->i_alloc_type) { 2095 case ICBTAG_FLAG_AD_SHORT: 2096 sad = (struct short_ad *)ptr; 2097 sad->extLength = cpu_to_le32(elen); 2098 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2099 adsize = sizeof(struct short_ad); 2100 break; 2101 case ICBTAG_FLAG_AD_LONG: 2102 lad = (struct long_ad *)ptr; 2103 lad->extLength = cpu_to_le32(elen); 2104 lad->extLocation = cpu_to_lelb(*eloc); 2105 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2106 adsize = sizeof(struct long_ad); 2107 break; 2108 default: 2109 return; 2110 } 2111 2112 if (epos->bh) { 2113 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2114 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2115 struct allocExtDesc *aed = 2116 (struct allocExtDesc *)epos->bh->b_data; 2117 udf_update_tag(epos->bh->b_data, 2118 le32_to_cpu(aed->lengthAllocDescs) + 2119 sizeof(struct allocExtDesc)); 2120 } 2121 mark_buffer_dirty_inode(epos->bh, inode); 2122 } else { 2123 mark_inode_dirty(inode); 2124 } 2125 2126 if (inc) 2127 epos->offset += adsize; 2128 } 2129 2130 /* 2131 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2132 * someone does some weird stuff. 2133 */ 2134 #define UDF_MAX_INDIR_EXTS 16 2135 2136 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2137 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2138 { 2139 int8_t etype; 2140 unsigned int indirections = 0; 2141 2142 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2143 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2144 udf_pblk_t block; 2145 2146 if (++indirections > UDF_MAX_INDIR_EXTS) { 2147 udf_err(inode->i_sb, 2148 "too many indirect extents in inode %lu\n", 2149 inode->i_ino); 2150 return -1; 2151 } 2152 2153 epos->block = *eloc; 2154 epos->offset = sizeof(struct allocExtDesc); 2155 brelse(epos->bh); 2156 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2157 epos->bh = udf_tread(inode->i_sb, block); 2158 if (!epos->bh) { 2159 udf_debug("reading block %u failed!\n", block); 2160 return -1; 2161 } 2162 } 2163 2164 return etype; 2165 } 2166 2167 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2168 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2169 { 2170 int alen; 2171 int8_t etype; 2172 uint8_t *ptr; 2173 struct short_ad *sad; 2174 struct long_ad *lad; 2175 struct udf_inode_info *iinfo = UDF_I(inode); 2176 2177 if (!epos->bh) { 2178 if (!epos->offset) 2179 epos->offset = udf_file_entry_alloc_offset(inode); 2180 ptr = iinfo->i_data + epos->offset - 2181 udf_file_entry_alloc_offset(inode) + 2182 iinfo->i_lenEAttr; 2183 alen = udf_file_entry_alloc_offset(inode) + 2184 iinfo->i_lenAlloc; 2185 } else { 2186 if (!epos->offset) 2187 epos->offset = sizeof(struct allocExtDesc); 2188 ptr = epos->bh->b_data + epos->offset; 2189 alen = sizeof(struct allocExtDesc) + 2190 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2191 lengthAllocDescs); 2192 } 2193 2194 switch (iinfo->i_alloc_type) { 2195 case ICBTAG_FLAG_AD_SHORT: 2196 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2197 if (!sad) 2198 return -1; 2199 etype = le32_to_cpu(sad->extLength) >> 30; 2200 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2201 eloc->partitionReferenceNum = 2202 iinfo->i_location.partitionReferenceNum; 2203 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2204 break; 2205 case ICBTAG_FLAG_AD_LONG: 2206 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2207 if (!lad) 2208 return -1; 2209 etype = le32_to_cpu(lad->extLength) >> 30; 2210 *eloc = lelb_to_cpu(lad->extLocation); 2211 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2212 break; 2213 default: 2214 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2215 return -1; 2216 } 2217 2218 return etype; 2219 } 2220 2221 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2222 struct kernel_lb_addr neloc, uint32_t nelen) 2223 { 2224 struct kernel_lb_addr oeloc; 2225 uint32_t oelen; 2226 int8_t etype; 2227 2228 if (epos.bh) 2229 get_bh(epos.bh); 2230 2231 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2232 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2233 neloc = oeloc; 2234 nelen = (etype << 30) | oelen; 2235 } 2236 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2237 brelse(epos.bh); 2238 2239 return (nelen >> 30); 2240 } 2241 2242 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2243 { 2244 struct extent_position oepos; 2245 int adsize; 2246 int8_t etype; 2247 struct allocExtDesc *aed; 2248 struct udf_inode_info *iinfo; 2249 struct kernel_lb_addr eloc; 2250 uint32_t elen; 2251 2252 if (epos.bh) { 2253 get_bh(epos.bh); 2254 get_bh(epos.bh); 2255 } 2256 2257 iinfo = UDF_I(inode); 2258 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2259 adsize = sizeof(struct short_ad); 2260 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2261 adsize = sizeof(struct long_ad); 2262 else 2263 adsize = 0; 2264 2265 oepos = epos; 2266 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2267 return -1; 2268 2269 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2270 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2271 if (oepos.bh != epos.bh) { 2272 oepos.block = epos.block; 2273 brelse(oepos.bh); 2274 get_bh(epos.bh); 2275 oepos.bh = epos.bh; 2276 oepos.offset = epos.offset - adsize; 2277 } 2278 } 2279 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2280 elen = 0; 2281 2282 if (epos.bh != oepos.bh) { 2283 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2284 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2285 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2286 if (!oepos.bh) { 2287 iinfo->i_lenAlloc -= (adsize * 2); 2288 mark_inode_dirty(inode); 2289 } else { 2290 aed = (struct allocExtDesc *)oepos.bh->b_data; 2291 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2292 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2293 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2294 udf_update_tag(oepos.bh->b_data, 2295 oepos.offset - (2 * adsize)); 2296 else 2297 udf_update_tag(oepos.bh->b_data, 2298 sizeof(struct allocExtDesc)); 2299 mark_buffer_dirty_inode(oepos.bh, inode); 2300 } 2301 } else { 2302 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2303 if (!oepos.bh) { 2304 iinfo->i_lenAlloc -= adsize; 2305 mark_inode_dirty(inode); 2306 } else { 2307 aed = (struct allocExtDesc *)oepos.bh->b_data; 2308 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2309 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2310 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2311 udf_update_tag(oepos.bh->b_data, 2312 epos.offset - adsize); 2313 else 2314 udf_update_tag(oepos.bh->b_data, 2315 sizeof(struct allocExtDesc)); 2316 mark_buffer_dirty_inode(oepos.bh, inode); 2317 } 2318 } 2319 2320 brelse(epos.bh); 2321 brelse(oepos.bh); 2322 2323 return (elen >> 30); 2324 } 2325 2326 int8_t inode_bmap(struct inode *inode, sector_t block, 2327 struct extent_position *pos, struct kernel_lb_addr *eloc, 2328 uint32_t *elen, sector_t *offset) 2329 { 2330 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2331 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2332 int8_t etype; 2333 struct udf_inode_info *iinfo; 2334 2335 iinfo = UDF_I(inode); 2336 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2337 pos->offset = 0; 2338 pos->block = iinfo->i_location; 2339 pos->bh = NULL; 2340 } 2341 *elen = 0; 2342 do { 2343 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2344 if (etype == -1) { 2345 *offset = (bcount - lbcount) >> blocksize_bits; 2346 iinfo->i_lenExtents = lbcount; 2347 return -1; 2348 } 2349 lbcount += *elen; 2350 } while (lbcount <= bcount); 2351 /* update extent cache */ 2352 udf_update_extent_cache(inode, lbcount - *elen, pos); 2353 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2354 2355 return etype; 2356 } 2357 2358 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2359 { 2360 struct kernel_lb_addr eloc; 2361 uint32_t elen; 2362 sector_t offset; 2363 struct extent_position epos = {}; 2364 udf_pblk_t ret; 2365 2366 down_read(&UDF_I(inode)->i_data_sem); 2367 2368 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2369 (EXT_RECORDED_ALLOCATED >> 30)) 2370 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2371 else 2372 ret = 0; 2373 2374 up_read(&UDF_I(inode)->i_data_sem); 2375 brelse(epos.bh); 2376 2377 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2378 return udf_fixed_to_variable(ret); 2379 else 2380 return ret; 2381 } 2382