xref: /openbmc/linux/fs/udf/inode.c (revision 64a9f19a)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 	return block_write_full_page(page, udf_get_block, wbc);
188 }
189 
190 static int udf_writepages(struct address_space *mapping,
191 			struct writeback_control *wbc)
192 {
193 	return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195 
196 static int udf_read_folio(struct file *file, struct folio *folio)
197 {
198 	return mpage_read_folio(folio, udf_get_block);
199 }
200 
201 static void udf_readahead(struct readahead_control *rac)
202 {
203 	mpage_readahead(rac, udf_get_block);
204 }
205 
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 			loff_t pos, unsigned len,
208 			struct page **pagep, void **fsdata)
209 {
210 	int ret;
211 
212 	ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
213 	if (unlikely(ret))
214 		udf_write_failed(mapping, pos + len);
215 	return ret;
216 }
217 
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 	struct file *file = iocb->ki_filp;
221 	struct address_space *mapping = file->f_mapping;
222 	struct inode *inode = mapping->host;
223 	size_t count = iov_iter_count(iter);
224 	ssize_t ret;
225 
226 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 		udf_write_failed(mapping, iocb->ki_pos + count);
229 	return ret;
230 }
231 
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 	return generic_block_bmap(mapping, block, udf_get_block);
235 }
236 
237 const struct address_space_operations udf_aops = {
238 	.dirty_folio	= block_dirty_folio,
239 	.invalidate_folio = block_invalidate_folio,
240 	.read_folio	= udf_read_folio,
241 	.readahead	= udf_readahead,
242 	.writepage	= udf_writepage,
243 	.writepages	= udf_writepages,
244 	.write_begin	= udf_write_begin,
245 	.write_end	= generic_write_end,
246 	.direct_IO	= udf_direct_IO,
247 	.bmap		= udf_bmap,
248 };
249 
250 /*
251  * Expand file stored in ICB to a normal one-block-file
252  *
253  * This function requires i_data_sem for writing and releases it.
254  * This function requires i_mutex held
255  */
256 int udf_expand_file_adinicb(struct inode *inode)
257 {
258 	struct page *page;
259 	char *kaddr;
260 	struct udf_inode_info *iinfo = UDF_I(inode);
261 	int err;
262 
263 	WARN_ON_ONCE(!inode_is_locked(inode));
264 	if (!iinfo->i_lenAlloc) {
265 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267 		else
268 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269 		/* from now on we have normal address_space methods */
270 		inode->i_data.a_ops = &udf_aops;
271 		up_write(&iinfo->i_data_sem);
272 		mark_inode_dirty(inode);
273 		return 0;
274 	}
275 	/*
276 	 * Release i_data_sem so that we can lock a page - page lock ranks
277 	 * above i_data_sem. i_mutex still protects us against file changes.
278 	 */
279 	up_write(&iinfo->i_data_sem);
280 
281 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282 	if (!page)
283 		return -ENOMEM;
284 
285 	if (!PageUptodate(page)) {
286 		kaddr = kmap_atomic(page);
287 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
288 		       PAGE_SIZE - iinfo->i_lenAlloc);
289 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
290 			iinfo->i_lenAlloc);
291 		flush_dcache_page(page);
292 		SetPageUptodate(page);
293 		kunmap_atomic(kaddr);
294 	}
295 	down_write(&iinfo->i_data_sem);
296 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
297 	       iinfo->i_lenAlloc);
298 	iinfo->i_lenAlloc = 0;
299 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301 	else
302 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303 	/* from now on we have normal address_space methods */
304 	inode->i_data.a_ops = &udf_aops;
305 	set_page_dirty(page);
306 	unlock_page(page);
307 	up_write(&iinfo->i_data_sem);
308 	err = filemap_fdatawrite(inode->i_mapping);
309 	if (err) {
310 		/* Restore everything back so that we don't lose data... */
311 		lock_page(page);
312 		down_write(&iinfo->i_data_sem);
313 		kaddr = kmap_atomic(page);
314 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
315 		kunmap_atomic(kaddr);
316 		unlock_page(page);
317 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
318 		inode->i_data.a_ops = &udf_adinicb_aops;
319 		iinfo->i_lenAlloc = inode->i_size;
320 		up_write(&iinfo->i_data_sem);
321 	}
322 	put_page(page);
323 	mark_inode_dirty(inode);
324 
325 	return err;
326 }
327 
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 					    udf_pblk_t *block, int *err)
330 {
331 	udf_pblk_t newblock;
332 	struct buffer_head *dbh = NULL;
333 	struct kernel_lb_addr eloc;
334 	uint8_t alloctype;
335 	struct extent_position epos;
336 
337 	struct udf_fileident_bh sfibh, dfibh;
338 	loff_t f_pos = udf_ext0_offset(inode);
339 	int size = udf_ext0_offset(inode) + inode->i_size;
340 	struct fileIdentDesc cfi, *sfi, *dfi;
341 	struct udf_inode_info *iinfo = UDF_I(inode);
342 
343 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 		alloctype = ICBTAG_FLAG_AD_SHORT;
345 	else
346 		alloctype = ICBTAG_FLAG_AD_LONG;
347 
348 	if (!inode->i_size) {
349 		iinfo->i_alloc_type = alloctype;
350 		mark_inode_dirty(inode);
351 		return NULL;
352 	}
353 
354 	/* alloc block, and copy data to it */
355 	*block = udf_new_block(inode->i_sb, inode,
356 			       iinfo->i_location.partitionReferenceNum,
357 			       iinfo->i_location.logicalBlockNum, err);
358 	if (!(*block))
359 		return NULL;
360 	newblock = udf_get_pblock(inode->i_sb, *block,
361 				  iinfo->i_location.partitionReferenceNum,
362 				0);
363 	if (!newblock)
364 		return NULL;
365 	dbh = udf_tgetblk(inode->i_sb, newblock);
366 	if (!dbh)
367 		return NULL;
368 	lock_buffer(dbh);
369 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 	set_buffer_uptodate(dbh);
371 	unlock_buffer(dbh);
372 	mark_buffer_dirty_inode(dbh, inode);
373 
374 	sfibh.soffset = sfibh.eoffset =
375 			f_pos & (inode->i_sb->s_blocksize - 1);
376 	sfibh.sbh = sfibh.ebh = NULL;
377 	dfibh.soffset = dfibh.eoffset = 0;
378 	dfibh.sbh = dfibh.ebh = dbh;
379 	while (f_pos < size) {
380 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 					 NULL, NULL, NULL);
383 		if (!sfi) {
384 			brelse(dbh);
385 			return NULL;
386 		}
387 		iinfo->i_alloc_type = alloctype;
388 		sfi->descTag.tagLocation = cpu_to_le32(*block);
389 		dfibh.soffset = dfibh.eoffset;
390 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 				 udf_get_fi_ident(sfi))) {
394 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395 			brelse(dbh);
396 			return NULL;
397 		}
398 	}
399 	mark_buffer_dirty_inode(dbh, inode);
400 
401 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402 	iinfo->i_lenAlloc = 0;
403 	eloc.logicalBlockNum = *block;
404 	eloc.partitionReferenceNum =
405 				iinfo->i_location.partitionReferenceNum;
406 	iinfo->i_lenExtents = inode->i_size;
407 	epos.bh = NULL;
408 	epos.block = iinfo->i_location;
409 	epos.offset = udf_file_entry_alloc_offset(inode);
410 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411 	/* UniqueID stuff */
412 
413 	brelse(epos.bh);
414 	mark_inode_dirty(inode);
415 	return dbh;
416 }
417 
418 static int udf_get_block(struct inode *inode, sector_t block,
419 			 struct buffer_head *bh_result, int create)
420 {
421 	int err, new;
422 	sector_t phys = 0;
423 	struct udf_inode_info *iinfo;
424 
425 	if (!create) {
426 		phys = udf_block_map(inode, block);
427 		if (phys)
428 			map_bh(bh_result, inode->i_sb, phys);
429 		return 0;
430 	}
431 
432 	err = -EIO;
433 	new = 0;
434 	iinfo = UDF_I(inode);
435 
436 	down_write(&iinfo->i_data_sem);
437 	if (block == iinfo->i_next_alloc_block + 1) {
438 		iinfo->i_next_alloc_block++;
439 		iinfo->i_next_alloc_goal++;
440 	}
441 
442 	udf_clear_extent_cache(inode);
443 	phys = inode_getblk(inode, block, &err, &new);
444 	if (!phys)
445 		goto abort;
446 
447 	if (new)
448 		set_buffer_new(bh_result);
449 	map_bh(bh_result, inode->i_sb, phys);
450 
451 abort:
452 	up_write(&iinfo->i_data_sem);
453 	return err;
454 }
455 
456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
457 				      int create, int *err)
458 {
459 	struct buffer_head *bh;
460 	struct buffer_head dummy;
461 
462 	dummy.b_state = 0;
463 	dummy.b_blocknr = -1000;
464 	*err = udf_get_block(inode, block, &dummy, create);
465 	if (!*err && buffer_mapped(&dummy)) {
466 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
467 		if (buffer_new(&dummy)) {
468 			lock_buffer(bh);
469 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
470 			set_buffer_uptodate(bh);
471 			unlock_buffer(bh);
472 			mark_buffer_dirty_inode(bh, inode);
473 		}
474 		return bh;
475 	}
476 
477 	return NULL;
478 }
479 
480 /* Extend the file with new blocks totaling 'new_block_bytes',
481  * return the number of extents added
482  */
483 static int udf_do_extend_file(struct inode *inode,
484 			      struct extent_position *last_pos,
485 			      struct kernel_long_ad *last_ext,
486 			      loff_t new_block_bytes)
487 {
488 	uint32_t add;
489 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 	struct super_block *sb = inode->i_sb;
491 	struct kernel_lb_addr prealloc_loc = {};
492 	uint32_t prealloc_len = 0;
493 	struct udf_inode_info *iinfo;
494 	int err;
495 
496 	/* The previous extent is fake and we should not extend by anything
497 	 * - there's nothing to do... */
498 	if (!new_block_bytes && fake)
499 		return 0;
500 
501 	iinfo = UDF_I(inode);
502 	/* Round the last extent up to a multiple of block size */
503 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 		last_ext->extLength =
505 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 		iinfo->i_lenExtents =
509 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 			~(sb->s_blocksize - 1);
511 	}
512 
513 	/* Last extent are just preallocated blocks? */
514 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 						EXT_NOT_RECORDED_ALLOCATED) {
516 		/* Save the extent so that we can reattach it to the end */
517 		prealloc_loc = last_ext->extLocation;
518 		prealloc_len = last_ext->extLength;
519 		/* Mark the extent as a hole */
520 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 		last_ext->extLocation.logicalBlockNum = 0;
523 		last_ext->extLocation.partitionReferenceNum = 0;
524 	}
525 
526 	/* Can we merge with the previous extent? */
527 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 		add = (1 << 30) - sb->s_blocksize -
530 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
531 		if (add > new_block_bytes)
532 			add = new_block_bytes;
533 		new_block_bytes -= add;
534 		last_ext->extLength += add;
535 	}
536 
537 	if (fake) {
538 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
539 			     last_ext->extLength, 1);
540 		count++;
541 	} else {
542 		struct kernel_lb_addr tmploc;
543 		uint32_t tmplen;
544 
545 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
546 				last_ext->extLength, 1);
547 
548 		/*
549 		 * We've rewritten the last extent. If we are going to add
550 		 * more extents, we may need to enter possible following
551 		 * empty indirect extent.
552 		 */
553 		if (new_block_bytes || prealloc_len)
554 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
555 	}
556 
557 	/* Managed to do everything necessary? */
558 	if (!new_block_bytes)
559 		goto out;
560 
561 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
562 	last_ext->extLocation.logicalBlockNum = 0;
563 	last_ext->extLocation.partitionReferenceNum = 0;
564 	add = (1 << 30) - sb->s_blocksize;
565 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
566 
567 	/* Create enough extents to cover the whole hole */
568 	while (new_block_bytes > add) {
569 		new_block_bytes -= add;
570 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
571 				   last_ext->extLength, 1);
572 		if (err)
573 			return err;
574 		count++;
575 	}
576 	if (new_block_bytes) {
577 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
578 			new_block_bytes;
579 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
580 				   last_ext->extLength, 1);
581 		if (err)
582 			return err;
583 		count++;
584 	}
585 
586 out:
587 	/* Do we have some preallocated blocks saved? */
588 	if (prealloc_len) {
589 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
590 				   prealloc_len, 1);
591 		if (err)
592 			return err;
593 		last_ext->extLocation = prealloc_loc;
594 		last_ext->extLength = prealloc_len;
595 		count++;
596 	}
597 
598 	/* last_pos should point to the last written extent... */
599 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
600 		last_pos->offset -= sizeof(struct short_ad);
601 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
602 		last_pos->offset -= sizeof(struct long_ad);
603 	else
604 		return -EIO;
605 
606 	return count;
607 }
608 
609 /* Extend the final block of the file to final_block_len bytes */
610 static void udf_do_extend_final_block(struct inode *inode,
611 				      struct extent_position *last_pos,
612 				      struct kernel_long_ad *last_ext,
613 				      uint32_t final_block_len)
614 {
615 	struct super_block *sb = inode->i_sb;
616 	uint32_t added_bytes;
617 
618 	added_bytes = final_block_len -
619 		      (last_ext->extLength & (sb->s_blocksize - 1));
620 	last_ext->extLength += added_bytes;
621 	UDF_I(inode)->i_lenExtents += added_bytes;
622 
623 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
624 			last_ext->extLength, 1);
625 }
626 
627 static int udf_extend_file(struct inode *inode, loff_t newsize)
628 {
629 
630 	struct extent_position epos;
631 	struct kernel_lb_addr eloc;
632 	uint32_t elen;
633 	int8_t etype;
634 	struct super_block *sb = inode->i_sb;
635 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
636 	unsigned long partial_final_block;
637 	int adsize;
638 	struct udf_inode_info *iinfo = UDF_I(inode);
639 	struct kernel_long_ad extent;
640 	int err = 0;
641 	int within_final_block;
642 
643 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
644 		adsize = sizeof(struct short_ad);
645 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
646 		adsize = sizeof(struct long_ad);
647 	else
648 		BUG();
649 
650 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
651 	within_final_block = (etype != -1);
652 
653 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655 		/* File has no extents at all or has empty last
656 		 * indirect extent! Create a fake extent... */
657 		extent.extLocation.logicalBlockNum = 0;
658 		extent.extLocation.partitionReferenceNum = 0;
659 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660 	} else {
661 		epos.offset -= adsize;
662 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
663 				      &extent.extLength, 0);
664 		extent.extLength |= etype << 30;
665 	}
666 
667 	partial_final_block = newsize & (sb->s_blocksize - 1);
668 
669 	/* File has extent covering the new size (could happen when extending
670 	 * inside a block)?
671 	 */
672 	if (within_final_block) {
673 		/* Extending file within the last file block */
674 		udf_do_extend_final_block(inode, &epos, &extent,
675 					  partial_final_block);
676 	} else {
677 		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
678 			     partial_final_block;
679 		err = udf_do_extend_file(inode, &epos, &extent, add);
680 	}
681 
682 	if (err < 0)
683 		goto out;
684 	err = 0;
685 	iinfo->i_lenExtents = newsize;
686 out:
687 	brelse(epos.bh);
688 	return err;
689 }
690 
691 static sector_t inode_getblk(struct inode *inode, sector_t block,
692 			     int *err, int *new)
693 {
694 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
695 	struct extent_position prev_epos, cur_epos, next_epos;
696 	int count = 0, startnum = 0, endnum = 0;
697 	uint32_t elen = 0, tmpelen;
698 	struct kernel_lb_addr eloc, tmpeloc;
699 	int c = 1;
700 	loff_t lbcount = 0, b_off = 0;
701 	udf_pblk_t newblocknum, newblock;
702 	sector_t offset = 0;
703 	int8_t etype;
704 	struct udf_inode_info *iinfo = UDF_I(inode);
705 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
706 	int lastblock = 0;
707 	bool isBeyondEOF;
708 
709 	*err = 0;
710 	*new = 0;
711 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
712 	prev_epos.block = iinfo->i_location;
713 	prev_epos.bh = NULL;
714 	cur_epos = next_epos = prev_epos;
715 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
716 
717 	/* find the extent which contains the block we are looking for.
718 	   alternate between laarr[0] and laarr[1] for locations of the
719 	   current extent, and the previous extent */
720 	do {
721 		if (prev_epos.bh != cur_epos.bh) {
722 			brelse(prev_epos.bh);
723 			get_bh(cur_epos.bh);
724 			prev_epos.bh = cur_epos.bh;
725 		}
726 		if (cur_epos.bh != next_epos.bh) {
727 			brelse(cur_epos.bh);
728 			get_bh(next_epos.bh);
729 			cur_epos.bh = next_epos.bh;
730 		}
731 
732 		lbcount += elen;
733 
734 		prev_epos.block = cur_epos.block;
735 		cur_epos.block = next_epos.block;
736 
737 		prev_epos.offset = cur_epos.offset;
738 		cur_epos.offset = next_epos.offset;
739 
740 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
741 		if (etype == -1)
742 			break;
743 
744 		c = !c;
745 
746 		laarr[c].extLength = (etype << 30) | elen;
747 		laarr[c].extLocation = eloc;
748 
749 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
750 			pgoal = eloc.logicalBlockNum +
751 				((elen + inode->i_sb->s_blocksize - 1) >>
752 				 inode->i_sb->s_blocksize_bits);
753 
754 		count++;
755 	} while (lbcount + elen <= b_off);
756 
757 	b_off -= lbcount;
758 	offset = b_off >> inode->i_sb->s_blocksize_bits;
759 	/*
760 	 * Move prev_epos and cur_epos into indirect extent if we are at
761 	 * the pointer to it
762 	 */
763 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
764 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
765 
766 	/* if the extent is allocated and recorded, return the block
767 	   if the extent is not a multiple of the blocksize, round up */
768 
769 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
770 		if (elen & (inode->i_sb->s_blocksize - 1)) {
771 			elen = EXT_RECORDED_ALLOCATED |
772 				((elen + inode->i_sb->s_blocksize - 1) &
773 				 ~(inode->i_sb->s_blocksize - 1));
774 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
775 		}
776 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
777 		goto out_free;
778 	}
779 
780 	/* Are we beyond EOF? */
781 	if (etype == -1) {
782 		int ret;
783 		loff_t hole_len;
784 		isBeyondEOF = true;
785 		if (count) {
786 			if (c)
787 				laarr[0] = laarr[1];
788 			startnum = 1;
789 		} else {
790 			/* Create a fake extent when there's not one */
791 			memset(&laarr[0].extLocation, 0x00,
792 				sizeof(struct kernel_lb_addr));
793 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
794 			/* Will udf_do_extend_file() create real extent from
795 			   a fake one? */
796 			startnum = (offset > 0);
797 		}
798 		/* Create extents for the hole between EOF and offset */
799 		hole_len = (loff_t)offset << inode->i_blkbits;
800 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
801 		if (ret < 0) {
802 			*err = ret;
803 			newblock = 0;
804 			goto out_free;
805 		}
806 		c = 0;
807 		offset = 0;
808 		count += ret;
809 		/* We are not covered by a preallocated extent? */
810 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
811 						EXT_NOT_RECORDED_ALLOCATED) {
812 			/* Is there any real extent? - otherwise we overwrite
813 			 * the fake one... */
814 			if (count)
815 				c = !c;
816 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
817 				inode->i_sb->s_blocksize;
818 			memset(&laarr[c].extLocation, 0x00,
819 				sizeof(struct kernel_lb_addr));
820 			count++;
821 		}
822 		endnum = c + 1;
823 		lastblock = 1;
824 	} else {
825 		isBeyondEOF = false;
826 		endnum = startnum = ((count > 2) ? 2 : count);
827 
828 		/* if the current extent is in position 0,
829 		   swap it with the previous */
830 		if (!c && count != 1) {
831 			laarr[2] = laarr[0];
832 			laarr[0] = laarr[1];
833 			laarr[1] = laarr[2];
834 			c = 1;
835 		}
836 
837 		/* if the current block is located in an extent,
838 		   read the next extent */
839 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
840 		if (etype != -1) {
841 			laarr[c + 1].extLength = (etype << 30) | elen;
842 			laarr[c + 1].extLocation = eloc;
843 			count++;
844 			startnum++;
845 			endnum++;
846 		} else
847 			lastblock = 1;
848 	}
849 
850 	/* if the current extent is not recorded but allocated, get the
851 	 * block in the extent corresponding to the requested block */
852 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
853 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
854 	else { /* otherwise, allocate a new block */
855 		if (iinfo->i_next_alloc_block == block)
856 			goal = iinfo->i_next_alloc_goal;
857 
858 		if (!goal) {
859 			if (!(goal = pgoal)) /* XXX: what was intended here? */
860 				goal = iinfo->i_location.logicalBlockNum + 1;
861 		}
862 
863 		newblocknum = udf_new_block(inode->i_sb, inode,
864 				iinfo->i_location.partitionReferenceNum,
865 				goal, err);
866 		if (!newblocknum) {
867 			*err = -ENOSPC;
868 			newblock = 0;
869 			goto out_free;
870 		}
871 		if (isBeyondEOF)
872 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
873 	}
874 
875 	/* if the extent the requsted block is located in contains multiple
876 	 * blocks, split the extent into at most three extents. blocks prior
877 	 * to requested block, requested block, and blocks after requested
878 	 * block */
879 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
880 
881 	/* We preallocate blocks only for regular files. It also makes sense
882 	 * for directories but there's a problem when to drop the
883 	 * preallocation. We might use some delayed work for that but I feel
884 	 * it's overengineering for a filesystem like UDF. */
885 	if (S_ISREG(inode->i_mode))
886 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
887 
888 	/* merge any continuous blocks in laarr */
889 	udf_merge_extents(inode, laarr, &endnum);
890 
891 	/* write back the new extents, inserting new extents if the new number
892 	 * of extents is greater than the old number, and deleting extents if
893 	 * the new number of extents is less than the old number */
894 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
895 
896 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
897 				iinfo->i_location.partitionReferenceNum, 0);
898 	if (!newblock) {
899 		*err = -EIO;
900 		goto out_free;
901 	}
902 	*new = 1;
903 	iinfo->i_next_alloc_block = block;
904 	iinfo->i_next_alloc_goal = newblocknum;
905 	inode->i_ctime = current_time(inode);
906 
907 	if (IS_SYNC(inode))
908 		udf_sync_inode(inode);
909 	else
910 		mark_inode_dirty(inode);
911 out_free:
912 	brelse(prev_epos.bh);
913 	brelse(cur_epos.bh);
914 	brelse(next_epos.bh);
915 	return newblock;
916 }
917 
918 static void udf_split_extents(struct inode *inode, int *c, int offset,
919 			       udf_pblk_t newblocknum,
920 			       struct kernel_long_ad *laarr, int *endnum)
921 {
922 	unsigned long blocksize = inode->i_sb->s_blocksize;
923 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
924 
925 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
926 	    (laarr[*c].extLength >> 30) ==
927 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
928 		int curr = *c;
929 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
930 			    blocksize - 1) >> blocksize_bits;
931 		int8_t etype = (laarr[curr].extLength >> 30);
932 
933 		if (blen == 1)
934 			;
935 		else if (!offset || blen == offset + 1) {
936 			laarr[curr + 2] = laarr[curr + 1];
937 			laarr[curr + 1] = laarr[curr];
938 		} else {
939 			laarr[curr + 3] = laarr[curr + 1];
940 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
941 		}
942 
943 		if (offset) {
944 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
945 				udf_free_blocks(inode->i_sb, inode,
946 						&laarr[curr].extLocation,
947 						0, offset);
948 				laarr[curr].extLength =
949 					EXT_NOT_RECORDED_NOT_ALLOCATED |
950 					(offset << blocksize_bits);
951 				laarr[curr].extLocation.logicalBlockNum = 0;
952 				laarr[curr].extLocation.
953 						partitionReferenceNum = 0;
954 			} else
955 				laarr[curr].extLength = (etype << 30) |
956 					(offset << blocksize_bits);
957 			curr++;
958 			(*c)++;
959 			(*endnum)++;
960 		}
961 
962 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
963 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
964 			laarr[curr].extLocation.partitionReferenceNum =
965 				UDF_I(inode)->i_location.partitionReferenceNum;
966 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
967 			blocksize;
968 		curr++;
969 
970 		if (blen != offset + 1) {
971 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
972 				laarr[curr].extLocation.logicalBlockNum +=
973 								offset + 1;
974 			laarr[curr].extLength = (etype << 30) |
975 				((blen - (offset + 1)) << blocksize_bits);
976 			curr++;
977 			(*endnum)++;
978 		}
979 	}
980 }
981 
982 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
983 				 struct kernel_long_ad *laarr,
984 				 int *endnum)
985 {
986 	int start, length = 0, currlength = 0, i;
987 
988 	if (*endnum >= (c + 1)) {
989 		if (!lastblock)
990 			return;
991 		else
992 			start = c;
993 	} else {
994 		if ((laarr[c + 1].extLength >> 30) ==
995 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
996 			start = c + 1;
997 			length = currlength =
998 				(((laarr[c + 1].extLength &
999 					UDF_EXTENT_LENGTH_MASK) +
1000 				inode->i_sb->s_blocksize - 1) >>
1001 				inode->i_sb->s_blocksize_bits);
1002 		} else
1003 			start = c;
1004 	}
1005 
1006 	for (i = start + 1; i <= *endnum; i++) {
1007 		if (i == *endnum) {
1008 			if (lastblock)
1009 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1010 		} else if ((laarr[i].extLength >> 30) ==
1011 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1012 			length += (((laarr[i].extLength &
1013 						UDF_EXTENT_LENGTH_MASK) +
1014 				    inode->i_sb->s_blocksize - 1) >>
1015 				    inode->i_sb->s_blocksize_bits);
1016 		} else
1017 			break;
1018 	}
1019 
1020 	if (length) {
1021 		int next = laarr[start].extLocation.logicalBlockNum +
1022 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1023 			  inode->i_sb->s_blocksize - 1) >>
1024 			  inode->i_sb->s_blocksize_bits);
1025 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1026 				laarr[start].extLocation.partitionReferenceNum,
1027 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1028 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1029 				currlength);
1030 		if (numalloc) 	{
1031 			if (start == (c + 1))
1032 				laarr[start].extLength +=
1033 					(numalloc <<
1034 					 inode->i_sb->s_blocksize_bits);
1035 			else {
1036 				memmove(&laarr[c + 2], &laarr[c + 1],
1037 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1038 				(*endnum)++;
1039 				laarr[c + 1].extLocation.logicalBlockNum = next;
1040 				laarr[c + 1].extLocation.partitionReferenceNum =
1041 					laarr[c].extLocation.
1042 							partitionReferenceNum;
1043 				laarr[c + 1].extLength =
1044 					EXT_NOT_RECORDED_ALLOCATED |
1045 					(numalloc <<
1046 					 inode->i_sb->s_blocksize_bits);
1047 				start = c + 1;
1048 			}
1049 
1050 			for (i = start + 1; numalloc && i < *endnum; i++) {
1051 				int elen = ((laarr[i].extLength &
1052 						UDF_EXTENT_LENGTH_MASK) +
1053 					    inode->i_sb->s_blocksize - 1) >>
1054 					    inode->i_sb->s_blocksize_bits;
1055 
1056 				if (elen > numalloc) {
1057 					laarr[i].extLength -=
1058 						(numalloc <<
1059 						 inode->i_sb->s_blocksize_bits);
1060 					numalloc = 0;
1061 				} else {
1062 					numalloc -= elen;
1063 					if (*endnum > (i + 1))
1064 						memmove(&laarr[i],
1065 							&laarr[i + 1],
1066 							sizeof(struct long_ad) *
1067 							(*endnum - (i + 1)));
1068 					i--;
1069 					(*endnum)--;
1070 				}
1071 			}
1072 			UDF_I(inode)->i_lenExtents +=
1073 				numalloc << inode->i_sb->s_blocksize_bits;
1074 		}
1075 	}
1076 }
1077 
1078 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1079 			      int *endnum)
1080 {
1081 	int i;
1082 	unsigned long blocksize = inode->i_sb->s_blocksize;
1083 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1084 
1085 	for (i = 0; i < (*endnum - 1); i++) {
1086 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1087 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1088 
1089 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1090 			(((li->extLength >> 30) ==
1091 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1092 			((lip1->extLocation.logicalBlockNum -
1093 			  li->extLocation.logicalBlockNum) ==
1094 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 			blocksize - 1) >> blocksize_bits)))) {
1096 
1097 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1098 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1099 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1100 				lip1->extLength = (lip1->extLength -
1101 						  (li->extLength &
1102 						   UDF_EXTENT_LENGTH_MASK) +
1103 						   UDF_EXTENT_LENGTH_MASK) &
1104 							~(blocksize - 1);
1105 				li->extLength = (li->extLength &
1106 						 UDF_EXTENT_FLAG_MASK) +
1107 						(UDF_EXTENT_LENGTH_MASK + 1) -
1108 						blocksize;
1109 				lip1->extLocation.logicalBlockNum =
1110 					li->extLocation.logicalBlockNum +
1111 					((li->extLength &
1112 						UDF_EXTENT_LENGTH_MASK) >>
1113 						blocksize_bits);
1114 			} else {
1115 				li->extLength = lip1->extLength +
1116 					(((li->extLength &
1117 						UDF_EXTENT_LENGTH_MASK) +
1118 					 blocksize - 1) & ~(blocksize - 1));
1119 				if (*endnum > (i + 2))
1120 					memmove(&laarr[i + 1], &laarr[i + 2],
1121 						sizeof(struct long_ad) *
1122 						(*endnum - (i + 2)));
1123 				i--;
1124 				(*endnum)--;
1125 			}
1126 		} else if (((li->extLength >> 30) ==
1127 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1128 			   ((lip1->extLength >> 30) ==
1129 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1130 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1131 					((li->extLength &
1132 					  UDF_EXTENT_LENGTH_MASK) +
1133 					 blocksize - 1) >> blocksize_bits);
1134 			li->extLocation.logicalBlockNum = 0;
1135 			li->extLocation.partitionReferenceNum = 0;
1136 
1137 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1138 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1139 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1140 				lip1->extLength = (lip1->extLength -
1141 						   (li->extLength &
1142 						   UDF_EXTENT_LENGTH_MASK) +
1143 						   UDF_EXTENT_LENGTH_MASK) &
1144 						   ~(blocksize - 1);
1145 				li->extLength = (li->extLength &
1146 						 UDF_EXTENT_FLAG_MASK) +
1147 						(UDF_EXTENT_LENGTH_MASK + 1) -
1148 						blocksize;
1149 			} else {
1150 				li->extLength = lip1->extLength +
1151 					(((li->extLength &
1152 						UDF_EXTENT_LENGTH_MASK) +
1153 					  blocksize - 1) & ~(blocksize - 1));
1154 				if (*endnum > (i + 2))
1155 					memmove(&laarr[i + 1], &laarr[i + 2],
1156 						sizeof(struct long_ad) *
1157 						(*endnum - (i + 2)));
1158 				i--;
1159 				(*endnum)--;
1160 			}
1161 		} else if ((li->extLength >> 30) ==
1162 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1163 			udf_free_blocks(inode->i_sb, inode,
1164 					&li->extLocation, 0,
1165 					((li->extLength &
1166 						UDF_EXTENT_LENGTH_MASK) +
1167 					 blocksize - 1) >> blocksize_bits);
1168 			li->extLocation.logicalBlockNum = 0;
1169 			li->extLocation.partitionReferenceNum = 0;
1170 			li->extLength = (li->extLength &
1171 						UDF_EXTENT_LENGTH_MASK) |
1172 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1173 		}
1174 	}
1175 }
1176 
1177 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1178 			       int startnum, int endnum,
1179 			       struct extent_position *epos)
1180 {
1181 	int start = 0, i;
1182 	struct kernel_lb_addr tmploc;
1183 	uint32_t tmplen;
1184 
1185 	if (startnum > endnum) {
1186 		for (i = 0; i < (startnum - endnum); i++)
1187 			udf_delete_aext(inode, *epos);
1188 	} else if (startnum < endnum) {
1189 		for (i = 0; i < (endnum - startnum); i++) {
1190 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1191 					laarr[i].extLength);
1192 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1193 				      &laarr[i].extLength, 1);
1194 			start++;
1195 		}
1196 	}
1197 
1198 	for (i = start; i < endnum; i++) {
1199 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1200 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1201 			       laarr[i].extLength, 1);
1202 	}
1203 }
1204 
1205 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1206 			      int create, int *err)
1207 {
1208 	struct buffer_head *bh = NULL;
1209 
1210 	bh = udf_getblk(inode, block, create, err);
1211 	if (!bh)
1212 		return NULL;
1213 
1214 	if (bh_read(bh, 0) >= 0)
1215 		return bh;
1216 
1217 	brelse(bh);
1218 	*err = -EIO;
1219 	return NULL;
1220 }
1221 
1222 int udf_setsize(struct inode *inode, loff_t newsize)
1223 {
1224 	int err;
1225 	struct udf_inode_info *iinfo;
1226 	unsigned int bsize = i_blocksize(inode);
1227 
1228 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1229 	      S_ISLNK(inode->i_mode)))
1230 		return -EINVAL;
1231 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1232 		return -EPERM;
1233 
1234 	iinfo = UDF_I(inode);
1235 	if (newsize > inode->i_size) {
1236 		down_write(&iinfo->i_data_sem);
1237 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1238 			if (bsize <
1239 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1240 				err = udf_expand_file_adinicb(inode);
1241 				if (err)
1242 					return err;
1243 				down_write(&iinfo->i_data_sem);
1244 			} else {
1245 				iinfo->i_lenAlloc = newsize;
1246 				goto set_size;
1247 			}
1248 		}
1249 		err = udf_extend_file(inode, newsize);
1250 		if (err) {
1251 			up_write(&iinfo->i_data_sem);
1252 			return err;
1253 		}
1254 set_size:
1255 		up_write(&iinfo->i_data_sem);
1256 		truncate_setsize(inode, newsize);
1257 	} else {
1258 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1259 			down_write(&iinfo->i_data_sem);
1260 			udf_clear_extent_cache(inode);
1261 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1262 			       0x00, bsize - newsize -
1263 			       udf_file_entry_alloc_offset(inode));
1264 			iinfo->i_lenAlloc = newsize;
1265 			truncate_setsize(inode, newsize);
1266 			up_write(&iinfo->i_data_sem);
1267 			goto update_time;
1268 		}
1269 		err = block_truncate_page(inode->i_mapping, newsize,
1270 					  udf_get_block);
1271 		if (err)
1272 			return err;
1273 		truncate_setsize(inode, newsize);
1274 		down_write(&iinfo->i_data_sem);
1275 		udf_clear_extent_cache(inode);
1276 		err = udf_truncate_extents(inode);
1277 		up_write(&iinfo->i_data_sem);
1278 		if (err)
1279 			return err;
1280 	}
1281 update_time:
1282 	inode->i_mtime = inode->i_ctime = current_time(inode);
1283 	if (IS_SYNC(inode))
1284 		udf_sync_inode(inode);
1285 	else
1286 		mark_inode_dirty(inode);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1292  * arbitrary - just that we hopefully don't limit any real use of rewritten
1293  * inode on write-once media but avoid looping for too long on corrupted media.
1294  */
1295 #define UDF_MAX_ICB_NESTING 1024
1296 
1297 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1298 {
1299 	struct buffer_head *bh = NULL;
1300 	struct fileEntry *fe;
1301 	struct extendedFileEntry *efe;
1302 	uint16_t ident;
1303 	struct udf_inode_info *iinfo = UDF_I(inode);
1304 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1305 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1306 	unsigned int link_count;
1307 	unsigned int indirections = 0;
1308 	int bs = inode->i_sb->s_blocksize;
1309 	int ret = -EIO;
1310 	uint32_t uid, gid;
1311 
1312 reread:
1313 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1314 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1315 			  iloc->partitionReferenceNum, sbi->s_partitions);
1316 		return -EIO;
1317 	}
1318 
1319 	if (iloc->logicalBlockNum >=
1320 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1321 		udf_debug("block=%u, partition=%u out of range\n",
1322 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1323 		return -EIO;
1324 	}
1325 
1326 	/*
1327 	 * Set defaults, but the inode is still incomplete!
1328 	 * Note: get_new_inode() sets the following on a new inode:
1329 	 *      i_sb = sb
1330 	 *      i_no = ino
1331 	 *      i_flags = sb->s_flags
1332 	 *      i_state = 0
1333 	 * clean_inode(): zero fills and sets
1334 	 *      i_count = 1
1335 	 *      i_nlink = 1
1336 	 *      i_op = NULL;
1337 	 */
1338 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1339 	if (!bh) {
1340 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1341 		return -EIO;
1342 	}
1343 
1344 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1345 	    ident != TAG_IDENT_USE) {
1346 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1347 			inode->i_ino, ident);
1348 		goto out;
1349 	}
1350 
1351 	fe = (struct fileEntry *)bh->b_data;
1352 	efe = (struct extendedFileEntry *)bh->b_data;
1353 
1354 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1355 		struct buffer_head *ibh;
1356 
1357 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1358 		if (ident == TAG_IDENT_IE && ibh) {
1359 			struct kernel_lb_addr loc;
1360 			struct indirectEntry *ie;
1361 
1362 			ie = (struct indirectEntry *)ibh->b_data;
1363 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1364 
1365 			if (ie->indirectICB.extLength) {
1366 				brelse(ibh);
1367 				memcpy(&iinfo->i_location, &loc,
1368 				       sizeof(struct kernel_lb_addr));
1369 				if (++indirections > UDF_MAX_ICB_NESTING) {
1370 					udf_err(inode->i_sb,
1371 						"too many ICBs in ICB hierarchy"
1372 						" (max %d supported)\n",
1373 						UDF_MAX_ICB_NESTING);
1374 					goto out;
1375 				}
1376 				brelse(bh);
1377 				goto reread;
1378 			}
1379 		}
1380 		brelse(ibh);
1381 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1382 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1383 			le16_to_cpu(fe->icbTag.strategyType));
1384 		goto out;
1385 	}
1386 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1387 		iinfo->i_strat4096 = 0;
1388 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1389 		iinfo->i_strat4096 = 1;
1390 
1391 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1392 							ICBTAG_FLAG_AD_MASK;
1393 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1394 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1395 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1396 		ret = -EIO;
1397 		goto out;
1398 	}
1399 	iinfo->i_unique = 0;
1400 	iinfo->i_lenEAttr = 0;
1401 	iinfo->i_lenExtents = 0;
1402 	iinfo->i_lenAlloc = 0;
1403 	iinfo->i_next_alloc_block = 0;
1404 	iinfo->i_next_alloc_goal = 0;
1405 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1406 		iinfo->i_efe = 1;
1407 		iinfo->i_use = 0;
1408 		ret = udf_alloc_i_data(inode, bs -
1409 					sizeof(struct extendedFileEntry));
1410 		if (ret)
1411 			goto out;
1412 		memcpy(iinfo->i_data,
1413 		       bh->b_data + sizeof(struct extendedFileEntry),
1414 		       bs - sizeof(struct extendedFileEntry));
1415 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1416 		iinfo->i_efe = 0;
1417 		iinfo->i_use = 0;
1418 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1419 		if (ret)
1420 			goto out;
1421 		memcpy(iinfo->i_data,
1422 		       bh->b_data + sizeof(struct fileEntry),
1423 		       bs - sizeof(struct fileEntry));
1424 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1425 		iinfo->i_efe = 0;
1426 		iinfo->i_use = 1;
1427 		iinfo->i_lenAlloc = le32_to_cpu(
1428 				((struct unallocSpaceEntry *)bh->b_data)->
1429 				 lengthAllocDescs);
1430 		ret = udf_alloc_i_data(inode, bs -
1431 					sizeof(struct unallocSpaceEntry));
1432 		if (ret)
1433 			goto out;
1434 		memcpy(iinfo->i_data,
1435 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1436 		       bs - sizeof(struct unallocSpaceEntry));
1437 		return 0;
1438 	}
1439 
1440 	ret = -EIO;
1441 	read_lock(&sbi->s_cred_lock);
1442 	uid = le32_to_cpu(fe->uid);
1443 	if (uid == UDF_INVALID_ID ||
1444 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1445 		inode->i_uid = sbi->s_uid;
1446 	else
1447 		i_uid_write(inode, uid);
1448 
1449 	gid = le32_to_cpu(fe->gid);
1450 	if (gid == UDF_INVALID_ID ||
1451 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1452 		inode->i_gid = sbi->s_gid;
1453 	else
1454 		i_gid_write(inode, gid);
1455 
1456 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1457 			sbi->s_fmode != UDF_INVALID_MODE)
1458 		inode->i_mode = sbi->s_fmode;
1459 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1460 			sbi->s_dmode != UDF_INVALID_MODE)
1461 		inode->i_mode = sbi->s_dmode;
1462 	else
1463 		inode->i_mode = udf_convert_permissions(fe);
1464 	inode->i_mode &= ~sbi->s_umask;
1465 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1466 
1467 	read_unlock(&sbi->s_cred_lock);
1468 
1469 	link_count = le16_to_cpu(fe->fileLinkCount);
1470 	if (!link_count) {
1471 		if (!hidden_inode) {
1472 			ret = -ESTALE;
1473 			goto out;
1474 		}
1475 		link_count = 1;
1476 	}
1477 	set_nlink(inode, link_count);
1478 
1479 	inode->i_size = le64_to_cpu(fe->informationLength);
1480 	iinfo->i_lenExtents = inode->i_size;
1481 
1482 	if (iinfo->i_efe == 0) {
1483 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1484 			(inode->i_sb->s_blocksize_bits - 9);
1485 
1486 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1487 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1488 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1489 
1490 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1491 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1492 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1493 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1494 		iinfo->i_streamdir = 0;
1495 		iinfo->i_lenStreams = 0;
1496 	} else {
1497 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1498 		    (inode->i_sb->s_blocksize_bits - 9);
1499 
1500 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1501 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1502 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1503 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1504 
1505 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1506 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1507 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1508 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1509 
1510 		/* Named streams */
1511 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1512 		iinfo->i_locStreamdir =
1513 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1514 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1515 		if (iinfo->i_lenStreams >= inode->i_size)
1516 			iinfo->i_lenStreams -= inode->i_size;
1517 		else
1518 			iinfo->i_lenStreams = 0;
1519 	}
1520 	inode->i_generation = iinfo->i_unique;
1521 
1522 	/*
1523 	 * Sanity check length of allocation descriptors and extended attrs to
1524 	 * avoid integer overflows
1525 	 */
1526 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1527 		goto out;
1528 	/* Now do exact checks */
1529 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1530 		goto out;
1531 	/* Sanity checks for files in ICB so that we don't get confused later */
1532 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1533 		/*
1534 		 * For file in ICB data is stored in allocation descriptor
1535 		 * so sizes should match
1536 		 */
1537 		if (iinfo->i_lenAlloc != inode->i_size)
1538 			goto out;
1539 		/* File in ICB has to fit in there... */
1540 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1541 			goto out;
1542 	}
1543 
1544 	switch (fe->icbTag.fileType) {
1545 	case ICBTAG_FILE_TYPE_DIRECTORY:
1546 		inode->i_op = &udf_dir_inode_operations;
1547 		inode->i_fop = &udf_dir_operations;
1548 		inode->i_mode |= S_IFDIR;
1549 		inc_nlink(inode);
1550 		break;
1551 	case ICBTAG_FILE_TYPE_REALTIME:
1552 	case ICBTAG_FILE_TYPE_REGULAR:
1553 	case ICBTAG_FILE_TYPE_UNDEF:
1554 	case ICBTAG_FILE_TYPE_VAT20:
1555 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1556 			inode->i_data.a_ops = &udf_adinicb_aops;
1557 		else
1558 			inode->i_data.a_ops = &udf_aops;
1559 		inode->i_op = &udf_file_inode_operations;
1560 		inode->i_fop = &udf_file_operations;
1561 		inode->i_mode |= S_IFREG;
1562 		break;
1563 	case ICBTAG_FILE_TYPE_BLOCK:
1564 		inode->i_mode |= S_IFBLK;
1565 		break;
1566 	case ICBTAG_FILE_TYPE_CHAR:
1567 		inode->i_mode |= S_IFCHR;
1568 		break;
1569 	case ICBTAG_FILE_TYPE_FIFO:
1570 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1571 		break;
1572 	case ICBTAG_FILE_TYPE_SOCKET:
1573 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1574 		break;
1575 	case ICBTAG_FILE_TYPE_SYMLINK:
1576 		inode->i_data.a_ops = &udf_symlink_aops;
1577 		inode->i_op = &udf_symlink_inode_operations;
1578 		inode_nohighmem(inode);
1579 		inode->i_mode = S_IFLNK | 0777;
1580 		break;
1581 	case ICBTAG_FILE_TYPE_MAIN:
1582 		udf_debug("METADATA FILE-----\n");
1583 		break;
1584 	case ICBTAG_FILE_TYPE_MIRROR:
1585 		udf_debug("METADATA MIRROR FILE-----\n");
1586 		break;
1587 	case ICBTAG_FILE_TYPE_BITMAP:
1588 		udf_debug("METADATA BITMAP FILE-----\n");
1589 		break;
1590 	default:
1591 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1592 			inode->i_ino, fe->icbTag.fileType);
1593 		goto out;
1594 	}
1595 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1596 		struct deviceSpec *dsea =
1597 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1598 		if (dsea) {
1599 			init_special_inode(inode, inode->i_mode,
1600 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1601 				      le32_to_cpu(dsea->minorDeviceIdent)));
1602 			/* Developer ID ??? */
1603 		} else
1604 			goto out;
1605 	}
1606 	ret = 0;
1607 out:
1608 	brelse(bh);
1609 	return ret;
1610 }
1611 
1612 static int udf_alloc_i_data(struct inode *inode, size_t size)
1613 {
1614 	struct udf_inode_info *iinfo = UDF_I(inode);
1615 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1616 	if (!iinfo->i_data)
1617 		return -ENOMEM;
1618 	return 0;
1619 }
1620 
1621 static umode_t udf_convert_permissions(struct fileEntry *fe)
1622 {
1623 	umode_t mode;
1624 	uint32_t permissions;
1625 	uint32_t flags;
1626 
1627 	permissions = le32_to_cpu(fe->permissions);
1628 	flags = le16_to_cpu(fe->icbTag.flags);
1629 
1630 	mode =	((permissions) & 0007) |
1631 		((permissions >> 2) & 0070) |
1632 		((permissions >> 4) & 0700) |
1633 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1634 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1635 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1636 
1637 	return mode;
1638 }
1639 
1640 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1641 {
1642 	struct udf_inode_info *iinfo = UDF_I(inode);
1643 
1644 	/*
1645 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1646 	 * In Unix, delete permission tracks write
1647 	 */
1648 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1649 	if (mode & 0200)
1650 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1651 	if (mode & 0020)
1652 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1653 	if (mode & 0002)
1654 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1655 }
1656 
1657 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1658 {
1659 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1660 }
1661 
1662 static int udf_sync_inode(struct inode *inode)
1663 {
1664 	return udf_update_inode(inode, 1);
1665 }
1666 
1667 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1668 {
1669 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1670 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1671 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1672 		iinfo->i_crtime = time;
1673 }
1674 
1675 static int udf_update_inode(struct inode *inode, int do_sync)
1676 {
1677 	struct buffer_head *bh = NULL;
1678 	struct fileEntry *fe;
1679 	struct extendedFileEntry *efe;
1680 	uint64_t lb_recorded;
1681 	uint32_t udfperms;
1682 	uint16_t icbflags;
1683 	uint16_t crclen;
1684 	int err = 0;
1685 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1686 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1687 	struct udf_inode_info *iinfo = UDF_I(inode);
1688 
1689 	bh = udf_tgetblk(inode->i_sb,
1690 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1691 	if (!bh) {
1692 		udf_debug("getblk failure\n");
1693 		return -EIO;
1694 	}
1695 
1696 	lock_buffer(bh);
1697 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1698 	fe = (struct fileEntry *)bh->b_data;
1699 	efe = (struct extendedFileEntry *)bh->b_data;
1700 
1701 	if (iinfo->i_use) {
1702 		struct unallocSpaceEntry *use =
1703 			(struct unallocSpaceEntry *)bh->b_data;
1704 
1705 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1706 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1707 		       iinfo->i_data, inode->i_sb->s_blocksize -
1708 					sizeof(struct unallocSpaceEntry));
1709 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1710 		crclen = sizeof(struct unallocSpaceEntry);
1711 
1712 		goto finish;
1713 	}
1714 
1715 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1716 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1717 	else
1718 		fe->uid = cpu_to_le32(i_uid_read(inode));
1719 
1720 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1721 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1722 	else
1723 		fe->gid = cpu_to_le32(i_gid_read(inode));
1724 
1725 	udfperms = ((inode->i_mode & 0007)) |
1726 		   ((inode->i_mode & 0070) << 2) |
1727 		   ((inode->i_mode & 0700) << 4);
1728 
1729 	udfperms |= iinfo->i_extraPerms;
1730 	fe->permissions = cpu_to_le32(udfperms);
1731 
1732 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1733 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1734 	else
1735 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1736 
1737 	fe->informationLength = cpu_to_le64(inode->i_size);
1738 
1739 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1740 		struct regid *eid;
1741 		struct deviceSpec *dsea =
1742 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1743 		if (!dsea) {
1744 			dsea = (struct deviceSpec *)
1745 				udf_add_extendedattr(inode,
1746 						     sizeof(struct deviceSpec) +
1747 						     sizeof(struct regid), 12, 0x3);
1748 			dsea->attrType = cpu_to_le32(12);
1749 			dsea->attrSubtype = 1;
1750 			dsea->attrLength = cpu_to_le32(
1751 						sizeof(struct deviceSpec) +
1752 						sizeof(struct regid));
1753 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1754 		}
1755 		eid = (struct regid *)dsea->impUse;
1756 		memset(eid, 0, sizeof(*eid));
1757 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1758 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1759 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1760 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1761 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1762 	}
1763 
1764 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1765 		lb_recorded = 0; /* No extents => no blocks! */
1766 	else
1767 		lb_recorded =
1768 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1769 			(blocksize_bits - 9);
1770 
1771 	if (iinfo->i_efe == 0) {
1772 		memcpy(bh->b_data + sizeof(struct fileEntry),
1773 		       iinfo->i_data,
1774 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1775 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1776 
1777 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1778 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1779 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1780 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1781 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1782 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1783 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1784 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1785 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1786 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1787 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1788 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1789 		crclen = sizeof(struct fileEntry);
1790 	} else {
1791 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1792 		       iinfo->i_data,
1793 		       inode->i_sb->s_blocksize -
1794 					sizeof(struct extendedFileEntry));
1795 		efe->objectSize =
1796 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1797 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1798 
1799 		if (iinfo->i_streamdir) {
1800 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1801 
1802 			icb_lad->extLocation =
1803 				cpu_to_lelb(iinfo->i_locStreamdir);
1804 			icb_lad->extLength =
1805 				cpu_to_le32(inode->i_sb->s_blocksize);
1806 		}
1807 
1808 		udf_adjust_time(iinfo, inode->i_atime);
1809 		udf_adjust_time(iinfo, inode->i_mtime);
1810 		udf_adjust_time(iinfo, inode->i_ctime);
1811 
1812 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1813 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1814 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1815 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1816 
1817 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1818 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1819 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1820 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1821 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1822 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1823 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1824 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1825 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1826 		crclen = sizeof(struct extendedFileEntry);
1827 	}
1828 
1829 finish:
1830 	if (iinfo->i_strat4096) {
1831 		fe->icbTag.strategyType = cpu_to_le16(4096);
1832 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1833 		fe->icbTag.numEntries = cpu_to_le16(2);
1834 	} else {
1835 		fe->icbTag.strategyType = cpu_to_le16(4);
1836 		fe->icbTag.numEntries = cpu_to_le16(1);
1837 	}
1838 
1839 	if (iinfo->i_use)
1840 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1841 	else if (S_ISDIR(inode->i_mode))
1842 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1843 	else if (S_ISREG(inode->i_mode))
1844 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1845 	else if (S_ISLNK(inode->i_mode))
1846 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1847 	else if (S_ISBLK(inode->i_mode))
1848 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1849 	else if (S_ISCHR(inode->i_mode))
1850 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1851 	else if (S_ISFIFO(inode->i_mode))
1852 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1853 	else if (S_ISSOCK(inode->i_mode))
1854 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1855 
1856 	icbflags =	iinfo->i_alloc_type |
1857 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1858 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1859 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1860 			(le16_to_cpu(fe->icbTag.flags) &
1861 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1862 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1863 
1864 	fe->icbTag.flags = cpu_to_le16(icbflags);
1865 	if (sbi->s_udfrev >= 0x0200)
1866 		fe->descTag.descVersion = cpu_to_le16(3);
1867 	else
1868 		fe->descTag.descVersion = cpu_to_le16(2);
1869 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1870 	fe->descTag.tagLocation = cpu_to_le32(
1871 					iinfo->i_location.logicalBlockNum);
1872 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1873 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1874 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1875 						  crclen));
1876 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1877 
1878 	set_buffer_uptodate(bh);
1879 	unlock_buffer(bh);
1880 
1881 	/* write the data blocks */
1882 	mark_buffer_dirty(bh);
1883 	if (do_sync) {
1884 		sync_dirty_buffer(bh);
1885 		if (buffer_write_io_error(bh)) {
1886 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1887 				 inode->i_ino);
1888 			err = -EIO;
1889 		}
1890 	}
1891 	brelse(bh);
1892 
1893 	return err;
1894 }
1895 
1896 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1897 			 bool hidden_inode)
1898 {
1899 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1900 	struct inode *inode = iget_locked(sb, block);
1901 	int err;
1902 
1903 	if (!inode)
1904 		return ERR_PTR(-ENOMEM);
1905 
1906 	if (!(inode->i_state & I_NEW))
1907 		return inode;
1908 
1909 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1910 	err = udf_read_inode(inode, hidden_inode);
1911 	if (err < 0) {
1912 		iget_failed(inode);
1913 		return ERR_PTR(err);
1914 	}
1915 	unlock_new_inode(inode);
1916 
1917 	return inode;
1918 }
1919 
1920 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1921 			    struct extent_position *epos)
1922 {
1923 	struct super_block *sb = inode->i_sb;
1924 	struct buffer_head *bh;
1925 	struct allocExtDesc *aed;
1926 	struct extent_position nepos;
1927 	struct kernel_lb_addr neloc;
1928 	int ver, adsize;
1929 
1930 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1931 		adsize = sizeof(struct short_ad);
1932 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1933 		adsize = sizeof(struct long_ad);
1934 	else
1935 		return -EIO;
1936 
1937 	neloc.logicalBlockNum = block;
1938 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1939 
1940 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1941 	if (!bh)
1942 		return -EIO;
1943 	lock_buffer(bh);
1944 	memset(bh->b_data, 0x00, sb->s_blocksize);
1945 	set_buffer_uptodate(bh);
1946 	unlock_buffer(bh);
1947 	mark_buffer_dirty_inode(bh, inode);
1948 
1949 	aed = (struct allocExtDesc *)(bh->b_data);
1950 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1951 		aed->previousAllocExtLocation =
1952 				cpu_to_le32(epos->block.logicalBlockNum);
1953 	}
1954 	aed->lengthAllocDescs = cpu_to_le32(0);
1955 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1956 		ver = 3;
1957 	else
1958 		ver = 2;
1959 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1960 		    sizeof(struct tag));
1961 
1962 	nepos.block = neloc;
1963 	nepos.offset = sizeof(struct allocExtDesc);
1964 	nepos.bh = bh;
1965 
1966 	/*
1967 	 * Do we have to copy current last extent to make space for indirect
1968 	 * one?
1969 	 */
1970 	if (epos->offset + adsize > sb->s_blocksize) {
1971 		struct kernel_lb_addr cp_loc;
1972 		uint32_t cp_len;
1973 		int cp_type;
1974 
1975 		epos->offset -= adsize;
1976 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1977 		cp_len |= ((uint32_t)cp_type) << 30;
1978 
1979 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1980 		udf_write_aext(inode, epos, &nepos.block,
1981 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1982 	} else {
1983 		__udf_add_aext(inode, epos, &nepos.block,
1984 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1985 	}
1986 
1987 	brelse(epos->bh);
1988 	*epos = nepos;
1989 
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Append extent at the given position - should be the first free one in inode
1995  * / indirect extent. This function assumes there is enough space in the inode
1996  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1997  */
1998 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1999 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2000 {
2001 	struct udf_inode_info *iinfo = UDF_I(inode);
2002 	struct allocExtDesc *aed;
2003 	int adsize;
2004 
2005 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2006 		adsize = sizeof(struct short_ad);
2007 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2008 		adsize = sizeof(struct long_ad);
2009 	else
2010 		return -EIO;
2011 
2012 	if (!epos->bh) {
2013 		WARN_ON(iinfo->i_lenAlloc !=
2014 			epos->offset - udf_file_entry_alloc_offset(inode));
2015 	} else {
2016 		aed = (struct allocExtDesc *)epos->bh->b_data;
2017 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2018 			epos->offset - sizeof(struct allocExtDesc));
2019 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2020 	}
2021 
2022 	udf_write_aext(inode, epos, eloc, elen, inc);
2023 
2024 	if (!epos->bh) {
2025 		iinfo->i_lenAlloc += adsize;
2026 		mark_inode_dirty(inode);
2027 	} else {
2028 		aed = (struct allocExtDesc *)epos->bh->b_data;
2029 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2030 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2031 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2032 			udf_update_tag(epos->bh->b_data,
2033 					epos->offset + (inc ? 0 : adsize));
2034 		else
2035 			udf_update_tag(epos->bh->b_data,
2036 					sizeof(struct allocExtDesc));
2037 		mark_buffer_dirty_inode(epos->bh, inode);
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 /*
2044  * Append extent at given position - should be the first free one in inode
2045  * / indirect extent. Takes care of allocating and linking indirect blocks.
2046  */
2047 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2048 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2049 {
2050 	int adsize;
2051 	struct super_block *sb = inode->i_sb;
2052 
2053 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2054 		adsize = sizeof(struct short_ad);
2055 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2056 		adsize = sizeof(struct long_ad);
2057 	else
2058 		return -EIO;
2059 
2060 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2061 		int err;
2062 		udf_pblk_t new_block;
2063 
2064 		new_block = udf_new_block(sb, NULL,
2065 					  epos->block.partitionReferenceNum,
2066 					  epos->block.logicalBlockNum, &err);
2067 		if (!new_block)
2068 			return -ENOSPC;
2069 
2070 		err = udf_setup_indirect_aext(inode, new_block, epos);
2071 		if (err)
2072 			return err;
2073 	}
2074 
2075 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2076 }
2077 
2078 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2079 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2080 {
2081 	int adsize;
2082 	uint8_t *ptr;
2083 	struct short_ad *sad;
2084 	struct long_ad *lad;
2085 	struct udf_inode_info *iinfo = UDF_I(inode);
2086 
2087 	if (!epos->bh)
2088 		ptr = iinfo->i_data + epos->offset -
2089 			udf_file_entry_alloc_offset(inode) +
2090 			iinfo->i_lenEAttr;
2091 	else
2092 		ptr = epos->bh->b_data + epos->offset;
2093 
2094 	switch (iinfo->i_alloc_type) {
2095 	case ICBTAG_FLAG_AD_SHORT:
2096 		sad = (struct short_ad *)ptr;
2097 		sad->extLength = cpu_to_le32(elen);
2098 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2099 		adsize = sizeof(struct short_ad);
2100 		break;
2101 	case ICBTAG_FLAG_AD_LONG:
2102 		lad = (struct long_ad *)ptr;
2103 		lad->extLength = cpu_to_le32(elen);
2104 		lad->extLocation = cpu_to_lelb(*eloc);
2105 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2106 		adsize = sizeof(struct long_ad);
2107 		break;
2108 	default:
2109 		return;
2110 	}
2111 
2112 	if (epos->bh) {
2113 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2114 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2115 			struct allocExtDesc *aed =
2116 				(struct allocExtDesc *)epos->bh->b_data;
2117 			udf_update_tag(epos->bh->b_data,
2118 				       le32_to_cpu(aed->lengthAllocDescs) +
2119 				       sizeof(struct allocExtDesc));
2120 		}
2121 		mark_buffer_dirty_inode(epos->bh, inode);
2122 	} else {
2123 		mark_inode_dirty(inode);
2124 	}
2125 
2126 	if (inc)
2127 		epos->offset += adsize;
2128 }
2129 
2130 /*
2131  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2132  * someone does some weird stuff.
2133  */
2134 #define UDF_MAX_INDIR_EXTS 16
2135 
2136 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2137 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2138 {
2139 	int8_t etype;
2140 	unsigned int indirections = 0;
2141 
2142 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2143 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2144 		udf_pblk_t block;
2145 
2146 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2147 			udf_err(inode->i_sb,
2148 				"too many indirect extents in inode %lu\n",
2149 				inode->i_ino);
2150 			return -1;
2151 		}
2152 
2153 		epos->block = *eloc;
2154 		epos->offset = sizeof(struct allocExtDesc);
2155 		brelse(epos->bh);
2156 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2157 		epos->bh = udf_tread(inode->i_sb, block);
2158 		if (!epos->bh) {
2159 			udf_debug("reading block %u failed!\n", block);
2160 			return -1;
2161 		}
2162 	}
2163 
2164 	return etype;
2165 }
2166 
2167 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2168 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2169 {
2170 	int alen;
2171 	int8_t etype;
2172 	uint8_t *ptr;
2173 	struct short_ad *sad;
2174 	struct long_ad *lad;
2175 	struct udf_inode_info *iinfo = UDF_I(inode);
2176 
2177 	if (!epos->bh) {
2178 		if (!epos->offset)
2179 			epos->offset = udf_file_entry_alloc_offset(inode);
2180 		ptr = iinfo->i_data + epos->offset -
2181 			udf_file_entry_alloc_offset(inode) +
2182 			iinfo->i_lenEAttr;
2183 		alen = udf_file_entry_alloc_offset(inode) +
2184 							iinfo->i_lenAlloc;
2185 	} else {
2186 		if (!epos->offset)
2187 			epos->offset = sizeof(struct allocExtDesc);
2188 		ptr = epos->bh->b_data + epos->offset;
2189 		alen = sizeof(struct allocExtDesc) +
2190 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2191 							lengthAllocDescs);
2192 	}
2193 
2194 	switch (iinfo->i_alloc_type) {
2195 	case ICBTAG_FLAG_AD_SHORT:
2196 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2197 		if (!sad)
2198 			return -1;
2199 		etype = le32_to_cpu(sad->extLength) >> 30;
2200 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2201 		eloc->partitionReferenceNum =
2202 				iinfo->i_location.partitionReferenceNum;
2203 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2204 		break;
2205 	case ICBTAG_FLAG_AD_LONG:
2206 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2207 		if (!lad)
2208 			return -1;
2209 		etype = le32_to_cpu(lad->extLength) >> 30;
2210 		*eloc = lelb_to_cpu(lad->extLocation);
2211 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2212 		break;
2213 	default:
2214 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2215 		return -1;
2216 	}
2217 
2218 	return etype;
2219 }
2220 
2221 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2222 			      struct kernel_lb_addr neloc, uint32_t nelen)
2223 {
2224 	struct kernel_lb_addr oeloc;
2225 	uint32_t oelen;
2226 	int8_t etype;
2227 
2228 	if (epos.bh)
2229 		get_bh(epos.bh);
2230 
2231 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2232 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2233 		neloc = oeloc;
2234 		nelen = (etype << 30) | oelen;
2235 	}
2236 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2237 	brelse(epos.bh);
2238 
2239 	return (nelen >> 30);
2240 }
2241 
2242 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2243 {
2244 	struct extent_position oepos;
2245 	int adsize;
2246 	int8_t etype;
2247 	struct allocExtDesc *aed;
2248 	struct udf_inode_info *iinfo;
2249 	struct kernel_lb_addr eloc;
2250 	uint32_t elen;
2251 
2252 	if (epos.bh) {
2253 		get_bh(epos.bh);
2254 		get_bh(epos.bh);
2255 	}
2256 
2257 	iinfo = UDF_I(inode);
2258 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2259 		adsize = sizeof(struct short_ad);
2260 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2261 		adsize = sizeof(struct long_ad);
2262 	else
2263 		adsize = 0;
2264 
2265 	oepos = epos;
2266 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2267 		return -1;
2268 
2269 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2270 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2271 		if (oepos.bh != epos.bh) {
2272 			oepos.block = epos.block;
2273 			brelse(oepos.bh);
2274 			get_bh(epos.bh);
2275 			oepos.bh = epos.bh;
2276 			oepos.offset = epos.offset - adsize;
2277 		}
2278 	}
2279 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2280 	elen = 0;
2281 
2282 	if (epos.bh != oepos.bh) {
2283 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2284 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2285 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2286 		if (!oepos.bh) {
2287 			iinfo->i_lenAlloc -= (adsize * 2);
2288 			mark_inode_dirty(inode);
2289 		} else {
2290 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2291 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2292 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2293 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2294 				udf_update_tag(oepos.bh->b_data,
2295 						oepos.offset - (2 * adsize));
2296 			else
2297 				udf_update_tag(oepos.bh->b_data,
2298 						sizeof(struct allocExtDesc));
2299 			mark_buffer_dirty_inode(oepos.bh, inode);
2300 		}
2301 	} else {
2302 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2303 		if (!oepos.bh) {
2304 			iinfo->i_lenAlloc -= adsize;
2305 			mark_inode_dirty(inode);
2306 		} else {
2307 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2308 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2309 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2310 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2311 				udf_update_tag(oepos.bh->b_data,
2312 						epos.offset - adsize);
2313 			else
2314 				udf_update_tag(oepos.bh->b_data,
2315 						sizeof(struct allocExtDesc));
2316 			mark_buffer_dirty_inode(oepos.bh, inode);
2317 		}
2318 	}
2319 
2320 	brelse(epos.bh);
2321 	brelse(oepos.bh);
2322 
2323 	return (elen >> 30);
2324 }
2325 
2326 int8_t inode_bmap(struct inode *inode, sector_t block,
2327 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2328 		  uint32_t *elen, sector_t *offset)
2329 {
2330 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2331 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2332 	int8_t etype;
2333 	struct udf_inode_info *iinfo;
2334 
2335 	iinfo = UDF_I(inode);
2336 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2337 		pos->offset = 0;
2338 		pos->block = iinfo->i_location;
2339 		pos->bh = NULL;
2340 	}
2341 	*elen = 0;
2342 	do {
2343 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2344 		if (etype == -1) {
2345 			*offset = (bcount - lbcount) >> blocksize_bits;
2346 			iinfo->i_lenExtents = lbcount;
2347 			return -1;
2348 		}
2349 		lbcount += *elen;
2350 	} while (lbcount <= bcount);
2351 	/* update extent cache */
2352 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2353 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2354 
2355 	return etype;
2356 }
2357 
2358 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2359 {
2360 	struct kernel_lb_addr eloc;
2361 	uint32_t elen;
2362 	sector_t offset;
2363 	struct extent_position epos = {};
2364 	udf_pblk_t ret;
2365 
2366 	down_read(&UDF_I(inode)->i_data_sem);
2367 
2368 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2369 						(EXT_RECORDED_ALLOCATED >> 30))
2370 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2371 	else
2372 		ret = 0;
2373 
2374 	up_read(&UDF_I(inode)->i_data_sem);
2375 	brelse(epos.bh);
2376 
2377 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2378 		return udf_fixed_to_variable(ret);
2379 	else
2380 		return ret;
2381 }
2382